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ABSTRACT 

\'le snow that for a large class of quasi invariant probability 
measures ll on a separable Hilbert space wi tr1 a nuclear rigging 
the Dirichlet form J ~f •"'1g d!J in L2 - ( <4-t) is closable and its 
closure defines a positive self-adjoint operator H in L2 (d!l), 
\'Ti th zero as an eigenvalue to tne eigenftmction ~. which is simple 
if and only if ll is ergodic, The con.nection with the Hamiltonian 
formalism and canonical commutation relations is also studied. 
'Vle show moreover tnat, for a subclass of quasi invariant measures, 
H is the infinitesimal generator of a s}~nmetric time homogeneous 
Markov process on the rigged Hilbert space, 1·rltn invariant 
measure J..l , and tnis process is ergodic if and only if 1-l is 
ergodic, 
Moreover 11e study perturbations of H and J..l as vrell as weak limits 
of quasi invariant measures !J.n ancl their associated Markov 
processes. 
Finally we apply our result to quantcun fields. In particular we 
show that for polynomial interactions in tvo space-time dimensions 

the physical vacuum restricted to the time zero fields is a mea­
sure J..l in the above class of quasi invariant measures and tne 
physical Hamiltonian coincides on a dense domain with the generator 
given by tne Diricnlet form determined by J..l• 
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,:J_!_Intr.\)~ctiol!. 

Within the general theory of Markov stochastic processes ~lith 
continuous time parameter and finite dimensional state space the 
class of diffusion processes is of special importance due to its 
connection with second order partial differential equations. Since 
moreover every such Markov process is the solution of a stochastic 
differential equation, one has a beautiful interplay of the theory 
of partial differential equation, diffusion processes and stochastic 
differential equations. :!!'or this \ve refer to [1], [2], [3] and to 
[4] for potential theory. 
In this paper we E. in a study of the extension of these subjects, 
and in particular of the theory of Markov diffusion processes, to 
the infinite dimensional case. 
We first review shortly some previous work. 
Early \vork which can be put in relation vlith this circle of problems 
\vas done, mainly by Friedrichs, Gelfand and Segal, in connection 
with the study of quantum fields and in particular of the represen­
tations of canonical commutation relations, see e.g. [5]. From an­
other point of vimv Feynman' s path integral formulation of quantum 
dynamics, has given much stimulus, see the references given in [6]. 
The work on quantum fields has been pursued vigorously in the last 
decade, 1·Ti thin the fraone1vork of constructive quantum fiel theory, 
to \vhich vre shall come back later. Let us first however mention 
some other vroek, ~rhich was originated primarily by other types of 
questions. 
Daletsldi has studied infinite dimensional elliptic operators of 
second order, parabolic equations and the corresponding stochastic 
equations on nuclear spaces, see [7], where also many references to 
related vrorlc by him and other investigators are to be found. The 
coefficients are assumed to be continuous \•rith continuous uniformly 
bound.ed Frechet derivatives and the Cauchy problem is sh01m to have 
a unique solution in the space of functions vrhich are uniformly 
bounded and continuous together with their derivatives up to second 
order. The parametrix of a class of elliptic differential operators 
of higher order have been considered by Vishik on certain spaces of 
sequences [8]. 
Gross and Piech have studied potential theory on abstract Wiener 
space [9]. 



- 2 -

For Vliener processes on Banach manifolds see [10]. 
I(ree has studied the extension of the theory of generalized func­

tions in finitely many dimensions to the infinite dimensional case, 

with some applications to partial differential and variational equ­

ations [11]. 
Let us noel shortly SUllllllarixe the content of our paper and indicate 

briefly the general methods used. 

In section 2 ~Te start by assembling some facts about Gelfand's 

representation of Vleyl's canonical commutation relations by means 

of probability measures on N' , quasi invariant with respect to 

translations by elements in N, ~/here NcKcN' is a real separable 

Ililbf'rt space with a nuclear rigging. References to previous 1vork 

on this representation are [5],2) and [12]. He then isolate a class 

of quasi invariant measures, which we call measures vii th first order 
derivatives . . . . 

ret:sular 1 and "1hich J.n the fJ.nJ.te dimensJ.onal case, 
correspond to the density function having L2 derivatives. This 

class is suitable for the construction of the self aujoint 

operator H associated •·lith the Dirichlet form J V'f•V'g df.,l 

positive 

and act-

ing in the representation space L2 (df..l) for the canonical commuta­

tion relations. 

The relations of Dirichlet forms with the canonical formalism has 

been discussed, modulo domain questions, by Araki, in his algebraic 

E(pproach to the Hamil toni an formalism and canonical commutation 

relations [13]. Some of our results in this section can be looked 

upon e.s providing analytic versions of algebraic derivations of 

Araki, in particular by realizing the measures 11 on a topological 

dual rather than an algebraic one. 

We first define the Dirichlet form on finitely based functions 

lvhich are continuously differentiable with bounded derivatives and 

on this domain it is closable. H is precisely the Friedrichs 

opere.tor given by the closure of the Dirichlet form. He call H 

the diffusion operator geneJ.'ated by f..l • H has the eigenvalue zero 

with the eigenfunction identically equal to 1 in L2 (df.!) • More­

over the eigenspace to the eigenvalue zero consists precisely of 

all functions in L2 (df..l) which are invariant under translations 

by elements of N , hence in particular, zero is a simple eigenvalue 

of H iff f.! is ergodic, \•Ihich is equivalent to the representation 

of the canonical commutation relations given by f..l being irreducible. 
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One has as decomposition of 1.1 , L2 ( dl.l) , H and the representation 

(U,V) of the canonical commutation relations into a direct sum of 

ergodic components. 
. . firE;;t ord~:r: . 

The cond1. t:LOn on 1.1 to have regular jder1. va1a ves 1.s that the indini-

tesimal generator P}: of the unitary group V(tx) of translations 

in the x -direction, i.e. the canonical momentum operator, should 

contain the function 1 in its domain. If moreover the function 

obtained by applying Px to 1 has bounded components, then 1.1 is 

by definition in the class of quasi invariant measures with bounded 
regular 1·1.rst order -tH 

;tteri vati ves and 1ve show that, in this case, e has positive 

kernel, hence it is a Markov contractior. semi group. So that in this 

case <~e have a time homogeneous Markov process on N' with invariant 

measure 1.1 and infinitesimal generator H • 

Finally we prove that this diffusion process is ergodic if and only 

if 1.1 is ergodic. 

In section 3 we study perturbations of quasi invariant measures 1.1 
. th b reP.:Ular. first order f th . t d d' "f · t H vll. ounaecr;a.er1. va1;1. ves ana o e assoc1.a e 1.1. us1.on opera or • 

We first shot•/ that if H is such a diffusion operator and if V is 

real measurable on N' and such that H1 = H + V is essentially 
-tH1 

self adjoint and lower bounded then e has non-negative 

kernel. The ergodic decomposition of L2 (dl.l) and H carries over 

to V and H1 • If E1 is the infinum of the spectrum of H1 and is 

an eigenvalue of H1 , then the corresponding eigenfunction cp is 

strictly positive - almost everywhere, hence d1.11 - cp2dl.l is quasi­

invariant and a sufficient condition is given for H1 - E1 to be the 

infinitesimal generator for a unique diffusion process generated by 

1.11 • 
Finally we find sufficient conditions for the stability under v1eak 

limits of the correspondence betv1een quasi invariant measures 1dth 

b dre@lar first order. h . t d d' ~f . oun ea;uer1.vat1.ves and. ·c e assoc1.a e 1.1. us1.on process. 

