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ABSTRACT

We show that for a large class of quasi invariant probability
measures U on a separable Hilbert space witih a nuclear rigging

the Dirichlet form‘fvf-qgcix in Lgf(du) is closable and its
closure defines a positive self-adjoint operator H in Lo (du),
with zero as an eigenvalue to the eigenfimction 4, which is simple
if and only if u 1s ergodic. The connection witn the Hamiltonian
formalism and canonical commutation relations is also studied.

We show moreover that, for a subclass of guasi invariant measures,
H 1is the infinitesimal generator of a syimetric time homogeneous
Markov process on the rigged Hilbert space, with invariant

meagure i , and tnls process is ergodic if and only if y is
ergodic.

Moreover we study perturbations of H and p as well as weak limits
of quasi invariant measures M, and their associated Markov
processes,

Finally we apply our result to quantun fields. In particular we
show that for polynomial interactions in <wwo space~time dimensions
the physical vacuum restricted to the time zero fields is a mea—
sure 1 in the above class of gquasil iavariant measures and the
pnysical Hamiltonian coincides on a dense domain with the generator
given by the Dirichlet form determined by u.

June 1975

1‘4-15101‘1{ supported by The Norweglan Researcn Council
for Science and the Humanities.




A, Introduction

Within the general theory of Markov stochastic processes with
continuous time parameter and finite dimensional state space the
class of diffusion processes is of special importance due Lo its
connection with second order partial differential equations. Since
moreover every such Markov process 1s the solution of a stochastic
differential equation, one has a beautiful interplay of the theory
of partial differential equation, diffusion processes and stochastic
differential eguations. Nor this we refer to [1], (2], [3] and to
[4] for potential theory.

In this paper we € in a study of the extension of these subjects,
and in particular of the theory of Markov diffusion processes, to
‘the infinite dimensional case,

We first review shortly some previous work.

Farly work which can be put in relation with this circle of problems
was done, mainly by Friedrichs, Gelfand and Segal, in connection
with the study of quanbtum fields and in particular of the represen-
tations of canonical commutation relations, see e.g. [5]. From an-
other point of view Feymman's path integral formulation of quantum
dynamics, has given much stimulus, see the references given in [6].
The work on guantum fields has been pursued vigorously in the last
decade, within the framework of constructive guantum fiel +theory,
to which we shall come back later. Let us first however mention
some other woek, which was originated primarily by other types of
questions,

Daletskii has studied infinite dimensional elliptic operators of
second order, parabolic equations and the corresponding sbtochastic
equations on nuclear spaces, see [7), where also many refevences to
related work by him and other investigators are to be found. The
coefficients are assumed to be continuous with continuous uniformly
bounded Fréchet derivatives and the Cauchy problem is shown %o have
a unique solution in the space of functions which are uniformly
bounded and continuous together with their derivatives up to second
order. The parametrix of & class of elliptic differential operators
of higher order have been considered by Vishik on certain gpaces of
sequences [8].

Gross and Piech have studied potential theory on abstract Wiener
space [9].



Por Wiener processes on Banach manifolds see [10].
Kree has studied the extension of the theory of generalized func-
tions in finibtely many dimensions to the infinite dimensional case,
with some spplications to partial differential and variational egqu-
ations [11].
Let us now shortly summarixe the content of our paper and indicate
briefly the general methods used.
In section 2 we start by assembling some facts about Gelfand's
representation of Weyl's canonical commutation relations by means
of probability measures on N', quasi invariant with respect to
translations by elements in N, where NcKcN' is a real separable
Hilbert space with a nuclear rigging. References to previous work
on this representation are [5],2) and [12], We then isolate a class
of guasi invariant measures, which we call nmeagures with first order
derivatives . \ . . .
regular / and which in the finite dimensional case,
correspond to the density function having IZE derivatives. This
class is suitoble for the construction of the self adjoint positive
operator H associated with the Dirichlet form J‘VE-Vg dyp  and act-
ing in the representation space Izg(du) for the canonicsl commuta-
tion relations.
The relations of Dirichlet forms with the canonical formalism has
been discussed, modulo domain questions, by Araki, in his algebraic
gpproach to the Hamiltonian formalism and canonical commutation
relations [13]. Some of our results in this section can be looked
upon as providing analybic versions of algebraic derivationsg of
Araki, in particular by realizing the measures u on a topological
dual rather than an slgebraic one.
We first define the Dirichlet form on finitely based functions
which are continuously differentiable with bounded derivatives and
on this domain it is closable., H 1is precisely the Friedrichs
operator given by the closure of the Dirichlet form. We call H
the diffusion operabtor generated by . H has the eigenvalue zero
with the eigenfunction identically equal to 1 in I§3(du). Moxrege
over tho eigenspace to the eigenvalue zero congists precisely of
all functions in Iﬁz(du) which are invariant under translations
by elements of N, hence in particular, zero is a simple elgenvalue
of H iff p is ergodic, which is equivalent to the representation
of the canonical commutation relations given by p being irreducible.



One has as decomposition of u, Lg(du), H and the representation
(U,V) of the canonical commubtation relations into a direct sum of
ergodic components.

.. firgt qrdexy . o
The condition on p to have regular/gerlvaglves is that the indini-
tesimal generator Px of the unitary groun V(tx) of translations
in the x-direction, i.e. the canonical momentum operator, should
contain the function 1 in its domain., If moreover the function
obtained by applying Px to 1 has bounded components, then y is
bgégfg%n%g%g% %%dgge class of quagi invariant measures with bounded

erivatives and we show that, in this case, ¢~ TH  pag positive

kernel, hence il is a Markov conbractiorn semigroup. o that in this
case we have a time homogeneous Markov process on N' with invariant
measure @ and infinitesimal generator H.
Finally we prove thal this diffusion process is ergodic if and only
if w is ergodic.
In section 3 we study perturbations of quasi invariant measures

with bounﬁ%&?&%%i%é%§$e%rgﬁ of the associated diffusion operator H.

We first show that if H dis such a diffusion operator and if V is
real measurable on N' and such that H, = §4¥V ig essentially
self adjoint and lower bounded then o ' has non-negative
kernel., The ergodic decomposition of ]ﬁz(dp) and H carries over
to V and }L]. If ]11 is the infinum of the spectrum of IL] and is
an eigenvalue of IL], then the corresponding eigenfunction ¢ is
strictly positive - almost everywhere, hence du, = wadu is gquasi-
invarient and a sufficient condition is given for H, -E, to be the
infinitesimal generator for a unique diffusion process generated by
Mg e

Finally we find sufficient conditions for the stability under weak
limits of the correspondence between quasi invariant measures with
bound£3§gé%£vg%fggsOgggrfhe assgociated diffusion process,.

In section 4 we apply the general results of the proceeding section
to the case of quantum fields. The stochastic approach to gquantum
fields is of course not a new one, but was initiated by work of
Friedrichs, Gelfand and Segal, and more recently this approach has
been emphasized by Symansik [14] and Nelson[15]}. The latter also
formulated an sxiomatic framework in terms of generalized random
fields with the more dimensional Markov property, corresponding to
Levy's Markovian property of order 1 [16].




Gaussian generalized Markov random fields had been also congidered
by Wong [17] and Molchan [18]. Guerra adn Ruggiero [19], see also
[20], pointed out the connection of free Fuclidean Markov fields
with the generalization of Nelson's stochastic mechanics to infini-
tely many degrees of freedom. Recently other connections between
problems of quantum fields and the theory of generalized stochastic
processes have been emphasized particularly by Klander [21], see
also [22].

Concerning specific models studied inbensively in constructive

field theory we refer to [23]. For more recent work see [24],
Concerning the Markov property of the constructed generalized random
fields see [25]. Many results with direct probabilistic implica-
tions are in [26].

Coming now To our present applications of the methods of sections

2 and 3 +to the quantum fields, we first remark that the diffusion
operator associated by the procedure of section 2 with the Dirichlet
form given by the Gau881an measure of the unit process on

S(Rd) c I (R ) © S‘CR "} coincides w1th the infinitesimal generator
of the Markov process of the free Markov time zero field,

Finally we consider the interacting case in two space-time dimen-
sions, where the interaction is given by a polynomial of even degree
with sufficiently small coefficients.
We first show that the measure p, given by the Dhy31cal vVacuunl,
restricted to the time zero fields has regula ;%erlva%lves hence
belongs to the class of gquasi invariant measures discussed in
Section 2. By means of the perturbation theory given in Section 3
and direct estimates, we then show that the corresponding diffusion
operator coincides on a dense domain with the physical Hamiltonian.
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2, Symmetric diffusion processes

The Schrddinger equation in R™ is of the form

12 =ay+vy (2.1)

where V 1is the operation of multiplication by the potential’
energy * V(x) , y(x,t) is a function on R™ xR and 4 is the
Laplacian in R® ., 1In this section we shall see what happens
when we replace R" by a real separable Hilbert space K. The
method usually employed in the finite dimensional case (K =R")
is to consider

as & self adjoint operator on L2(Rn) , which is possible under
gome mild regularity conditions on V (see for instance

[ 1) in which case

¥(x ) = (e o) (x) (2.3)

where o € LQ(Rn) is the initiasl condition y{(x,0) = o(x) and
e"itH -is the unitary group generated by H . However,in the

case h is infinite dimensional it is not possible to copy this
procedure too closely because of the fact that there is no ob-
vious candidate for the I, space.

Therefore let us now assume that H has at least one eigen-
function in LZ(Rn) , and we are still considering the case K=R",
and that H is, as a self adjoiﬁt operator, bounded below,  Then
again under some qulte general regularity conditions on V., the

spectrum of H will end {to the left) in an eigenvalue E so

that H > E and the corresponding eigenfunction (x) is positive




almost everywhere i.e.

