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Introduction

In this paper we study topological actions of compact Lie
groups G on cohomology manifolds, and using the p-version of
thé geometric weight system introduced by W.Y., Hesiang [5], we try
to deduce préperties of the orbit structure. Our main interest
is the study of fixed point sets and orbit types. As is shown
by Hsiang, the weight system defined by a maximal torus of G is
a very important invariant. For example, Hsiang shows that the
weights completely describe the connected principdl isotropy type
(Gg) , where ¢ is an action on an acyelic space. DMoreover, the
connected component Gg of the isotropy group Gx can be deter-
- mined in many cases,

However, this success of the weight system is due to the role
played by maximal tori of compact Lie groups, and since maximal |
p-tori are not even conjugate in general, difficulties arise when
one try to use p-weights, imitating the methodsused in the case
p=20 . As far as isotropy groups are concerned, there seems %o
be a ciose connection hetween p-weights and p-torsion of G, or
of GX/G; (eeg., see § 2 when G 1is classical).

As is well known, the knowledge of the principelisotropy
type (G¢) is of primary interest in the study of compact trans-
formation groups, and trying to determine Gcp is important even
when dim G@ =0 .,

In § 1 we are first concerned with the relation between the
p-weights and the principal isotropy type. For p = 0 the results
are essentially due to Hsiasng. TFor example, the case p = 0 of
theorem (1.10) is a local verslon of Hsiangs algorithm, which
degcribes a sequence of tori descending to a maximal torus Tcp

of G@ . When Gcp ig finite and p ¥ 0 , the algorithm will end
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up with a p-torus 1T of Gcp , possibly not maximal, However,
under suitable conditions (see Remark (1,11)) we may find the
maximal p-tori and hence the p-rank of Gcp . _

Let m Ybe the maximum of the p-ranks of the isotropy groups,
for some p , and let 1 be the p-rank of G¢ o Then there are
isotropy groups having p-rank d for each dq between 1 and m, as
shown in theorem (1.1%), DMore generally, even if there is no well
defined principal isotropy type, the "principal p-rank" may still
be defined, for example if the gpace is a IFpucohomology manifold,
gee remark (1,14). Theorem (1.13%3) also applies in this generality.

(1.15) i a fixed point theorem relating the fixed point set
of G +to the fixed point set of a p-torus T of G , when the
nonzero p-weights and roots, with respect to T , are disjoint,

§ 2 is devoted to the study of regular (topological) actions
of the classical groups 80(n), SU(n), Sp(n) . In the literature
regular actions are usually known as (smooth) actions modelled
after the representation k6n+-le s Where 6, is the standard
representation and 8 is triviagl, In this paper we are .concerned
with actions on (integral) cohomology manifolds, and we say the
action is regular if it has exactly the same isotropy groups as
the above representation, and k 1s the order of the regular
action.

In the above linear case it is clear how to interpret the
number k in terms of orbit structure invariants, Pirst, if k
is small (k<n) , k is determined by the principal isotropy
type, and conversely. Secondly, k defines the multiplicity of
the nonzero weights of the representation. Thirdly, the codimen-
sion d of the fixed point set T(G) is a linear function of k

(In fact, d=kn, 2kn, 4kn, when G= SO0(n),SU(n),Sp(n) resp.)
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Now, due to the Borel formula, [2] Ch. XIII, in the topologi-
cal case it is possible to define a workable substitute for the
linear weight system, This is the geometric p-weight systems
(p prime or zero) originally introduced by Hsiang. Then the
above three describtions of k will also apply for regular actions,

The geometric p~weight system of an action is called regular
of order Xk if it is derived from the representation kén . As
shown by Hsiang, [6] for example, if the action has regular
O~weights, the action is almost regular in the sense that the
connected isotropy types (Gg) are the same as for the linear
model kan . This also holds for any p , more precisely, if the
classical group acts on an acyclic ]Fp—cohomology manifold and
the p-weights are regular, then the connected isotropy types are
ag above, In addition, the finite group GX/GE has no p-torsion,
(2.16)=(2.18),

If the p-weights are regular for two different p , their
order k must be the same for both p . Theorem (2,19) says that
the action is regular if and only if the p-weights are regular
for all p .

Let ¢ Dbe an action whose p-weights are regulsr of order Kk,
for some p o Then our problem is to show the regularity of
p-weights for all p . Thig can be shown rather easily when k
is small (s8y, k<n-2) . However,6 when k is large, there are
some technical difficulties, closely related to the validity of
the Borel formula for torus actions on certain IFpmcohomology
manifolds, To avoid these we may assume the action on X has
gsome local properties, for example, the fixed point sets of the
p-tori ( p prime) of G have finitely generated local cohomology

groups over the integers, see remarks (0.3) and definition (2.23).
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FPinally, theorem (2.26) sums up some equivalent formulations
of regular actions., TFor example, letting p = 2, we find that
the action is regular if the 2-weights are regular, Thus, the
property of acting regularly is already determined by restricting
the action to the maximal 2-torus of the classical group, i.e.

the subgroup of diagonal matrices (ei) with entries ey = + 1,

All G-spaces X will be cohomology manifolds over the

integers % , rationals iFO or the field in of order p , and
in § 2 X 1is acyelic (i.e., X has trivial (Céch) cohomology with

coefficients %, ¥  or :mp respectively).



§ 0, Preliminaries

A p-torus of rank r is a direct product T = (%p)r of
the group %p of order p{(prime)}. If p = 0, Z,, is replaced
by a circle group end T is an ordinary torus,

Definition (0,1) Let ¢ be an action of a torus or & p-torus T

on a Fpucohomology manifold X with nonempty fixed point set

1

F(T) , and let F be a component of F(T) . For each corank 1

sub~p-torus H of T , put

n(H) = dim F'(H) - dim ¥ ,

where F1(H) is the component of PF(H) containing B! and  dim
is cohomological dimension over :mp (e.g. see Borel {21) . Then

H is a nonzero local weight at i if m(H)>0 , and m(H) is

its multiplicity., The set of all nonzero weights, counted with

multiplicity, is denoted by @ () (or Qé(@) , when we want to

gtress that T d4is a p-torus). T 1is the zero weight and it has

multiplicity dim P! ., The set of all weights, written Qo) ,

is called the local geometric weight system of ¢ .at P

Borel formula (0,2) ([2] Ch. XIII) If T 4is a p-btorus acting

on a ZFp-cohomology manifold X , p prime or zero, then the total

muléiplicity of all local weights at F' equals dim X , i.e.

dim X - dim P! = £ m(H)

Hen' (o)

Remarks (0,3) The multiplicity m(H) dis even if T is not s

2-torus,
If X is Fp—acyclic, then PF(T) is also in-acyclic (P.A.Smith's

theorem). Then F(T) is nonempty and connected, and the geometric
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welight system is a global invariant.

If T 4is a torus acting on a Fpmcohomology manifold X,
p # 0 , then we do not know if the Borel formula (0,2) is still
valid. However, if the formula fails, some integral local cohomo-
logy groups of X must be infinitely generated, in such a way

that X 4is not a rational cohomology manifold.

Let %, , 1 =1,2, be sets vhose elements are sub-p-tori H

of T having corank < 1 , counted with multiplicity mi(H) . Then

we define the gum and difference, L = Z43 %5 5, to be the set of

I

elements H with multiplicity m(H) = m,(H) + m,(H) , respectively.