In section L~ we apply the general results of the proceeding section 

to the case of quantum fields. The stochastic approach to quantum 

fields is of course not a new one, but was initiated by 1vork of 

Friedrichs, Gelfand and Segal, and more recently this approach has 

been emphRSized by Symansik [14] and Nelson[15]. The latter also 

formulated an wd.omatic framevmrk in terms of generalized random 

fields vJi th the more dimensional Markov property, corresponding to 

Levy's Markovian property of order 1 [ 16] • 
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Gaussian generalized M<lll'kov random fields had been also considered 
by \-long ( 17] and !1olchan ( 18]. Guerra adn Ruggiero ( 19], see also 
(20], pointed out the connection of free Euclidean Markov fields 
Hith the generalization of Nelson's stochastic mechanics to infini­
tely many degrees of freedom. Recently other connections between 
problems of quantum fields and the theory of generalized stochastic 
processes have been emphasized particularly by !Gander (21], see 
also (22]. 
Concerning specific models studied intensively in constructive 
field theory we refer to (23]. For more recent work see (2'+]. 

Concerning the Markov property of the constructed generalized random 
fields see [25]. Many results with dir8ct probabilistic implica­
tions are in [26]. 
Coming nm·1 to our present applications of the methods of sec·i;ions 
2 and 3 to the quantum fields, we first remark that the di.ffusion 
operator associated by the procedure of section 2 with the Dirichlet 
form given by the Gaussian measure 1-lo of the unit process on 
S(Rd) c L2(Rd) c S'(Rd) coincides with the infinitesimal generator 

of the Markov process of the free Markov time zero field. 
Finally we consider the interacting cas& in tvm space-time dimen­
sions, where the interaction is given by a polynomial of even degree 
v1ith sufficiently small coefficients. 
\ole first shmv that the measure 1.1 , given by tp.e ;physical vacuum, 

t · 1; t t t · f. 1 flr§.c order res rlc· ed o he lme zero le ds haS regular ;uerl va'tl ves hence 
belongs to the. class of quasi invariant measures discussed in 
Section 2. By means of the perturbation theory given in Section 3 
and direct estimates, vle then show that the corresponding diffusion 
operator coincides on a dense domain with the physical Hamiltonian. 
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2. Symmetric diffusion processes 

The Schrodinger equation in Rn is of the form 

( 2. 1 ) 

where V is the operation of multiplication by the potential· 

energy V(x) ljJ(x,t) is a function on Rn x R and .6. is the 

Laplacian in Rn • In this section we shall see what happens 

when we replace Rn by a real separable Hilbert space K • The 

method usually employed in the finite dimensional case (K = Rn) 

is to consider 

H =-6.-t-V (2,2) 

as a self adjoint operator on L2 (Rn) , which is possible under 

some mild regularity conditions on V (see for instance 

[ ]) in which case 
•'-· 

ljJ(x,t) = (e-itH ~)(x) ' (2.3) 

11here ~ E L2 (Rn) is the initial condition ljJ(x,O) = ~(x) and 

e-itH is the unitary group generated by H , However,in the 

case h is infinite dimensional it is not possible to copy this 

procedure too closely because of the fact that there is no ob­

vious candidate for the L2 space, 

Therefore let us now assume th~t H has at least one eigen-

and we are still considering the case n K =R , 

and that H is, as a self adjoint operator, bounded below. Then 

again under some quite general regularity conditions on V , the 

spectrum of H will end (to the left) in an eigenvalue E so 

that H ~ E and the corresponding eigenfunction O(x) is positive 
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almost everywhere i.e. 

HO = EO , (2.4) 

O(x) ~ 0 and O(x) = 0 only on a set of measure zero. On the 

other hand if O(x) is an eigenfunction and O(x) ~ 0 then 

H > E and O(x) = 0 only on a set of measure zero. These 

results are consequences of the ergodici t;y of the Jl1arko v semi­

group generated by the Laplacian, For detail9 concerning these 

results see ref. 

Let us assume that 0 is normalized such that 

(n,o) =I jo(x)i 2 dx = 1 
Rn 

(2.5) 

and set p(x) = o(x) 2 , then d~(x) = p(x)dx is a probability 
n measure on R • Since 0 is in the domain of H it must 

(again under slight regularity conditions on V) have locally 

integrable derivatives up to second order. So let f(x) be a real 

smooth function of compact support, then 

I (17f) 2d~ = (v f o, vf o) 

= (V(fO), 'i7 (fO))- 2('i7f•O,f''VO) - (f'i7 O, f\7 0) 

= - (fO, il(fO)) + 2(f, 'i7 (Of'V 0) - (fV o, f'i70) 

= - ( f o, ll (f o)) + ( rv o, f \1 o) 

+ 2(f\1f, o\1 o) + 2(f, fo ll o) 

= - (fO, ll (fO)) + (fVO, f'VO) 

+ t(vf2 , v o2) + 2(f, fo ll o) 

= - (ro, t~(f o·)) + (f'\1 o, fV n) 

- t(f2
' Ml

2
) + 2(f, fOliO) • 

So that, since llO = (V-E)O , we have 
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J (\7f) 2 diJ. = (f0,(-11+ V- E)fO) 

= (fO, (H-E)fO) • 

(2,6) 

Hence the correspondence f <-> f(l which is a unitary equivalence 

between L2 (dx) and L2 (d~) takes the form (f,(H-E)f) into 

the form (fO, (H-E)fO) = J (\7f) 2 du • Hence we could define the 

operator H-E as the self adjoint operator defined by the clos­

able form 

(2.7) 

in the Hilbert space L2 (diJ) • The relation between the operator 

H-E and the measure dj.J. = pdx is then given by 

H-E = -Ll+(V-E) (2.8) 

where i 

V-E =~ 
P" 

(2.9) 

Let now d~..t(x) be an arbitrary probability measure on Rn 

which is quasi invariant with respect to translation. That is 

diJ.(x+a) = a(x,a)du(x) (2,10) 

where o,(x,a) 2: 0 , Ja(x,a)d\-I(X) = 1 and 

a ( x, a+ b) = C1 ( x +a, b )a ( x, a) • (2.11) 

It is well known that in R11 any quasi invariant measure is 

equivalent to the Lebesgue measure, so that d . .l(x) = p(x)dx and 

p(x) > 0 with p(x) = 0 only on a set of measure zero. 

Hence in this case 

a(x,a) = ~~J) 

In L2 (d!-l) we may now consider the form (2.7) and if it is clos­

able we shall call H the self adjoint operator which is given 
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by the corresponding closed form, so that with (,) being the 

inner product in L2 (d:J.) , 

(f, Hf) = J'Vf•Vf diJ. , 

and we shall say that 

with 
n 

V = E 
i='i 

(2,12) 

(2,13) 

(2,14) 

whether (2,14) defines a measurable function or not, In this 

way we obtain, from any quasi invariant probability measure du 

on Rn such that the form (2,12) is closable in L2(d!J.) , a self 

adjoint operator H > 0 such that the constant function is an 

eigenfunction with eigenvalue 0 • Moreover if diJ.(x) = O(x) 2 dx, 

where o(x) is the lowest eigenfunction for an operator of the 

form - c, + V , then H = - c, + V • 

Example 1 

Let n = 3 and take d:J. to be the probability neasure in R3 

given by 

diJ.(X) dx , 

We may verify that the form (2.7) is closable in L2(d!J.), so that 

H is well defined. In this case 

a2 (x a) = l. A 
' x+a 

For x I 0 we see that "'a ofr(x,O) "' m2 • In fact we may easely 

prove that H is a self adjoint operator such that, when restricted 

to smooth functions which are zero at zero, then H f= (-t, + m2)f 
m 
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for f(O) = 0 • 
e-mjxj· 

lXI 

However, 2 Hm-m , when represented in L2(dx), 

has as dn eigenfunction with eigenvalue 2 -m , so 

Hm-m2 /-IJ. In fact 

self adjoint extensions 

2 
H - m m 

of the 

form a one parametric family of 

restriction of -b. to functions 

f E D(t.) such that f(O) = 0 • 

It is well known, at least in the case of sufficiently nice 

potential V, that H given by (2,13) is also the infinitesimal 

generator of a Markov semi group e-tH which has d~ as an in­

variant measure, Moreover the stationary JV!arkov process ~ ( t) 

in Rn given by the Markov semigroup e-tH and its invariant 

measure d~ is the unique solution of the stochastic differential 

equation 

d~(t) = ~(s(t))dt + dw(t) (2.15) 

where w(t) is the standard Wiener process in Rn , and ~(0 

is the osmotic velocity 

13 ( ~ ) = 'V ln p ( e;) , (2.16) 

where d~(x) = p(x)dx • For more details on this we refer the 

reader to ref, (20] and the references contained there. It follows 

from the methods in ref, [20] that the stochastic process e;(t) 

is always a solution (2,15) although one can prove that this 

solution is unique only under regularity condition on the osmotic 

velocity ~(~) , for instance is a Lipschitz condition good enough, 

For closer information on stochastic differential equations and 

their solutions see ref. [ 3 ] . 

