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INTRODUCTION 

\·le lvill in this paper study the cohomology groups of algebras, 

due to Andre [A] and Quillen, for a given graded algebra. We 

shall see that the groups 

have a grading if S is noetherian and graded and if S ~ A is 

finitely generated and where r1 is a graded A-module. In fact 

if we let 

corresponds to the S-derivations of degree v , we shall prove 

that there are canonical isomorphisms 

~ [vHi(S,A,M)] ~ Hi(S,A,M) 
V=·- CXl 

for every i > 0 (chapter "1) 

Our main interest v1ill lie in deformation problems. It is vrell 

known that the group 

? 
H-(s,A,A 0 ker rr ) 

s 
contains an obstruction for deforming A to R loJhere 

TT 
R .... S 

2 is a surjective ringhomomorphism such that (kerrr) = 0 • And 

H\s,A,A0kerrr) measures the amount of deformations. It is tri
S 

vial that we have corresponding results 

use the groups H2 (S,A,A 0 ker TT) and 
0 s 

the canonical moYphism 

in the graded case if we 

H"1(S,A,A0l~errr). Since 
0 s 

2 ii (S,A,A0kerrr) ..., 2 H (S,A,A0kerrr) 
s s 
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take the obstruction onto the obstruction, vre conclude that A can 

be lifted to R if and only if there is a graded lifting of A to 

R • It would be nice to generalize this result to an arbitrary 

surjection R !! S of artinianrings 1vhere R, S and rr are all local. 

I can not, But if v1e assume 

1 vH (S,A,A) = 0 

for v > 0 or v < 0, then it is true. This is a consequence of 

l•rhat we do in chapter 2 when S is a field. vlhat 11e actually 

state, is that the canonical local A-homomorphism 

has a section, Here, A is a noetherian local ring 1vith maximal 

ideal mA and the !\--algebra R(A) (respectively R0 (A)) is the 

hull for the deformation functor (respectively graded deformation 

functor), These functors are defined on the category of artinian 

local !\-algebras vri th residue field A /mA • The existence of a 

section of 

comes out of a !\-isomorphism 

where B = A[T] and_ \'There T has degree one or minus one, This 

has much to do ui th Pinkham's theorem in [P]. 

In cha.pter 3 we generalized his theorem to the non-smooth and non--

equica.racteristic case. \ve end this chapter by relating the lifting 

theory of graded algebras to the corresponding theory for the pro-

jective schemes, 

I should like to thank O.A. JJaudal for his many suggestions. 
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Chapter 1 

COHOMOL_(Xi_Y GROUPS OF GRADED ALGEBRAS. 

We shall consider only commutative rings with one. 

The purpose of this chapter is to introduce to the reader the 

cohomology groups 

for i 2 0 and every k , when S ... A is a graded (or homogeneou~ 

ringhomomorphism of graded rings and Jvl is a graded A-module, 

As mentioned in the introduction, we shall prove that there are 

canonical isomorphisms of groups 

If kHi(S,A,M) ;;;; > Hi(S,A,Jvi) 
k=-x· 

for every i > 0 if S is noetherian and if S ... A is finitely 

generated. To prove this, we will use a spectral sequence which 

we find in [LI] • Vle also find a proof for this theorem in 

Illusie [I], using graded simplicial resolutions. 

But first, let us recall some definitions and theorems from the 

non-graded case, and see how it can be carried out in the graded 

case too, 

Let 

S ... A 

be any homomorphism and let Jvi be a A-module. The cohomology 

groups of algebras 

can be introduced in the following way. Let S-alg be the cate-
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gory of S-algebras and let SF be the full subcategory of free 

S-algebras. \'le denote by 

the functor on SF/A with values in Ab, defined by 

F 
Ders(-,N)(~~) = Ders(F,M) 

A 

where M is given the structur of a F-module by ~ E ob §KIA . 
Ab is the category of abelian groups. 

We define 

H1 (S,A,M) = lim(i)DerS(-,M) 
<- ' 
§!/A 

where lim(i) is i-th derivative of lim 
<- <-

If given any surjection n R -> S such that 

(ker n)n = 0 

for some integer n , we shall say that a R-algebra A' is a 

lifting (or deformation) of A to R if there is a cooartesian 

diagram 

R --> A' 

n-[, ~ 
s --> A 

such that 

Tor~(A;s) = 0 

M t 1· ft · R A' and R ~ A" are equJ.· valent 1" f .. ,oreover, wo J. J.ngs ~ 

there are commutative diagrams 
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'l. A" 

TI~~>'\) 
S --->A 

If we use the word deformation when R ~> S do not satisfy 

(ker n)n = 0 1 then we mean a flat R-algebra A' and a cocar

tesi<m diagram 

R -->A' 

We will ask whether or not a given S-algebra A can be lifted 

to R • If we assume 

then ker rr is a S-module and the answer is given by 

THEOREivi 1 , 1 

There is an element 

2 
o(A) E H (S,A,A®S kern) 

which is zero if and only if A can be lifted to R • 

If o(A) = 0 , then the set of non-equivalent liftings is a 

principal homogeneous space over H 1 ( S ,A ,A 08 kern) • 

Again, let us assume that R E> S satisfies (ker n)n = 0 for 

some n Let ~:A~ B be a S-algebrahomomorphism, If A• 

and B' are liftings of A and B respectively to R , we 

shall say that a R-algebrahomomorphism 

~·:A' --> B' 
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is a lifting of cp to R with respect to A' and B' if 

cp' ids 
~ 

~ -cp 

where ids is the identity on s • 

If we assume 

(ker n)
2 

= 0 , 

then we can prove 

THEOREM 1. 2 

There is an element 

1 
o(cp;A',B') E H (S,A,B ®S kern) 

which is zero if and only if cp can be lifted to R with respect 

to A' and B', If o(cp 1;A',B')=O,thenthesetofliftings 

is a pricipal homogeneous space over H0 (S,A,B ®s ker n) = 

Ders(A ,B ®s ker n) • 

The element o(A) and o(cp;A',B') are called obstructions. 