(m(H) < 0 simply means that H £ Z) .
If T dis a sub-p-torus of T , and X is a set of the

above type, define the restriction

gj?' = (H'=HaT' ((HnT')°, if p=0) ; Hex)

where the multiplicity of H' 4is the total multiplicity of all H
having same restriction H' . This is consistent with the notion
of geometric weight system, In fact, the following standard

property is a consequence of the Borel formula.

Proposition (0,4) TLet T and qe) be as in (0,1) and let T'

be a sub-p-torus of T ., Then
0le[T") = ale)|T'

Definition (0.5) Let ¢ be an action of a compact Lie group G

on a space X CFp—cohomology manifold) and let T be a fixed
p-torus of G . Then the (local) geometric p-weight system of ¢,

with respect to T , is defined to be the (local) weight systen

of the restricted action ¢|T , as defined in (0.1). It is also
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denoted by Qp(w) (or qp) , when there is no ambiguity).
The p-roots AP(G) of & , with respect to T , is the

p~weights of the adjoint representation Ad, , i.e.,
= A R
b,(6) = a(adg)
Usuaglly,, T is taken to be maximal in this definition,

As a consequence of the topological slice theorem, each
orbit G/G, has a tubular neighborhood G-equivalent to a twisted
product

0, = G X S
x GX x !

where S is a slice at x . 0, is a fiber bundle over G/GX
with fiber S_ . Choose a p-torus T of G, and let Qp(G/GX),
Qp(SX) be the p-weights, locally at x , of the action of G
on the orbit and slice, respectively. Then we have the following

transversality equation

1

ay{e) = ay(e/e) + oy (s,)

(0.6)

i

bp(G) = ay(Gy) + a,(8,) .

The first equality follows from the fibre bundle structure of the
fixed point set I¥(H,0,) for each closed subgroup H of Gx\.
The last equality of (0,6) is due to the fact that the action

of G, on the orbit is smooth and the local weights at x

(i.e, eGX) are derived from the isotropy representation - the
representation of G, on the tangent space of G/G, at el .
This space is identified in the usual way with the subspace qg;

of the ILiie algebra gg of G .

The existence of a principal isotropy type (Gm) is well

known when G 1is a compact Lie group acting on a connected integrdl
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cohomology manifold X ., HNotice that Gx is a principal isotropy
group if and only if GX acts trivially on the slice SX » The
union of principal orbits is an open dense subset of X ,

If X dis a rational cohomology manifold, the connected
principal isotropy type (G;) is well defined, Moreover, if X
is a JFp-oohomology manifold, we may still define the notion of
principal p-rank and O-rank, see Remark (1.14), Then, if T ig
a p-torus of G, acting trivially on a slice &, at x , or
equivalently Qé(sx) =@ , T must be contained in an isotropy

group of principal p-rank.
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§ 1, p-weights and p~rank of isotropy groups.

We say that & is p-regular if all maximal p-tori of G

are conjugate. If G is connected, G has no p-torsion if
H,(G;%Z) has no p-torsion. This is equivalent to saying that

each p-torus of G is contained in a (connected) torus, and this
clearly implies p-regularity. (See Borel [3] for the relation
between p-~tori and p-torsion), The p-rank of & is the largest
integer r such that G has a p-torus of rank r . The Weyl

roup W(T) of a p-torus T 4in G is the group of automorphisms
of T which restrict from inner automorphisms of G . Note that
the root system A(G) , defined by T , is invariant under the
natural action of the Weyl group, as is the weight system when 7T

has connected fixed point set F(T) .

Definition (1.1) (Hsiang) Let T bYe a p-torus (p prime or zero)

acting on a F_-~cohomology manifold X , The F-variety at xeX

P
is the component of the fixed point set F(TL,)[F(T)) , if p=0]

containing x . (T§ is the connected component of the isotropy

group T.) .

The following is a direct consequence of the Borel formula (0,2).

Lemma (1.2) (Hsiang [5]1,[6]) Let T and X be as in (1.1) and

consider the isotropy group TX at x . Let 0 be the local

T of the fixea point set F(T) . Then,

weights at a component F
if the P-variety at x intersects F1 , there exist welghts

Hi e, i=1,2,..,.8 , such that

TX=H1ﬂH2ﬂ.-. HS, piéo

T?{ = (H*]nHzn 200 HS)O! p=20
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Lemma (1.3) Tet ¢ be an action of a compact Lie group G on

a IFp—cohomology manifold X , p prime or zero. Let F1 be a

component of the fixed point set F(T) of a maximal p-torus T
and let ¢), a(G) be the local p-weights at ! ana p~roots,

respectively, If p # O , assume 1) P(T) is connected and G

is p-regular, or 2) (}}C is p-regular for some xeiF1 « Then

if
He o' (p) - ala) ,

1

there is a point 2 in the component F1(H) O F of F(H) such

that H dis a maximal p-torus of G, o

Proof This lemma is a modification of Lemma 2, p. %73 in Hsiang
[67, wvhere p =0 and X 4is acyclic, and (1,3) can be proved in

egssentiaglly the same way, by the following two steps:

1

&) Assume first G has a fixed point y € F' , choose a

small G-invariant neighborhood of y in X and prove (1.,3).
b) Choose the isotropy group G, o xe P s and apply the
first part a) to the action of G, on the slice 85, .

X

Lemma (1.4) Let G be a compact Lie group acting non-trivially

on an integral cohomology manifold X and let G@ be a principal

igotropy group. Then the fixed point set F(G) has
di MG dim G/G
codim, F(G) > dim G/ %
If G = 80(3) or 8U(2) , then codim P(G) > 3.
Proof The following equation
dim P(G) + dim G/crcp < dim X~ 1

can be deduced from Th, 2.2, Borel [2] p, 118, and the first

statement follows readily. If G is gimple and has dimension 3,
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then each proper subgroup has dimension 0 or 1 , and so
codim P(G) > 1+ aim ¢/G, 23 .

Theorem (1.5) Let o be a nontrivial gction of a compaet Lie

group G on an integral cohomology manifold X , Let T be a

p-torus of G , p prime or zero, and ZE‘1 g component of the fixed

point set ®(T) . Let (), A(G) be the local p-weights at P

and p-roots, respectively, defined by T . Consider the following

two statements

(a) Some principal orbit G/G¢ intersects B , {hence Gcp

contains T)
(b) 0'(p) c ala) .

Then (a) implies (b), and the p-roots of Gcp defined by T are
3'(E,) = 2'(6) - a'(e) .

Conversely, if G, is finite and p £0 , or if T is a maximal

torus (p=0), then (b) implies (a).
Proof (i) Consider the equation

(0.6) ale) = a(e) - a(e) + a(s,)

where Gx is the isotropy group at xeiE1 . 1If GX = GCP ig
principal, then '(8,) = ¢ and the first statement follows

directly from this equation.

(ii) Next, assume p ¥ 0 and G, finite, or p =0 and
T maximal. We prove the implication from (b) to (a) by induc-

tion on Lie group structure.

’

Suppose (b) is true, We claim that F1 cannot be fixed by G,

and assume this for the moment. (We prove the claim below.)
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Chooge x eF1-F(G) . Then T c G, £ ¢ and from equation (0.6)

we have

(v) Q' (s,) < alay) .

.4

Therefore G, acts on the slice S, with local weights (at x)
satisfying (b)X, so by induction, there is a principal isotropy
1 e .

group Gcp = Gy » YE€S,NF ., This implies (a).
(iii) It remains to show the above claim, Since the

1

codimension of F is the total multiplicity of nonzero weights

(Borel formula), the assumption of (b) gives

1

codim ' < dim G .