HQ = EQ , (2.4)

(x) > 0 and Q(x) = 0 only on a set of measure zero. On the
other hand if Q(x) 1is an eigenfunction and Q(x) > O +then
H>E and Q(x) = 0 oniy on a set of measure zero, These
results are consequences of the ergodicity of the Markowv semi-
group generated by the Laplacian. For details concerning these
results ses ref. |

Let ug assume that 1 1is normalized such that

(2,0) = | lax)|® ax = 1 (2.5)
n
R .

and set p(x) = Q(x)2 , then du(x) = p(x)dx is a probability

megsure on Rp . Since  is in the domain of H it must

(again under slight regularity conditions on V) have locally

integrable derivatives up to second order. So let f(x) be a real

smooth function of compact support, then

il

J(v0)2au = (vea,920)

(v(fQ), vV (£fQ)) - 2(vf.Q,f+9Q) - (fVQ, £VQ)

it

)

- (fq, A(fQ) + 2(f,v(QfvQ) - (fvqQ, fvQ)

- (£0, A(fQ)) + (fYQ, L9 Q)
+ 2(fV S, OV Q)+ 2(f, £0 A Q)

It

- {(£0,a(£0)) + (£9Q, £VQ)
+ 309£2,90%) + 2(f,£0 4 0)

It

- (fQ, AlfQ)) +(£9 0, £V Q)
"‘%'(12;[\“2) + Q(f:fQAQ) ’

1

So that, since 'An = (V-E)Q , we have



Jwnau= (£0,(~4+ V- E)fQ) (2.6)

= (fq,(H-E)fQ) .

Hence the correspondence f <-> f{1 which is a unitary equivalence
between L2(dx) and Lg(du) takes the form (f,(H~E)f) dinto

the form (fq,(H-E)fQ) = I(Vf)Qdu . Hence we could define the
operator H-I as the self adjoint operator defined by the clos-

able form

J(Vf)zdu (2.7)

in the Hilbert space Le(dg) « The relation between the operator

H-E and the measure dy = pdx is then given by

HeE = - A+ (V-E) (2.8)
where %
V-E = AR, (2.9)
pB

Let now dua(x) be an arbitrary probability measure on RO

which is gquasi invariant with respect to translation. That is
du{x+a) = olx,a)du(x) (2.10)
where of(x,a) > 0 , Ja(x,a)dp(x) = 1 and
a(x,8+d) = o(x+a,bla(x,a) . (2.11)

It is well known that in R" any quasi invariant measure is
equivalent to the Lebesgue measure, so that da(x) = p(x)dx and

p(x) > 0 with p(x) = 0 only on a set of measure zero.
Hence in this case

a(x,a)z-gg%i%l .

In Lz(du) we may now consider the form (2.7) and if it is clos-

able we shall call H +the self adjoint operator which is given
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by the corresponding closed form, so that with {,) Dbeing the
inner product in Lz(dg) ,

(£,Hf) = [vi.veau , (2.,12)

and we shall say that

H= ~A+7V (2.13)
with N 5
X,
V = Z —-—a‘-——-2 0,2(]{,0) H (2014)
i=1 aai

whether (2.14) defines a measurable function or not. In this

way we obtain, from any quasi invariant probability measure du
on R® such that the form (2,12) is closable in Lz(dg) , & self
adjoint operator H > 0 such that the constant function is an
eigenfunction with eigenvalue 0O . Moreover if du(x) = Q(x)zdx ,
where (x) is the lowest eigenfunction for an operator of the

form -A+V , then H =-A+4+V ,

Lxample 1
Let n =3 and take 4.4 +to be the probability neasure in R3

given by

3 e—2m[xl

au(x) = g5 T
X

We may verify that the form (2.7) is closable in L,(du), so that

H 1s well defined. In this case

i
o* (x,8) = T%§éT mixtal | gn|x| )

1
For x # 0 we see that Aaa?(x,o) = m2 . In fact we may easely

prove that H is a self adjoint operator such that, when restricted

to smooth functions which are szero at zero, then Hﬁf: 0~A4-m2)f
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for f£(0) = 0 , However, Hm—m2 , when represented in Lz(dx),

-m|x|
has ETET-— as an eigenfunction with eigenvalue —m2 y SO

Hm-m2 -6 +» In fact Hm-m2 form a one parametric family of
self adjoint extensions of the restriction of -a to functions

f ¢ D{p) such that f£(0) =0,

It is well known, at least in the case of sufficiently nice
potential V , that H given by (2.13) is also the infinitesimal
generator of a Markov semi group e-tH which has dy as an in-
variant measure, Moreover the stationary Markov process g(t)
in R% given by the Markov semigroup ™ ana its invariant
measure dy 1ig the unique solution of the stochastic differential
equation

de(t) = B(E(%))dt + dw(t) (2.15)

where w(t) is the standard Wiener process in R" , and g(g)

is the osmotic velocity

8(g) = Vv 1inp(8) , (2.16)

where du(x) = p(x)dx . For more details on this we refer the
reader to ref, [20] and the references contained there. It follows
from the methods in ref, [20] that the stochastic process E&(%)

is always a solution (2.15) although one can prove that this
solution is unique only under regularity condition on the osmotic
velocity B(E) , for instance is a Lipschitz condition good enough,
Por closer information on stochastic differential equations and

their solutions see ref. [3].

We are now in the position to discuss the Schridinger egua-

tion (2.1) on a separable real Hilbert space K. The setting
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which we shall use is given by a nuclear rigging

N ecXcn' (2.17)

where N is a real nuclear space densely contained in XK and N'

is the dual of ¥ , Moreover the inner product {(x,y) in K
when restricted to N coincides with the dualization between, N
and N' .

Let duw{€) be a probability measure on N' which is quasi
invariant under translations by elements in N .,

We here recall Minlos theorem [29] that says that any continuous
positive definite function ¢ on N such that ¢(0) = 1 1is

given by a unique probability measure du .on N' such that

o(x) = [ 18) aucey (2.18)
Nl
where the measure structure in N' is the one derived from its

topology.

Since du  is quasi invariant under translations with elements

x € N we have that dau(8) and du(&+x) are eguivalent, hence

a(g,x) = g%&%§§l (2.19)

ig, for fixed x , positive u- a&lmost everywhere, and

a(€,x) ¢ L1(du) , in fact
[a(g,x)aule) = 1 . (2.20)

Murthermore for any x and y 1in N we have, for - almost
all & , that
a(g,x+y) = a(E+x,y)a(g,x) . (2.21)

Such a measure give rise to two unitary representations U and V

of N on the Hilbert space & = Ly(du) by
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(U(x)£) (5) = e1(X8) ¢(g) (2.22)

and

It

(V(x)£)(2) = a¥(2,x)f(g+x) . (2.23)

We have obviously that U(x) and V(x) are representations
of N , namely
U(x)U(y) = Ulx+y), V(x)V(y)= V(x+y) (2.24)

that satisfy the Weyl-commutation relstions
V(x)U(y) = e 2 yiyyvin) (2.25)

for x and y € N, Moreover we see that the mapping x - U(x)
is strongly cortinuous from N - B(dh) with the strong operator
topology on B(ﬁg) s because for y € N , U(y)! is dense in
Lz(du) and

1(u(x) = DU Y2 = [ (u(x) - 1)12

= 2 Re @p(x)~2 ,

and by assumption (x) is continuous on N and ¢(0) = 1 ,

On the other hand we have by Minlos theorem that if U(x), V(x)
are unitary representations of the nuclear abelian group N such
that U(x) is weakly continuous in the topology of N (weakly
referring to the weak operator topology) and with a cyclic ele-
ment (1 and such that U(x), V(x) satisfy the Weyl-commutation
relations, then there is a measure d@ on N' which is quasi
invariant under translations by elements in N . Moreover U(x)
and V(x) are represented on Le(du) by (2.22) and (2.23)
respectively,

To =see thisg, take

o(x) = (q,u(x)q) , (2.26)




then o¢(x) 18 a positive definite continuous function on N and
by the Minlos theorem there is a probability measure du on N'
such that (2.18) holds, and by the cyeclicity of Q wunder U(x)

we may take the representation space to be L2(du) and U{x) %o be

(u(x)£)(g) = o1 (%58) £(e) | (2.27)
Consider now also the positive definite function
o (x) = (V(y)0,u(x)V(y)a) (2.28)

and the corresponding measure duy(g) . By the commutation

relation (2.25) we see that
my(X) = oY) o(x) (2.29)

By the uniqueness of the Minlos representation (2.18) we therefore
have that
duy(é) = du(&+y) . (2.30)

Now the subspace generated, for a fixed y € N , by U(x)V(y)o ,

as X runs through N , is a closed subspace which is equivalent

t0 L2(duy) , and the weakly closed subalgebra generated by U(x)
in this subspace is equivalent to LCD(dgy) . However, the weakly
closed algebra generated by U(x) in the whole space is equivalent
to Lco(du) . This gives us then a continuous mapping from Lcédu)
onto LCD(duy) which implies that duy ig absolutely continuous
with respect to du . This proves the quasi invariance of du

under translations by elements y in N .

Hence we have the following proposition, which is first proved

in ref [§1,2).
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Proposition 2.1

Let N <K c N' be a nuclear rigging of K , and assume that
we have two representations of N , U(x) and V(x) Dby unitary
operators on a separable Hilbert space o such that x - U(x)
is continuous from N irto B(ég) with the weak operator topology
and that there is a cyclic element Q for the representation U(x).

If moreover U and V satisfy the Weyl commutation relation
V() = e HEV) upvix

then there is a probability measure u G‘A%(N') such that o is
gquasi invariant with respect to translations by elements in N
such that
(,u(x)0) = | (%8 qu(e)
Nl
and U(x)n <—> ei(x,%) gives an identification of A with

L2(du) such that

(U)£)(5) = X (X050 £(e) ana  (V(x)£)(2) = oP(2,x)f(E4x)

with
du(g+x) = a(B,x)du(g) . O

Consider now of(g,tx) = Q%&%%%ﬁl . It is obviously simultane-~
ously measurable in & and t , so that a%(g,tx) is measurable
as a function of (€,t) ¢ 8'xR for fixed x . From this and
(2.23) it follows that V(tx) 1is weskly measurable in +t and
gsince V(tx) 1is a unitary group as a function of + by (2.24)
we have,by a standard theorem on unitary groups,that V(tx) is
strongly continuous., ILet Px be its infinitesimal generator.

Then Px 1is a self adjoint operator on = Lz(du) s and
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by (2.24)
P(x+ty) 2 Px + Py ' (2.31)

and in fact it follows from what is known about the Weyl commuta-

tion relations on finite dimensional spaces that
P(x+y) = Px + Py . (2.32)

Let & Dbe a orthogonal projection in K such that its range
EK is a finite dimensional subspace conbtained in N , where
¥ cXKc ' is the nuclear rigging of K . TFor ue¢ XK , Bu is
then of the form

m
Eu miE1(ei,u)-ei s | (2,3%)

where m = dim EK and e; » i1=1,...,m is an orthonormal base
in EX . Since e; € I, we see from (2.33) that E extends by

' m
continuity to a projection K: N' W given by EE =‘21(ei,§)ei .
1=

So we have proved that any orthogonal projection in K which has
a finite dimensional range contained in N extends by continuity
to a continuous projection from N' dinto N .