If now S ,A are graded rings, M a graded A-module and if the 

ringhomomorphism 

S ..., A 

is graded (or homogeneous), then it is possible to define the 

cohomology groups 

by simply repeting what we did above. To be specific, let 

Sg-alg 

be the category of graded S-algebras and SgF the full subcategory 

of free S-algebras. 
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Moreover, we denote by 

the functor on §.g!/A with values in Ab , defined by 

F 
kDer8 (-,f1)qcp) = kDer8 (F,Jil) = [DE Der8 (F,M)!D 

A 

M is a graded F-module by cp • 

\'lith these notations, we define 

DEFJNITION 1.:<_ 

We let 
i kH (S,A,M) 

is graded of 

degree k} 

Let R .!!> S be a graded surjection of graded rings such that 

(ker rr)n = 0 

for some n • 

-JEFINITION 1 , 4 

By a graded lifting (or deformation)of A to R we shall mean 

a graded R-algebra A' such that A' is a lifting of A to R 

and such that every morphism in the cocartesian diagram 

R -->A' 

rrt -J, 

S -->A 

are graded. 

Of course, t\10 graded liftings R - A' and R _, A" are equivalent 

if everything are graded in the diagram 
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It is obvious how we will define graded liftings of graded 

S-algebrahomomorphisms. 

Assuming that 
2 (leer n) = 0 , 

then the lifting problem of a graded S-algebra and the corre

sponding problem for graded S-algebramorphisms are formally 

solved by our next two theorems. 

THEOREN 1, 5 

There is an element 

which is zero if and only if A can be lifted to a graded 

R-algebra. 

If o
0

(A) = 0 , then the set of non-equivalent liftings is a 

principal homogeneous space over 
0

H1 (S,A,A 0 8 leer n) 

If 
cp: A --> B 

is a graded S-algebrahomomorphism, and if A' and B' are 

graded liftings of A and B respectively, then 

THEOREM 1 ,6 

There is an element 



which is zero if and only if ~ can be lifted as a graded morphism 

to R with respect to A' and B' • 

Moreover, if o
0 
(~;A' ,B 1 ) = 0 , then the set of graded liftings 

is a principal homogeneous space over 

In [LI] we find proofs for theorem 1.1 and 1.2, and these can be 

repeted in the graded case too. 

If we want to define the (graded) obstructions, we use that the 

cohomology groups of (graded) algebras can be defined as the 

cohomology of certain complexes, For instance, in the graded 

case, we have 

where 

The indeX set is every tuple (¢ 1 , ••• ,¢p) of morphisms from 

.§g]'/A where "aim" for ¢i is "source" for ¢i+ 1 for all i , 

The differentials 

are defined by 
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(the composition ljii ljii+1 is written in the opposite way). 

Define a map 

o JV!or SgF -> Mor RgF 

such that if 

cp•F • 0 -> F1 ' cp E Mor SgF 

then 
O((jl) : F' ' o(cp) E Mor RgF -> F1 ' 0 

is a graded lifting of cp to R with respect to F' 
0 

and F ' 1 • 

And F
1 

F
1 

0 ' 1 
are the unique graded liftings of respecti-

vely. We call o a graded quasisection for the functor 

(-) ~ S : RgF _, SgF • 

If 

is an index for 2 
0

0 (-) , then let 

where idker TT is 

in 
0

0
2 

(A 0 8 leer n) 

the identity on ker n • 

defining the obstruction 

(which is independent of o) • 

Correspondingly we have 

o (o) is a 2-cocycle 
0 

o (A) E H2 (S,A,A-818 kern) 
0 0 

where c•(M) is defined in a similar way. The proofs in [LI] 
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work with this complex. And it should be remarked that the defini

tion by Andre in [A] uses this complex too. For more details, 

see [LI]. 

The main problem in relating the groups 
i H (S,A,M) is that they are defined as 

kHi(s,A,M) to the groups 

lim(i) on different cate-
<:-

gorles. However, I claim that the forgetful functor 

j : §.gE/A -> SF/A 

induce isomorphisms 

lim(i) Der
8

(-,M) 
<-
g/A 

for every i > 0 • 

~ 

--> lim(i)[Der8 (~,M)·j] <:-
§.gE/A 

To prove this, we shall use a spectral sequence which is theorem 

2.1.3 in [LI] . 

Let 

be a graded S-algebrasurjection and let 

Fi = Fx Fx 
A A 

All projection morphisms 

F.->F. 1 l l-

are graded. 