If dim Gcp =0 (p#0), we use lemma (1.4),

1

codim P < dim G < codim F(G)

and F! cannot be contained in G) .

In the case p =0 , assuming (b), there is a root o of G
with T = ot e '(p) . (If 0'(p) =4, then G° acts trivially).
Prom standard DLie theory the centralizer Z of Ta has dimension
dim 2 = dim T+2 , and Z/TOL is a simple group of dimension 3.

Let F; be the component of F(T,) containing B . Then 2 ,

being connected, leaves this component invariant and induces a non-

trivial action of Z/Ta on F; with fixed point set

1 1 1
F(Z/Ta, P = F(Z,Fa) c®P o,
Applying lemma (1.4) to this action,

1 . 1
dim P, - dim ¥(Z/T , F,) > 3 .

Now, by definition of multiplicity, (b) also implies
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dim F; - adim P = 2

Hence 272 and, a fortiori, G does not fix the set F1 y and

the proof is complete.

Corollary (1.,6) Assume X 1is P ~acyclic, P £ 0 . If the

p~torus T of ¢ has finite centralizer and the p-roots A'(G),
defined by T , consist of a single orbit of the action of the
Weyl group W(T) , then

T c Gcp if and only if

6, is finite and o' (o) = a'(6) .
[Bxample: G = 80(n) , T = maximal 2-torus)

Corollary {(1,7) If T 1is a maximal torus of ¢ and T has a
i

nonempty fixed point set F(T) = EB‘ Then the following state-

ments are egulvalent:
(1) The principal isotropy group Gtp has maximal rank.

(2) Tor some 1 , Q; < A{G) , where ). is the local weight

i
system at the component Fi .

(3) Por all i , n; c ala) .

Uging the fact that a compact connected Lie group is a torus
if and only if it has no nonzero root (i.e. O-root), and using
the formula for the roots of GCp given by theorem (1,5), the

following modification of (1.7) is obvious.
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Gorollary (1.8) In the situation of (1.7), the following state-

ments are equivalent:

(1) The connected principal isotropy type is (Q;) = (1) .

(2) TFor some i , Qi = 2" (@) .

A (@) .

(3) Por all i, o

Remark (1,9) The p-version of (1.7) is wrong in general, A

simple counterexample is the adjoint action of S0(n) with p=2.
(1.8) is the local version of Hsiang [6], Th. 4, p. 357, where
the space is acyclic, Now, if G@ hasg not maximal rank, the
Heiang algorithm, (6] p. 367, computes a maximal torus of G¢
from the weights., We will describe a local version of this algo-
rithm, together with a partial p-version of it when Gcp is
finite. By "partial" we mean that we cannot ensure the maximality
of the p-tori in the isotropy groups involved, since a p-version
of the crucial lemma (1.3) is ﬁot known except, of course, when

these groups are p-regular, However, see Remark (1.11).

Theorem (1,10} (The local Hsiang algorithm)

Let G be a compact Lie group acting on an integral cohomo-
logy manifold X with principal isotropy type (Gm) . Choose an
isotropy group Gxo and let TO be a p-torus or a maximal
torus (p=0) of GXO . If p#0 , assume G@ is finite.

Let ¢, A(G) be the weight system at x, and p-roots, respective-

ly, defined by T, » and put

- t

If 3, = @ , then for some principal isotropy group Qm .

(1) TOC:chc:GXO .
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If 5 # ¢ , then there are isotropy groups G and sub-p=tori
i
Ti of TO such that

L
c
[an

(2) U
TO 7;2‘1‘1 7:2T2 ?log Tq :Tcp N

where rank Ty = rank T, ;-1 , T, 4 & GXi , and T, is maximal

in Gx if p=0. T, 1is given by intersection of weights

. 1
1
Hy €%, as follows: [If p=0, replace T,niHy by (T;n Hj)oj

T, €z, T, = H,
L]
Ty, € 24 = {Q|Ty - a(G)]Ty) £, Ty = Tyn Hy
t
(3) Ty emyq = (AT - 2@ 4 A4, 0 =T 0k
-— — — Ll ] - —— — — — - -
L
Tq_ € Eq..'] = {Q{Tq_']"' A(G)!Tq—‘l] ;é Q’ ’ Tq = Tq—’l an
¥
By = = (0]Tq = a(6)]2,) = g .

Conversely, for each sequence of weights H. ¢ Zo satisfying

1
(3) there is a corresponding chain (2) of isotropy groups.
Proof The theorem is proved by induction, using theorem (1.5),
and lemma (1.,3) if p = 0 . Assume the theorem true for all
proper closed subgroups of G and actioné satisfying the hypothesis
of the theorem,

Using equation (0.6), we may put

(zo)Xo =Ly = 0 = (@) = n'(sXO)— A(GXO) .

If gozzg, opply (1.5) to the action of G on the slice 8, ,
o 0
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and (1) follows readily.
If I, ## , choose T, =H; € I, and a point x; in the

component of F(Hq) ns, at x_  such that
0

T # Hy = (B)y [(To)y 4 4f p=0]

Then T, < GX1 ; GXO and 1f p =0 , we may alsp assume T, is

maximal in GX1 , by lemma (1.3).

Define the next set of weights, 21 s with respect to T1 s

by
£y = (EO)X'] = (0T~ a(G)]T,} = n'(SX1)- A(GX1) .

By induction hypothesig, the algorithm is true for the action
of G, on the slice 5, . Having the corresponding (2) and
1 1

(3) for this sction, starting with G and T, , respectively,

X
1
we get (2) and (3) for the original action of ¢ ag well, by the

usual slice argument,

Remark (1.11) Assume G 1is p-regular and the space X is

Fp—aoyolio. Then we may assume To is a maximal p-torus of G ,

i.e. Gx has maximal p-rank, Observe that the number g of
0

(3) depends on the choice of weights Hi’ and Iét.qo_bethe smallest

q ever possible in (3). Then each sequence of Ti in (3) for

which ¢q = ¢ leads down to a maximal rank p-torus Q$ of a

o} H
principal isotropy group Gcp . In fact, from lemma (1.2) we may
assume T@ = ’.‘Don(}q0 is some intersection of weights Hi s and
theorem (1,5) and the minimality of g,  imply that Q$ has maxi-

mal p-rank in G@ .

Problem {(1,12) 1In the case p # 0 , is it possible to construct

the algorithm such that the p-tori T, are maximal in Gy ?
i

How do we construct the algorithm when dim GCp > 0 7
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Theorem (1,13) DLet ¢ be an action of a compact Lie group &

on a connected integral cohomology manifold X . Put

mp = max{ p~-rank GX; x€X} , p prime or zero ,

and let 1 be the p-rank of a principal isotropy group G_ .

p ®
Then the p-ranks of the isotropy groups form g string of num-
bers k , lp < k < oWy s
and hence there are at leagt mp~ 1p+-1 different isotropy types.

Proof Using induction on Lie group structure, assume the theorem
is true for actions of all proper closed subgroups of G .,

Choose x such that X = Gx has a p=torus T of rank mp.
If mp = 1p , there is nothing to prove, so assume mp > lp .