We are now in the position to discuss the Schrodinger equa­

tion (2,1) on a separable real Hilbert space K. The setting 
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which we shall use is given by a nuclear rigging 

N c K c N' (2.17) 

where N is a real nuclear space densely contained in K and N' 

is the dual of N • Moreover the inner product (x,y) in K 

when restricted to N coincides with the dualization between, N 

and N 1 

Let d!-1(1!;) be a probability measure on N' which is quasi 

invariant under translations by elements in N , 

We here recall Minlos theorem [29) thclt says that any continuous 

positive definite function ~ on N such that ~(0) = 1 is 

given by a unique probability measure d!-1 on N' such that 

~(x) = J ei(x, g) d!J.( s) , 
N' 

I 

(2,18) 

where the measure structure in N is the one derived from its 

topology, 

Since d!-1 is quasi invariant under translations with elements 

x E N we have that du(s) and d~o~(s+x) are equivalent, hence 

( ) d\J.( S+X) 
a s,x = dj..I.(S) 

is, for fixed x , positive \J.- almost everywhere, and 

a(s,x) E L1(d·.t) , in fact 

Ja(g,x)d!-l(s) = 1 

(2.19) 

(2.20) 

Furthermore for any x and y in. N we have, for 1-1- almost 

all s , that 

a(s,x+y) = a(s+x,y)a(s,x) • (2.21) 

Such a measure give rise to two unitary representations U and V 

of N on the Hilbert space Je = L2(du) by 
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(U(x)f)(s) = ei(x,s) f(s) (2.22) 

and 
1 

(V(x)f)(g) = a2 (g,x)f(s+x) 

We have obviously that U(x) and V(x) are representations 

of N , namely 

U(x)U(y)=U(x+y), V(x)V(y)= V(x+y) (2.24) 

that satisfy the Weyl-commutation relations 

V(x)U(y) = e i(x,y) U(y)V(x) (2.25) 

for x and y E N • Moreover we see that the mapping x ~ U(x) 

is strongly continuous from N ... B(d{;) with the strong operator 

topology on B(J6) , because for y EN , U(y)1 is dense in 

L2 (du) and 

= 2 Re cp ( x) - 2 , 

and by assumption cp(x) is continuous on N and cp(O) = 1 • 

On the other hand we have by Minlos theorem that if U(x), V(x) 

are unitary representations of the nuclear abelian group N such 

that U(x) is weakly continuous in the topology of N (weakly 

referring to the weak operator topology) and with a cyclic ele­

ment 0 and such that U(x), V(x) satisfy the Weyl-commutation 

relations, then there is a measure d~ on N1 which is quasi 

invariant under translations by elements in N • Moreover U(x) 

and V(x) are represented on L2 (d~) by (2.22) and (2.23) 

respectively. 

To see this, take 

cp(x) = (o,u(x)o) , (2.26) 
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then ~(x) is a positive definite continuous function on N and 

by the Minlos theorem there is a probability measure d~ on N1 

such that (2,18) holds, and by the cyclicity of n under U(x) 

we may take the representation space to be L2 (d~) and U(x) to be 

(U(x)f)(g) = ei(x,g) f(g) , (2.27) 

Consider now also the positive definite function 

~y(x) = (V(y)O,U(x)V(y)o) (2.28) 

and the corresponding measure d~y(g) • By the commutation 

relation (2,25) we see that 

~ (x) = e-i(x,y) ~(x) • 
y (2,29) 

By the uniqueness of the Minlos representation (2,18) we therefore 

have that 

(2.30) 

Now the subspace generated, for a fixed y E N , by U(x)V(y)O , 

as x runs through N , is a closed subspace which is equivalent 

to L2 (d~y) , and the weakly closed subalgebra generated by U(x) 

in this subspace is equivalent to L 00 (d~y) • However, the weakly 

closed algebra generated by U(x) in the whole space is equivalent 

to L 00 (d~) . This gives us then a continuous mapping from L00(d~) 
onto L

00
(d\J.y) which implies that duy is absolutely continuous 

with respect to d~-4 • This proves the quasi invariance of du 

under translations by elements y in N • 

Hence we have the following proposition, which is first proved 

in ref rs ], 2). 
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Proposition 2.1 

Let N c.K c N 
I be a nuclear rigging of K , and assume that 

we have two representations of N , U(x) and V(x) by unitary 

operators on a separable Hilbert space ~ such that x - U(x) 

is continuous from N ir.to B(/;) with the weak operator topology 

and that there is a cyclic element 0 for the representation U(x). 

If moreover U and V satisfy the Weyl commutation relation 

V(x)U(y) = e i(x,y) U(y)V(x) , 

then there is a probability measure ~ E .Ai(N 1
) such that \.l is 

quasi invariant with respect to translations by elements in N 

such that 

(o,u(x)o) = J ei(x,~) d\.l(s) , 
N' 

and U(x)o <-> ei(x,s) gives an identification of ~ with 

L2 (d\.l) such that 

(U(x)f)(s) = ei(x,s) f(s) and 

with 
d!-l(s+x) = a(s,x)du(s) • 0 

Consider now a(s,tx) = d\.l(~+tx} 
d}.l(~) • It is obviously simultane-

.l. 
ously measurable in ~ and t , so that a 2 (s,tx) is measurable 

as a function of (s,t) EN' xR for fixed x. From this and 

(2.23) it follows that V(tx) is weakly measurable in t and 

since V(tx) is a unitary group as a function of t by (2,24) 

we have,by a standard theorem on unitary groups,that V(tx) is 

strongly continuous. Let Px be its infinitesimal generator. 

Then Px is a self adjoint operator on J8 = L2 (diJ.) , and 
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by (2.24) 

P(x+y) ~ Px + Py (2.31) 

and in fact it follows from what is known about the Weyl commuta­

tion relations on finite dimensional spaces that 

P(x+y) = Px + Py , (2.32) 

Let E be a orthogonal projection in K such that its range 

EK ·is a finite dimensional subspace contained in N, where 

N c K c N' is the nuclear rigging of K , For u E K , Eu is 

then of the form 
m 

Eu = l: (e. , u) • e. , 
i= 1 ]. ]. 

(2.33) 

where m = dim E.K and ei , i = 1 , ••• , m is an orthonormal base 

in EK • Since ei E N , we see from (2.33) that E extends by 
I m 

continuity to a projection E:N _, N given by Es = .l: (ei's)ei 
l=1 

So we have proved that any orthogonal projection in K which has 

a finite dimensional range contained in N extends by continuity 

to a continuous projection from N' into N • 

• 

We shall now define some subspaces of C(N') , the Banach 

space of continuous bounded functions on N' • f E C(N') is said 

to be in Fn if there is some orthogonal projection E on K 

with a finite dimensional range EK c N such that f(s) = f(Es) 

and f(x) for x E EK is in Cn(EK) , n is here 1,2, ••. 

or oo • We also define f E F by requiring that f(s) = f(Es) 

for some E of finite range in N and f(x) E C(EK) for x E EK. 

Let n < (X) and let II \In be the norm in en 
' 

then we define 

II II n in Fn by !lflln = !If IEKIIn for some E such that 

f(s) = f(Es) and EK of finite dimension in N • We see that 

llflln does not depend on E so that llf/ln is well defined and 
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it organizes Fn to be a normed linear space. We shall refer to 

F as the space of continuous and finitely based functions, and 

Fn as the space of n-times differentiable and finitely based 

functions. 