If 

is the composed functor 

... xF 
A 

(i+1)-times. 
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then look at the complex 

lim(q_) D -> lim(q_) D -> -> lim(q_) D -> 
<- <- <-
.§.g_ijF .§.g_ijF 1 .§.gijF i 

where the differentials are the alternating sum of group-morphisms 

lim(q) D 
<-
.§.g_ij:B' i -1 

--> lim ( q_) D 
<
SgF/Fi 

induced by the projections :B'i ... Fi_1 , In this situation, there 

is a spectral seq_uence 

Ep~q_ = HP(lim(q_)D) 
<-
.§.g_ijF •· 

which is the homology of the complex above, converging to 

Correspondingly, there is a spectral seq_uence 

converging to 

Ep2q_ = HP(lim(q_) Der8(- 1M)) 
<-
.§E/:B'. 

lim(·) Der8 (-,M) , 
<-
.§E/A 

We shall prove that the canonical morphism 

lim(i) Der
8

(-,r1) -> lim(i)D 
<- <-
SF/A SgF/A 
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is an isomorphism by induction on i ~ 0 • For i = 0 , the 

isomorphism is trivial since there is a commutative diagram 

lim Der8(-,N) 
<-
§1/A 

II 

Der8 (lim f,N) 
-> 
.§1/A 

--> lim D 
<
SgF/A 

II 

---> Der8 (lim f•j,M) 
-> 
OO}A 

where f £E/A ~ Ab is the functor 

f(F cp> A) = F . 

And moreover 

A ~ lim foj ...Z.....> lim f , 
--> --> 
OO}A £E/A 

Assuming the isomorphism for i < n and for every object A in 

Sg-alg , we conclude that the morphism 

'Ep,q --> Ep,q 
2 2 

is an isomorphism for q ~ n and every p • 

Since by definition 

Moreover 

lim(q) Der8 (-,M) = Hq(s,F,M) 
<-
£ElF 

lim(q) D = 0 
<--
OO}F 

since F E ob SgF , proving that E0~q = 0 for all q • 

By theory for spectral sequences, we know that there are morphisms 
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such that 
Ep,q = ker dp'q/im dp-r,q+r-1 

r+1 r r • 

Furthermore for given p and q , then 

if r is big enough • 

With this in mind, we conclude that the morphisms 

are isomorphisms for every p and q such that 

p+q .:s n+1 • 

Hence we have proved 

LE!VJMA 1 • 7 

The forgetful functor 

j : SgF/A -> g/A 

induce isomorphisms 

Hi(s,A,M) ~> lim(i) Der8(-,M) 
<-
§VA 

for every i ~ 0 • 

Since there will be no confusion, we simply write Der8(-,H) 

instead of Der8 (-,M).j • 

Assume that S is noetherian and that 

S ->A 

is finitely generated. 



- 15 -

Let 

be the full subcategory whose objects cp: F _,A have the property 

that F is a finitely generated S-algebra. 

I can prove 

LE~ll-1A 1 • 8 

If S is noetherian and A a finitely generated S-algebra, 

then the canonical morphisms 

and 

Hi(S A M) -> l1.'m(i) 
k ' ' <-

[kDer8 (-,N)J 

(.§gijA)fg 

Hi(S,A,M) -> lim(i) Der8 (-,M) 
<-

(SgF/A)fg 

are isomorphisms for i ~ 0 • 

Again it is clear that the derivation functors are composed with 

the obvious forgetful functors, 

Proof 

Let us prove the isomorphism 

Hi(s,A,r1) -> lim(i) Der
8

(-,M) 
<-

( SgF/ A) fg 

Choose a graded S-algebrasurjection 

F -> A 

such that F is a finitely generated S-algebra. Then, with the 

same notations as in th~ proof of lemma 1.7, there is a spectral 
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converging to 
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= HP(lim(q) Ders(-,M)) 
<-

(£gij'F .)fg 

lim(·) Ders(-,M) • 
<-

(§gy'A)fg 

Since F is finitely generated, then ''E0~q = 0 for every q • 

Since Fi is finitely generated too, the induction argument from 

lemma 1.7 goes through. Q,E,D. 

Putting this together, we get 

THEOREM 1 , ;J 

If S ~ A is any graded (or homogeneous) morphism and M is a 

graded A-module, then there is a canonical injection 

CD . 
U kH~(S,A,ll[) -> Hi(S,A,M) • 

k=-CD 

If S is noetherian and A is a finitely generated S-algebra, 

then the injection above is an isomorphism for every i > 0 . 

Proof 

There is a canonical morphism of functors 

CD 
u (k Der8 (-,N)J -> Ders(-,N) 

k=-= 

on the category SgF/A which is an isomorphism if we restrict to 

the category (§gE/A)fg , Hence the lemmaes complete the proof. 

Q.E.D. 

Let n 
R -> S be a graded surjection such that 

2 (ker n) = 0 • 
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It is easy to see that the injection 

2 2 
0

H (S,A,A&s kerrr) -> H (S,A,A0s ker n) 

maps the obstruction o
0

(A) onto o(A) , which proves 

COROLLARY 1 , 1 Q 

Let R ~> S be a graded surjection such that (ker rr)
2 = 0 • 

If A is a graded S-algebra, then A can be lifted to R if 

and only if A can be lifted to a graded R-algebra. 