As usual, let Q'(Sx) be the nongero weighits at =x , defined
by T acting on the slice S5, . T cannot act trivially on SX ’
otherwige T would he contained in a principal isotropy group,
contradicting m, > 1, . Thus there is a nonzero weight He Q'(Sx)
and a point ye S, such that E.=-TY(T§, if p=0). Then

HcKy:G';!G-, and

pdmmcG'ZamnkH==mp~1.

By assumption, the theorem is true for the action o' of et
on the slice Sy . By the usual slice argument, the isotropy
groups of ¢' are isotropy groups of o , Gc;),rvGcp , and so the

theorem is true for o .

Remark (1.14) If X is a connected,imp-oohomology manifold, put

[
"

min{p ~ rank GX; x € X}

o
H

minf{0 - rank G 3 x€ X} .
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Then theorem (1.13) and its proof are still valid. In fact, we

claim the principal p-rank 1. (or O-rank 10) is well defined

p
in the sense that the subset

Xy = {x€X; p-rank G = 1.} , p prime or zero

p

is open and dense. This is proved by induction on Lie group

p

structure, and letting p # 2, it can be shown as follows:
Asgsume the gbove claim is true for all proper closed sub-

groups of G . TLet Tp be a p-torus of maximal rank in G ,

Put Y = X-PF(G) . Considering cohomological dimension modZFp )
if codim P(G) < 2 , then also codim F(Tp) < 2 and hence (p £ 2)

dim F(Tp) = dim X * F(Tp) = X .

In this case Tp acts trivially, so we may assume dim F(G)g(ﬁmIX—2,

and consequently Y 1is connected.
Gy #G for all yeY , and Gy acts on the (connected) slice

Sy with principal p-rank 1y , by assumption. In the tubular

neighborhood (§0)

the action of G has principal p-rank 1y y by the slice theorem.
Clearly, if Q;Y no, ## , then 1, = 1, . Therefore, by the
commectedness of Y , there is a well defined principal p-rank

in Y, say 1, and we must have 1 = 1p (defined above}, The
set Yl is open and dense in Y , and so the set Xl is open

and dense in X ., (It is obviously open, by the slice theorem).

According to a theorem of Hsiang [53, if G dis a compact

connected Lie group acting on an acyclic rational cohomology mani-

fold such that no nonzero weight is a root, with respect to a
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maximal torus T , then G and 1T have the same fixed point set,

F(T) = P(G) . Ve extend this in the following way.

Theorem (1,15) TLet G be a compact connected Lie group acting

on a Zmp—cohomology manifold X , p prime or zero, Let T be a
torus or a p-torus of G having nonempty fixed point set

P(T) = EEJ(T) , and let Q, A(G) be the local p-weights at F1(T)
and p-roots, respectively, defined by T . Define N +to be the
largest connected normsl subgroup of G which centralizes 7T .

Agsume the nonzero weights and roots are disjoint, i.e.
Q'na(e) =4 .
Then the fixed point set T(G) of G is related to F (T) by
F(G) AP (T) = B(W)n B (D) .
Hence, 1f P(T) is connected (e.g., X 1is IFp—aCyclio), then
?(G) = P(T) n P(N) .

Proof Choose x:eF(N)r\F1(T) , and we must show xe F(G) , or

equivalently, G, = G . Now, G, contains N and T , and from

the equation

(0.6) Q' = a'(6@)-a' (e )+ o' (8,)

we get \ . ,
o (6/G) = a'(@)-a(6y) =4 .

This says that T acts on the orbit 6/G, with fixed point set

of codimension zero, and since the orbit is connected, T must

act trivially on G/G, , i.e.

-1

glg < G, , for all geG,
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Put

L=ngteg ' , TcLct, .

geq

Then T and its connected component .° are normal gubgroups
of G , and from the structure theory of compact connected Lie
groups we can find a connected normal subgroup K of & such

that
¢ =kL%, Kni® finite .

K and I° commute , and Kn1° s belng normal in G , is in
fact central in G . Therefore K and L commute, and gince
L containg T , X commubtes with T and so K < ¥ , Thus, Gx

contains hoth X and 1L , and consequently GX = G ,

Corollary (1.16) TLet G be a compact connected simple Lie group

acting on an acyclic Fpmcohomology manifold, p prime or zero,
Let T %be a torus of G or a p-torus not contained in the
center of G ., Assume the nonzero p-weights and p-roots, defined

by T , are disjoint, i.e.,

o'na(e) =g .

Then G and T have the same fixed point set,

P(G) = B(T) .
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§ 2. Regular actions of classical groups.

In order to treat the classical compact lie groups in a
unified manner, we use the following notation and terminology.
0(n), U(n), Sp(n)} are the linear groups leaving invariant the
standard inner product on the n-space A" y where A =R, €, H

(quaternions) respectively. Standard inclusions are

0(n) < U(n) c Sp(n)
(2,0) SV U
80(n) < su(n) ,

where S80(n), SU(n) are defined by requiring the determinant %o
be 1 . Then 30(n)}, SU(n), Sp(n) are comnected and simple
(50(4) is semi-simple) and these are denoted by G(n) in the
sequel,

The subgroup G(V) = G(q) , fixing & (n-q)-dimensional
linear subspace v AP » 18 called a regular subgroup. The

gtandard (orthogonal) decomposition

a? = a8

@ A4

defines the subgroup G(q) = G¢(AY) and its complementary

group G (n-q) = ¢(A™" %) ,

Define G(g) +to be the trivial group if ¢ is an integer
< 1 . To simplify notation we often write G = 80, SU or Sp
instead of G(n) = 80(n), SU(n) or Sp{n) , when the omission of
n makes no confusion.

Let T = be the standard (usual) maximal torus of G(n) .

The subgroup T, < T, of elements of order p is a maximal

b
p~torus of G(n) , except when G = SO and p =2 . In the
latter case, the group of diagonal matrices is & maximal Z-torus

T2 ., Note that all groups (2.0) are p-regular for all p , i.e.
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maximal p-tori are conjugate, In § 2 all p-weights and p-roots

are taken with respect to T even if it is not explicitly

p $
stated.

Remark (2.1) A regular subgroup G(V) < G{n) is uniquely deter-

mined by any of its maximal p-tori [p prime or zero, but
dim V = 2r (even) if G = 80 and p # 2}, In fact, if the
p-torus T is maximal in both G(V) and G(W) , then

T c (V) na(W) = Gg(VNw)
and hence

rank T = p-rank G{V) = p-rank G(W) = p-rank (VW) .

Now,
p-rank G(V) = [ dim Vv , ¢ = Sp
dim V-1, G =8U, or G=S50 and p= 2
ldim V/2] , @ = 80, p £ 2

and consequently, dim(VNW) = dim V = dim W , d.e. V=W ,

Let NG(V) be the normalizer of G(V) in G(n) . From the

definition of G(V) ,

g6(Ne™ = algV) ,

where g ¢ G(n) acts on A" by the standard representation by v

From this it is easy to calculate NG(V) . Assuming G(q) # 1 ,

(2.2) NG(q) = [Spla) x Sp'(n-a)] n G(n) ,

using the standard inclusions (2.0).
The following property of the classical group G(n) will

be used in the sequel,
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Proposition (2.3) (Hsiang [4] § 2) Let K be a closed connected

subgroup of G(n) and assume X contains a regular subgroup G(V),

where dimAV 21,5 when G = Sp, G = 50 or SU respectively.

Then there is a linear subspace W C A" sueh that
G(V) c G(W) ¢ K c NG(W) < G(n) .