We shall now define some subspaces of G(N') , the Banach
space of continuous bounded functiongs on N' . £ € ¢(®') is said
to be in T if there is some orthogonal projection E on K
with a finite dimensional range EK < N such that f(§) = f(Eg)
and f(x) for x € BEK is in C™(EK) , n is here 1,2,...
or oo . We also define f € P by requiring that f(g) = £(E§)
for some E of finite renge in N and f(x) ¢ C(EK) for x ¢ EK
Let n < co and let [ |l be the norm in ¢ , then we define
I, in # by ffll, = I£lggll, for some E such that
f(€) = £(BE) and EXK of finite dimension in N . We see that

”f”n does not depend on E so that [[f[  is well defined and
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it organiszes ' %o be a normed linear space., We shall refer to
I as the space of continuous and finitely based functions, and

' as the space of n-times differentiable and finitely based

functions,

However, P is not complete in this norm and we shall .denote
by D"  the Banach space obtained by completion. We set
D = 0 D" so that D ig a Fréchet space which contains P

as g dense subspace.

By u%(N') we understand the Banach space of bounded complex
measures on N' , i,e, véﬁ(N') = ¢(¥)* . It follows from the
Minlos theorem that (N') 1s closed under convolution of
measures and since
[2atvev,) = | s(gge8y)av, (5, av(5,) (2.34)
N’ AP
we get from the fact that f4(N') = c(W)™ that [[v,* vl < vyl v,
So that u4é(N') is in faet a Banach algebra. '

Definition 2,1 We shall say that a probability measure uedeUf)

is quasi invariant if it is quasi invariant under translations

by elements in N .,

We have now the following proposition complementary to pro-

position 2.1,

Proposition 2.2

Let N c Kc N be a nuclear rigging of K and u € b (1)
a quasi invariant probability measure, and consider in Jf = L, {du)
the representation of the Weyl commutation relations over N

given by

(U(x)£)(8) = ei(x’g) £(8) anda (V(x)£)(§) = a%(ﬁ,X)f(§+X)
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where a%(g,x) is the positive square root of al£,x) , with
du(€+x) = a(€,x)du(g) . Then the mappings x -~ U(x) and x - V(x)
are strongly continuous unitary representations of N on B.
Moreover with Q(x) = 1€L,(ds) , U(x) 1is a cyclic representation

with ( as a cyeclic vector.
Proof: For f ¢ Loo(du) we have that

o) - 1) £ al,% < 212 U - 1) a)®

It

201212, (1 - Re{Q,u(x)q))

il

eI -re [ O0E aue)

This proves that x - U(x)fQ is strongly continuous, and since
Loo(du) 1is dense in IL,(du) , we get that U(x) is a strongly
continuous representation of N with a cyclic element Q . That
V(x) 1is also a strongly continuous representation follows from

results proved by Hegerfeldt, see theorem 3.3 of ref, [ 127, 3).

O

Definition 2.2

For any representation (U,V) of the Weyl commutation rela-
tions over N on a Hilbert space cﬁg, we get a representation
(ﬁ,?) of the Weyl commutation relations over N on o%) by
T(x) = V(x) and ¥(x) = U(-x) . We shall call the representation

given by (ﬁ,?) the Fourier itransform representation.

~

We remark that U(x) = U(-x) and ¥V = V(-x) so that the
mapping (U,V) - (U,¥) 4is periodic with period 4 .,

Corollary to Proposition 2.2

Let 4 be a guasi invariant probability measure on N' such

1
that au(E+x) = a(E€,x)du(g) for any x ¢ ¥ , then x - a®(8,x)
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is continuous from N into L2(du) and x - a(g€,x) is continuous

from ¥ into L1(du) .

wl

Proof: By proposition 2.2, x - V(x)Q = «?(g€,x) is strongly

continuous. Moreover
1 IR 3 3 3 2
lea(g,x)-a(g,y)ldu(g)_] =UI(CL (!;,X)W (E,y))(cx (%,X)—a (g’Y))Ii’vl(g)]
1 i i i
< J1e® (g, x)va® (g, 3P au [ [0 (g,%) o (5,y) Pau
1 1
< 4] le¥ (g, 0) o (g,y) 1% au(s) .
This proves the corollary.

Definition 2.%

We say that a quasi invariant probability measure o ¢ o4(N')
is ergodic iff the only functions f ¢ Loo(du) which are invariant
with respect to translations by arbitrary elements x € N are

the constant functions.

We remark that an obviously equivalent definition is that
is ergodic iff all the N invariant measurable sets in N' have
u~-measure Zero or one,

We say that a representation (U,V) of the Weyl commutations
/relations
ls drreducible iff the only bounded operators that commute with

all U(x) and V(x) , x € N , are the constants.

Proposition 2.3%

A quasi invariant probability measure u € adﬂ(N') is ergodic
if and only if the representation of the Weyl commutation rela-

tions on Lz(du) given by proposition 2,1 is irreducible,.

Proof: Let P be a bounded operator that commutes with U(x) ,

then F 1is given by the multiplication by a function F(E)elboﬁuﬂ.
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If P commubtes with V(x) , then F(&+x) = F(g€) so that F 1is
invariant under N . Hence if the representation is irreducible,

the measure is ergodic and viceversa,. 0

Proposition 2.4

Let (U,V) be an irreducible representation of the Weyl
commutation relation over N on a separable Hilbert space cﬁf
such that x - U(x) is a strongly continuous representation of N,
Then there is a quasi invariant probability measure u € oL (¥')

such that (U,V) is equivalent with the representation (U',V')
(U (01)(8) = 25 £(5) ana V' (x)2(5) = 2(8,x)EE, 1) £(g4x)

on IL,(dw) , where 2(E,x) is a measurable function on N' such

that , for almost every g , |z(g,x)| =1 and

z(E,x+ty) = Z(§+X,y)z(§,x)

and 2z(g,0) = 1 .,

Proof? This proposition is an easy consequence of Theorem 6.2,2

and its corollary in ref, 0

The following corollary is immediate:

Corollary +to Proposition 2.4

Let (U,V) be an irreducible representation of the Weyl
commutation relation over N on g separable Hilbert space (ﬁf ,
such that x - U(x) is strongly continuous, then there is a

cyclic element Q1 for the representation of N given by U(x) .

Definition 2.4 We shall say that a probability measure u e (N')

is Lp—differentiable iff it is gquaesi invariant and for the corre-

sponding a(£,x) = au(8+x)/du(E) we have that %(a(ﬁ,tx)— 1)
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converges strongly in Lp as t - 0 . We shall say that it is
weak Lp—differentiable if %(a(%,tx)- 1)} converges weakly in Lp

as t - 0 .

Remark: In the finlte dimensional case we have that a quasi
invariant measure is of the form p(x)dx for p(x) ¢ Ly » Then
al{x,y) = p{x+y)/p(x) 80 we see that in the finite dimensional case
the definition above amounts to the strong or weak L, differenti-

ability of the function p(x) .

Wow, if w e JAL(¥') is L,-differentiable, then
%(a(%,tx)- 1) - 8(8).x in the L, norm and the derivative g(§)ex
is then obviously a linear function from W into L1(du) , and
we denote this linear function by p(E€) . Since in the finite
dimengsional case it is actually given by (2.16), which was the
osmotic velocity, we will also in the general case call it the
osmotic velocity.,

Definition 2.5 We shall say that a probability measure u € AL (WY

first order . L . . .
has regular/derivatives iff it is quasi invariant and in the

representation (U,V) of the Weyl commutation relations given
by 1+ by proposition 2.1 we have that  dis in the domain of Ix

for 81l x € W, where Px dis the infinitesimal generator of

the unitary group V(tx)} in I,(an) .

Proposition 2.5

' first order )
If w € u%ﬂ(N ) has regular/derivatives, then w is Ly~

differentiable, and 2Px{) = 3.x where 8 1is the osmotic velocity.

first ord
Proof! That 4 has regula§7§%r§%a%¥ves is obviously equivalent

kY
with the condition that %(az(g,tx)~ 1) converges in Lz(du) as

t - 0 . HNow we have that



Ho(g, 1) = 1) = HaP(g, ) = 1) (@P(g,tx)+ 1) (2.35)

1
and by proposition 2,2 we have that of(g,tx) converges to 1
in Lz(du) . Thig then gives that the right hand side converges
in L, . Ve observe from (2.35) that i(PxQ0)(g) = $8(E)x , and

this proves the proposition,

Theorenm 2,6

Let Nc Ko ¥ be anuclear rigging of K and let (U,V)
be any representation of the Weyl commutation relations over N
on a Hilbert space db , such that x - V(x) is a strongly con-
tinuous representation of N ., DLet Px be the infinitesimal
generator for the unitary group V(#x) , and u ¢ oﬁ) in the domain
of Px for each x € N ,

Then the mappipg X = Pxeu 1s a continuous linear mapping

from N into K.

Proofs Set

n(x) = (Vv (x) - )|
then
x+y) = [(V(x+y) = Duff = [VEIV(y) - Du+ (V(x) = 1)
< VY= D) + V) - Duf] = a(x) + nly) .

So that n(x) is a sublinear function on N , i.e.

n{x+y) < n(x) + n(y) . Wow, since u € D(Px) we nave that

lim ¢ n(tx) = plx) = [Pxeu]| . (2.36)
tuo

Since u ig in the domain of Px for all x € N , we have that
Px.u is linear in x sand (2.%6) then gives that p(x) is a

semi norm on W 1i.e.

p(xty) < plx) + ply) and p(rx) = |Miplx) . (2.37)
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Since n{x) is sublinear we get that n(2x) < 2n{x) so that

2n($x) 2 n(x) or

ot 1 1r](2—1f1---1x)3_ 2n7K2~11X) ’ (2.38)

so that
p(x) = sup o n(2™x) . (2.39)

Wow, by assumption n(x) is contihuous on K so that p(x) is
lower semi continuous. But on any countable normed space a lower
semi continuous semi norm is bounded in some neighborhood of zero,
For this result see [ & J,2) Chapter I, section 1,
theorem 1], Since [|Px.ull dis bounded in some neighborhood of
zero in N we have that X - Px.u 1is a continuous mapping from

N - d@ . This proves the theoremn.