Correspondingly we prove 

COROLLARY 1,11 

Let R,~> S satisfy 2 
(ker rr) = 0 • If cp : A .... B is a 

graded (or homogeneous) S-algebrahomomorphism and A' and B' 

are graded liftings of A and B respectively, then cp can be 

lifted to R with respect to A' and B 1 if and only if cp can 

be lifted to a graded R-algebrahomomorphism from A' to B' • 

REMARK 

1. Corollary 1,11 can be generalized in the following way. 

Let R .I!:> S satisfy ( ker 11 ) 
2 = 0 and let 

be any graded S-algebramorphism. Assume that there are liftings 

A" and B" • not necessarily graded, of A and B respectively 

such that cp can be lifted to R with respect to A" and B" 

Then there are graded liftings A' and B' of ]\_ and B such 

that cp can be lifted to a graded R-algebrahomomorphism with 

respect to A' and B' • VIe express this by saying that cp 

• 

admits a graded lifting to R if and only if cp admits a lifting. 
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We omit the proof. 

2, Similar results are true for graded S-modules and for graded 

'morphisms of S-modules. 
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Chapter 2 

(GRADED) DEFORI'IATTON FUNCTORS ANI) HIJJJLS. 

In this chapter we will study the relationship between hulls for 

the graded and non-graded deformation functors. We will deform 

or lift only noetherian algebras, but the hulls need not be 

noetherian. 

To be more precise, let 1\ be a noetherian ring with maximal 

ideal m/\ and residue field k = A/m/\ • Let C be the category 

whose objects are artinian local /\-algebras with residue fields 

k and the morphisms are local /\-homomorphisms. Noreover let 

c -n be the full subcategory of c whose objects R satisfy 

mn 
R = 0 where mR is the maximal ideal of R and n an integer. 

We get to pro-Q objects by taking projective limits of objects 

from C 

Let A be a graded k-algebra. 

If R E ob c , we let 

R -> A' 

Def0 (A/k,R) = { ~ 0 ~ I A' is a graded lifting}/~ 

k -> A 

where ~ is an equivalence relation, given by saying that two 

deformations R ... A' and R ... A11 is equivalent if they are 

isomorphic in the following sense 

k-> A 

where all diagrams commutes. It is easy to see that Def0 (A/k,-) 
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is a covariant functor on C with values in Setz and we call 

it the graded deformation functor for k ~A Correspondingly, 

if A is an arbritrary k-algebra, we let Def(A/k,-) be its 

deformation functor. Since we work with noetherian k-algebras, 

these functors have always hulls. Schlessinger's general theorem 
1 applies when H (k,A,A) is a finite k:-vectorspace [S) and Laudal 

proves it in general in [L2) . 

NOTATION 

If F is a functor from C to Setz, we let 

tF = F(k[eJ) 

and call it the tangent space to F. k[e] E ob c2 is the dual 

numbers. 

For the general situation in [L2], let us recall 

.DEF~.NITION 2.1. 

Let A be a k-algebra. .A pro-C object R(A) is called a hull 

for Def(A/k,-) if there is a smooth morphism of functors 

Hom~ont(R(A),-) --> Def(A/k,-) 

on C which is an isomorphism on its tangent spaces. 

Recall that a morphism of functors 

F -> G 

on C is smooth iff the map 

F(c) --> F(d) X G(c) 
G(d) 

is surjective when c ~ d is surjective. hR(A) = Hom~ont(R(A),-) 

denotes continuous local A-homomorphisms. 
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Hulls defined as above, are unique by non-canonical isomorphisms, 

With A graded, we define the hull R0 (A) for the functor 

Def0 (A/k,-) correspondingly. 

If we let 

where mR(A) ~ R(A) is the maximal ideal, then Rn(A) will be 

a hull for Def(A/k,-) restricted to 2n • In general Rn(A) 

is not an object of Qn , However, if the k-vectorspace 

1 H (k,A,A) is finite dimensional, it is, and we can forget every-

thing about continuity in the definition, For further details, 

see [12] • 

Let A be a graded k-algebra, Consider the canonical morphism 

of functors 

\'/hen does it split? To avoid difficulties, we will ask for con-

ditions which guarantees the existence of a section of 

In fact we will show that a certain kind of rigidity will do • 

DEFINITION 2.2 

We shall say that k ~ A has negative grading (respectively 

positive grading) if 

1 0 H (k,A,A) = 0 for v > 
v 

(respectively 1 ) VH (k,A,A) = 0 for v < 0 • 

If A has negative or positive grading, then 
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admits a section. This will follow from the existence of an iso-

morphism 

where B = A[T] is a polynomial ring in one variable over A , 

considered as a graded ring by choosing a suitable degree of T 

To begin with, let us prove this isomorphism rather formally. 

Let A and B be k-algebras, not necessarily graded, and 

cp : B -> A 

a k-algebrahomomorphism, cp induces maps 

* . i 
cp : H1 (k,A,A) --> H (k,B,A) 

for every i ~ 0 

Let R --> S be a small surjection from C , it is such that 
1T 

mR•ker n = 0 

where is the maximal ideal in R • 

Consider the commutative diagram 

R --> B' 

t t 
(*) s -> B1 

cp1 
A1 -> 

t t 0 t 
k --> B -> A 

cp 

where A1 ,B1 lifts A and B respectively and B' lifts B 

LEMMA 2.3 

1 

If is bijective for i = 1 and injective for i = 2 , then 

a given diagram (*) can be completed to a commutative diagram 

. 
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I 

R ---> B' ~>A' 

• 

If cp': B' -> A 1 and cp 11
: B' -> A" both complete (*) , then 

A' and A" are equivalent liftings of A1 to R , 

Proof 

Consider the diagram H
2 

(k,B 1 B) 0k I 

t cp*& idi 

2 H (k,B ,A) •l9k I 

where idi is the identity on I = ker n , Due to [LI] theorem 

2,2,5 which says that the obstructions for deforming A1 and B1 
2 to R are mapped on the same element in H (k,B,A) 0k I , we 

conclude by the injectivity of cp* that A1 can be lifted to R , 

Moreover 

H 1 (k,A,A) ~ I ---> H 1 (k,B,A) 0:k I 
cp* 0 idi 

is an isomorphism. 