The regular model. The group G{(n) acts naturally on euclidean

space APk , given by k copies, ks, , of the standard represen-
tation Bn » Let Gv be the isotropy group at v= (mPVQNu,vk)Eﬁnk.
Then

G- = e 3
v = Gy NGy N b B = avb ~en-1) if vy £ O

n

Put V = [Vi1Vosens vk]J', dimAV g . Clearly

¢, = 6(v) ~a(a) ,

and so all isotropy groups are regular subgroups, more precisely,
a) The isotropy types are the types of all G(q), n-k<q< n.

b) The principal isotropy type is the type of G(n-k) .

Definition (2.4) The action of a classical group G(n) on a

topological space is called regular of order k if the action
has the same isotropy groups as the representation kan for some
k>0 . [To define k wuniquely when G(n-k) = 1 , we require
the GF2~cohomologica1) codimension of the fixed point set to be

the same as in the representation space of k&n.]

Regular weights Let (91,62,...) be the cdordinates of the

Cartan algebra defined by the maximal torus T, of G(n) . If

w = Zniei is an integral functional, L is the corank 1 sub-

torus given by @ = 0 . The nonzero p-weights of the regular
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model, defined by the maximal p--torus Tp , are as follows:

(2.5)  al(xs,) = {(8,)" 3 1 <1i<n ([n/2], if G=50) ,

mult, = 4k,2k, G=8p, G= S0 or BU resp.}

If ¢G#A80 or p=2, T, © T, and the p-weights are

gimply the restriction of O-weights,
(2.6) Qé(kén) = {Si==(ei)i‘nTp 3 same mult. as in (2.5)3 .
If G =850 and p= 2 ,
where Si consists of the diagonal matrices (ej> with entry
e, = 1 (This is also the describtion of S; in (2.6) when p=2).

Definition (2,8) A p-subtorus H < Tp of corank 1 is called

a regular welght if it is a weight of the standard representation

64 s Lo, H € Qé(én) . A system % of regular weights, counted
with multiplicity, is called regular of order k if i1t is the
nonzero p-weights of k& , as described in (2.5)-(2.7).

Remark. When G = Sp , the weights of (2.5), (2.6) have multi-
plicity 4k. Therefore, we also permit k +to be half integral
in the above definition, However, if Sp(n) acts with regular
welghts having order kX <« n , then we know k must be integral,

see (2,16), (2.18), (2.26),
Now we characterize regular weights,

Lemma (2,9) Let T, be a maximal p-torus of the classical

group G(n) , p prime or zero, and let H be a p-torus of corank 1

in Tp » Then H is a regular weight if and only if H is a
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maximal p~torus of a regular subgroup G(V) ~ G(q) .

Proof If H is a regular weight, then clearly H is a maximal
p-torus of a group G(V) ~ G(q) fg=n-1, or ¢=n-2 if G(n) =
so(2r+1) and p # 23.

Conversely, assume H ig a maximal p-torus of G(V) .
Assume first ¢ # SO or p = 2 , As usual we may choose Tp t0
be standard, i.e. it consists of diagonal matrices <di> . Yow,
G(V) ~ G(n~1) , so we can write G(V) = G, s where O £ vlvVv and
G is the isotropy group at v by the standard representation f%‘

v
H c Gv implies

(dj_)V = (d1V1,d2V2,oco dnvn) = (v']fva!"’vn) =V

for all <{d;> ¢ H . At least one component of v , say vy o, 1is
# 0 . Then d; =1 for all (di> € H . However, the relation

di = 1 1is just the definition of a regular weight, so H is

regular,

In the case G = SO and p # 2 , we may assume dim V = n-2 ,

and G(V) fixes a 2-dimensional space Vi'c]Rn . Tp splits in
2-dimensional rotations
t, € se(2)y , % = (t19t0.. ) € T, s T = [{n/2] .

Choose v € v+ with at least two nonzero components, H fixes v
and it is easily seen that for some 1 , %, =1 for all +t ¢H,

i.e. H 1s regular.

Temma (2.10) Let K be a closed subgroup of G(n) whose connected

component X° is a regular subgroup G(V) ~ G(q) , and assume the

finite group K/K® has p-torsion (p prime). Then

p-rank K > p-rank G(q) ,
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more precisely, a maximal p-torus of X° 4is not maximal in K .

Proof We may assume K° =G(q) #1 . By assumption, K has an

element 2 such that
271 £ elq) , 2P € ala) .

We must find an element z' & K~ G(gq) of order p , commuting
with the maximal p-torus T% of G(g) . Now, K normalizes

G{q) , consequently
1 # 6(q) ¢ K ¢ Na(q)

(1) = [sp(a)x 8p' (n-q)1nG(n) , (2.2)

In the decomposition (1), 2z = (a,b) = ab and bP =1 , Pirst,
if G =980 and p>2, or if G = Sp , we clearly have a ¢ G(q).
Then 2z' = beK-~G{(q) and =z' commutes with G(q) .

In the other cases, T% (standard) consists of diagonal
matrices, Let 4 ¢ G(n) be the diagonal matrix with first entry

44 = det(a) and dy =1 when i # 1 . Then, since da” ¢ G(a),

z' = dp = (da-1)(ab) = da_1)ze}K-G(q) .

Now, det (aP) = 1 dimplies dP = 1, and 4 commutes with b ,
80 2z has order p + HMoreover, 4 , and hence db = z' R

commutes with T% sy and the proof is complete,.

The p-roots of G(n)

The (ordinary)roots of the classical groups are as follows
(see Adams [17).

A (8p(n)) = {(8;% 65), 1 < J <y (20;), 1 < 1)
(2.41) ' (sU(n)) = ((e, - 05)y 1 < § < n)
A (80(2r)) = {(eii ej)’ i<J g}

5' (80@r+M)= 4" (80(2r)) + {(8;), 1 < r)
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These are integral functionals on the Cartan algebra of the
maximal torus TO . In all cases, except when G = 350 and

p =2, Tp < T, end then the p-roots Aé(G(n)) are calculated

by restricting the roots (2,11). The roots (291) of Sp(n)

vanish on T, , i.e., (208;)]T, = O , but all other roots restrict

to nonzero p-roots a ,

I 4+ 8 )1
Ty £ a (65£6,)nT,

or (8,0 nT .
In the special case p = 2 , the elements of T2 are-diagonal
matrices <(e;? with entries e, = £ 1, for all G(n) . ILet

S be the corank 1 subgroup of T, defined by ejeey = 1.

1]
- + 8 Y -

Clearly Sij = (ei__ej) N?, when G =SU or Sp .

The Iie algebra 0] of 50(n) splits in 1-dimensional root

spaces Qgij y 121 <j<n, in which T, acts by
-1 _ ) ~
v = tvt = (ei-ej) v, %= (ei) €1, .

Therefore the 2-roots have a common expression for all G(n),
namely
(2.12) aé(G(n)) = {Sij’ 1 <1< j <ny mult, = 1,2,4

when G = 50, SU, Sp respectively} .

To demonstrate the power of p-weights of c¢lassical groups,

we first note the following corollary of (1,15), (1.,16),

Proposition (2,13) Tet ¢ be an action of G(n) on an acyclic

F_-cohomology manifold, and let T _ be a maximal p-torus of G(n).

p P
Asgume the set of nonzero p-weights and the set of p-roots are
disjoint, i.e.

nI')(cp)n b,(G(n)) = g .
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Then G(n) and Tp have the same fixed point set
F(G(n)) = P(T) .

