INTRODUCT ION
We will in this paper study the cohomology groups of algebras,
due to André [A] and Quillen, for a given graded algebra. We

shall see that the groups
2 (S, A,M)

have a grading if S is noetherian and graded and if S~ A is
finitely generated snd where M is a graded A-module. In fact
if we let

JHY(8,4,1)
corresponds Lo the S-~derivations of degree Vv, we shall prove

that there are canonical isomorphisms

(8] . B
[ EN(8,A,M)] 3 HN(S,A,M)
Ve=..CO

for every i >0 (chapter 1)

OQur mein inberest will lie in deformation problems. It is well

known thalt the group

)
H(S,A,A®kerl )
5

containg an obstruction for deforming A +to R where

'rr
R = B

is a surjective ringhomomorphism such that (ker 'n)g =0 . And
H/}(S,A,At@ker m) measures the amount of deformations. It is tri-
vial 'bhats we have corresponding results in the graded case if we
use the groups OHE(S,A,Agker m) and OH/I(S,A,Agkerﬂ) . BSince

the canonical morphism

OHE(S,A,A® kerm) - HE(S,A,AQ ker 1)
S 8



take the obstruction onto the obstruction, we conclude that A can
be lifted to R if and only if there is s graded lifting of A to
R . It would be nice to generalize this result to an arbitrary
surjection R D of artinian rings where R, 5 and m are all local.

I can not., Bub if we assume
H(8,A,4) = O
Y] 9<% 9 =

for v>0 or v <0, then it is true. This is a consequence of
what we do in chapter 2 when 8 is a field. What we actually
state, is that the canonical local A-homomorphism

R(A) - R°MW)

has a section. Here, A is a noetherian local ring with maxdimal

ideal and the A-algebra R(A) (respectively RO(A) ) is the

my
hull for the deformation functor (respectively graded deformabtion
functor). These functors are defined on the category of artinian
local A-algebras with residue field A/mA . The existence of a

section of

R(A) - R°M)
comes oub of a A-isomorphism

R(A) = R%(B)

where B = A[T] and where T hag degree one or minus one, This

has much to do with Pinkham's theorem in [P].

In chopter 3 we generalized his theorem to the non-gsmooth and non-
equicaracteristic case. We end this chapter by relating the 1ifting
theory of graded algebras to the corresponding theory for the pro-

jective schemes,

I should like ¥o thank 0.,A, Iiaudal for his many suggestions.




Chapter 1

COHOMOLOGY GROUPS OF GRADED ALGEBRAS.
We shall consider only commutstive rings with one,

The purpose of this chapter is to introduce to the reader the

cohomology groups

T (8,4,M)

for i >0 and every k , when § - A is a graded (or homogeneous)
ringhomomorphism of graded rings and M is a graded A-module,
As mentioned in the introduction, we shall prove that there are
canonical isomorphisms of groups

ar i = i

kg-co'kﬁ (S,4,M) ——> H(S,A,M)
for every 1 >0 if 5 is noetherian and if S.a A is finitely
generated, To prove this, we will use a spectral sequence which
we find in ({LI] . We also find a proof for this theorem in

Tllusie [I7, using graded simplicial resolutions.

But first, let us recall some definitions and theorems from the
non-graded case, and see how it can be carried out in the graded

case too,

Let
S - A

be any homomorphism and let M be a A-module., The cohomology

groups of algebras

Hi(S,A,M)

can be introduced in the following way. Let BS-alg be the cate-
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gory of S-algebras and let SF be the full subcategory of free

S-algebras, We denote by
Ders(—,M)
the functor on SF/A with values in Ab, defined by

B
Ders(u,M)(¢¢) = DerS(F,M)
A

where M is given the structur of a F-module by ¢ € ob SF/A .

Ab is the category of abelian groups.
We define
nt(s,a,M) = 1im ) Der, (=, )
’ H - S H
— ,
SP/A

where lim't) is i-th derivative of 1im .
< L

If given any surjection R I. S such that
(ker m)® = 0

for some integer n , we shall say that a R-algebra A' is a

lifting (or deformation) of A +to R if there is a cocartesian

diagram
R s A?
g y
5 ——> A
such that

Tor?(A;s) =0

Moreover, two liftings R - A' and R - A" are equivalent if

there are commutative diagrams



-5 -
//g,} A!l
R === At
n$ \&\Z/
B ——s A
If we use the word deformation when R I> S do not satisfy

(ker 7)™ = 0 , then we mean a flat R-algebra A' and a cocar-

teslan diagram

R e—s A'
m v
S ———— A

We will ask whether or not a given S-algebra A can be lifted

to R . If we assume

(ker 1']')2 = 0
then kern 1s a S-moduleand the answer is given by

THEOREM 1.1

There is an eclement
2
o(A) ¢ H (S,A,A@S ker 1)

which is 2Zero if and only if A can be lifted to R .

If o(4) = 0 , then the set of non-equivalent 1iftings is a

prinecipal homogeneous space over H1(S,A,A@% ker n) .

Again, let us agpume that R I, 8 satisfies (ker n)n = 0 for
some n ., Let ¢: A =B be a S-algebrahomomorphism, If A
and B' are liftings of A and B respectively to R , we

shall say that a R-algebrshomomorphism

@' A! —> B



-
is a lifting of ¢ +to R with respect to A' and B' if
' ®p ids = g
where ids ig the identity on S .