Due to [LI] theorem 3,1,6 (see remark 2), surjectivity gives the 

existence of a diagram 

I 

R ---> B
1 ~> A1 

I 

and the injectivity gives uniqueness of the lifting A • 

Q,E,D, 
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REMARK 1 

The conditions of lemma 2.3 is fulfilled if 

2 H (B,A,A) = 0 

and if there is a k-algebrahomomorphism 

j : A -> B 

such that ~·j = idA , the identity on A • In fact the existence 

of j : A ~ B implies that 

is injective for all i ~ 0 • 

By the exact sequence 

the remark is proved. 

REMARK 2 

Theorem 3;1,6 in [LI] says that if B' lifts B1 

A" lifts A 1 to R then 

when 

corresponds to the 

I and A and 

difference A"-A' and o(~ 1 ;B',A') E H1 (k,B,A) ~I is the 

obstruction for lifting ~ 1 to R with respect to B' and A' • 

Correspondingly if we keep a lifting A' fixed, and let B 1 

and B11 be two liftings of B1 to R , then 

when \..l is given by the difference B '-B" , \..l E H 1 (k,B,B) ~I 
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(see [LI], theorem 3 .1. 3). With this in mind and assuming the 

conditions of lemma 2,3, we have: Given two commutative diagrams 

k[ e] -> B Cflo -> 
0 Ao k[e] -> B' 

t ~ t t t 
k ->B -> A k --> B 

then the conposed map 

1 1 
H (k,B,B) ( *)_1 > H (k,A,A) 

maps 

This proves 

COROLLAR'f.: 2,4 

cp •cp * 

~ = B1
-B 

0 
onto \ = A

1
-A 

0 

I 
£e._> A' 

0 t 
-> A 

cp 

With conditions from lemma 2,3, there is a local A-morphism 

such that 

commutes, 

Here, 

Proof 

* R(cp) : R(A) -> R(B) 

tR(A) <----- tR(B) 

II II 
1 H (k,A,A)< 1 [cp*J- ·cp* 

1 H (k,B,B) 

is an abreviated notation for the tangent space th • 
R(A) 

By definition of R(B) , there is a lifting B of B to R(B) , 

called versal. By lemma 2. 3 and by the definition of R(A) , 

there is a local A-homomorphism 

R(A) -> R(B) • 

The commutative diagram for the tangent space follows from remark 2, 
Q.E.D. 
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If we assume that B is a graded k-algebra and 

a k-algebrahomomorphism (A not necessarily graded), the consider 

the diagram 

R A' 

t ~ 
(**) s -> B1 

Cfl1 
A1 -> 

t 0 t 0 t 
k -> B -> A 

cp 

where A1 and A' 

of B to S • 

are liftings and where B1 is a graded lifting 

Look at the composed map 

and call it cp*/
0 

• 

LEMr-IA s .. 5 

If cp*/
0 

is bijective for i = 1 and injective for i = 2 , 

then the given diagram (**) can be completed to 

I 

R -> B I :e._> A I 

where B' is a graded lifting of B1 to R • If I cp : B' _, A I 

and cptl: B" _, A' complete the diagram (**) in this way, then 

and B" are equivalent graded liftings of B1 • 

Proof 

I claim that B1 can be lifted to R • 

B' 
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where I = ker TI , 
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H2 (k,B,B) ® I 

t. (()* ® idi 

H
2

(k1 B,A) ®I 

Since B1 is graded, the obstruction for lifting is in 

2 
0
H (k 1B1B) ® I 

(chapter 1, theorem 
2 in 

0
H (k,B,B)® I 

1,5). Since the graded obstruction 

is mapped onto o(B) in H2(k,B,B)® I 

enough to prove that the composed map 

is injective which is an assumption. 

Let B11 be a graded lifting to R • 

Since 
1 1 

0
H (k1 B,ll) 0 I -> H (k,B,A) ® I 

is surjective, there is a 1 A E 
0
H (k,B,B) ®I 

If we define B 1 by 

A = B
11

-B 1 E H1 (k,B 1 B) .~I 
0 

such that 

, it is 

then B 1 is a graded lifting of B1 to R by theorem 1,5. 

By remark 2 

(cp* ® idi )(A) = o(cp 1 ;B" 1 A 
1

) - o(cp 1 ;B 1 ,A 
1

) • 

Hence 0 (cp1 ;B I ,A I ) = 0 • 

The same calculations will show uniqueness of B' , Q.E.D. 
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By now it is clear that 

COROLLARY 2,6 

With assumption from lemma 2.5, there is a local A-homomorphism 

such that 

commutes. 

~O(B) 

fl 

H 
1 

(lt,B,B) <: 1 * 
o (~*/o)- ·~ 

We compose the morphism from 2.4 

1 H (k,A,A) 

* R(~) : R(A) -> R(B) 

with the canonical 

* and call the composition R(~) too , 

COROLLARY 2 •. 7 

Assume the conditions of lemma 2,3 and 2,5. 

Then the local A-morphisms 

are isomorphisms. 