Theorem (2,14) Tet ¢ be an action of the classical group G(n)

on an acyclic Zmpmcohomology manifold, p prime or zero. Let Tg
be =z maximal p-torus of the regular subgroup G{(q) < ¢(n) , and
agsume ¢ is even if G = S0 and p ¥ 2 . Then, if the p-weights

of ¢ are regular, G(gq) and T% have the same fixed point set
(1) F(a(a)) = P(D) ,

except possibly when 1) G{(q) = s0(2), su(2), sSp{1) , or
2) p =2, G(q) = S0(3), SU(3) .

Proof Observe that if Qé(¢) = Qg(kén) , then
’ f . i _ H
(2.15) o (ela(a)) = a (ke [¢(a)) = 0 (ksy) , all q,

hence G(g) acts with regular p-weights of order k , Therefore
it is enough to prove (1) for q = n . However, apart from the
exceptional cases, and G = Sp with p # 2 , no nontrivial
p~weights are p-roots, and then (1) follows from (2.13),

Finally, assume G(n) = Sp(n) and p# 2 ., Let x ¢ F(Tp) ,

Tp = Tg . Since

t _ J_' .
Qp(CP) ﬂAp'(SP(n)) = {(ej_) ﬂTp » 1 <},
we have from equation (0.,6) and (2.11)
Aé(Gx) =RICIE: ej)—‘-nTp , 1< 3 <n}.,

These p-roots are all different and so it is clear that the Lie
algebrs Cix contains all root spaces of the roots (eiﬁej) .

Prom standard liie theory qyx must contain the root spaces of
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the roots (291) as well, and consequently G, = Sp(n) . This

proves (1), [Notice that the root space method can be used to

prove (1) in all cases of G{n).]

Corollary (2.16) Let ¢ be an action of G(n) on an acyclic

F2~cohomology manifold X with regular 2-weights of order k ,
i.e. O5(p) = ay(ks) . Then |
(a) Fach isotropy group GX has regular connected component
G; ~ G(q) ana GX/Gg has odd order, except possibly if 2-rank

G, <2 (2-rank G, = 1, when G = Sp)

(b) Let m_ = 2,4 when G = Sp, G = SO or SU respectively.

0
The types of G{q) , where max{m , n-k} < ¢ < n , occur as con-

nected isotropy types. If Xk < n-m, these are all types.

(c) Assume X also is a rational cohomology manifold, and assume
rank G(n) > 2 [To simplify the proof, let G{(n) # SU(4)] . Then
the connected isotropy types are the types of all G(a),

n-k < ¢ < n , and each quotient GX/Gg has odd order.

Proof

(i) TLet GX be an isotropy group with a 2-torus T such
that
rank T = 2-rank G, > 2 (> 1, if G = Sp) .

ol

By conjugation we may assume T is in the maximal 2-torus 5

of G(n) , and so
n (D
T =Ty NG = (Th)y o

Then, from (1.2), T must be the intersection of some regular
2-weights B, ¢ Qé(k&n) . By (Weyl) conjugation we may therefore
assume

T=By N8N =1
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is the (standard) maximal 2-torus of G(gq) for some ¢ , and

clearly q > m, , see (). WNow, from the above theorem
P(T) = P(13) = P(a(q)) .

Put X = G§ + Then we have G(gq) < Gg , and applying prop., (2.3%)

and the fact

(1) 2-rank G, = 2-rank K = 2-rank G(q) ,

we must have

(2) G(q) = K ¢ G, < NG(q) .

Moreover, (2) and (2.10) imply that G /K has odd order, This

proves (a)

(i1) The extra assumption of (c¢) is only necCessary when
treating the isotropy groups with 2-rank 1 or 2 , These occur
on{y when k > n-m, Now, introducing the O-weights, it will
be seen later, (2,20), that they are also regular. Then we refer

Fo the proof of (2.19), part (ii), to show that

F(Tg) = 7(a(a)) , for a1l G(q) .

Starting with an isotropy group Gx with 2-rank > 0 , we still
have (1), and (2) is valid except possibly when G(gq) = S0(2) or
su{2) . However, in these two cases, 2-rank K =1 , and if
K # ¢(q) , the only possibility is G(q) = S0(2) and K = sU(2) .
In the latter case, X would have nontrivial center and would
have the same root as S0(%) . This is impossible, so (2) must
hold in all cases.

(iii) To show which of the G{(g) occur as connected isotropy

type, we may use the following inductive argument.
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Pirst, F(G(n)) = F(TS) A% , so q =n occur. Assume we
have shown that for some x , Gg = G(q) , where q > max[mo,n-k] .
pd

Since T2 c G, » we consider weights with respect to 5 and

2
equation (0.6) reads

(3) 0y (9) = 8,(G(n)) [T - 8,(6(a)) + 0,(5,)

where the 2-roots Aé(G(n)) , With respect to Tg , are given by
(2,12). The left side of (3) is the weights of @|T3 [or ¢|&(q)],
and so the nonzero weights of (3)are Qé(m) = Qé(kaq) , as follows
from equation (2,15), Using (2.12) we calculate the difference

b (E(n)) |23 - 8,(G(q))

= {8;n Tg, i< g3 mult,= (n-q)d} = Oé((n—q)ﬁq)

modulo zero weight, d = 1,2,4 when G = S50, SU, Sp respectively.

Therefore the action of G, on the slice SX has the weighis

(4) 0,5(8,) = Qé((k—n+q)6q) (# # iff q > n-k) .,

Choose the weight SquTg = T%"1 of (4}, and choose a point
y €5, such that (19) = 13" . Then

Tgm1 c G, G; ; Gla) , a1 zm, ,

y

and the method og (i) applies to show G§ = G(g~1) . Thus,
inductively we get all connected isotropy types of G(q) ,
q > max[mo,nmk} . Similarly, in the case of (c) we get all types

of G(q) , a > n-k .
Finally, it follows from (4) that it is impossible to have

Gg = #(q) when ¢q < n-k .,

Remark (2,17) A p-version of the above corollary is proved in a

similar way for all p . As in the case p = 2 , there are some




-~ 32 -

technical subtleties when isotropy groups having p-rank 1 occur
(k large).

The case p = 0 of (2,18) is a theorem of Hsiang [6].
The proof of [6] does not exclude the possibility G = S0(2)
when G = SU or Sp (k large). However, this is settled when
we combine O-weights and 2-weights, see the proof of (2,19).

We state the following simpler p-version of (2.16).

Corollary (2.18) ILet ¢ be an action of G(n) on an acyclic

Fp—cohomology manifold X , p # 2 , and assume the p-weights

are regular,

an(e) = a(ks,) .

Then each isotropy group GX has regular connected component

Gg ~ G(a) , a > n-k , and the quotient GX/GQ has no p-torsion
(p#0) , at least if p-rank G, > 1 . Isotropy groups of p-rank 1
occur only when Xk » n-2 and G = S0 or SU , or k > n-1 and

G = Sp .

The following is a characterization of regular actions, (2,4),
by means of p-weights, and then, in (2.20) we characterize regular

p-weights using isotropy groups.

Theorem (2,19) Let X %be an acyclic integral cohomology manifold

with an action of the classical group G{(n) , rank G(n) > 1 ,

G(n) % SU{(3) . Then the following two statements are equivalent:

(2) The action is regular, i.e. for some Xk > 0 , the isotropy

types are given by a string

¢(n), G{n-1), ¢(n-2),... G(n-k) .