If we assume

(ker m)° = 0 ,
then we can prove

THEOREM 1.2

There is an clement
olep;A',BY) ¢ H1(S,A,B ®y ker m)

which is zero if and only if ¢ ecan be lifted to R with respect
to A' and B' ., If ol(psA',B') = 0, then the set of liftings
is a pricipal homogeneous space over HO(S,A,B ®g ker nw) =

DerS(A,B f¢ ker 1) .

A

The element o(A) and o(g;A!',B') are called obstructions.

If now S,A are graded rings, M a graded A-module and if the

ringhomomorphism

S - A

is graded (or homogeneous), then it is posgible to define the

cohomology groups .
LHT(S,4,M)

by simply repeting what we did above. To be gpecific, let

Sg-alg

be the category of graded S-~algebras and 'SgF the full subcategory

of free $S-algebras,



Moreover, we denote by

kDerS(m,M)

the functor on SgF/A with values in Ab , defined by

F
kDers(—,M)(\ch) = kDerS(F,M) = [D¢ DerS(F,M)lb is graded of
A degree kj}

M 1is a graded PF-module by ¢ .
With these notations, we define

DEFINITION 1.3

We let
i . i
Jis,,1) = 1anlH)[ er(~,m))

<—a—-
Sglht/A
Let R I>8be a graded surjection of graded rings such that
(ker m)% = 0

for some n .

VEFPINITION 1.4
By a graded lifting (or deformation)of A +to R we shall mean

a graded R-~algebra A' such that A' is g lifting of A to R

and such that every morphism in the cocartesian diagram

R —s At
m, \
S —> A

are graded,

Of course, two graded 1liftings R ~ A' and R - A" are eguivalent

if everything are graded in the diagram




It is obvious how we will define graded liftings of graded

S—-algebrahomomorphisms.

Assuming that

(ker n)2 =0,

then the 1ifting problem of a graded S-algebra and the corre-
sponding problem for graded S-algebramorphisms are formally

solved by our next two theorems,

THEOREM 1,5

There is an element
o (A) € H°(S,A,A @ ker )
0 0 re 3 i

which is gzero if and only if A can be lifted to a graded

R-algebra,

If o,(A) = 0, then the set of non-equivalent liftings is a

principal homogeneous space over OH1(S,A,A ®q ker 1)

If
Pt A —>B

is a graded S-algebrahomomorphism, and if A' and B' are

graded liftings of A and B respectively, then

THEOREM 1.6

There is an element

1
o (p3A",B') € H (5,A,B g4 ker n)
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which is zero if and only if ¢ can be lifted as a graded morphism

to R with regspect to A! and B' .,

Moreover, if oo(@;A',B') = 0 , then the set of graded liftings

is a principal homogeneous space over

OHO(S,A,B ®g ker n) = oDerS(A,B @ ker )

In [LI] we find proofs for theorem 1.1 and 1.2, and these can be

repeted in the graded case too,

If we want to define the (graded) obstructions, we use that the
cohomology groups of (graded) algebras can be defined as the
cohomology of certain complexes, For instance, in the graded

case, we have

W (8,4,00) = HI( 07 (1))

where
LCP () = . n . [ Perg(F ,M)]
F;liFre.w£>Fp
Af

The index set is every tuple (¢1,...,wp) of morphisms from

) 3 t 1
Sg¥/A  where "aim" for ¢; is "source" for Yy,q For all i .
The differentials
aP:  oPn) - P
are defined by

P .
p = o -1 1
d (g)(ﬂl‘]wu;\l’p_ﬂ) \U1 §(¢2"’$p+1)+j§1( ) g(‘@1v-=»9¢i°¢i+1’°swp+1)

+ P ey ey 1)

where £ ¢ kCP(M)
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(the composition Y4 ¥j4q 18 written in the opposite way ).

Define a map

¢ : Mor SgPF -—> Mor RgPF

such that if
p: B> Fy € Mor SgF

then
[] 1
ao(p): FO —_ F1, o{p) € Mor RgF

is a graded lifting of o +to R with respect to Fé and F; »

1 t
And F_ , T,
vely, We call ¢ a graded quasisection for the functor

(<) & 8 : RaF - 5aF .

are the unique graded liftings of FO, F1 respecti-

If

7 ]

PN

is an index for 002(m) , then let
00(‘7)(¢1 Vo) T [o(yq¥0) = o(yqlolin) 1 (oo @1y )

where id ig the identity on kerw. oo(o) is a 2-cocycle

kern
in OCQ(Awgsluﬂrn) defining the obstruction oo(A)e OH2(S,A,A3%}@rn)

(which is independent of o) .

Correspondingly we have
B (s,4,M) = TN (e (M)

where C€*(M) is defined in a similar way., The proofs in [LI]
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work with this complex. And it should be remarked that the defini-
tion by Andre in [A] uses this complex too. For more details,

see [LI].

The main problem in relating the groups kHl(S,A,M) to the groups
Hi(S,A,M) is that they are defined as 1im(i) on different cate-

<—-—.
gories, However, I claim that the forgetful functor

SgF/A —> SR/A

Cole -
a0

induce isomorphisms
1im(3) Derg(~,M) ~S-> 1im 1) [Der (=, M) 3]
< < o
SE/A Sgh/A

for every 1 > 0 .