Remark., It follows from the proof that it holds for any strongly

continuous representation of any countably normed space,

Corollary to theorem 2.6

Let |x| p=1,2,... be the countable set of norms that

p s
defines the topology on N . Under the assumption of theorem 2.6
there is 2 v such that x - Pxeu 418 continuous in the norm

| x| ice. ||Pxeu] < Clx|, where C depends only on p and u .

p ?
Proof? This follows from the theorem and theorem 5 of Ch I,

section 3.5 of ref. [5 1, 2).

Proposition 2.7

first order
Let uw € JAL(E') be a probability measure with reguﬁa;/def%—

vatives. Then there are a p and a € such that, for  in the

induced representation (U,V) of the Weyl commutation relations,

fexall < ¢lx|,



and the osmotic velocity B(E).x is a conbtinuous function from

Kp into T,(du) , where Kp is the Hilbert space with norm | Ip
p P

Proof: "This proposition is an immediate consequence of the theorem

and its corollary sbove,

Propogition 2.8

. , first order
Let we A-(') be a probability measure with regular/deri-
vatives, Then there is a measurable function B ¥ - N' such

that the osmotic velocity B(g€)+.x is given by (x,8(%)) .

Prooft This follows from proposition 2.7 and the Abstract Kernel

Theorem (Ch I, section 3%, theorem 3 of ref., [51 ,2)). O

We shall now call the function 8 : W' - N'  the osmotic velo-
city and B(E)+.x = (x,B(E))> the component in the x-direction

of the osmotic velocity.

We want now to solve the stochastic differential equation
ag(t) = p(g(t))dat + aw(t) , : (2.40)

i.e. to find a stochastic process with values in ¥' which solves
(2.40), where w(t) is the standard Wiener process on N' given
by the muclear rigging N < K < N' . Of course we here must first
introduce the standard Wiener process, but let us first recall
gome facts of Markov processes.

A homogeneous stochastic process on a measure space X may

be described completely in terms of its transition probability

Pt(g,dﬂ) , where for any measurable set A < X we have that

Pr(g(0) = § and g(t)eh) = I[Pt(g’dn) (2.41)
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ig the probability for the process E&(t) +to start at the point &
be at the time %

in X and/in the set A < X , so that, for fixed 1t , P.(&,dn)

is a measurable function from X into the set of probability

measures on X ., DMoreover one usually assumes ?t(g,dn) to be

megsurable from Rx X into oJG(X) .

The condition for the corresponding process to be a Markov

process 1s the Chapman-Kolmogoroff equation, namely that
P, (,dn) = [P, (8,a0)2 (¢,an) . (2.42)

The transition probability P,(£,4n) induces by (2.42) a semi-
group on C(X) and a dual semigroup on JU(X) by, for £ ¢ ¢(X) ,

(P,£)(8) = [P,(5,an)f(n) (2.43)
;hd; for u ¢ J(X) .

(Pyp)(an) = [au(¢)p,(c,an) . (2.44)

For a more detailed account on the theory of Markov processes

gsee ref, [21 , [30]1 CCh, XHID.

We shall take X = N' where N' is the dual of a nuclear
gspace in a nuclear rigging N c K c N' of a separable real Hilbert

space K ., Tet us now define Pz(o,dn) by the equation

" .
- s : ] >
e ?(X 2 = j e:L<X E Pﬁ(o,dn) . (2.45)

t

N

The existence of a unigue Pz(o;dn) e JUL(N') is secured by the
Minlos theorem, since the left. hand side is a positive definite
continuous funetion on W . (x,x) is the inner product on K .
PY(£,an) is then defined as the translate by & of Py (0,an) ,

/by (2.45)
so that Py(§,an) = P@(o,d(n-g)) and ,the transition probability
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is translation invariant on N' . ©Hince e_ g(X’X) is a semi-
group under multiplication we have that the corresponding measures
Pz(o,dn) form a semigroup under convolution, and due to the trans-
lation invariance, (2.42) only says that Py .(0,dn) is the con-
volution of Pt(o,dn) with PS(O,dn) s which as already observed,
is true., This proves that the corresponding process w(t) is
actually a Markov process which we call the standard Wiener process
on N' given by the nuclear rigging NcKcN .

w(t) 1is in fact the process studied by Gross, but for the
fact that Gross prefers to study it relative for Banach rigging
Bc Kc B . This is possible since it easely follows that w(t)
actually takes values in a dual Banach space B' such that
KcB' ¢ N' . Por the work of Gross see the references( 93, 1),[31].

Having defined the standard Wiener process w(t) on N’ given
by the nuclear rigging N < K ¢ N' we shall proceed to solve the
stochastic differential cquation (2.40).

We introduced earlier the space F1 of functions T such
that f(g) = f(E§), where £ was an orthogonal projection in K
with finite dimensional range in N and f(x) for x ¢ EX was
in 01(EK) . For such functions we may consider the gradient
(V£)(g) , which is then & continuous mapping from N' into (EK)*
and since EK is naturally self dual, we may consider VI as a
mapping from N' dinto EK . Tor f and g in P! there is a
common E of finite dimensional range in N so that f(€) = f£(EE)

and g(€) = g(BE) , and we then denote by (V£:Vg)(€) +the inner
product in EK of Vf(g) with vg(8) .
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Definition 2,6

We shall sey that p  has bounded regular first order deri-
vatives if P has regular first order derivatives and the compo-
nents of B are bounded functions in N' i.e.,, for any x € N ,

B(€)x is a bounded measurable function.

We have now the following theoren

Theorem 2,9

et N cCc XK cacl' be a nuclear rigging of a real separable
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Hilbert space K and let & be a quasi invariant probability
measure on N' with regular derivatives. Then the form ‘ﬁv?.ngu
defined for £ and g in P! is closable in Lz(du) . In fact
if (,) 4is the inner product in Lz(du) there is a symmetric

operator H defined on ?° such that for f and g in 13

(£,Hg) = [VT. Vg au

and for f ¢ F2

(HE)E) = —a£(E) ~p(g)-VE(E)

where B(g) dis the osmotic velocity.

Moreover the corresponding closed form gives us a self adjoint
non negstive operator Hin dg = L2(du) with Q=1 as an eigen~
vector with eigenvalue zero. We call H the diffusion operator
generated by u . PFurthermore, if y has bounded derivatives,
then the corresponding contraction semigroup e-tH is a Markov
semigroup, i.e. e~ has a positive kernel im Ly(du) . This

Markov semigroup then defines a stochastic Markov process in N’

with invariant measure o .

Proofs: We know that, since u has regular derivatives, B(§)

is a continuwous function from N into Lz(du) and f(§) = f£(Eg) ,
where ©® is an orthogonal projection inm H with finite dimensional
range in N . We have seen already that such projections extend

by continuity to projections from N' into ¥ . Therefore

(vf)(g€) 1is a continuous bounded function from N' into EK c ¥

so that € - g(EWF(E) is in Lz(du) . Moreover,since f ¢ F2,
2F

1 ?
%4

n
we have that Af = %

N where x; = (ei,g) and  ey,...48

n

is an orthonormal base in EK ¢ N and f(g) = %(x1,...,xn) R
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where £ ¢ G°(R™) : Hence Af ¢ P < C(N') , so that for f in
P®, which is dense in L,(aw) , Hf = - af-p(§).V£(g) is in I, .
Hence H is a densely defined symmetric operator. Let now f

and g be in F2 and let X be a projection with finite dimen-
sional range in N so that we have both f(g) = f(EE) and

g(€) = g(BE) ., Then

. n
j_ VT Vg du = Jlim %(f(gmei)_ £(8)) » 28-(g)au
=1 't-bO ax

' 1= i

which by dominated convergence is equal to

TMs

. 1 3
1im | (£(8+te,) ~ £(E))+ =£~(€)au
i=1 tqoj’“ 1 03
and by quasi invariance of # this is equal to

n - . X
151 %iﬁj,?(g) %(Sﬁz(g“tei)”73%;(§))“(§’“teﬁdu

+
[ I el n

. 1
Lim | T(2) 2£ (8) 2(a(g,~te;) - 1)au .
i 1:-+oj oXy T BT
By the assumption that g € F2 the first term converges to
~tr?zugdu by dominated convergence, and by proposition 2.5
%(a(%,tei)— 1) converges to E3(f§)e:.L strongly in L, , which
implies that the second term converges to 1[?3‘Tg du . Hence we

have proved that for f and g 1in F2
(£,Hg) = | VE.Vgau . (2.46)

Prom (2,46) we also get that H 1is symmetric and non negative

on the domain F2 . Hence the form is closable and its closure
defines a self adjoint operator which we shall also denote by H ,
which then aotuallj is the Friedrichs extension of -~-pA<-B:V on

2

i
F® ., So that D(H®) 1is exactly the domain of the closed form.
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We have obviously that 0(£) = 1 is in F° so that 0 € D(H)
and HO = 0 . Hence the spectrum of H starts with an eigenvalue
at zero, and e'tH is a symmetrie contraction semigroup which

leaves Q invariant. That, under the assumption of bounded regular

first order derivatives for W, o~ tH has a positive kernel, i.e,for
any & and g non negative in L2(du) we have that
(ta, e gn) > 0, (2.47)

is proven in the following way. Let e; € N be an orthogonal

bage in K and let Hn be the Priedrichs extension of the form

(£,H 8) = j € VT e -Vgan (2.48)

Then Hn is given on F2 by
I%fz—%f—sﬂaf

where an = PnV1?, Pn is the orthogonal projection onto the

subspace of K generated by {eq,...,en} and A, = Vh-Vn . BSo
that (2.48) is actually closable and the PFriedrichs extension
exists. MNoreover we have obviously that H, < H  for n g<m

and H, < H for all n . BSo that H  forms a monotone sequence

of self adjoint operators bounded above by H ., Moreover for any

I
f and g in D(H®) , i.e. such that f and %{-eLg(du) and
i

[vEwran = J] af 2du<oo

and the same for g , we have obviously that

P s

5 %

o8]
d g
converges to (f,Hg) = ¥ | =— - du(g) .
R J %3 ¥y

i]M!ﬂ

°’Iﬂ=

(f,H.g) =
9n 1
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This is actually a consequence of the Schwars inequality on the
space L2(du;K) » Using then the theorem on convergence from
below of symmetric semibounded forms (Theorem 3,1%, Ch, VIII
Ref, [ 1 ) we get that (z-Hn)"1 converges strongly to
(z-—H)_1 for 2z £ [0,0] . Hence we have resolvent convergence
which by the semigroup convergence theorem {Theorem 2,16, Ch IX
Ref. [ 7 ) implies that e*tHn converges strongly to o~ tH .
hence that
~tH ~tH

(fye " g) = (f,e g
as n - cc , That (f,e_tHn g) has a positive kernel follows
immediately from the fact that N¥' = P X ® N, where N, is the
annihilator in W' of P K C N , so that aw(g) = du(x,&,) on

the product measure space N o= PnK X N; . Now we have by the

quasi invariance of W that
ap (x+y,8q) = alx+ By,y)aulx,8y)
(2.49)
a(§19x)
" algy e WO0E)

so that a(§1,x)d“(x,€1) is translation invariant in x , and

since P K 1s finite dimensional we have

a(8q,x)dp(x,8y) = duy(8,)ax , (2.50)
where dx dis the Lebesgue measure on PnK . So that

au(x,8¢) = a(8y,x)7" duq(5y)ax . (2.51)
Consider now the correspondence

£(€) <> a~%(§1,x)f(X,§1) (2.51)

which gives a unitary correspondence between Lz(du) and
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L2(du1><dx) « ldentifying PnK with R™ we have that L20ﬁ11><dx)
is the direct integral dJf= jd@§1 m;1(§1) where C%:gq = Lg(Rn) .