However, Fn is not complete in this norm and we shall denote 

by Dn the Banach space obtained by completion. We set 

D00 = n Dn so that D00 is a Frechet space which contains F 00 

n 
as a dense subspace. 

By ~(N') we understand the Banach space of bounded complex 

measures on N1 
, i.e. vi6(N') = C(N)*. It follows from the 

Minlos theorem that vi6(N') is closed under convolution of 

measures and since 

I fd(v 1 ~v 2 ) = I f(s 1+s2 )dv 1(s 1)dv 2(s2 ) (2.34) 
N1 N'xN' 

we get from the fact that db(N') = C(N)* that Hv1*v2JI.::; !lv1jJ.IIv2/l. 
So that cAl(N') is in fact a Banach algebra. 

Definition 2.1 We shall say that a probability measure ~ E ci't(N') 

is quasi invariant if it is quasi invariant under translations 

by elements in N • 

We have now the following proposition complementary to pro­

position 2 .1. 

Proposition 2.2 

Let N c K c N' be a nuclear rigging of K and ~ E ~(N') 

a quasi invariant probability measure, and consider in Je = L2 (d~) 
the representation of the Weyl commutation relations over N 

given by 

(U(x)f)(s) = ei(x,s) f(s) 
1 

and (V(x)f)(s) = a2 (g,x)f(g+x) 
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1 

where a2 (s,x) is the positive square root of a(s,x) , with 

du(s+x) = a(s,x)d~(g) , Then the mappings x ~ U(x) and x ~ V(x) 

are strongly continuous unitary representations of N on de. 
Moreover with O(x) = 1 E L2 (d~) , U(x) is a cyclic representation 

with 0 as a cyclic vector. 

Proof: For f E L00 (d~) we have that 

II ( u ( x) - 1 ) f oil 2 
2 

.:5. 11 f 11 ~II ( u ( x) - 1 ) o 11
2 

2 
= 2llfi/

00
(1- Re(o,u(x)O)) 

= 2llfl/ ~ ( 1- Re J ei(x, ~) d~J,( ~)) • 
N' 

This proves that x ~ U(x)fO is strongly continuous, and since 

L 00 (d~J.) is dense in L2(du) , we get that U(x) is a strongly 

continuous representation of N with a cyclic element 0 • That 

V(x) is also a strongly continuous representation follows from 

results proved by Hegerfeld t, see theorem 3. 3 of ref. ( 12], 3). 

0 
Definition 2.2 

For any representation (U,V) of the Weyl commutation rela­

tions over N on a Hilbert space Jt, we get a representation 

(U, V) of the Weyl commutation relations over N on d8 by 

U(x) = V(x) and V(x) = U(-x) • We shall call the representation 

given by (U,V) the Fourier transform representation, 

~ ~ 

We remark that U(x) = U(-x) and V = V(-x) so that the 

mapping (U,V) ~ (U,~) is periodic with period 4 • 

Corollary to Proposition 2,2 

Let M be a quasi invariant probability measure on N' such 
1 

that diJ.(S+x) = a(g,x)d~(g) for any x EN , then x _, a2 (s,x) 
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is continuous from N into L2(du) and x- a(s,x) is continuous 

from N into L1 ( d•.1) 

1 

Proof: By proposition 2.2, x - V(x)O = a2 (g,x) is strongly 

continuous. Horeover 

J l .:L 2 r.:L .:L 2 
~ la2 (s,x)+a 2 (s,y)i d!J.• j la 2 (g,x)-a 2 (s,y)j diJ. 

~ 4-J iat(s,x)-at(s,y) 12 diJ. (g) • 

This proves the corollary. 

Definition 2.3 

We say thut a q_uasi invariant probability measure 1-1 E dZ(N') 

is ergodic iff the only functions f E L
00

(du) which are invariant 

with respect to translations by arbitrary elements x E N are 

the constant functions. 

\'le remark that an obviously equivalent definition is that \.l 

is ergodic iff all the N invariant measurable sets in N1 have 

u-measure zero or one. 

We say that a representation (U,V) of the Weyl commutations 
;; relations 
is irreducible iff the only bounded operators that commute with 

all U(x) and V(x) , x E N , are the constants. 

Proposition 2.3 

A q_uasi invariant probability measure iJ. E ~(N 1 ) is ergodic 

if and only if the representation of the Weyl commutation rela­

tions on L2 ( d!.1) given by proposition 2.1 is irreducible. 

Proof: Let F be a bounded operator that commutes with U(x) , 

then F is given by the multiplication by a function F(s) E L
00 

(diJ.). 
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If F commutes with V(x) , then F(s+x) = F(s) so that F is 

invariant under N • Hence if the representation is irreducible, 

the measure is ergodic and viceversa. 0 

Proposition 2.4 

Let (U,V) be an irreducible representation of the Weyl 

commutation relation over N on a separable Hilbert space Jt 
such that x ~ U(x) is a strongly continuous representation of N. 

Then there is a quasi invariant probability measure !.!. E d{, (N 1
) 

such that (U,V) is equivalent with the ~epresentation (U 1 ,V 1
) 

(U 1 (x)f)(s) = ei(x,s) f(s) and 
I 1 

v (x)f(t;) = z(s,x)dl"(s,x)f(s+x) 

on L2 (d~) , where z(s,x) is a measurable function on N1 such 

that , for almost every g , lz(g,x) I = 1 and 

z(s,x+y) = z(s+x,y)z(s,x) 

and z(s,o) = 1 • 

Proof! This proposition is an easy consequence of Theorem 6.2,2 

and its corollary in ref. 0 

The following corollary is immediate: 

Corollary to Proposition 2,4 

Let (U,V) be an irreducible representation of the Weyl 

commutation relation over N on a separable Hilbert space Jt , 
such that x ~ U(x) is strongly continuous, then there is a 

cyclic element 0 for the representation of N given by U(x) • 

Definition 2,4 Vle shall say that a probability measure \..l E A,(, (N' ) 

is Lp-differentiable iff it is quasi invariant and for the corre­

sponding a(s,x) = d\..l(s+x)/d\..l(s) we have that i<a(s,tx)- 1) 
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converges strongly in 1P as t ~ 0 • We shall say that it is 

weak 1P-differentiable if 1 t;(n ( s, tx)- 1) converges weakly in 1p 

as t ~ 0 • 

Remark: In the finite dimensional case we have that a quasi 

invariant measure is of the form p(x)dx for p(x) E 1 1 • Then 

a(x,y) = p(x+y)/p(x) so we see that in the finite dimensional case 

the definition above amounts to the strong or weak 1 1 differenti­

ability of the function p(x) 

Now, if \J. E vU (N') is 1 1-differentiable, then 
1 

~ ll(s)·x s(s)•x t ( n ( s , tx) - 1 ) in the 11 norm and the derivative 

is then obviously a linear function from N into 1 1 (d"-) ' and 

we denote this linear function by f:l(s) • Since in the finite 

dimensional case it is actually given by (2.16), which was the 

osmotic velocity, we will also in the general case call it the 

osmotic velocity. 

Definition 2. 5 We shall say that a probability measure !-1 E v£0 (N ~ 
first order 

has regular/derivatives iff it is quasi invariant and in the 

representation (U,V) of the Weyl commutation relations given 

by }l by proposi tior. 2,1 we have that 0 is in the domain of Px 

for all x E N , where Px is the infinitesimal generator of 

the unitary group V(tx) in L2 (d!-l) • 

Proposition 2.5 

If IJ. E v(,L(N') 
first order 

has regularjderivatives, then !-1 is 1 1-

differentiable, and 2 Px 0 = ;3 •X where 13 is the osmotic velocity. 

first order Proof: That •J. has regular;cterivat ves 
1 1... 

with the condition that t(a 2 (!!;,tx)- 1) 

t ~ 0 • Now we have that 

is obviously equivalent 

converges in 1 2(du) as 



(2.35) 

and 1 
by proposition 2.2 we have that a..!l(s,tx) converges to 1 

in L2 (d~) • This then gives that the right hand side converges 

in 11 • We observe from (2.35) that i(Pxo)(s) = !f3(S)x , and 

this proves the proposition, 

Theorem 2,6 
I 

Let N c K c N be a nuclear rigging of K and let (U,V) 

be any representation of the Weyl commutation relations over N 

on a Hilbert space Je , such that x ~ V(x) is a strongly con­

tinuous representation of N • Let Px be the infinitesimal 

generator for the unitary group V(tx) , and u E df;' in the domain 

of Px for each x E N • 

Then the mapping x ~ Px•u is a continuous linear mapping 

from N into Jf:. , ... 