To prove this, we shall use a spectral sequence which is theorem
2,1.% in [LI]

Let
P — A

be a graded S-~algebrasurjection and let

F, = Px Px ... XP (i+1)~times .
A

are graded.,

if
D= Ders(—,M)°j: Sgl/A —> Ab

is the composed functor
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SgR/A 5> SP/A ﬁg;grtjm7> Ab
then look at the complex
1im(q)1)—> lim(q)l)—> — lim(Q)I)m>
EEE/F EQE/F1 §g£/pi
where the differentigls are the alternating sum of group-morphisms

110l p s 1@ p
—
——g—JS F Fj_ ] igj‘/Fi

induced by the projections Fi - Fi—1 » In this situation, there

is a spectral sequence
BP9 = 1P(11m{%) D)
<m
SgB/P,
which is the homology of the complex above, converging to

1im(‘)D
<—--—-
SgR/A

Correspondingly, there is a spectral sequence

EP2Y = HP(11m(®) Derg(-4M))
<——-—
sR/P,

converging to
lim(') Derg(-,M) .
G
SR/A
We shall prove that the canonical morphism
11m() Derg(=,M) —> lim(i)D

L Lo
SE/A SgF/A
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is an isomorphism by induction on i > 0 . For i = 0 , the

isomorphism is trivial since there is a commutative diagram

1im Ders(«-,M) v, 1im D
< e
BE/A Sgh/A

It i
Ders(lim fM) e Ders(lim foi,M)
— —
SE/A SgR/A
where f : SF/A - Ab is the functor
f(F~>A) =F .,
(F 5> A)

And moreover
AZ 1lim foj ~S—> 1lim f ,
—_ —
SeB/A SP/A
Agsuming the isomorphism for i < n and for every object A in

Sg~-alg , we conclude that the morphism

abyd Py @
B é —_ B é

is an isomorphism for q < n and every p .
Since by definition
lim(Q) Ders(—,M) = 5¥4(s,P,N)
<....—.-
SF/F
then 'Eoéq =0 for every g .

Moreover
1im{@ p = 0

<——-
Sgh/F

since F ¢ ob SgF , proving that Eoéq =0 for all gq .

By theory for spectral sequences, we know that there are morphisms



V-

Pyd , P9 ____ wPiT,q-r+1
d M B > > B >

such that

P19 = xer aP29/im P~ Arr-

»

Furthermore for given p and gq , then

P14 _ pPsQ

)
[s e} r
if r 1is big enough .

With this in mind, we conclude that the morphisms
'gPy2 ___ pPrd
oo oo

are isomorphisms for every p and g such that
ptg < n+l .
Hence we have proved

LEMMA 1.7
The forgetful functor

j: 8gF/A —> SP/A

induce isomorphisms

Hi(S,A,M) —r— 1im(i) Ders(—,M)
s
SgF/A
for every i > O .

bt

Since there will be no confusion, we simply write DerS(—,M)

instead of Ders(—,M)oj .
Assume that S 18 noetherian and that
S~ A

is finitely genersated.
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Let
(SgF/A)fg < SgR/A
be the full subcategory whose objects ¢: F - A have the property

that P dis a finitely generated S-algebra,

I can prove

LEMMA 1.8
If S 4is noetherian and A a finitely generated S-algebra,

then the canonical morphisms

LHE(S A ,M) —s 1im1) [y Derg(~,M)]

(géﬁ/A)fg

and

L
(SgF/A)fg

are isomorphisms for i > O .

Again it is clear that the derivation functors are composed with

the obvious forgetful functors,

Proof

Let us prove the ilsomorphisnm

it (s,4,1) —> 14m(P) Derg(~,M)
(Sa8/M) ¢,
Choose a graded S-~algebrasurjection
P> A

such that P is a finitely generated S-algebra. Then, with the

gsame notations as in thg proof of lemma 1.7, there is a spectral
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sequence

"Epéq - #P(1ip(®) Der g (~,M))

(@Fo)fg

converging to

lim(') Ders(—,M) .

(SgT/4) .

Since I' d1sg finitely generated, then “Eoéq = 0 for every 4q .
Since ¥, 1is finitely generated too, the induction argument from
lemma 1,7 goes through. Q.E,D.

Putting this together, we get

THEOREM 1,9

If S - A ig any graded (or homogeneous) morphism and M is a

graded A-module, then there is a canonical injection

o 1. i
I H7(S,A,M) —> H (85,A,M) .
== 00

If S5 1is noetherian and A 1isg a finitely generated S-algedbra,

then the injection above is an isomorphism for every i > 0 .

Proof

There is a canonical morphism of functors

o0
kgﬁxfk Derg(-,M)] —> Derg(-,M)

on the category SgF/A which is an isomorphism if we restrict to

the category (SgF/A)fg . Hence the lemmses complete the proof,
Q.E,D,

Let R -5 § be a graded surjection such that

(ker n)2 =0 ,
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It is easy to see that the injection

2 (S,4,4 8 kern) —> H(S,A,4 8 ker 1)

O

maps the obsgtruction oO(A) onto o(A) , which proves

COROLLARY 1,10

Let R -“»> S be a graded surjection such that (ker n)z =0 .
If A 1is a graded S-algebra, then A can be lifted to R if
and only if A can be 1lifted to a graded R-algebra.

Correspondingly we prove

COROLLARY 1,11

Let R %> 8 satisfy (ker n)2 =0, If ¢:A-B is a
graded (or homogeneous) S-algebrahomomorphism and A' and B'
are graded liftings of A and B respectively, then ¢ can be
lifted to R with respect to A' and B' 4if and only if ¢ can

be lifted to a graded R-algebrahomomorphism from A' +to B' .

REMARK

1. Corollary 1,11 can be generalized in the following way.

Let R I8 satisfy (ker n)z = 0 and let
p:A -8B

be any graded S-algebramorphism. Assume that there are liftings
A" and B" , not necessarily graded, of A and B respectively
such that ¢ can be lifted to R with respect to A" and B" .
Then there are graded 1iftings A' and B' of A and B such
that ¢ can be lifted to a graded R-algebrahomomorphism with
respect to A' and B' , Ve express this by saying that o
admits a graded lifting to R 1if and only if ¢ admits a lifting.
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We omit the proof.