Now the correspondence (2.52) takes the form (2.48) onto the

direct integral of Sturm-Liouville forms
n L - -1
(£,Hpg) <> { '[J =2 (073 (5T (08 52-(a (8,008 (x, &) Dalsy, x)axlaw (g,)
“'my R 4

(2.53)

(f,8)<> | U] F(x,8,)8(x,8,)ax)as,(8,) .
N, R

Hence we have that (f,H f) 1is the direct integral over W, of

the Sturm-Liouville form

n I _1i
= [ 20 L2 Fg)a ax (2.54)

in L,(R") . The closability of this form for u,- almost all E,
follows from the fact that the direct integral (2.53) is closable,
In fact, since (2,53) is given by a self adjoint operator Hn

we have that (2.54) is given by a self adjoint operator HE for

M4~ almost all E, ., The positivity of the kernel for
1 1

g
oy in L2(Rn) follows from the assumption that the components

of B are bounded by Stroock-Varadhan's work on diffusion processes
in R , see Ref,[ 31,2, In fact from their work we get that I%lis @8-
sentially self-adjoint and generates a strong Markov process,

—tH
This implies then that e  has a positive kernel and therefore

that e'tH has a positive kernel. This Markov semigroup Ptz e"'tH

then defines a stochastic Markov process in N' with invariant

measure W which then proves the theoremn. []

In what sense the Markov process &(t) defined by theorem 2.9

actually solves the equation 2,40 will be discussed later.
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Proposition 2,10

Let u be a quasi invariant probability measure u ¢ u¢ﬁ(N'),
then there is a standard Borel measure space (Z,4z) and a
measurable mapping u, from Z into JLN")  such that W, is

quasi invariant and ergodic for almost all 2z € Z and

14 =‘[uzdz ,
v/

Proof: Let Qi?(du) be the closed subspace of Loo(du) of
functions f such that f(&+x) = f(§) for all x ¢ ¥ ., Lig(du)
is obviously closed under multiplication so that it is a commuta-
tive C¥-algebra. Hence by the Gelfand representation thcorem
Li?(du) = ¢(Z) , moreover du restricted to Lig(du) defines
a positive continuous linear functional on (%) which again
defines a measure dz on & . Since Lif(du) is weakly closed
in Lz(dp) we have that C(Z) ~is weakly closed in L,{(dz). Hence
C(Z) = Loo(dz) , 80 that in particular all measuradble sets, in 2

are open, The representation of U by quélz follows from this.

O

This proposition together with proposition 2.3 gives us a
decomposition of the corresponding representation of the Weyl
commutation relation (U,V) as a direct integral over irreducible

representations., Namely for cﬁf: LQ(du) and dﬁ; = L2(duz)

I8 = |#, az (2.55)
7
and
(u,v) = [(U,,7,)dz . (2.56)
7

Theorem 2,71

Let @ be a quasi invariant probability measure with regular

first ordexr \ \
/derivatives on N relative to a nuclear rigging ¥ c XK c N and
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let H be the self adjoint operator on dJf = Lz(du) of theorem 2.9,
Let dgb be the eigensubspace of Jg corresponding to the eigen-
value zero of "H . Then f ec%% if and only if f € L,(dp) and
f(&+x) = £(§) for all x € N .

In particular O 1is a simple elgenvalue with eigenvector
€) = 1 if and only if W dis ergodic, which by proposition 2.3
is the case if and only if the representation of the Weyl commu-
tation relation (U,V) is irreducible.

In fact there is a natural isomorphism of o6, with L,(Z)
where 7 1is given in proposition 2,10. The direct integral re-
presentation (2.55) gives a direct integral representation also
of H , in fact

H = J Hz az ,
Z

where each 0, has the unique lowest eigenvector QQ(%) = 1

in = Dy(du,) and

(£f,H,g), = Jvf-vgduz
for all f and g in D(H)) < d% . Moreover the decomposition

of the measure u = J uzdz is the MN-ergodic decomposition of u.
Z

In particular u,. L Uz, for 24 £ Zo

X

Proof: Let x ¢ N and f and g i F2 . H is the self
adjoint operator given by the clossble form
(£,57¢) = [ D) (xevE) du (2.57)

where x-9f 1ig the derivative in the direction x of 1 .

2

We have obviously for f ¢ T that

(£,5%2) < (£,88) = [EEe)? | (2.58)

Hence the same inequality must hold for the closure of these forms.

. 1 1
Now, if f ea‘Bo , then f ¢ D(H) < D(H®R) and H2:f=0 ,
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Hence f 1is in the domain of the closed form (2.57) and
J(xe9F)(x9E) au= o0 (2.59)

for arbitrary x € N . Hence (x:vf)(g) =0 for all & , which
gives that £(8) = f(&+tx) for all t . Hence f(g) = f(g+x)

for 811 x ¢ N, On the other hand let ¥ be the characteristic
function for an invariant set A of measure different from zero
and one. Then by proposition 2,11 X1 and Xo = 1-x1 are pro-

jections onto two subgpaces d61 and db, which are actually given

by
dby = J x;(2)#, a4z ,
4
of ¥4

where %; is the image/by the mapping L 7(aw) <-> L (dz) uti-
lized in the proof of proposition 2,11, Hence we have the non
trivial decomposition dﬁ=z%} @{%E which immediately gives rise

t0o the non trivial decompositions H = H1 @ H2, and =0 @0

1

where in fact Q;(§) = x;(€) , and Q; as well as Q, are , by
the decomposition H = Hy @ Hy, , in dﬁg . Hence we see that there
is a natural one to one correspondence between characteristic
functions in Lig(du) and elements in df; . This immediately
extends to a one to one correspondence between L2(dz) and o%;
by the identification used in proposition 2.11 of Lg(dz) with
the closure of Lig(du) in Lg(du) . The rest of the theorem

W

follows immediately from earlier results.

Theorem 2,12

Let W be s quasi invariant probability measure on N' .
If p has weak ILo~derivatives, i.e. if %(a(g,tx)n 1)  converges
weakly in L2(dg) for each x € N , then w has regular first

order derivatives,
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Proof: Since -%(a(g,tx)m 1) is weakly L,~convergent, it is uni-
L
formly bounded in L2 , and since of(E,tx)+ 1 > 1 we have that
Lok 1 5 -1
F(0F(E,tx) = 1) = (a(g,x) - 1) (0P (g, 4x)+ 1) (2.60)

is wniformly in Lo, . Now by the corollary to proposition 2,2
A
we have that o®(E,tx) congerves strongly to 1 in Ly (dw)

so that

(% (5, mx)+ 1)1 - 1=~ —;—(o%(&’cx)n 1) (0% (g, tx)+ 1)1 (2.61)

and since (a%(g,tx)4—1)'1 < 1 we get that (a%(g,tx)+ 1)"1
converges strongly to % in Lz(du) . Hence (2.60) also con-
verges weakly in IL,(dw) , that is %(V(tx)— 1)Q converges weaXly
in df=:l?(du) to some 1imit u € 46 . Then Q must be in the
domain of the adjoint (Px)* of the infinitesimal operator Px .

This is so because for v € D(Px) we have that

(v,u) = 1lim %(v,(v(tx)s-1)ﬂ)
t-0
= lim 1(V(=tx) - 1)v,0)
-0
so that
(v ,u) = i(Pxv, Q) (2.62)

which says that (Pxv, Q) is a continuous function of v , i.e.
q € D{Px)*) . But since V(tx) is a strongly continuous unitary
group , Px is self adjoint so that ( ¢ D(Px) , i.e, u has

regular derivatives., This proves the theorem, 3

Remark. By this theorem we then have that the conclusions of
proposition 2.8, theorem 2,9 and theorem 2,11 hold under the con-
dition of weak Lg—derivatives instead of regular derivatives.

In fact, we have the implications

weak Lz-derivatives => regular derivatives => strong Lq—derivatives.
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Definition 2.7

A homogeneous process 1(t) on some measure space (X,dv) is
called ergodic if for any measurable sets A and B both with po-
sitive measure, v(A) > O and v(B) > O, there is some t > O
such that

Prin(0) ¢ & & n(t) € B} >0,

Lemma 2,13

Tet §(t) Dbe a homogeneous self adjoint Markov process on a

measure space (X,du) such that u is an invariant measure. Then

il

E(t) is ergodic if and only if Q(§) = 1 is the only eigenfunction

corresponding to the eigenvalue zero of the infinitesimal generator,

Remexrk: If €&(t) is a process so is E(-t) and we call §&(-%)
the adjoint process, and we say that &(t) is self adjoint if &(%)

and E&(-t) are equivalent processes.

Proof of lemma 2.13  Let Pt(g,n) be the transition probabilities

of E&(t), i.e. Pt(g,n) is the kernel of e—UH, the semigroup

generated by the process. Assume that £(t) is not ergodic. Then
there exisl two measurgble sets A and B with positive u-measure
such that

(xgre Mxg) = 0 (2.63)
for all + > O, where X4 and Xg Bare the characteristic func-
tions for A and B . ILet now A,l be the union of the supports

of e”tH&A for all t >0 1i.,e.