Proof: Set 

then 

YJ(x) = !I(V(x)- 1 )ul\ 

YJ(x+y) = !I(V(x+y)-1)u!l = IIV(x)(V(y)-1)u+ (V(x)-1)ull 

.::;. jj(V(y)- 1)ull + !I(V(x) -1)ull = YJ(x) + YJ(y) • 

So that YJ(x) is a sublinear function on N , i.e. 

YJ(x+y) .::; T](x) + T](y) • Now, since u E D(Px) we have that 

lim.!. '!](tx) = p(x) = !IPx•ull • 
t~o t 

(2.36) 

Since u is in the domain of Px for all x E N , we have that 

Px·u is linear in x and (2.36) then gives that p(x) is a 

semi norm on N i.e. 

p(x+y).::; p(x) + p(y) and p(Ax) = jAjp(x) • (2.37) 
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Since YJ(x) is sublinear we get that YJ(2x) < 2YJ(x) so that 

2YJ(!x) ~ YJ(x) cr 

(2.38) 

so that 
(2.39) 

Now, by assumption YJ(x) is continuous on N so that p(x) is 

lower semi continuous, But on any countable normed space a lower 

semi continuous semi norm is bounded in some neighborhood of zero. 

For this result see [ 5 J , 2) ) Chapter I, section 1 1 

theorem 1], Since I!Px•ul/ is bounded in some neighborhood of 

zero in N we have that x ~ Px•U is a continuous mapping from 

• This proves the theorem • 

Remark. It follows from the proof that it holds for any strongly 

continuous representation of any countably normed space. 

Corollary to theorem 2.6 

Let Jxlp, p = 1,2, ••• be the countable set of norms that 

defines the topology on N . Under the assumption of theorem 2,6 

there is a p such that x ~ Px•u is continuous in the norm 

JxJp, i.e. IIPx•ull < CJxJp where C depends only on p and u. 

Proof! This follows from the theorem and theorem 5 of Ch I, 

section 3.5-of ref. [~ J, 2). 

Proposition 2.7 
first orqer 

Let ~ E .~(N') be a probability measure with regu~ar;derl-

vatives. Then there are a p and a C such that, for n in the 

induced representation (U,V) of the Weyl commutation relations, 
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and the osmotic velocity s(s)•x is a continuous function from 

KP into L2 ( d!..l) , where KP is the Hilbert space with norm I I p 

and N = n K 
p p 

Proof: This proposition is an immediate consequence of the theorem 

and its corollary above. 

Proposition 2.8 

Let 1.1 E Jl, (N' ) 
first order 

be a probability measure with regularjderi-

vatives, Then there is a measurable function 
I I 

i3:N -oN such 

that the osmotic velocity 13(S)•x is given by (x,~(s)) • 

Proof: This follows from proposition 2.7 and the Abstract Kernel 

Theorem (ChI, section 3, theorem 3 of ref. [5] ,2)). 0 

We shall now call the function 13 : l'T
1 

_, N 1 the osmotic velo­

city and i3(s)•x = (x,S(s)) the component in the x-direction 

of the osmotic velocity. 

We want now to solve the stochastic differential equation 

d s ( t) = 13 ( g ( t) ) d t + dw ( t ) , (2.40) 

i.e. to find a stochastic process with values in l'T
1 which solves 

(2.40), where w(t) is the standard Wiener process on N' given 

by the nuclear rigging I 
NcKcN • Of course we here must first 

introduce the standard Wiener process, but let us first recall 

some facts of Harkov processes. 

A homogeneous stochastic process on a measure space X may 

be described completely in terms of its transition probability 

Pt(s,dYJ) , where for any measurable set A c X we have that 

(2.41) 



is the probability for the process s(t) to start at the point s 
be at the time t 

in X and/in the set A c X , so that, for fixed t , Pt(s,d~) 

is a measurable function from X into the set of probability 

measures on X • Moreover one usually assumes Pt(s,d~) to be 

measurable from Rx X into u1r&(X) • 

The condition for the corresponding process to be a r1arkov 

process is the Chapman-Kolmogoroff equation, namely that 

(2.42) 

The transition probability Pt(s,d~) induces by (2.42) a semi­

group on C(X) and a dual semigroup on clbi(X) by, for f E C(X) 

(2.43) 

and, for \l E u1!l (X) • 

(2.44) 

For a more detailed account on the theory of f1arkov processes 

see ref. [2.] > (5o) ( Ch. XIII). 

We shall take X = N' where N' is the dual of a nuclear 

space in a nuclear rigging N c K c N' of a separable real Hilbert 

space K Let us now define P~(O,d~) by the equation 

- ~(x,x) 
e (2.45) 

The existence of a unique P~(O,d~) E ut'l,(N') is secured by the 

Minlos theorem, since the left hand side is a positive definite 

continuous function on N (x,x) is the inner product on K • 

P~(s,d~) is then defined as the 

so that P~(s,d~) = P~(o,d(~-s)) 

translate by s of P~(O,d~) , 
/by (2.45) 

and,the transition probability 



- 25 -

I 
is translation invariant on N Since 

- ~(x,x) 
e is a semi-

group under multiplication we have that the corresponding measures 

P~(O,d~) form a semigroup under convolution, and due to the trans­

lation invariance, (2.42) only says that P:+t(O,d~) is the con­

volution of Pt(O,d~) with Ps(O,d~) , whioh as already observed, 

is true, This proves that the corresponding process w(t) is 

actually a ~1arkov process which we call the standard Wiener process 

on N
1 given by the nuclear rigging 

I 
NcKcN • 

w(t) is in fact the process studied by Gross, but for the 

fact that Gross prefers to study it relative for Banach rigging 
I 

B c K c B • This is possible since it easely follows that w(t) 

actually takes values in a dual Banach space B 1 such that 

K c B 1 c N 
1 

• For the work of Gross see the references[ 'J J, 1)! [51]. 

Having defined the standard Wiener process w( t) on given 

by the nuclear rigging N c K c N1 we shall proceed to solve the 

stochastic differential equation (2.40). 

We introduced earlier the space F1 of functions f such 

that f(s) = f(ES), where E was an orthogonal projection in K 

with finite dimensional range in N and f(x) for x E EK was 

in 1 0 (EK) • For such functions we may consider the gradient 

(Vf)(s) , which is then a continuous mapping from N
1 

into (EK)* 

and s~nce EK is naturally self dual, we may consider Vf as a 

mapping from Nl into EK • For f and g in F1 there is a 

common E of finite dimensional range in N so that f(S) = f(ES) 

and g( s) = g(Es) ' and we then denote by ('lf·Vg)( s) the inner 

product in EK of 'ilf(s) with 'I'} g( s) • 
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D~ftlli.tion 2.6 

We shall say that Jl has bounded regular first order deri­

vatives if Jl has regular first order derivatives and the compo­

nents of ~ are bm.LDded functions in N' i.e., for any x E N , 

~(s)x is a bounded measurable function. 