2, Similar results are true for graded S-modules and for graded

morphisms of S-modules,
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Chapter 2

(GRADED} DEFORMATTON FUNCTORS AND HULLS.

In this chapter we will study the relationship between hulls for
the graded and non-graded deformation functors, We will deform
or 1lift only noetherian algebras, but the hulls need not be

noetherian.

To be more precise, let A be a noetherian ring with maximal
ideal m, and residue field k = A/m, . Let C be the category
whose 6bjects are artinian local A-algebras with residue fields
k and the morphisms are local A-homomorphisms, Moreover let
C, bPe the full subcategory of ¢ whose objects R satisfy

mg = O where mp is the maximal ideal of R and n an integer.
We get to pro-C objects by taking projective limits of objects

from C .
Let A be a graded k-algebra,

If R ¢ ob £ , we let

R >AI
0 - (. .
Def®(4/k,R) = { | ° | | A' is a graded 1ift1ng}/~
k —= A

where ~ 1is an equivalence relation, given by saying that two
deformations R = A' and R - A" 1is equivalent if they are
isomorphic in the following sense

/

R s A

b v

¥ ——> A

where all diagrams commutes, It is easy to see that DefO(A/k,—)
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is a covariant functor on C with values in Setz and we call

it the graded deformation functor for k - A . Correspondingly,

if A is an arbritrary k-algebra, we let Def(A/k,-) be its
deformation functor. Since we work with noetherian k-algebras,
these functors have always hulls, éphlessinger‘s general theorem
applies when H1(k,A,A) is a finite k-vectorspace [S] and Laudal

proves it in general in [L2] .

NOTATION

If ® is a functor from € to Setz, we let
tp = P(klel)

and call i1t the tangent space to F. k[e] € ob L, 1is the dual

numbers,

For the general situation in [L2], let us recall

DEFINITION 2,1
Let A be a k-algebra. A pro-C object R(A4) is called a hull

for Def(i/k,-) if there is a smooth morphism of functors
Homiont(R(A),-) —> Def(A/k,~)

on € which is an isomorphism on its tangent spaces.

Recall that a morphism of functors
P = G

on C is smooth iff the map

F(c) —s F(d) x G(e)
¢(a)

is surjective when ¢ - 4 1is surjective. hR(A) = Homzont(R(A),-)

denotes continuous local A~homomorphismg,
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Hulls defined as above, are unique by non-canonical isomorphismsg,

With A graded, we define the hull R°(A) for the functor
Def®(A/k,~) correspondingly.

If we let
R,(4) = R(A)/mg (4

where Mp(a) S R{A) is the maximal ideal, then Rn(A) will be

a hull for Def(A/k,-) restricted *o G, - In general Rn(A)

is not an object of C . However, if the k-vectorspace

H (k,A,A) is finite dimensional, it is, and we can forget every-
thing about continuity in the definition, For further details,

see [(L27] .

Let A be a graded k-algebra., Consider the canonicsal morphism
of functors

Def®(A/k,+) —> Def(A/k,-) .
When does it split? To avoid difficulties, we will ask for con-
ditions which guarantees the existence of a section of

R(A) —> R°(a) .
In fact we will show that a certain kind of rigidity will do .

DEFINITION 2.2
We shall say that k = A has negative grading (respectively

positive grading) if

0 for v > 0O

1
JH (I, 4,8)

(respectively vH1(k,A,A) =0 for v<O).

If A has negative or positive grading, then

R(4) —> R(1)
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admits & section. This will follow from the existence of an iso-

morphisnm

R(4) = R%(B)

where B = A[T} is a polynomial ring in one variable over A ,
considered as a graded ring by choosing a suitable degree of T .

To begin with, let us prove this isomorphism rather formally.
Let A and B be k-algebras, not neceggarily graded, and
@ ¢+ B—> A
8 k-algebrahomomorphism, ¢ dinduces maps
o t H(k,A,A) —> H (k,B,A)
for every i > 0 .

Let R —> 5 be a small surjection from C , it is such that

mR-ker =20

where mp ig the maximal ideal in R .

Consgider the commutative diagram

R —s B'
y v

(%) 5 — B1 > A.]
l b
k —— B > A

where A,,B, 1lifts A eand B respectively and B 1lifts B, .

LEMMA 2.3
If @* is bijective for 1 = 1 and injective for i = 2 , then

a given diagram (*) can be completed to a commutative diagram
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R > B! 2 g
™ ¥ J

S-—'-"'>B1""'—"'—“>A.1 -
P1

If ':B' — A' and ¢": B' — A" Dboth complete (*) , then

A' and A" are equivalent liftings of Ay to R,

Proof
Consider the diagram Hz(k,B,B)®ki[
L Py ® idI
2 2
H(k,A4,4) @ I ————> H"(k,B,A) ® 1

® ® idg

where id; is the identity on I = ker n . Due to [LI7 theorem
2.2.5 which says that the obstructions for deforming A4y and By
to R are mapped on the same element in H2(k,B,A)§%cI , we

conclude by the injectivity of ¢* that Ay can be lifted to R,

Moreover

' (k,4,4) @ I ————> H (k,B,A) &I
o* @ idg

ig an isomorphism,.
Due to [LI] theorem %.1.6 (see remark 2), surjectivity gives the
existence of a diagram

t
R—> B -2 '

b b v

S -~ B

> A
1 P4 1

f
and the injectivity gives uniqueness of the lifting A .