(b) The nonzero p-weights are regular for all p (prime or szmero).
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Moreover, if (b) is true, the p-weights have the same
order k for all p , and k determines the principal isotropy
type G(n-k) of (a). Hence G(n-k) 4is nontrivial if and only
if k<«<n when G=3Sp, k<n-1 when G =380 or 3U .

Proof (i) The implication from (a) to (b) is closely related to
the p-rank properties of G(n) , see remark (2.1).

First, the case G(n) = S0(2r+1) and p # 2 follows from
the even case n = 2r , since the restricted action of S0(2r)
is also regular and has the same p-weights, Assume therefore
n=2r if G =980 and p £ 2 .

Now, notice that p-rank G(n-1) < p-rank G(n) for all p .
Hence, 1if H 4is a p-weight of the action, H - must be contained
in a proper isotropy group G, ~ &(q) , ¢ <n, and H is regu-

lar by lemma (2.9).

(ii) ™To show the reverse implication, we assume (b}, i.e,

(1) (o) = ay(k6,) 4 Xk, >0 .

Let Tg be the usual maximal p-torus of 6G(n) . PFrom the Borel

formula (0.2) we have the identity (valid for all n)

'(k. 5..)

. ny _
dim X - dim F(Tp) = mult, Qp pdn

i1

r21cp-n, 4kn , @ = SU, Sp resp.

2kp.[n/2] y G

50, p=2

1l

S0, p# 2.

Hl

According to theorem (2,14), F(Tg) = F(G(n)) , except when
G(n) = s0{2r+1) and p # 2 . In the latter case, however,

Tl - T§—1 and  F(T}) = F(50(2r)) = P(18-7) . Then it is clear

fl
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from (2) that all k, are equal, say, kj =k , and (1) reads

(1’ 0 (e) = op(ks,) , all p, k>0 .

From the corollaries (2.16), (2.18) of theorem (2,14) we know
that all isotropy groups G, are regular, at least if
p-rank G > 1 (> 2, if p=2) , and so far we only need (1),
However, to settle the remaining cases, when p-rank G, = 1 or 2,
we apply (1)'. 1In fact, it is only necessary to show that equa-
tion (1) of (2.,14)
r(1)) = F(6(a))

is valid for all p without restriction on rank G(gq) . Then the
same method as in the proof of (2.16), part (i) and (ii), applies
to show that all GX are regular.

It remains to show the above equation of (2.,14) in the cases

1) 6{(q) = 80(2), sU(2) or sp(1) , all p

2) G(a) = 80(3) or s5U(3) , D=2,

Let G(q,) denote the groups of 1). Using (2.,15) and (1)' ,

the restricted action of _G(qo) has the weights

(3) Qy(0]6la,)) = Qé(kéqo) , all p .

Let %p be a cyclic group of order p (p # 0) or a circle group
(p=0) contained in G(qo) (Zp is its maximal p-torus). Then

the identities (2) and (3) show that the groups %p have the same
fixed point set for all p . If G(qo) = 8U(2) or Sp(1) , note

that Z is its center, and since %2 and ZO have the same

2
fixed point set F(zp) , this is also the fixed point set of G(qo).

Consequently,

(4) P(e(ay)) = F(@,) , all p
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and this solves the cases 1).

Pinally, we solve the cases 2). Let p =2, G(3) = 80(3)
or SU(3) , and consider the two subgroups G(2) = G(qo) and
¢'(2) . Tet

Z, =13 06(2) , B)="3n¢G"(2) .

2
In addition to (4) we clearly have
(4)' P(G'(2)) = P(3,) .

Using the fact that the closed subgroup generated by G(2) and
¢'(2) is G(3) ditself, (4) and (4)' imply

i

F(13) = F(Z,) N B(By) = P(a(2)) nF(G'(2))

I

F(a(2)+a'(2)) = P(G(3)) .

(iii) The subgroups G(q) of G(n) are distinguished by
their 2~rank. Therefore we may use theorem (1.13) to show that

the isotropy types are given by a string

¢(n), G(n=-1), ... Gy = G(n-k)

leading down to a principal isotropy group Gcp = G(1) , and 1l=n-k
follows, for example, by counting weights in equation (0.6), with
G, = (1) and Qé(sx) = ¢ . Alternatively, the above string is

a direct consequence of corollary (2,16)., This completes the

proof of (2,19),

Proposition (2.20) Let X Dbe an ascyclic Hp—oohomology manifold,
p prime or zero, and let @ Ybe an action of the classical group
G{n) on X . Assume rank G(n) > 2 , and G(n) £ sU(4) 1if p= 2.

Then the following two statements are equivalent:
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(a) There are p-corank 1 isotropy groups. These groups have
regular connected component, G§ ~ G{q) , and the corresponding

quotient GX/Gg has no p-torsion.

(v) The p-weights are regular, i.e. Qé(w) = Qé(kén) for some
X>0,and k>1 if G(n) = S0(2r+1) and p # 2 .

Proof We already know (a) is a consequence of (b), by (2.16)-(2,18)
and lemma (1.3). Conversely, to prove the reverse implication,

assume (a) is true and we must show (b).

(i) Consider first the case G(n) = S0(2r+1) , p #£ 2.

In the proof below, the statement that T._ and G(n) have the

p
same fixed point set, is replaced by the statement F(Tp): F(so(2rY,
Then the proof is similar to the Sp(n) case, showing the regu-
larity of the p-weights, Moreover, the weights must have order
k > 1 , otherwise all isobropy groups would have maximal p-rank,

(2.18).

(i1} 1In the following we assume n = 2r if p # 2 and

¢ = S0 . Pirst, if
H € Qé(q}) - f.‘sp(G(n)) ’

it follows from lemma (1.,%) that H is a maximal p-torus of

some isotropy group G, . By assumption (a), H < G; ~ @(q)

and so H is a regular weight, lemma (2.9). Secondly, by the
definition of weight, (a) and lemma (1.3) imply that the p-weight

system must contain the regular weights., Therefore, if the
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p~welight system containg non-regular weights, the only possibili-

ties are
(1) 0y(@) = ap(ks,) + 8.(6(n)) , k>0
or
(2) ay(e) = A%(Sp(n)) , G=25p and p #£0,2 .

(2) is due to the fact that the set of p-roots of Sp(n) con-
tains the regular weights if p# 2, but p = 0 is excluded in (2)
by (1.7}, since the principal O-rank cannot be maximal,

We claim that, as a consequence of both (1) and (2), G(n)
and its (usual) maximal p-torus Tp must have the same fixed
point set. Assuming this for the moment, we choose a p-root H

in (1) {or (2)] which is not a regular weight. Then there is a

point 2z ¢ X ,

HcTnGZ;éT ¢, # G(n) ,

p p?
and H is a maximal p~torus of G, since F(Tp) = F(G(n)) .

Consequently, by assumption (a), G(g) ~ Gg > H and this contra-
dicts lemma (2.9). Thus it is impossible to have (1) or (2) and

this proves the proposition.

(iii) Henceforth, we show the above claim that both (1)
and (2) imply F(‘Pp) = F(G(n)) .

Suppose F(Tp) £ F(G(n)) and let G, be an isotropy group
such that Tp c Gy # G(n) . Since, by (a), the principal p-rank
1s not maximal, the usual slice argument shows there is a point ¥

in the slice S whose isotropy group G, has p-corank 1. Then

x y
G(q) ~ G§ c G, , and so we have (W) < G; c NG(W) for some
W oo AR ., using (2,%), By suitable conjugation we may assume

(3) G(q) c G; c NG(q), q = n-1 (orrn~2, if G=180) .
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Prom our knowledge (2.2) of NG(q) we find the possible choices
of Gg , and its normalizer is contained in NG(q) , in particular,
G, < NG(q) . Moreover, G, must be p-regular, i.e. its maximal
p~tori are conjugate. .