We have now the follo~Ting theorem 

Theorem 2.9 

Let N c K c N' be a nuclear rigging of a real separable 
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Hilbert space K and let \.1 be a quasi invariant probability 

measure on N' with regular derivatives. Then the form I Vf. \1g dU. 

defined for f and g in F1 is closable in L2 ( d•.l) • In fact 

if ( ' ) is the inner product in L2(dl.1) there is a symmetric 

operator H defined on 1!'2 such that for f and g in F2 

( f' Hg) = I if f . v g d\.1 

and for f E l!'
2 

(Hf)(S) = -t-r(s)· ..... f3CO·Vf(s) 

where f3(s) is the osmotic velocity._ 

Moreover the corresponding closed form gives us a self adjoint 

non negative operator Hind&= L 2(du.) with 0 = 1 as an eigen­

vector with eigenvalue zero. We call H the diffusion operator 

generated by 1.1 , Furthermore, if 1.1 has bounded derivatives, 

contraction semigroup -tH e is a Markov then the corresponding 
-tH semigroup, i.e. e has a positive kernel in L2 (d\.1) . This 

Markov semigroup then defines a stochastic Markov process in N' 

v1i th invariant measure 1.1 • 

Proof~ We know that, since u. has regular derivatives, 13(s) 

is a continuous function from N into L2(du.) and f(s) = f(Eg) , 

where E is an ortho.gonal projection in H with finite dimensional 

range in N • We have seen already that such projections extend 

by continuity to projections from N' into li • Therefore 

(17 f) ( s) is a continuous bounded function from N' into EK c N 

so that s- f3(s)Vf(s) is in L2 (d\.1) • JV!oreover,since f E F2 , 

n 2~ 

we have that ~f =.~ 1 ~, where xi= (ei,g) and e 1 , ••• ,en 
J.- (lX. 

J. 

is an orthonormal base in EK c N and f(g) = f(x 1 , ••• ,xn) , 
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where f E c2 (Rn) : Hence l::.f E F c C(N') , so that for f in 

F2 , which is den<Je in L2 (d\-l) , Hf =- llf-f)(s)·'Yf(g) is in L2 • 

Hence H is a densely defined symmetric operator. Let now f 

and g be in F2 and let E be a projection with finite dimen­

sional range in N so that we have both f(s) = f(Es) and 

g(s) = g(E s) , Then 

r Vf•'il'g d~ =.£ f lim t(f(s+tei)- f(s)) • ..21L(s)d\-l 
N • ~=1 t ... o oxi 

which by dominated convergence is equal to 

n 
2: limJ-t1(f(s+te.)- f(S)). ~(g)d!J. 

i=1 t->O ~ oXi 

and by quasi invariance of 1-l this is equal to 

n 
+ 2: 

i=1 
limJI(g) -M.<s) t(a(g, ... te~-1)dl-l. 
t->o ~ 

By the assumption that g E F2 the first term converges to 

-Jt llg d:J by dominated convergence, and by proposition 2.5 

t(a(s,tei)- 1) converges to f!(S)ei strongly in L1 , which 

implies that the second term converges to -Jff)'Vg d•--1. Hence we 

have proved that for f and g in F2 

( f, Hg) = J '17 f • V g du • ( 2. 46) 

From (2.46) we also get that H is symmetric and non negative 

on the domain 2 
F • Hence the form is closable and its closure 

defines a self adjoint operator which we ~hall also denote by H , 

which then actually is the Friedrichs extension of -ll -fl·'V on 
_,1_ 

So that D(H 2 ) is exactly .the domain of the closed form. 
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We have obviously that O(~) = 1 is in F2 so that 0 E D(H) 

and HO = 0 . Hence the spectrum of H starts with an eigenvalue 

at zero, and e-tH is a symmetric contraction semigroup which 

leaves 0 invariant. That, under the assumpt;ion of bounded 
first order derivatives for hi , e -tH has a: positive kernel, 
any f and g non negative in 12 ( dhl.) v1e have that 

( -tH ) fO, e gO > 0 , 

regular 
i.e,for· 

(2.47) 

is proven in the following way. Let ei E N be an orthogonal 

base in K and let Hn be the Friedrichs extension of the form 

11 
= E Je.·Vf ei·\7gd\.l.• 

i=1 ~ 
(2.48) 

Then Hn is given on F2 by 

where Vnf = Pn Vf, Pn is the orthogonal projection onto the 

subspace of K generated by (e1 , ••• ,en} and [;, = " •'11 • n n n So 

that (2.48) is actually closable and the Friedrichs extension 

exists. Moreover we have obviously that Hn ~ Hm for n < m 

and Hn ~ H for all n • So that Hn forms a monotone sequence 

of self adjoint operators bounded above by H • Moreover for any 

f and g in D(Hi) , i.e. such that f and ~~ E L2 (d~) and 
i 

co f of 2 = E I- I du < cc . 1 ox. 
~= ~ 

and the same for g , we have obviously that 

n -
= E J of .2.1L du 

. 1 "X· oX. ~= () ~ ~ 

converges to (f,Hg) =.'; J ~~. ~~. d~A(s) • 
~=1 ~ 1 
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This is actually a consequence of the Schwarz inequality on the 

space L2 (d~;K) • Using then the theorem on convergence from 

below of symmetric semibounded forms (Theorem 3.13, Ch, VIII 

Ref. [ ] ) we get that (z- Hn)-1 converges strongly to 

(z- H)-1 for z i [0, co] • Hence we have resolvent convergence 

which by the semigroup convergence theorem (Theorem 2,16, Ch IX 

) -tHn Ref. [ ] implies that e converges strongly to 

hence that 
-tH -tH 

(f,e n g) ~ (f,e g) 

-tH e 

-tH 
as n ~ co • That (f,e n g) has a positive kernel follows 

immediately from the fact that N' = PnK $ N~ where N~ is the 

annihilator in N' of PnK c N , so that d~(~) = d~(x,s 1 ) on 

th d t N' -- PnK x N1' • e pro uc measure space " Now we have by the 

quasi invariance of ~ that 

(2.49) 

= 

so that a(~ 1 ,x)~J(x,s 1 ) is translation invariant in x, and 

since PnK is finite dimensional we have 

(2.50) 

where dx is the Lebesgue measure on PnK • So that 

(2.51) 

Consider now the correspondence 

(2.51) 

which gives a unitary correspondence between L2 (d~) and 
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L2(d;.l 1 X dx) , Identifying PnK with Rn we have that L:2(di.l1 X dx) 

is the direct integral £= JJes
1 

d;l 1 (s 1 ) where J8 g
1 

= L2 (Rn) , 

Now the correspondence (2.52) takes the form (2.48) onto the 

direct integral of Sturm-Liouville forms 

Hence we have that is the direct integral over 

the Sturm-I,iouville form 

N' 
1 of 

(2.54) 

in L2 (Rn) , The closability of this form for 1.! 1 - almost all s1 

follows from the fact that the direct integral (2.53) is closable, 

In fact, since (2,53) is given by a self adjoint operator H n 

we have that (2,54) is given by a self adjoint operator Hs for n 

1.!1 - almost all s1 • The positivity of the kernel.for 

-tHS n e n in L2 (R ) follows from the assumption that the components 
of fl are bounded by Stroock-Varadhan' s work on diffusion processes 
in Rn , see Ref, [ 3 ] 12), In fact from their work we get that Hn is es­
sentially self-adjoint and generates a strong Markov process, 

-tH 
This implies then that e n has a positive kernel and therefore 

that e -tH has a positive kernel. This Markov semigroup P t = e -tH 

then defines a stochastic Markov process in N' with invariant 

measure i.l which then proves the theorem. 0 

In what sense the l'larkov process s(t) defined by theorem 2,9 

actually solves the equation 2,40 will be discussed later, 
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Proposition 2.10 

Let \.1 be a quasi invariant probability measure •..1 E JU (N' ) , 

then there is a standard Borel measure space (Z,dz) and a 

measurable mapping i..lz from Z into u1~(N') such that i..lz is 

quasi invariant and ergoc.ic for almost all z E Z and 

\.1 = J l.lz dz 
z 

Proof: Let L~n(d\.1) be the closed subspace of L
00

(d\.l) of 

functions f such that f(s+x) = f(s) for all x E N • L~(d\.1) 

is obviously closed under multiplication so that it is a commuta­

tive C*-algebra. Hence by the Gelfand representation thoorem 

L~(d\.1) ~ C(Z) , moreover d\.1 restricted to L~(d\.1) defines 

a positive continuous linear functional on C(Z) which again 

defines a measure dz on Z • Since Lin(du) is weakly closed 
co 

in L2(d!..l) we have that C(z)· is weakly closed in L2(dz). Hence 

-c(Z) = L
00

(dz) , so that in particular all measurable sets,. in Z 

are open. The represents tion of \.1 by J i..lz d z follows from this. 
0 

This proposition together with proposition 2.3 gives us a 

decomposition of the corresponding representation of the Weyl 

commutation relation (U,V) as a direct integral over irreducible 

representations. Namely for de= L2 (d!-l) and Jez = L2(d1J.z) 

(2.55) 

and 
(U,V) (2.56) 

Theorem 2.11 

be a quasi invariant probability measure with regular Let \.1 
first order 

/derivatives on N ' relative to a nuclear rigging N c K c N' and 
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let H be the self adjoint operator on d£ = L2 (du) of theorem 2.9. 