Q.B,D.



REMARK 1

The conditions of lemma 2,% is fulfilled if

H2(B,A,A) = O
and if there is a k~algebrahomomorphism

j s A—>B
such that -] = idA y the iddentity on A . In fact the existence
of j ¢+ A= B implies that

H (k,A,A) peis H'(k,B,A)

is injective for all i > O ,

By the exact sequence

- 71+ (x%,B,A) - HY(B,A,A) - HY(k,A,4) > HE(%,B,4) -

i

the remark is proved.

REMARK 2
Theorem 3:1.6 in [LI] says that if B' 1ifts B, and A' and
A" 1ifts A, to R then

(o*® idl)(l) = 0(@1§B'sA’) - 0(¢153'9A")

when
L€ Hq(k,A,A) ®, I  corresponds to the

difference A"-A' and o(w1;B',A') € H1(k,B,A) @ I is the
obstruction for lifting Py to R with respect to B' and A' ,
Correspondingly if we keep a 1lifting A ' fixed, snd let B'

and B" be two liftings of B, to R , then
(QP% ®idI)(U~) = O(CP';;B"A') - O(CP'I 5B“ ’A')

when u is given by the difference B -B" , 4 ¢ H1(k,B,B)ng£
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(see [LI], theorem 3.1.3)., With this in mind and assuming the

conditions of lemma 2.3, we have: Given two commutative diagrams

kle] —> B, 29> A x{e] —> B' Sel> A
y \ v Y bt
k > B ~—> A k > B T;> A

then the conposed map

H (x,B,B) > H'(k,8,4)

(@%)-1 Py

maps
t ]
u =23 -BO onto A = A ”Ao .

This proves

COROLLARY 2,4
With conditions from lemma 2.%, there is a local A-morphism
¥*
R(p) : R(A) —> R(B)

such that

bpa) < bR(B)
i) ' i

H1 (k,A,A)<‘“‘"—;":_-:]-——— H1 (k,B,B)
Lp™1 "oy

commutes,

Here, tR(A) is an abreviated notation for the tangent space thRG&f

Proot
By definition of R(B) , there ig a lifting B of B +to R(B) ,
called versal., By lemms 2.3 and by the definition of R(4) ,
there is a local A-homomorphism

R(A) — R(B) .

The commutative diagram for the bangent space follows from remark 2,
QIEODO
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If we assume that B is a graded k-algebra and
¢ 2 B ~> A

a k-algebrahomomorphism (A not necessarily graded), the consider

the diagram

R A'
v ¥
(**) S «=> B, ?1> A,

Vel
K w—> B = A
v
where A1 and A' are 1iftings and where B1 is a graded lifting
of B to 8§ .

Look at the composed map
i i i
oH (x,B,B) —> H (k,B,B) $—> H (k,B,A)
*
and call it g/, »

LEMMA 2.5

If ¢*/o is bijective for 1 = 1 and injective for i = 2 ,

then the given diagram (¥*) can be completed to

where B' 1is a graded lifting of B, to R. If o':B' ~>4'
and o": B" - A' complete the diagram (¥¥) in this way, then B'

and B" are equivalent graded liftings of B1 '

Proof

T claim that B1 can he lifted 0 R .
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For look at

H2(k,B,B) ® I
\l,.w*@ 1dg

2 2
H(k,A,A) ® I m) H (k,B,A) ® 1

where I = ker 55 .
Since B1 is graded, the obstruction for lifting is in
2
oH (x,B,B) ® I
(chapter 1, theorem 1,5), Since the graded obstruction oO(B)

in  H°(k,B,B)e I 1is mapped onto o(B) in H°(k,B,B)e I , it is

enough to prove that the composed map
H°(%,B,B) @, I — H°(K,B,B)e, I > H(k,B,A) @ I
0 1595 ) @ 209D ) @y 5:5?3; 9By B ) @

is injective which is an assumption.

Let B" be a graded lifting to R .

Since
JH'(k,B,B) © I —> H'(k,B,A) & I

is surjective, there is a A € M (k,B,B)® I such that
(px® 1a7) (V) = ole3B",4") .
If we define B' by
A = B"-B' ¢ OHT(k,B,B) 9 T
then B' 1is a graded lifting of By to R by theorem 1.5,

By remark 2
(px® 1d7)(A) = olpy3B",4") - olpq3B',A")

Hence o(m1;B',A') =0 .

The same calculations will show unigueness of B' . Q.E.D.
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By now it is clear that

COROLLARY 2,6

With assumption from lemma 2.5, there is a local A-homomorphism

R(p), ¢ R%(B) —> R(A)

such that
tro(n) < Tx(4)
il 1
1 1
OH (k,B,B) <——-—:7I——-¥ H (k,A,A)
(CP%/O) *p
commutes,

We compose the morphism from 2.4

+*
R(e) : R(A) —> R(B)
with the canonical

R(B) —> R°(B)
and call the composition R(p)" oo .
COROLLARY 2.7

Assume the conditions of lemma 2.% and 2.5,

Then the local A-morphisms

R(p)* ¢ R(A) —> R°(B)

oe

R{p)x ¢ R°(B) — R(4)

s

are isomorphisms.

Proof
To prove that

R(gp)sx : RO(B) —> R(4)

is an isomorphism, it is enough to prove that
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hR(A)(_) —> hRO(B)('-)
is an isomorphism on C .