A, = U supp e‘tHﬁA . (2.64)
t>o
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Let A2 the complement of Aq , we then have that
-t
(XA2°e HXA) =0 (2.65)

for all + . ILet now At be the support of e"tHﬁA .
sH

By the positivity of e we have that
supp e"SHkAt < supp e“cs+t)HxA (2.66)
so that
(xAg,e_SHxAt) =0 (2.67)

for a1l1 s and t . Hence by taking supremum over t > 0 we then

get
(XAE’G“SHXA,I) =0 (2.68)

for all s > O,

from which it follows that
enSI{XA‘ = XA- - (2069)
i i
To mee this we use the fact thatb
-gH
e T (Xy MUy ) =Xy *X (2.70)
Aq Ag Aq A2 ’

since XAq-&xﬂg =1, (2.70) together with (2.68) give
(XAqae—SHXAp) = (XA,!’XA ) (2-71)

and since H > 0 we get from the spectral resolution theorem that
X is an eigenvector with eigenvalue zero of H .,
/i
Let us now assume that Q,1 and Qg both are eigenvectors of

eigenvalue zero of H . Let us assume (Qq,Qg) =0 . Then

!
oMoy = (a,0,) (2.72)

-gH

(Q

i')
and by the positivity of e

(1Qi i ,emSHlQil) 2 (Qi,emSHQi) 3
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but since H > O we then have
(lﬂilae-ﬂSHlQil) = (1Qil’lQi|) (2.73)

and by spectral resolution we get tThat IQil are eigenvectors of
eigenvalue zero,

Now in case we do not have already that both Q,I and Qg are
proportional to l01| and [Qzl , with positive proportionality
factors,then for i =1 or 2 we still have that ]Qil * Q, are
two positive eigenfunctions which are orthogonal. If both Qq and
{l, are proportional to 101| and 192! , with positive proportion-
ality factors,then |0,| and [Q,] are two orthogonal positive
eigenfunctions. In any case we see that if there are two eligen-
functions with eigenvalue zero, we may find two positive orthogonal
eigenfunctions.

So let now Qq and 02 be two positive orthogonal eigenfunc-
tions with eigenvalue zero. Then obviously for all t > O

~tH

(Q,],e 92) =0 ,

Let Ai be the support of Qi , Then by positivity we also have

t

~-tH
(Xp 48" "™, ) =0
A, A,

for all +t > 0, Hence &(t) is non ergodic.

This proves the lemna,

Theoren 2,14

et u € M@') be a quasi invariant probability measure on
/bOUIlded_. :
N', such that y has regular/derivatives, ILet E&(t) be the
Markov diffusion process that is generated by u, ‘relative to the
nuclear rigging N c K cN' . Then &(t) is ergodic if and only
if u is ergodic in the sense of definition 2.%.

Proof: This theorem is an immediate consequence of lemma 2,13 and

theorem 2,11,
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3. Perturbations of symmetric diffusion processes

Let now N < K c N' be a real nuclear rigging of the real
separable Hilbert space X and p a quasi 1nvar1ant probability
bounded first order
measure on N' with/regular/derivatives and let H be the infini-
tesimal generator in La(du) for the corresponding diffusion pro-
cess. H is the ditfusion operator given by u.

Tet V(€) be a real measurable function on N' such that

H = H+V (3-/')

1

is essenbially self adjoint and bounded below. Consider now for

k <1
mod - mevid (3.2)
wnere
k if Vv(g) <k
vEal(e) <{v(g) if k <V(g) <1 (3.3)
1 if V(g) > 1 .

g = m+vE, (3.4)

i

k6,1 converges monotoneously to Hq as

We have obviously thst H,l
1 -0, Hence by the theorem on convergence from below of symmetric
semibounded forms (Theorem 2.13, Ch VIII, Ref. 271,) we get that

~tH§ s

strong lim e ~e V. (3.5)
1-co :

On the other hand H% Z Hﬂ and H% converges monotoneously to H,

as k = -0 . IFrom which it follows that the corresponding resol-

vents converge monotoneously, so that

StHS -tH,
strong lim e = e . (3.6)
1- -0
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Now e—tH has a posgitive kernel and by Trotter's product
formula
—bEE T [ -Ln -%v*l"l]n
e = st lim Le e (3.7
n —oo
—tHk’l
we get that e has a positive kernel. Hence, by (3.5) and

-tH
(%3.6), e 1 has a positive kernel. We have thus the following

theorem.

Theorem 3,

Let H be the diffusion operator given by 1 and let V be
a measurable real function on N', where N < K < N' is the muclear

rigging. If

R|=H+V
is essentially self adjoint and bounded below, then e has a
non negative kernel. []

H, is assumed %o be bounded below, but contrary te H it
need not have any eigenvectors. If however, its spectrum ends in
an eigenvalue, this eigenvalue must, under weak regularity conditions,
have at most the same umotiplicity as the corresponding elgenvalue
zero of H which in the precise meaning of theorem 2.11 was the
game as the number of irreducible components in the representation
of the commubtation relations induced in Lg(du) . We have in fact

the following theorem,

Theorem 3.2

If H, = H+V 1is essentially self adjoint, then the decompo-

/"
sition of theorem 2.1

Ly(du) = | Ly(au,)dz ,
Vi
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where P = juzeiz is the N-ergodic decomposition of u, is a

direct deco%position also of V

Ve[V ds
as well as of

m, = [HZdz .
Moreover

HY = H, +V,

i8 essentially self adjoint for almost all gz .

Proof: From theorem (2.11) we have that I =‘fHZdz, where 1,
is the diffusion operator generated by the measure w6 . ©OSince
V) =§yuzdz is the N-ergodic decomposition of w, we have that
“zq A‘”zg for 1z, # Z,, S0 that the direct decomposition also
reduces V, because V 1is the multiplication by a measurable
function V(&) . From this it follows that H, is reduced, and
that each component H? is self adjoint and also egual to the

closure of Hz + VZ for almost all 2z ., This proves the tTheorem.

O

In view of theorem 5.2 we may restrict our considerations to
the case where u dis N-ergodic or,equivalently, to the case where
zero is a gimple eigenvalue of H, and in this case we have the

following theorem:

Theorem 3,3

Let H,I = H+V be essentially self adjoint and zero a simple
eigenvalue of H , If there is an eigenvalue E, of H, such

that H z.Eq and Hq - V is essentially self adjoint, then E1

/l
igs a simple eigenvalue of H,1 . Moreover we may take the corres-

ponding eigenfunction to be positive almost everywhere.
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Proof: Let us assume that there are two eigenfunctions f and g
of H, with eigenvalue E, . Using now that e | has a non
negative kemmel we may use the technigue in the proof of lemma 2.13%
to construct two non negative and orthogonal eigenfunctions and then
further on to prove that The process generated by H,,i - E,I is non
ergodic. Hence there are disjoint measurgble sets A and B of

4 measure different from zero and one, such thet Xp and Xp give
projections that reduce Hq o Xp is the characteristic function

of A, In fact if f and g are two positive orthogonal eigen-

functions, we may take A and B as the support of f and g re-

spectively.
ith ith
Hence Xy © = 8 Xp s SO by Trotter's product formula
X4 ot . eltHxA, since obviously X, Y - eltVXA; because X,
and eltv both are multiplication operators. But then, since

is an eigenfunction of eigenvalue zero of H, we get that so is

Xs +« But p(A) being different from zero and one, this is contrary
to the assuuptions, Hence there is only one eigenfunction.

Let now A be the support of this eigenfunction. It follows then
exactly as above that X, is an eigenfunction of H with eigen-~
value zero. By assumption we must then have Xy = 1 . This proves

the theorem. []

Let us still assume that yw is N-ergodic i.e. that zero is

a simple eigenvalue of H . Hf, for f € Fg, is given by

HE = - Af ~p(8)-VE(8) . (3.8)
Assume that H, = H+V has an eigenvalue E, such that H, > B,

then the corresponding eigenfunction ¢ of H, must satisfy the

equation, where $ is The osmotic velocity for H,
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(V-E e = dp+8(8)V(8) (%.9)
in & weak sense if V € L,(du) . The weak sense in which it is

satisfied is of course that
((V-E{)f,0) = (Af-B+VE,0) (3.10)

for all 1 € F2 . Let us normalize © such that o > 0 and

szdp = 1 , Since 1 1is positive almost everywhere we also have

that

B, = Lo I 1
V-By = 2248(8) 52 (3.11)

which gives the relation in the weak sense between the function

V-—E1 and the eigenfunction ¢ . Since V 1is a multiplication

with a measureable function we have that, for any f ¢ F2 s

[Hy,£] = [H,f] = -29£+V - Af (3,12)

on the domain F2Q , 1f V ¢ Lg(du) , because if V € Lg(du) then

P°0 < D(H ) » D(V) < D(H,) .

Let us now assume that H1 = H4+V dis essentially self adjoint and

that Qq = o is in D(H) as well as in D(V) , and that the
2 first order
measure dp1 = ¢ du  has regular Lerivatives with corresponding

2 then fQ, is in D(V) since

osmotic velocity By » Let £ ¢ P
fQ, € D(V) is equivalent with Vfo € L2(du) . Now £l <=0 and
by assumption Vg € Lz(dp) so that f0, € D(V) . Moreover by
(3.12) we have

-ATQ, ~29£.90, |, _ (3.,13)

i

(H,fl0,

That is

1

(H,£]04 = - A£0, - 84+VE0, (3.14)

and - AT - 8,+Vf € Lz(du1) since the components of 8, are in

Lz(dp1) by assumption. Hence,since Q, € D(H) so that if HQ,,
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is well defined,we have that £, ¢ D(H) ,
Since now D(H1) o D(H) n D(V) we have therefore that
£, € D(H1) .  But then again by (3,12) and (3.14) we have

Hy£0, 0, (3.15)

1§

[Hy,£0, +E,

It

H fQ?