Let Je
0 

be the eigensubspace of J.8 corresponding to the eigen­

value zero of · H • Then f E JC
0 

if and only if f E L2 ( diJ.) and 

f(s+x) = f(s) for all x EN • 

In particular 0 is a simple eigenvalue with eigenvector 

o(s) = 1 if and only if 1..1. is ergodic, which by proposition 2,3 

is the case if and only if the representation of the Weyl commu­

tation relation (U,V) is irreducible. 

In fact there is a natural isomorphism of J6
0 

with L2 (Z) 

where Z is given in proposition 2,10. The direct integral re­

presentation (2.55) gives a direct integral representation also 

of H , in fact 

H = J Hz dz , 
z 

where each Hz has the unique lowest eigenvector 

L2 (d!-lz) and 

og(s) = 1 

in c~e._ = z 

(f,Hzg)z = Jvi•vgd!..l.z 

for all f and g in D(Hz) c ~ 

of the measure 1-1 = J !..l.zdz is the 

Moreover the decomposition 

N-ergodic decomposition of 1..1. • 
z 

In particular 1..1.z 1 J. 1..1.z
2 

for z 1 I z2 • 

Proof~ Let x E N and f and g .: -·. ~ F is the self 

adjoint operator given by the closable form 

where x·'Vf is the derivative in the direction x of f • 

We have obviously for f E F2 that 

(2.57) 

(2.58) 

Hence the same inequality must hold for the closure of these forms. 

Now, if f E d8
0 

, then 
1 

f E D(H) c D(H2) 
.1. 

and H2 f = 0 • 
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Hence f is in the domain of the closed form (2.57) and 

(2.59) 

for arbitrary x EN • Hence (x•Vf)(~) = 0 for all s , which 

gives that f(s) = f(s+tx) for all t • Hence f(g) = f(~+x) 

for all x E N • On the other hand let x be the characteristic 

function for an invariant set A of measure different from zero 

and one. Then by proposition 2,11 

jections onto two subepaces and 

and x2 = 1 - x1 are pro­

which are actually given 

by 

where 

df,i = J Xi(z)J£'z dz, 
z 

of Xi 
is the image/by the mapping uti-

lized in the proof of proposition 2,11, Hence we have the non 

trivial decomposition £ = £ 1 r£J Jf:2 which immediately gives rise 

to the non trivial decompositions H = H1 r£J H2 , and 0 = o1 ~ o2 , 

where in fact oi(s) = xi(s) • and 01 as well as 02 are • by 

the decomposition H = H1 tB H2 • in J{;O • Hence we see that there 

is a natural one to one correspondence between characteristic 

functions in L~(d\-l) and elements in £
0 

, This immediately 

extends to a one to one correspondence between L2(dz) and ~0 
by the identification used in proposition 2.11 of L2 (dz) with 

the closure of L~(df.l) in L2(d•J.) • The rest of the theorem 

follows immediately from earlier results. 0 

Theorem 2,12 

Let 1-l be a quasi invariant probability measure on N' • 

If i.l. has weak L2-derivatives, i .. e. if t ( o. ( g , tx) - 1 ) converges 

weakly in L2 (d\-l) for each x E N , then 1-l has regular first 

order derivatives. 
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1 Proof: Since i(a(g,tx)- 1) is weakly L2-oonvergent, it is uni-
.b. 

formly bounded in L2 , and since a 2 (g,tx)+ 1 > 1 we have that 

(2.60) 

is uniformly in L2 • Now by the corollary to proposition 2,2 
l 

we have that a2 (g,tx) congerves strongly to 1 in L2 (d~) , 

so that 

(at ( s , tx) + 1) - 1 - ~ = - ~( o_t ( g , tx) - 1) (at ( g, tx) + 1) - 1 ( 2. 61 ) 

and since (at(g,tx) + 1)-1 ;;:: 1 we get that (at(g,tx)+ 1)-1 

converges strongly to ~ in L2 (d~) • Hence (2,60) also con-
1 verges weakly in L2 (d~) , tpat is t(V( tx)- 1 )O converges weakly 

in dC = L2 ( d•J.) to some limit u E Je , Then 0 must be in the 

domain of the adjoint (Px)* of the infinitesimal operator Px • 

This is so because for v E D(Px) we have that 

so that 

(v,u) = lim {<v, (V(tx)- 1 )o) 
t->O 

= lim {<v(-tx)- 1 )v,o) 
t .... o 

(v,u) = i(Pxv, O) (2.62) 

which says that (Px v, O) is a continuous function of v , i.e. 

o E D(Px)*) • But since V(tx) is a strongly continuous unitary 

group , Px is self adjoint so that 0 E D(Px) , i.e. ~ has 

regular derivatives, This proves the theorem. 0 

Remark. By this theorem we then have that the conclusions of 

proposition 2.8, theorem 2.9 and theorem 2,11 hold under the con­

dition of weak L2-derivatives instead of regular derivatives. 

In fact, we have the implications 

weak L
2
-derivatives => regular derivatives => strong L1-derivatives. 
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D~iJ:?.ition 2.z 
A homogeneous process 'l'](t) on some measure space (X,dv) is 

called ergodic if for any measurable sets A and B both vlith po­

sitive measure, v(A) > 0 and v(B) > 0, there is some t > 0 

such that 

Pr('l'](O) E A & 11(t) E B} > 0 • 

Lemma 2~13 

Let s(t) be a homogeneous self adjoint l"larkov process on a 

measure space (X,d~) such that ~ is an invariant measure. Then 

s(t) is ergodic if and only if O(s) ~ 1 is the only eigenfm1ction 

corresponding to the eigenvalue zero of the infinitesimal generator. 

Remark: If s(t) is a process so is s(-t) and lve call s(--1;) 

the adjoint process, and \'Te say that s(t) is self adjoint if r;(t) 

and s(-t) are equivalent processes. 

PE22Lof lemma 2.13 Let P t ( s, 11) be the transition probabilities 

of r;(t), i.e. P-~;(s,'ll) is the kernel of e--I;H, the semigroup 

generated by the process. Assume that s(t) is not ergodic. Then 

there exist two measurable sets A and B with positive ~-measure 

such that 

(2.63) 

for all t > 0' where XA and XB are the characteristic func-

tions for A and B • Let now A1 be the union of the supports 

of -t~ e A for all t > 0 i.e. 

A1 = u supp e-tHXA • (2.64) 
t>o 
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Let A2 the complement of A1 , we then have that 

-tH for all t • Let now At be the support of e · XA • 

By the positivity of e-sH we have that 

supp e-si~ c supp e-(s+t)~ 
At- A 

so that 

( -sH ) XA , e X A. = 0 
2 t 

(2.65) 

(2.66) 

(2.67) 

for all s and t • Hence by taking supremum over t > 0 we then 

get 

for all s ;:: 0 , 

from which it follm1s that 

-sH 
e XA. = XA. 

l l 

To see this we use the fact that 

since XA + XA = 1 , (2.70) together '~ith (2.68) give 
1 2 

(xA ,e-s~A ) = (xA ,xA ) 
1 2 1 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

and since H ;:: 0 vie get from the spectral resolution theorem that 

XA is an eigenvector with eigenvalue zero of H • 
1 

Let us nov1 assume that o1 and o2 both are eigenvectors of 

eigenvalue zero of H • Let us assume (o1 ,o2 ) = 0 • Then 

(o. ,e-sHo.) = (o. ,o.) 
l l l l 

and by the positivity of -s!I e -

(2.72) 
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but since H > 0 w·e then have 

( 1o.j ,e-sH[o. I) ~ On. I, lo.l) (2.73) 
l l l l 

and by spectral resolution we get that I Oi I are eigenvectors of 

eigenvalue zero. 