The corollarieg say that we have isomorphisms for the tangent spgces,

I claim that we have isomorphisms on C, . TFor if R ¢ ob C,

with maximal ideal mp , then either
hR(A)(R) and hRO(B)(R)

are empty, or we have commutative diagrams

hR(A)(R) —l> hRO(B)(R)
E J 9
Per®Y(R(A),my) —> Der®O(RO(B),mp)
I o S

hR(A)(k[mR]) —— hRO(B)(k[mR])

when k[mR] = komp 1s the dual numbers,

We go on by induction.

Let R ¢ ob G and look at the diagram

hR(A)(R) —_—2 hRO(B)(R)

v : b

hR(A)(R/m§~1) —_— hRO(B)(R/mR-1)

agsuming that the lower horisontal map is an isomorphism,
But the fibers of the vertical maps are derivations. Since

“142
5 )

(mR =0 , we get

- . + -1
Dercint(R(A),mR 1) —_ Dercgn (RO(B),mR )

I o I

t -1 -
Der® U (Ry(8) ymy ") —> Der®O"F(RS(B),uh™)
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where

Ry(A) = R(A)/ﬁE(A) RS(B) = RO(B)/mgo(B)

are ag usual.

Hence the fibers are isomorphic, This proves injectivity of
and surjectivity too if we use the existence of
* 0
R(p) & R(A) —> R"(B)
(or simply, if we use lemma 2,3), Q.E.D.

This is the formal result we need., It should be remarked that
corollary 2.7 becomes rather trivial when we use the theory deve-

loped in [12], giving an explicit form for the hulls,

Let B = ALT7 , where A 1is a given graded k-algebra, We con-

sider the polynomial ring B in one variable as graded by claiming

deg T = 1 (respectively deg T = -1)

Let
@t B > A

be the composed morphism
B = A[P} —> A[T)/(T-1) T A
T-1 41is a regular element in B ; hence

H'(B,A,A) =0 for 1> 2.

By remark 1, the conditions of lemma 2.3 is verified for ¢:B-4,

The long exact sequence associated to

k*‘“‘)A"ﬂ")B:A[T}
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where j is the obvious morphism, proves that
B (k,B,M) —> H>(Ik,4,M)
J

is an isomorphism for any B-module M and i > 1 .

Look at the commutative diagram

A (k,8,3) —> B (k,B,B) 52> HH(k,B,A)

xa )3 'l

H(k,4,B) —> H(k,A,B) —> Hi(k,A,A)
o Px

BT (k,A,4)®, k(1] eV Bl (,a,4)

where id is the identity on H1(k,A,A) and
¢ k[P —> k
igs the composed map
k[T] —> x[T3/(T=1) Tk ,
Since

Y (k,4,8) = (5N (k,4,4) 8 K[T7), ;v

GH (A, 8T
-0

Heeo

when deg T = 1 , it follows that w*/o ig given by

: CP*/
S (X, B,B) 0 > HY(xk,B,A)

T 3"

G (kA A) = H'(k,A,4)

o i
b JH (K A A)T ™Y s
= -co

V==co

=20

v

where the lower horigontal isomorphism is induced by sending T

. o . .
to 1 and the morphism 1  H (k,A,A) - H*(k,A,A) is given
V=m0

by theorem 1,9 from the first chapter,
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When deg T = -1 , we get a diagram

i 1
i

I le(k,A,A)Tv > 0 H'(k,A,A) —> H'(k,A,A) .
=0 = V=0

vV

This proves

THEOREM 2.8
Let A Dbe a graded k-algebra and let B=A[T}, If A has
negative grading (respectively positive grading) and deg T = 1

(respectively deg T = -1), then there is a local A-isomorphism

RO(B) = R(A)
guch that the diagram

S

tro(p) Sra)
I S

ol (x,B,B) 517;> H'(k,B,4) <;; H'(k,A,A)
commutes

This result implies the existence of a section of the canonical

morphism
R(A) —> R°(aA)

Indeed, if we let

a ¢ B ~> A

be the morphism

B = A[T] —> A[P}/(T) = A

then "a graded" lemma 2.3 guaranitees a A-morphism
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R%(a)® :RO(4) - R%(B) .
The composition

RO(4) B.O_(.,@)L RC(B) R(CP)*> R(A)

o]
canonica1> R (A)

is an isomorphism

since the corresponding
bpo(a) < Tro(p) < tr(a) < Pro(a)

is an isomorphism

(the composition tRO(A) ® tg(a) ~ tro(p) meps Ale tRO(A) onto
!

A [TJG tRO(B)) .

This proves

THEOREM 2.9
If A has negative or positive grading, then the canonical

morphism o
R(A) ~= RY(A)

has a section which is a local A-homomorphism,

The converge is not true since there are k-algebras A satisfying

H2(k,A,—) = 0 which do not have negative nor positive grading.

REMARK 3
Theorem 2.8 can be generglized in the following way. Let A Dbe

a graded k-algebra and let
where deg T1 =1 and deg T2 = ~1 , Then we have a A~isomor-

phism RO(B) = Rr(a)

(without assuming anything about A), However, we 4o not get the
nice application of theorem 2.9 in this case,
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Chapter 3
APPLICATION TO HIIBERT FUNCTORS AND LIFTING PROBLEMS
OF PROJECTIVE GEOMEIRY

We want to apply the results from chapter 2 to local Hilbert
functors in order to generalize a result of Pinkham [P]. (our theo-
rem 3.2). Again, our algebras are noetherian, but the hulls need

not be,

Tet

be a graded k-algebrahomomorphism and assume F +to be a free k-
algebra., If R € ob(C, we letl FR be the unigue lifting of I %o
R ., We define
ll(ri
Fp = A
Def®(y,R) = ¢ o ¢ | A' is a graded lifting; ¢ graded//
o= A

where the equivalence relation is the usual one. Of course,

Defo(¢,m) is a covariant functor on C .