Proof 

To prove that 

R(A) -> R0 (B) 

R0 (B) -> R(A) 

is an isomorphism, it is enough to prove that 
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is an isomorphism on C • 

The corollaries say that we have isomorphisms for the tangent spaa£. 

I claim that we have isomorphisms on ,22 • For if R E ob c2 

wi~h maximal ideal mR , then either 

are empty, or we have commutative diagrams 

hR(A)(R) -> hRO(B) (R) 

.S1 ~ Sl 
Derc~nt(R(A),mR) -> Derc~nt(R0 (B),mR) 

II 0 n 
hR(A)(k[mRJ) -> hRO(B)(k[mRJ) 

when k[mR] = k@mR is the dual numbers. 

Vle go on by induction. 

Let R E ob .2n and look at the diagram 

t 0 t 
hR(A)(R/m~-1) --> hRO(B)(R/m~-1) 

assuming that the lower horisontal map is an isomorphism, 

But the fibers of the vertical maps are derivations. Since 

(mnR-1)2 0 t = , we ge 

II 0 II 
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where 
2 

= R(A)/mR(A) 

are as usual. 

Hence the fibers are isomorphic, This proves injectivity of 

and surjectivity too if we use the existence of 

(or simply, if we use lemma 2,3). Q.E.D. 

This is the formal result we need, It should be remarked that 

corollary 2.7 becomes rather trivial when. we use the theory deve

loped in [L2], giving an explicit form for the hulls, 

Let B = A[T] , where A is a given graded k-algebra, We con

sider the polynomial ring B in one variable as graded by claiming 

deg T = 1 (respectively deg T = -1) 

Let 
cp:B->A 

be the composed morphism 

B = A[Tl --> A[TJ/(T-1) ~A 

T-1 is a regular element in B ; hence 

for i _:::: 2 • 

By remark 1 , the condi tiona of lemma 2. 3 is verified for cp : B-> A. 

The long exact sequence associated to 

k --> A --. > B = A[T] 
J . 
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where j is the obvious morphism, proves that 

i . 
H (k 1B 1i\1) -:-:;> H~(k,A,M) 

J 

is an isomorphism for any B-module i\1 and i 2:. 1 • 

Look at the commutative diagram 

i i Hi(k,B,A) OH (k,B,B) -> H (k,B,B) -> 
cp* 

t j* ~ j"* t j* 

OHi(k,A,B) Hi(k,A,B) i -> -> H (k,A,A) 
cp* 

s~ 

Hi(k,A,A)~ k[TJ 

where id is the identity on 1 H (k,A,A) 

'lJ : k[T] -> k 

is the composed map 

Since 

when 

k[T] -> k[TJ/(T-1) = k. 

i 
0
H (k,A,B) = 

deg T = 1 , it follows that '"*/ 
'!' 0 

~ 
id~$> Hi(k,A,A) 

and 

is given by 

i 
0
H (k,B,B) 

cp*/o i ------.;::_-----:> H ( k,B ,A) 

H 
0 
ll 

v=-oo 
Hi(k A A)T-v -> v , , tv 

t r* 
a vHi(k,A,A) -> Hi(k,A,A) 

v=-oo 

where the lower horisontal isomorphism is induced by sending T 

to 1 and the morphism 8 vHi(k,A,A) ~ Hi(k,A,A) is given 
v=-oo 

by theorem 1.9 from the first chapter. 
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When deg T = -1 , we get a diagram 

ll 
v=o 

This proves 

THEOREM 2,8 

0
Hi(k,B,B) 

II 

Hi(k A A)Tv v • , 

Let A be a graded k-algebra and let B = A[T]. If A has 

negative grading (respectively positive grading) and deg T = 1 

(respectively deg T = -1), then there is a local A-isomorphism 

such that the diagram 

commutes 

This result implies the existence of a section of the canonical 

morphism 

Indeed, if we let 

a B -> A 

be the morphism 

B = A[T] -> A[TJ/(T) Z A 

then 11 a graded" lemma 2,3 guarantees a A-morphism 
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The composition 

o( · )*· R(cp)* 
R0 (A) Ra > R0 (B) > R(A) > R0 (A) canonical 

is an isomorphism 

since the corresponding 

is an isomorphism 

(the composition tRO(A) ~ tR(A) ~ tRO(B) maps A' E tR0 (A) onto 

A'[T]E tRO(B)). 

This proves 

THEORE~1 2. 9 

If A has negative or positive grading, then the canonical 

morphism 

has a section which is a local A-homomorphism. 

The converse is not true since there are k-algebras A satisfying 
2 H (k,A 1 -) = 0 which do not have negative nor positive grading. 

REMARK 3 

Theorem 2.8 can be generalized in the following way. Let A be 

a graded k-algebra and let 

where deg T1 = 1 and deg T2 = -1 • Then we have a A-isomor-

phism R0 (B) ::::. R(A) 

(without assuming anything about A). However, we do not get the 
nice application of theorem 2.9 in this case. 
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APPLICATION TO HILBERT FUNCTORS AND LIFTING PROBLEMS 

OF PROJECTIVE GEOMETRY 

\ole want to apply the results from chapter 2 to local Hilbert 

fQ~ctors in order to generalize a result of Pinkham [P]. (our theo

rem 3.2). Again, our algebras are noetherian, but the hulls need 

not be. 

Let 

$ : F A 

be a graded k-algebrahomomorphism and assume F to be a free k

algebra. If R E ob C , vre let FR be the unique lifting of F to 

R • life define 

fTI 
~I A' 

a graded lifting; !' grade~~-.... 