] (-AL+EE) 0y = B4+ VEQ, (3.16)

Hence H1"E1 coincides on F201 with the unigque diffusion oper-

ator given by My o We have therefore the following theorem,

Theorem 3,4

Let W be a quasi invariant, N-ergodic probability measure
first order
on Nt with bounded regular/derivatives, TLet V be measurable
and in Lz(du) such that H1 = H+V is essentially self adjoint
witll eigenvalue E1 sweh that H1 > E1 . Then the corresponding
eigenfunction ¢ is positive u - almost everywhere,such that
o ' o _ first order

du1 = @ du is quasi invarient. If moreover Mg has regular/deri-
vatives and 0, = 90 are in D(H) n D(V), then F°q, < D(H) nD(V)
and on F201 we have that H1--E1 coincides with the infinitesinal

generator for the unique diffusion process generated by u, .
Ve have also the following theorem

Theorem 3.5

Let the assumptions be as in the previous theorem, If in
addition H, = H+V is self adjoint i.,e. D(H1) = D(H) nD(V)
then H1--E1 is the infinitesimal generator for the unique diffu-

sion process generated by My o

Proof: By the previous theorem we have that if H' is the diffu-

sion operator generated by By s then H!' coincides with H1--E1



on F201 . Hence H' = H-+V-E1l on F291 , 80 by definition H!

is the Friedrichs extension of H + V.— E1 on F201 . Hence the
a1

domain of H'® is exactly the elements for which the form

{fQ1,(H+V-E1)f01) makes sense as continued from F291 . PFrom

this 1% follows that

D(H'®) > D(H) n D(V) . 5,17)

Now if H1 = H4+V is self adjoint we have that
D(H;) = D(H) a D(V) . 5.18)

Therefore

D(Hy) < D(H'F) | 3.19)

Now by a well known theorem ([27], 1),Ch,VI,Th.2,11, i¥e have that

of all Jower bounded self adjoint extensions of the operator Hy~E,
restricted to Fgﬁq’, ' only the Friedrichs extension
which has domain contained in the domain of the form 1i.e. in
D(H'%) . Hence by (3.19) Hy s the Friedrichs extension. This

proves the theorem, []
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These theorems then lead us to another type of perturbation of sym-
metric diffusion processes which we shall now consider, Let p be
first ordenr

o quasi invarient measwe on N' with regular/derivatives and let

p(E) > 0 be a measurable function that is positive n - almost

everywhere such that dp' = pdp is a probability measure. Then

p'  is obviously quasi invariant, and let us now further assume that
first order .

11! has regular/derivatives. We get then that the osmotic velocity

p' for uy' dis given in terms of the osmotic velocibty B of p by
2
B'(8)x = xV1inp+g(E)ex , (3.20)

and the assumption is then that g'(E)x € Le(du') . We see this is
1 A
the case if for instance Yp*® as well as p“8(€)»x are both in

Lg(du) . For such perburbations we have the following theoren.

Theorem 3,6

Let p and w' Dbe two equivalent quasi invariant measures
first order
on N' both of which have regular/derivatives. Let H and H'
be the corresponding diffusion operators,then zero is an eigenvector
of the same multiplicity for both operators. In fact there is a

natural one-to-one isomorphism of the respective eigenspaces corres-

ponding to the eigenvalue zero.

Proof: By theorem 2,11 we have that the eigenspace for the eigen-
value zero is in a one-bto-one correspondénce with the set of func-
tions in La(du) which are invariant under translations by elements
in N . Since by assumption u. and p' are equivalent, there is

a natural one-to-one isomorphism between La(du) and Lg(du'),
which takes N-invariant functions of Le(du) into N-invariant
functions of Lg(dp') » 'This isomorphism then induces a one-to-one

isomorphism of the eigenspaces of H and H', to the eigenvalue
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zero, This proves the theoren. [t

bounded

Let ¢ still be a quasi invariant measure on N' with regulaf“
first orderx
/derivatives and let now H, be the corresponding diffusion operator,

1
and %u(t) the corresponding diffusion process. If u  converge
weakly to some measure u , then Hun - Hu in the sense that for
any £ eand g € F° we have that (£Q_,I g0 ) - (£0,H gQ) .

n?u,n U
We do not know however whether g&fw converge weakly to €g(t) , bub
we shall see that if §u (t) converge veakly to some Markov process
n
then under slight regularity conditions this Merkov process is the |

process §u generated by Hp . In fact we have tThe following

theorem.

Theorem 3,7

Let Moy be a seqguence of quasi invariant probability measures
on N', vhere N < X ¢ N' is a nuclear rigging of a real separable
boundedfirst order
Hilbert space H, such that My has regular/derlvatlves and con-
vergesweakly to a measure ., where u is alsgo quasi invariant and
. first order
with regular/derivatives.

Then foxr all £ aond g in F2 we have that

o, WH - (£ ,H
(f0, 8, €0, ) = (10,160, .

If moreover the osmobtic velocities ﬁn(g) of My have components
uniformly bounded in I, , i.e. for any x € N there is a CX >0

independentt of n such that
' 2 2
Jlﬁn(§)°x| du, (8) < el

then,for any f and g in Fg, E(f(%u (o))g(gu (t))) has a uni-
n n
form bounded second derivative with respect to t . If moreover

the process ﬁu (t) convergeswakly to some process n{t) in the
n
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sense that the joint distribution measure of {Ep (tﬁ)’°'°’%¢(tk)}
n n

converges weakly to {ﬂ(tq),..o,n(tk)} for any k and any

t1Seea <%y then, E[(£(m(0))e(n(+))] is a twice differentiabdble

function of t and

FHE [£(n0)an(6)) /o = (£9,,5 @ )

for any f and g in FB(N') . In particular if 7n(t) is a
Markov process,then Hﬂ = Hu on Fg, where Hh is the infinitesi-

mal generator of 1 .

Proof., BSince

(fo ,H gn ) = | VF-9g4d (3.21)
“n’ Hno Hp é. My

the first convergence is obvious, 8ince for f € F2 we have that
£, ds din D and
b Sll (H“n)

= (=Af - =y %,
H”nfﬂﬂn (-af - (8) f)ﬂun. (3.22)

By the assumption on f +there is a orthogonal projection PE of

finite dimensional range I < N such that £(E) = f(EEE) . We

then have
< by i .
HHanQHn” = llf\12 +i C:,_Hf“q (3 25)
where (¢. = Ce. and €p90003€) is an orthonormal base of E in
5 .
K and ||£}l, end [£l, are the D° and D' normsef £ roespecti-
2

vely, where D~ and ! arve the Banach spaces defined in section?2

below formula (2.3%)., We see that the estimate (3,30) is independent

of n, so that

-t
(£, ,e Hpngﬁ ) = BLE£(E, (0))e(g, (t))] (3.24)
n ) Hn Hn

is continuously twice differentiable with a uniformly bounded second



derivative
-tH

M
€ oy g0

u, “n) . (3.25)

H £
( u T0

n M

n

If €u (t) converge weakly we have in particular that (3.24) con-
“n

verge and the limit is E[£f(n(0))g(n{t))] . Since the second deri-

vative is uniformly bounded the first derivatives

~tH

e Togn ) (3.26)

-(H f0
u 91 My

“n n
converge uniformly to the first derivative of the limit. This

gives us then that
5B F£(n(0))e(n(%)) /40 = (£0,,1 g0,) (3.27)

Now assume that n(t) 4is a larkov process, Then by the convergence

of the processes €u < 1 and their invariant measures b, <M We see
n

that mn(t) is homogeneous with invariant measure u , and sincethe
%u are symmetric under ftime reflection so is n . Hence the
n

infinitesimal generator H of mn 1is a positive self adjoint

n
operator in IL,(du) with a{x) = 1 as an eigenfunction of eigen-

value zero of Hﬂ . Hence

—~tH .
E(£(n(0))g(n(t))) = (fa,e  Tga) . (3.28)

Prom (%,27) we then get that Hﬂ = H, on e . This proves the

theorem,
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4, The Euclidean Markov fields as diffusion processes

The free Euclidean Markov field in 4+ 1 dimensions is the

generalized random field ¢g(x) on R4 guch that

eijg<x>¢(x>dx] 50,0 _,

B = (4.1)
where
(orgy) g =£ (p2+m2)'1!$(p)!2dp (4.2)
R +1
and 341
§p) = (2m) Z [ &P y(x)ax (4.3),

and m > 0 is g constant called the mass of the free Euclidean
Markov field., If d =0 or 1 we have to take m > 0 in order
for (4.2) to be well defined. The right hand side of (4.1) is
obviously a continuous positive definite function on the real

a+1) so that (4.1) defines a measure

nuclear Schwartz space S(R
on its dual S'(Rd+1) , 1.e. the space of tempered distributions
on R . Hence the generalized random field E(x) is a random
field of tempered distributions,

It is well known that £&(x) is a Markov field, but we shall
not need that here,

However let ¢ ¢ S(Rd) , then (qﬂgaT)(E,t) = o(X)*6(t=1)

is in the HSobolev space dﬁ_1 s in fact

(CP®5T"'P®6T),_1 = %(CP’CP),_%_ ’ (4.4)
where
Y s A - —
(6y0)_g = | (32m®)™ ((3)]% ap (4.5)
Rd -
with N

a .
e(p) = (2m) ?fe'lpx p(X)d% .
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From (4.1) we get that

= %(CP’CP)_,%_

ijg(z,t)m(§>di] . , (4.6)

E%a
Hence since the right hand side of (4.6) is a positive/gggiggggus
function on the real nuclear space S(Rd) we have that the con-
ditional expectation of the measure with respect to the o-algebra
generated by functions of the form (E,m8>5T> exists and defines
a megsure on S'(Rd) ,  The corresponding random variable with
values in S'(Rd) we have already denoted by §(§,t) . Hence
t - £(X,t) is a stochastic process with values in S'(Rd) .
Let now p ¢ J@KS'(RG)) be the probability measure whose Fourier

transform is given by (4.,6) , i.e. ,
g, —i(@ P)_a
re ' 4 Y

J (4.7)

du(g) =e

where <(E,p) is the dualization between S'(Rd) and ‘S(Rd) .

Mo is then a Gaussian measure on S'(Rd) and vie gee easely that

it is quasi invariant with relpect to translations from S(Rd),

in fact if
adun (E+e)
= O
G'(E?cp) duo('g')_' (4-8)
then ( )
—(pspls  2¢wp,8)
a(f,9) =e Fe (4.9)
where s
W(B) = (3%4m°)® $(3) (4.10)
and

(9,0)3 = (@,09> .

first order
From (4.9) it easely follows that M, has regular/derivatives

and that the osmotic velocity g(€) is given by
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B(E)ep = =2dw9,E) , (4.,11)

which is obviouscly in Lz(du) )
It is well known that + - g(x,%) is a Markov process in
S'(Rd) : We shall see now that this process ig the diffusion

process given by the nuclear rigging

s@®%) e 1,8Y) < s'@®Y) (4.12)

first order
and the gquasi invariant measule Mo with regular Aerivatives in

the sense of theorem 2,9. We formulate this in the following

theorem

Theorem /4.1

Consider the nuclear rigging
s(&%) c 1,@®%) < 5'@®Y)
and the measure u e u@@(S'(Rd)) given by

1
~7(0y9) 1

1{E,p)
Jel< v au(g) = o .

first order
Then Mo is quasi invariant with regular/derivatives and the

diffusion process given by Uy and the nuclear rigging by theorem

2,9 is the free Buclidean Markov field in d+1 dimensions.