Choose X ¢ F(Tp)-F(G(n)) suclr that G, 1is minimal, and
consequently

P(T,,8,) = P(6,,5,) ,

otherwise there is a point y € 5, for which Tp c Gy j GX .

contradicting the minimality of Gx .

Now, use equation (0.6)
1 ot o ! '
0l () = 8'(a(n) - (G0 + Q(S,) .
Assuming (1) or (2), the above equation gives

(1) ay(sy) = ap(key)+ a,(6y)
or

(2)" ay(sy) = 8,(6,)

respectively. Choose a p-root H ¢ Aé(Gx) which is not a regular
weight [This is possible because of (3)]. Then using the same
argument as in the last part of (ii), with @(n) , X replaced

by Gx’ SX , respectively, we obtain a contradiction, and the

claim is proved,

The exceptional case’ G(n) = 80(2r+1), k=1, of 2,20 (b)
is interesting in the sense that it gives the only example of a
regular action having no isotropy groups of p-corank 1 for some p.

We state it as follows

Theorem (2.21) Let & = S0{2r+1), r > 1 , act on an acyclic

integral cohomology manifold X . Then the following are equivalent:
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(a) The action is regular of order 1, i.e. the isotropy types

are the types of S0(2r+1), S0{2r) .

(b) Tor some p (prime or zero) the p-weights are regular of

t ]
order 1, i.e. ﬂp(w) = Qp(62r+1) .

(¢) Tor all p the p-weights are regular of order 1 .

Proof (a) and (c) are equivalent by theorem (2,19), and if p=2 ,
then (b) and (a) are equivalent, by (2.16),

It remains to prove (a), assuming (b) when p # 2 .
Tet Tp(p;42) be the maximal p-torus of 80(2r) . Then Tp < T,
and

F(Tp) = P(P ) = P(s0(2r)), +theorem (2,14) ,

o)

and this set has (Z~cohomological) dimension
1
21' = multo Qp(ézr)

by the Borel formula (0.2). If also F(Tp) = P(G) , a principal

isotropy group would have dimension
dim G, > dim G- 2r+ 1 > dim so(2r), lemma (1.4) ,

which is clearly impossible., Now, if x ¢ F(Tp)-F(G) , then
so(2r) < 6, £ G, and so G = 80(2r), (2,3) . Moveover, since

al(®) = 0(65,) = 81(6) = a1 (50(2r))

= 8,(6)- a(ey)

we have QL(SX) =g from (0.6), i.e, Tp acts trivially on the
slice 5, . Therefore Tp o Gcp , Gg = 80(2r) . Gm cannot have
maximal 2-rank, by (1.6), consequently GKp = so(2r) .,

Now we note that all 2-corank 1 disotropy groups are regular,

in fact principal, and hence the 2-weights are regular, by (2.20)
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[{This part of (2.20) is also valid for &(n) = 50(5)] . Thus
there is no exceptional isotropy group, G, ~ NSO(2r) , see (2.16),

and this proves (a).

Remark (2.22) If G = 50(%), (a) and (c) are equivalent, and

equivalent to (b) when p = 0 , However, (b) does not imply (a)

when p = 2 (Consider the 5~dim. irreducible representation).

To end our investigations of regular actions we shall discuss
the problem of extending the result of theorem (2.21) to all

classical groups G(n) and all orders k .

Definition (2.2%3) Let T be a torus acting on an (acyclic) inte-

gral cohomology manifold X , We say T acts rationally if the
fixed point set of each p-torus in T is a rational cohomology

manifold, for all prime p. If G 1is & compact connected Lie

group acting on X , ¢ acts rationally if its maximal torus 1T

acts rationally,

Temma (2.24) TLet T be a torus’'acting rationally on X , let

Tp (p prime) be the maximal p-~torus of T , and let Qé, Qé be

the set of nonzero weights of the action of T and Tp respecti-~

vely., If S ¢ Qé , then for some H ¢ Q; ,

= H .
S Tpn

K

Proof Denote the fixed point set of a group K by X , let

dim XX be dimension mod the rationals :FO , and denote the

*

1
elenments of QO by Hi

Suppose S C Tp is a corank 1 p-torus vwhich is not contained

in any H,; . Then SoHi = Tp'Hi and using the Borel formula for

the action of T on X° s we have
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SeH,
i aim x5

H
dim X° - dim XF = nlaim(x°) T - qim X7]=zldim X
L 1
T H, T m
= plain(X P) T-ain(X P) ] < dim X P aim X7 .
1

i
Therefore dim XS = dim X P and S 4is not a weight.

Corollary (2.25) Assume the classical group G(n) acts rationally

on X with regular O-weights, Then the p-weights are also
regular for all prime p , p#£ 2 if & = 80 ., [If we know that
T and TO have the same fixed point set, the "rational" assump-

P
tion is unnecessary].

Proof Since the maximal p-torus Tp of G(n) is contained in

To y the p-weights are the intersection of T and regular

p
O-weights, by (2,24), and these are regular. [If F(To) = F(Tp) R
it is clear from the Borel formula that the p~weights are the

restriction of O-weights] .

Theorem (2,26) ' Let ¢ be an action of the classical group G(n)

on an acyclic integral cohomology manifold X . Let rank G(n)>2
and G(n) # SU(4) (for simplicity). Consider the following state-
ments:
(a ) The action is regular of order k , hence the isotropy types
are the types of G(n),¢(n~1),... G(n-k) .
(b) Por some p (prime or zero) the p-weights are regular of
' oAt

order k , Qp(w) = Qp(kén) .
(¢) Por all p the p-weights are regular of order k .

Then (a) and (c) are equivalent, If G(n) acts rationally,
then all three statements are equivalent, with p = 2 in (b} if
G = S0 .
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Assume %k < n-1,n-2,n-% when G = Sp, SU, 'S0 respectively.

Then the three statements are equivalent,

Proof The eguivalence of (a) and (c¢) follows from (2,19). If
the p-weights are regular for some prime p, then the O-weights
are regular, by (2.16)-(2.21), and if we also assume G(n) acts
rationally, the p-weights are regular for all p , (2.25).
Hence, (b) implies (c¢) if G(n) acts rationally.

To show that (b) implies (¢) when Xk is small, we first
note that (b) implies Gfp ~ G({n-k), (2.16)-(2.18). Now, let p

be a prime and T; c T, maximal p-tori of G{n-k) < G(n) .

p
Prom (0.6),

(1) 0,(@] 7)) = A (6(n))] 2y - 8,(¢(n-k))

modulo zero weight Té . Qé(@) is Weyl invariant, i.e. its ele-
ments are permuted by the action of the Weyl group W(Tp) . The
reguiar weights constitute the shortest orbit under this action.
If Qé(@) containg an orbit of non-regular weights, we can show,

by counting weights, that (1) is violated. Details will be omitted,

Problems (2.27) If G(n) = S0(n) acts with regular O-weights

of order X > n-3% , how do we show the regularity of 2-weights?
in (2.26) we have assumed G(n) acts rationally (k large),
This seems to be only a technical assumption, and we conjecture

that it is superfluous.
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