Def0 (w,R) 
= ~ 0 t I A' is 

F .... A 

\vhere the equivalence relation is the usual one. Of course, 

Def0 (* 1 -) is a covariant functor on C 

If $ : F .... A is surjective, then 

is prorepresentable. 

Proof 
~-·-

This is easy since it is enough to prove that F-automorphisms of 

A can be lifted to FR-automorphisms of A' • [S] 

Q.E.D. 
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Let 

B = A[T] 

where deg T = 1 • 

If F is a free k-algebra such that 

o/ : F .... A 

is surjective and graded, then let 

~ = $ ~ idk[T] : F = F[T] .... B = A[T] 

where idk[T] is the identity. 

The canonical map 

Def0 (~ 1 -) .... Def0 (B~{ 1 -) 

gives a local A-morphism 

R0 (iji) <- R0 (B) 

The map 

is clearly smooth. Hence 

.... h 
R0 (B) 

is smooth too. Indeed, if R ~ S is surjective such that 

mR • kern = 0 

i·rhere ~ C: R is its maximal ideal, then it is enough to prove 

that the morphism of the .;fibers" 

is surjective, where I = ker TT • 

This is true since 



commutes. 

Der~ont(Ro(n,I) 

II 
DerXont(R~(~),I) 

II 

h (k[I]) 
Ro(\!i) 
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~ DerXont(R0 (B),I) 

11 

~ 

DerXont (R~(B), I) 

II 

h 
0 

(k[I]) 
R (B) 

If A has negative grading, then theorem 2.8 gives a diagram 

~ 

h ~ h ... hR(A) OC) R0 (B) R $ 

>! t ! 
Def0 (if ,,-) .., Def0 (B/k,-) Def(A/k,-) 

which proves that there is a smooth morphism of functors 

Def0 (~,-) ... Def(A/k,-) 

VIe shall enter into projective geometry. Assume therefore that F 

and A are positively graded, that 

and that the elements of degree one generate the algebras. 

"ide denote by 

X = Proj(A) 

and Y = Proj(B) = Proj(A[T]) 

its projective cone. 

In a moment eve shall prove that 

when X is normally projective. Hence 
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THEORE!'l 3.2 

Let X = Proj(A) be a normally projective scheme in :nfc and let 

Y = Proj (A[T]) be its projective cone in :nfc+1 • Let 

g : y .... 

be the induced embedding. 

JF.l+1 
k 

If A has negative grading, then there is a smooth morphism of 

functors 

Hilby(g,-) .... Def(A/k,-) 

on Q • 

Loosely speaking, the morphism 

Hilby(g,-) Def(A/k,-) 

is induced by sending T to 1 • 

It remains to establish the isomorphism 

.... 

Recall that if 

X' .... Spec(H) 

R E ob C , is proper and flat and if 

is surjective vThere v is an integer, then it is an isomorphism 

and 

is R-flat 

This can be used to prove 
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PROPOSITION 3.3 

Let R be a local ring lvi th residue field k • Let 

X = Proj(A) 

be a projective k-scheme such that 

depth~ ;:: 2 

lvhere I is the irrelevant maximal ideal. If X' = Proj(A') is 

a deformation of X to R , then A' is a graded lifting of A 

to R given by 

= 
A' -::: u H0 (X' , Ox, ( v)) 

V=O 

Proof 

Vie :follow the proof given by Ellingsrud in [E). 

The morphism 

A' .... u H0 (X' , ox, ( v)) 
v 

give a commutative diagram 

where 

A' 0 k 
R 

s~ 
A 

ll[H0 (X' ,ox,(v)) 0 k] 
v R 

.... 

.... 

A' 0k ~ A ~ U H0 (X,OX(v)) are isomorphisms by 
R v 

the depth condition. 

Hence the verticaL map on the right is surjective. By base change 

theorem, it is an isomorphism and 

is R-flat 

for every v • 

The flatness of H0 (X' , OX, ( v)) and Nakayana' s lemma imply that 

the morphism 
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is an isomorphism. Hence A' is R--flat. 

COROLLARY 3.4 

Let 

be a graded surjection of k-algebras and 

f = Proj(*) :X-> ~ 

the corresponding embedding. 

If 

Q.E.D. 

vrhere I is the irrelevant maximal ideal, then the canonical mor-

phism 

... 

is an isomoL~hism. 

Proof 

Let R E ob C and let 

f' : X' _, JJ='R 

be a deformation of f : X _, ~ • Then if FR is the unique 

lifting of F to R , we have a surjection 

A' 

correspond.ing to the embedding above and such that 

*' ®k ~ $ 
R 

Moreover, by proposition 3.3 , A' is a graded lifting given by 

A I = Il IP (X I 'ox I ( \))) 

' \) 
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By the commiiuati ve diagram 

UH0 (~, oJPr:(v)) 
v R 

II II 
~I 
.... A' 

we conclude that the map 

is bijective. 
Q.E.D. 

\<lith this corollary, vre are through with theorem 3.2. 

\ve will ask. \-/hat kind of relationship do we have between the co

homology groups 

and 

where $ F .... A is surjective and 

f X _, ~ 

is the corresponding embedding. And 11e can ask the same question 

for the cohomolo~7 groups 

OHi(k,A,A) 

and 

Ai(k,X,OX) 

For the definition of the groups Ai(k,f,OX) and Ai(k,X,Ox) , 

called the global cohomology groups of algebras, see [L2]. 