Proof:

Since the free Euclidean Markov field induces a Markov process
t - g(%X,t) on S'(Rd) , we have only to show that this process
has the same infinitesimal generator as the diffusion process
given by theorem 2.9,

By (#.1) we have that
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r —if§(§,0)$1(i)d§+ifg(f,t)w2(§)d§]

Ble 1 1 - (4.13)
_ ~tw
_ e“"g[(cpﬂl,CP1)“%_+(CPQ’®2)_,%]'G§(CP199 sz)_%_
where
""tw _tw -: -, A = -3
(198 wp) 3 = j “— 41 (Ploy(3)ap (4.14)

where (D) :-V§2+m§ . Taking the derivative of (#4.13) with

respect to t at t =0 we get

- 1¢E8(0),0,> 1iCE(t),p,)
-4 e MAAS IR 2" ai(g) |t =0
(4.15)
~1<g(0),9,> 1(E(0),p,)
e

= (paypp) [ au(g) .

From this it follows that for f and g in Fq(S'(Rd)) we have

that
- & [Te(ones(e)an(e) = [TE(2(0)) -ve(5(0))au(g), (4.16)
which proves that the infinitesimal generators coincide on F2 .

tH

Moreover let e 0 be the semigroup generated by the free Euclidean

Markov field, then we have the following well known formula

Sakls PPN SL PR i<g’e“tu,w>: (4.17)

where 1,
. 1€, Flowl e, (4.18)

Hence the linear span of e}<€’@> for o € S(Rd) is invariant
under the semigroup "o and it is obviously dense in Le(dg) )
therefore it is a core for the infinitesimal generstor Ho‘

Now this core is obviously contained in P2  which proves the

theorem. [j
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Now in one space dimension 1i.,e., d = 1 the perturbations of
the free Duclidean Markov field by local interactions of different
types have been intensively studied, Tor simplicity we shall here
restrict our attention to the polynomial interactions. So let
p(s) Ybe a real polynomial of one real variable s such that p(s)
is bounded below. Moreover let P(ﬁn) be the closed subspace of
L2(d“o) generated by polynomials of degree at most n on S' ,
i.e, by functions of the itype <m1,€)...<@k,€> where  ©q,.0.,9,
are in S(R) and & € S'(R) and k <n . TLet p(1) 1o the
orthogonal complement of P(fn"T) in P(in).

Let us now define for any h € L2(R)
se%: (n) = [: e(x)Msh(x)ax (4.19)
R
as the unidque element in P(n) such that

¢
(:gn:(h)s <QP19§>--.<C[)R9§>) = nlj-QJ.H1G(yi“X)@i(yi)h(X)dyidx,
1=
(4.20)

where

G(x) = % J(p2+m2)"%ej‘pX dp . (4.,21)
R

Since the projections of <{wpy,8)...{y, ;8> on P(n) obvi-
ously span a dense subset of P(n) , (4,19) gives us a densely
defined linear functional on P(n) e In fact this linear func-
tional is bounded in as much as its square norm may be computed
to be

(:¢%:(n) ,:6%(n) ) = n! [[ e(x-y)"n(GIn(y)axay ,  (4.22)
which is finite since G(x) has only @ logarithmic singularity.
In fact since G(x)® is in Ly(R) (4.21) is finite for any

h € LQ(R) .
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Now if
2n, Kk
p(s) = 2 ays (4.23)
we define
en k
:pe(h) = ]Eo a,:8 3(h) (4.24)
{=

for any h ¢ LQ(R) , and since P(i) are orthogonal for different
i we have that (4.23) is an orthogonal sum in L2(dpo) . In par-

ticular we have that
2n

2 2 k
zp: ()5 = kfoak k! JJG(X—y) h(x)h(y)dxdy . (4.25)
Let now HO be the diffusion operator generated by g and the
real rigging S(R) c L2(R) < 3'{(R) . Ve have seen that H  is
the infinitesimal generator of the Markov process given by the

free Buclidean Markov field,

Let Vk(g) be the real function in L2(d“o) given by

V) o= tpilxy) (4.26)

where X is the characteristic function for [-~1,1] and p(s)
is a real polynomial which is bounded below, It is well known,

see for instance ref., [23] 3) that

Hy = H +V (4.27)

1 1
is essentially self adjoint and bounded below and has an isolated
simple eigenvalue E1 such that Hl > El . The corresponding
eigenfunction g,(g) may be chosen positive i, - almost every-
where, The measure

dp.l = gi duo (4.28)
is therefore equivalent with Hy s hence dquasi invariant with re-

spect to translation in § . Now let 0, = g0, where Qo(x) = 1

in L2(du0) .
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Lemme, 4,1
Let o € S(R) and Py the intinitesimal generator for the
one parameter unitary group of translations by ty in Lg(duo) '

Then i[Pm,Hl] is a densely defined operator whose closure is
given by _

ilPo,HT = :p':(xl'$)-+<€,(-ﬂ+m2)w>
where p' is the derivative of p and X the characteristic

function for [-1,1] .

Proof: The proof follows immediately from the fact that

i[Pp,H;] 1is the derivative at t = 0 of e "ty olE® . gl¥

where
HY = H04-(€,(~A+m2)@)-+%<$9(~A+m2)w>-¥3Pmﬂ(xl) (4.29)
and o 1
n k
gt (X)) = % oy [ s (r)E(x)sax (4.30)
- -1
with
1
. a\n Y R
J : (B+p) (%) dx = '21(3)3§ : (o Xl) . ] (4.31)
-1 J=

Theorem 4,1

first order
is a quasi invariant measure on S*{R) which has regulaﬁ\

Ha
derivatives, Moreover the components of the corresponding osmotic
velocity 8, have L2(du1) norms which are bounded uniformly in

1 if the coefficients of 1 are small enough.

Proof: TLet o € S(R), then Byew is equal to twice the deriva-
tive of o' "' at t = 0, if it exists, so that B,.p is in
Lg(dul) iff 0, € D(Pw) and

31'@ = 2P@91 ’ (4w32)
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Now
Py = —(Hl—El)"1[Pm,H1-E1]QI (4.33)
so that
Hl'E1+C 1
prQl = _W(Hl—E]._I—G) [PCP’H].]Q]. » (4‘034‘)

But (Hl—E1+C)"1[Pm,Hl_E1301 is in the range of Hy-E; , hence
orthogonal to Q, . Now,for fixed € > 0 , (Hy~E +0)(Hy~E )"
is bounded in norm on the complement of Ql by a constant that
depends only on the distance my from El to the rest of the
spectrum of Hl . This distance ml is called the mass gap for

H, and it is well known (see [36] that if

1
all the coefficients of p are small enough this distance is
bounded from below by a positive constant, Hence in that case

(H,-E,+0) (H,-B,)™" is bounded in norm wniformly in 1 . Therefore
~1 -1
1Ppay | < C4l| (Hy =By +C) ™ [Po,H; T(Hy ~By+C) 7 0y (4.35)
where (¢, 1s a constant that depends only on p and C . By

lemma 4.1 it is therefore enough to prove that, if :p :(h) =

:p':(h)-+<€,(—d+m2)w> , then
(H-,L—El-tbc)"1 :p1=(x1@)(H1~El+(ﬁ_1 (4.36)

is norm bounded uniformly in 1 . But this follows from

T oipqi(xqe) £ Cp(Hy=Eq+C) (4.37)
where G2 is independent of 1 ., This is proved by resolution
of the identity from ref. [347 . We also remark that recently

Glimm and Jaffe have provea similar inegualities for the polyno-
mially intéracting fields with Dirichlet boundary conditions [35].

From (4.%6) we have that

1 i
(Hy=B;+C) 7% 1pq s (Xq0) (Hy =By +0) 77 (4,38)
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is a bounded operator with norm independent of 1 . Hence (4,35)

is bounded with norm independent of 1 ., This proves the theorem,

Now it follows from ref, [ 36 ] that if the coefficients of
p are small enough then the process §l(t) converges weakly to
a process E£(t) , however it is not known whether E&(t) is a
Markov process,
Consider now for f and g in FQ(S')

~t(H

Ey)
(£0, e .

1 %0)) = BLE(5,(0))e(5,(1))] (4.39)

which by the results of ref., [ 261 converge to
(£0,e” Hga) = BIF(£(0))e(E(+))], (4.40)

where I is the physical Hamiltonian,

By theorem 4.1 and theorem 3.7 we have that (4.39) is twice
differentiable with respect to t and the first derivative con-
verges uniformly to the first derivative of (4.40). Hence we have
in particular that W, converges weakly to a measure u which is
actually the physical vaccuum Q restricted to the time zero fields
i.e,

jei<€’$> au(g) = (Q,ei<m’g(o)>ﬂ) . (4.47)

Now from (4.36) it follows by standard method [z, [23], 3)

toapgs(e) < Co(H+C) (4.42)

and from lemma 4.1 that

i[Po,H] = :pqs(m) . (4.43)

first order
Hence in the same way as for My We get that u has regular/de-

rivatives in particular that pu is quasi invariant, Therefore
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we have the following theorem,

~ Theorem 4,2

Let u be the physical vacuum restricted to the time zero
fields as defined by (4.40). Then 4y 1is a quasi invariant mea-
. first order .
sure with regular /Aderivatives, Moreover the physical Hamiltonian
H restricted to FQQ coincides with the diffusion operator gene-

rated by wu , by theorem 2.9,

Proof: This follows by what is said above and theorem 3.6,

Remark: Bounds of the form (4.37) and (4.41)have3§ggently proved
also for the Dirichlet boundary conditions on the fields by GLimm
and Jaffe [35]. Hence theorem 4.1 and theorem 4.2 will also
hold for the Dirichlet boundary conditions and their infinite
volume limits,which also exist, by the method of Nelson [38], for
arbitrary even polynomial p . In this case there is no smallness

condition on the coeffisients of p .
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