LEMMA 2.1

It 4§ + P - A isg surjective, then

Defo(¢,—)

is prorepresentable,

Proof

This is easy since it is enough to prove that I-automorphisms of

A can be lifted to Fp~automorphisms of A' . {8]

Q.E.D.
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Let
‘ B = A[T]
where degT = 1 ,
If F 1is a free k-algebra such that
§ ¢+ - A

is surjective and graded, then let
11? = \{} g ldk[T] ¢t B o= F[T] - B = A[T]
where idk[T] is the identity.

The canonical map

Def®(§,~) - Def’(B/Ik,-)
gives a local A-morphism

RO(¥) «~ R°(B)
The map

Defo(;};,-—) - Defo(B/ka")

is clearly smooth. Hence

—

h h
RO(¥) RO(B)
1s smooth too. Indeed, if R 1 5 is surjective such that

mp e kerm = O
vhere mp, R is its maximal ideal, then it is enough to prove
that the morphism of the “fibers"
Dert ¥ (RO(§),T) - Der$O"U(r°(B),T)

is surjective, where I = kermu.

Thig is true since
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DerSOF(RO(F),1) - DerSO¥(r(B),I)
| I f
Derf® (RO, 1) - Der{ T (RI(B),T)
I i

I - I
hRow_)(k[ D hROCB)(k[ 1)

commutes,

If A has negabtive grading, then theorem 2.8 gives a diagram

"~

ey 0 Trem) RO

J } }
Def®(§ ,~) - Def®(B/k,~) Def(A/k,~)
which proves that there is a smooth morphism of functors

Def®(¥,~) ~ Def(A/k,~)

We shall enter into projective geometry. Assume therefore that F

and A are positively graded, that

and that the elementg of degree one generate the algebras.
We denote by
X

]

Proj(4a)

and Y = Proj(B) = Proj(A[T])

its projective cone,

In a moment we shall prove that
Def®(§,~) o Hilby(Proj(¥),-)

when X is normally projective. IHence
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THEQREM 5,2
Let X = Proj(A) be a normally projective scheme in IEﬁ and let

Y = Proj(A[T]) Ybe its projective cone in :E§+1 . Let
g1 Y - :@£+1

be the induced embedding.
If A has negative grading, then there is a smooth morphism of
functors

HilbY(g,m) -+ Def(A/k,-)

on

e

Loogely speaking, the morphism
Hilby(g,~) - Def(A/k,-)

18 induced by sending T to 1 .,

It remaing to establish the isomorphism
Def’(§,~) - Hilby(g,-)

Recall that if
X' = Bpec(R)

R € obC, is proper and flat and if
HO(X',0g:(v)) ® k= HO(X' ®k,05,(V)Ok)
R R R
is surjective where v is an integer, then it is an isomorphism

and

HO(X',04,(V))  is RB-flat

This can be used to prove
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PROPOSITION 3.3
Let R be a local ring with residue field k . ILet
X = Proj(A)
be a projective k-scheme such that
depthpA > 2
where I is the irrelevant maximal ideal. If X' = Proj(A') is

a deformation of X +to R , then A' idis a graded lifting of A

to R given by

- [ee] .
A' 5 U HOEX',0,, (V)
V=0

We follow the proof given by Ellingsrud in [E].
The morphisnm

AV - 5 HO (X', 041 (V)
give a commutative diagran

Ak -~ H[HOX',04,(V)) ® k]
v X R

R

| J

A - i HO(X,04(V))
v

where

L'ek ~ A ~ 1 HO(X,OX(V)) are isomorphisms by
R v -

the depth condition,
Hence the vertical map on the right is surjective. DBy base change

theorem, it is an isomorphism and
H°(x',0,,(v)) is R-flat

for every v .

The flatness of HO(X',OX.(v)) and Nakayana's lemma imply that

the morphism
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At = 1KY, 00 (V)
is an isomorphism. Hence A' is R--flat.

Q.E.D,

COROLLARY 3,4

Let
y + F o~ A

be a graded surjection of k-algehras and
| £ = Proj(y) :X~ T}

the corresponding embedding.,

Tf
depthpA > 2

where I 1is bthe irrelevant maximal ideal, then the canonical mor-

phism

Def(y,=) = Hilby(f,:)
is an isomoxrphism,

Proof

Iet R € 0obC and let
£ X'~ g

be a deformation of f ¢ X - ]EE o Then if FR is the unique

lifting of I to R , we have a surjection

corresponding to the embedding above and such that
§' 8k~
R

Moreover, by proposition 3,3 , A' is a graded lifting given by

A' = 1 HP(X',0,, (W)
J




-~ 40 -

By the commtative diagran
SHO(JPE, OprV)) - I H (X', 0ps (V)

| I

‘lfl

4 - t
PE A

we conclude that the map

Def®(y,R) - Hilby(f,R)

is bijective,
Q.E.D,

With this corollary, we are through with theorem %.2.

We will ask., What kind of relationship do we have between the co-
homology groups
JEL(F,A,4)
and
At (i, £,04)
where ¢ : P - A is surjective and

£ X - T
is the corresponding embedding. And we can ask the same question

for the cohomology groups

OH&(k,A,A)

Al(k,X,OX)
TFor the definition of the groups Al(k,f,OX) and Al(k,X,OX) s
called the global cohomology groups of algebras, see [L2].
Recall however, that if X is k-smooth, then

Al(k,X,OX) = H"(X, 0y)
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where eX is the sheaf of derivations on X .