Recall however, that if X is k-smooth, then 

Ai(k,x,ox) = Hi(x,ex) 
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\•There eX is the shea:f of derivations on X • 

By [L2] we note that the groups 

2 A (k,X,OX) 0 (-) 
k 

contain the obstructions for deforming X as a scheme and 

A \k,X,Ox) 0 (-) measures ho11 many deformations vre have. If ,.,e 
k 

v1ant to deform the embedding f : X -> ~ , a similar result is 

true if we use the groups Ai(k, f,OX) 0 (-) for i = 1,2 • 
k 

Let 
TT R _, 

ideal. Let 

s satisfy mn·ker TT = 0 where mRs:_ R is the maximal 

X' = Proj(A') be a deformation of X to S. By 

3. 3 and 3.L~ v1e conclude that if 

then the obstruction 

a
0

(A) E H2 (k,A,A) 0 kern 
0 k 

is zero if and only if X' can be lifted to R as a projective 

scheme. And moreover, if a
0

(A) = 0, then the set of non-eg_uiva-

lent projective 

ous space over 

R-schemes which lift 

H1 (lc,A,A) 0 kerrr • 
0 k 

X' is a principal homogene-

\<Te shall see that 3.lJ- and this remark has much to do with our 

question when i = 1 or i = 2 • 

Let us first prove a general theorem about the relationship. As 
= 

usual we let A = !1 Av be a graded k-algebra such that A
0

=-k and 
V=o co 

such that A is generated by A1 • Then I = Il A is its irrele-
V=1 \! 

vant maximal ideal. If X = Pro,j(A) and r1 is any finitely gene-

rated and graded A-module, then we can prove 
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THEOREN 3.5 

There is a canonical mol~hism 

for evelJr i > 0 and every v • 

If 

then the morphism above is injective for i = n and bijective for 

1 < i <n 

Proof 

Vle let 

and 

Let 

Y = Spec(A) 

Z = Spec(A/I) 

U = Y- Z 

e : U .... X 

be the canonical morphism. e is both smooth and affine. 

In [L2] we find two long exact sequences 

(1) 

and. 

(2) 

Since 

.... i ~ A (k,U,M) 

it is trivial that there are canonical morphisms 

defined by the composition 

i+1 ~ 
Az (lc, Y ,M) 

.... 
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i rv i rv 
A (k,U,M) ~ A (k,X,e.M) 

Since 

we have canonical morphisms 
= . 
U [}I~(k,A,M)] 

V=-00 

which clearly factors through 

for every 

VHi(k,A,M) ~ 

i > 0 and every 

= ~ U Ai(k,X,M(v)) 
V=-= 

v • 

ife are through if' v1e can prove that 

for i < n + '1 

and that . ~ 

Al(k,e,M) = 0 for '1 < i < n 

This will be a consequence of the depth condition. To see this, we 

use t~ro spectral sequences which we find in [L2]. 

First there is a spectral sequence 

converging to 
~ 

Az(k,Y,M) 

where H~cf:'i) are local cohomology groups 1·1ith support in Z • 
The depth condition imply that 

for q .:;:. n + '1 

Hence the spectral sequence proves that 

for i < n + '1 
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Moreover, there is a spectral sequence 

converging to . ~ 

A (k,e,M) 

The sheaf 

is a ~-Module defined by 

Aq(e,M)(V) = Aq(B,e-1(V),M(e-1(V))) 

vrhere 

V = Spec(B) c X 

is any open affine set in X • 

Since e is smooth, vre conclude that 
:t.-. 

. ~ i 0 ~ 

A1 (k,e,M) = H (X,A (e,M)) 

If a E Av and 

V = Spec(A(a)) c X = Proj(A) 

\•There A(a) is the elements of degree zero in Aa , then 

e-1 (V) = Spec(Aa) 

Hence 

In fact 

Since depth1M :::_ n + 2 , then 

Hi(X,A0 (e,M)) = 0 for 1 < i < n 

and we are done. 
Q.E.D. 
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For deformation problems it can be useful to see that 

COROLLARY 3.6 

If 

then the cenonical morphism 

0
H2 (lc,A,A) ... A2 (k,X,Ox) 

is injective and 

0
H1 (k,A,A) _, A1 (k,X,OX) 

is bijective. 

:ii'll'TAL C0l'll1ENT 

Let I1 be a finitely generated and graded A-module. It is not 

difficult to see that \ve have canonical morphisms 

for every i > 0 and every v • If we assume that 

depthiA > 2 

then by 3.4 and the commutative diagram 

Def0 ($,k[e]) :-; Hilbx(f,k[e]) 

II II 
1 OH (F,A,A) 

where k[e] is the dual numbers, v1e conclude that 

1 
0
H (F,A,A) 

is an isomoYphism. 

Moreover, by remark 1 the morphism 

is injective. 



RENARK 2 

If 
n R _, s 
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satisfy ~·kern = 0 and if 

mation of f to S , then the morphisms 

X' .... ~ is a <'lefor
S 

n2 (k,A,A) ® kern ... 
0 k 

2 A (k,f,OX) ®kern 
k 

and 
2 A (k,X,OX) 0 leer n 

k 

take obstructions to obstructions. 

\ie have morphisms 

2 OH (k,A,A) 2 OH (F,A,A) 

By remark 1 and 2 \ve can assume "for all obstruction questions" 

that the morphism above is injective. 

- 0 0 0-
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