By [L2] we note that the groups
2
450, %,09) © ()

contain the obstructions for deforming X ag a scheme and

Aq(k,X,OX) @ (-~) measures how many deformations we have. If we
k

want to deform the embedding f : X - ]Eg, a gimilar result is

true if we use the groups Al(k,f,OX) ? (~) for i=1,2 .,
k

REMARK 1

T
Let R = 5 satisfy mpekern =0 where mpc R is the maximal
ideal, Let X' = Proj(A') Dbe a deformation of X to S . By

3.3 and 3.4 we conclude that if

depth A > 2

I
then the obstruction

o (A) € Hg(k,A,A) @ kerm
) ) Kk

ig Zero if and only if X' can be lifted to R as a projective
scheme, And moreover, if OO(A) = 0, then the set of non-equiva-
lent projective R-schemes which 1ift X' ig a principal homogene-

ous gpace over OHq(k,A,A) ® kermw .,
k

i

We shall see that 3.4 and this remsrk has much to do with our

guestion when 1 =1 or i =2,

Let us first prove a general theorem about the relationship. As

usual we let A = (§3Av be a graded kﬂalgebratifch fhat Aozk; and
such that A is generated by A1 e« Then I = quﬂv ig its irrele-~
vant maximal ideal, If X = Proj(A) and M is any finitely gene-

rated and graded A-module, then we can prove
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THEOREM 3.5
There is a canonical morphism
NG, AM) = AT, XH(V))

for every 1 > 0 and every v .
Ir
depth4ll > n+2

then the morphism above is injective for i=n and bijective for

1 <i<n
Proof
We let
Y = Spec(4)
= Spec(A/I)
and U=Y-7Z7
Let
e :t U » X

be the canonical morphism. e is both smooth and affine.

In [L2] we find two long exact sequences

1) » 210,y - At o ataum o Al

and

(2) o At(r,e, M) - AT, Ui - at(e,X,e D - a3k, e,M) -
Since

B (k,A,M) = AY(k,Y,M)
it is trivial that there are canonical morphisms
H:(k,A,M) =~ Al(k,X,e*ﬁ)

defined by the composition
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i (k,4,M) = AT (k,Y, M)
AU i) o at(, X, el8D)

Since
oo

o.M = 1 fi(v)
V:-—sOD

we have canonical morphisms
O

) oo . -
oLt (,A,m] ~» B A%(K,X, (V)
\):-—-00 V:-OO
which clearly factors through

JEEG, A, » AN (KX H(V))
for every i > O and every v .

We are through if we can prove that
AZ(e,Y,M) = 0 for i <n+

and that

Ar,eM) =0 for 1<i<n

[ rn

This will be a consequence of the depth condition. To see this, we
use two spectral sequences which we find in [IL2].

First there is a spectral sequence
% = AP(k, Y, HIOD))
converging to
Az"(k,Y,M)
where H%(ﬁ) are local cohomology groups with support in 27 .

The depth condition imply that

HA(H) = 0 for ¢ < n+-

Hence the spectral sequence proves that

A%(k,Y,ﬁ) = 0 for 1 <n+1
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Moreover, There is a spectral sequence

w4 = 1P (X,A%e,iD)
converging to
A (k,e,M)
The sheaf
2%(e,M)
is a QXmModule defined by
4%, (V) = 298, (1), M ()))
where
V = Spec(B) c X
is any open affine set in X ,

Since e 1is smooth, we conclude that
K

A (x,e,00) = B (X,4%Ce, D))
If a € Av and
V = Spec(A(a)) < X = PI‘O(}(A)

where A(a) is the elements of degree zero in Aa, then

e“q(v) = Spec(Aa)

Hence

1

£%Ce, (V) = A%(h L y,h,,0,) = pery  (hartly) = Mg

In fact
&O(e,l‘h’i) = e,;:M

Since depth M > n+2, then
H'(x,0%e,M)) =0 for 1<i<n

and we are done,
Qelie Do
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For deformation problems it can be useful to see that

COROLLARY 2.6
It

then the canonical morphisnm
12 (k,A,8) - A°(k,X,04)
(o) X
is injective and

1 1
JH (kya,a) » A7(k,X,04)

is bijective.

PINATL COMMENT
Let M be a finitely generated and graded A-module. It is notb
difficult to see that we have canonical morphisms
JEREAM - at(e,s,Hv))
for every i > 0 and every Vv . If we assume that
depthIA > 2
then by 3.4 and the commubative diagram

Def®(y,klel) = Hilby(f,kle])

i l
(AL - Ak,
o yALL) A (k,f,OX)
where kiel is the dual numbers, we conclude that

1 1
JH(Fh,8) = AT(k,£,04)

is an isomorphism.

Moreover, by remark 1 +the morphism

g 1
S Ge,A,8) = A7(k,X,04)

is injective.
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REMARK 2
I . .
If R - 8 satisfy mRokerTr =0 and if X' - ]Pg is a defor-

mation of £ to S, vhen the morphisms

and

ng(k,A,A) ® kermw - Ag(k,f,OX) ® kerw
k k

A%(I,£,05) ® ke = A%(K,X,04) @ ker
k k .

tske obstructions to obstructions,

We have morphisms

By remark 1 and 2 we can assume "for all obstruction questions

£~

PG ALY F o HA(R,ALL) - A2(k,£,04)

Hi

that the morphism above is injective,

LAd

LE]

(rl
[11]
(1.2)
[P]
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