Now in case we do not have already that both o1 and o2 are 

proportional to l01l and 1°21 ' 1·1i th positive proportionality 

factors, then for i = "1 or 2 we still have that joi I :!: oi are 

t~lO positive eigenfunctions which are orthogonal. If both 01 and 

o2 are proportional to !o1 1 and !o2 1 , with positive proportion­

ality factors,then lo1 1 and lo2 1 are two orthogonal positive 

eigenfunctions. In any case we see that if there are t~1o eigen­

functions 1'/ith eigenvalue zero, we may find two positive orthogonal 

eigenfunctions. 

So let now o1 and o2 be tv/0 positive orthogonal eigenfunc­

·!;ions 1'lith eigenvalue zero. Then obviously for all t > 0 

0 • 

Let A. be the support of 
l 

oi ' then by positivity 1'/e also have 

for all t ~ 0 • Hence s(t) is non ergodic. 

This proves the lemma. 

Theol'em 2. ']L!-

N' ' 

Let 11 E 

such that 

Jft(N') be a quasi invariant probability 
;bounded 

11 has regular/derivatives. Let s(t) 

measure on 

be the 

Markov diffusion process ·!;hat is generated by 11 , relative to the 

nuclear rigging N c K c N' • Then s(t) is ergodic if and only 

if 11 is ergodic in the sense of definition 2.3. 

Proof: This theorem is an immediate consequence of lemma 2."13 and 

theorem 2."11. 
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3. Perturbations of symmetric diffusion processes 

Let now N c K c N' be a real nuclear rigging of the real 

separable Hilbert space K and 1-1 a quasi invariant probability 
bounded first order 

measure on N' withjregularjderivatives and let H be the infini-

tesimal generator in L2 (d!-l) for the corresponding diffusion pro-

cess. H is the diffusion operator given by 1-1 • 

Let V(s) be a real measurable function on N' such that 

is essentially self adjoint and bounded below. Consider novl for 

k < 1 

(3.2) 

<vhere 

k if V( S) < k 

vk,l(s) 
"' if k .::. vc s) < l - (3.3) 

l if vc s) > 1 • 

Let vk(S) "' lim vk• 1 c s) and 
l-< <Xl 

Hk lc 
1 "' H + V • (3.4) 

ive have obviously that converges monotoneously to as 

l _, = . Hence by the theorem on convergence from bel01v of symmetric 

semi bounded forms (Theorem 2.13, Ch VIII, Ref. [27) ,1) \ve get that 

-tH~'l 
strong lim e 

l-><Xl 

k -tH1 
= e • (3.5) 

On the other hand converges monotoneously to H1 

as k ..., -<Xl • From \·Thich it follows that the corresponding resol­

vents converge monotoneously, so that 

-tH~ -tH1 strong lim e "' e (3.6) 
1->-<Xl 
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Now e-tH has a positive kernel and by Trotter's product 

formula 

(3.6), 

that 
-tH1 e 

theorem. 

Theorem 3.1 

[ 
_ tH _ tyk,l]n 

= st lim e n e n 
n -+oo 

(3.7) 

-tH~'l 
e has a positive kernel. Hence, by (3.5) and 

has a positive kernel. VIe have thus the following 

Let H be the diffusion operator given by ~ and let V be 

a measurable real function on N' , where N c K c N' is the muclear 

rigging •. If 

is essentially self adjoint and bounded below, then 

non negative kernel. 0 
has a 

H1 is assumed to be bounded belovr, but contrary to H it 

need not have any eigenvectors. If however, its spectrum ends in 

an eigerrva.lue, this eigenvalue must, under weak regularity conditions, 

have at most the same umotiplicity as the corresponding eigenvalue 

zero of H vrhich in the precise meaning of theorem 2.11 was the 

same as the number of irreducible components in the representation 

of the commutation relations induced in L2 (d~) • VIe have in fact 

the following theorem. 

Theorem_ 3. 2 

If H1 = II+ V is essentially self adjoint, then the decompo­

sition of theorem 2.11 

L2 (d~) = J L2 (d~3 )dz , 
z 
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1·1here 1-1 = J 1-lz dz is the N-ergodic decomposition of 1-1 , is a 

direct decoMposi·cion also of V 

V = J V z dz 

as well as of 

Moreover 

is essentially self adjoint for almost all z • 

Proof : From theorem ( 2 • '1 '1) we have that H = J Hz dz 1 ivhere Hz 

is the diffusion operator generated by the measure 

1-1 = J 1-lz dz is the N-ergodic decomposition of 1-1 , 

1-lz • Since 

\ve have that 

11 .L. 11 for z .L z so that the direct decomposition also ,_.z"j ..-z2 '1 F 2 ' 

reduces V , because V is the multiplication by a measurable 

function V(s) • From this it foll01vs that H '1 is reduced, and 

that each component is self adjoint and also equal to the 

closure of Hz + Vz for almost all z • This proves the theorem. 

0 
In view of theorem 3.2 we may restrict our considerations to 

the case v1here 1-1 is N--ergodic or, equivalently, to the case Hhere 

zero is a simple eigenvalue of H , and in this case we have the 

following theorem: 

fuE?oreP!_ ;;. 3 

Let H1 = H + V be essentially self adjoint and zero a simple 

eigenvalue of H • If there is an eigenvalue E1 of H1 such 

that H1 ~ E1 and r-r1 - V is essentially self adjoint, then E1 

is a simple eigenvalue of r-r1 • Moreover we may take the corres­

ponding eigenfunction to be positive almost ever;ywhere. 
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Proof: Let us assume that there are two eigenfunctions f and g 
-tH1 vri th eigenvalue E1 • Using now that e has a non 

negative kernel ,,,e may use the technique in the proof of lemma 2.13 

to construct tvro non negative and orthogonal eigenfunctions and then 

further on to prove that the process generated by H1 - E1 is non 

ergodic. Hence there are disjoint; measurable sets A and B of 

~ measure clifferent from zero and one,such that XA and XB give 

projections that reduce H1 • XA is the characteristic function 

of A • In fact if f and g are two positive orthogonal eigen­

ftmctions, we may take A and B as the support of f and g re­

spectively. 
itH1 Hence XA e so by 

'tH 
e1 xA 1 since obviously 

Trotter's product formula 

XA ei tV = eitV XA ' because 

both are multiplication operators. But then, since 

is an eigenfunction of eigenvalue zero of H , vve get that so is 

1 

XA • But ~(A) being different from zero and one, this is contrary 

to the assumptions. Hence there is only one eigenfunction. 

Let n01•1 A be the support of this eigenfunction. It follows then 

exactly as above that XA is an eigenfunction of H with eigen-

value zero. By assumption we must then have XA = 1 

the theorem. 0 
This proves 

Let us still assume that ~ is 

a simple eigenvalue of H • Hf , for 

Hf = - M - i3 ( s) • Y':r ( s) • 

N-ergodic 

f E F2 , 
i.e. that zero is 

is given by 

(3.8) 

Assume that H1 = H + V has an eigenvalue E1 such that H1 ?:. E1 , 

then the corresponding eigenfunction ~ of H1 must satisfy the 

equation, where i3 is the osmotic velocity for H, 
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(3.9) 

in a weak sense if V E L2 ( dll) • The we ale sense in which it is 

satisfied is of course that 

(3.10) 

for all f E F
2 • Let us normalize cp such that cp > 0 and 

Jcp2dll = 1 • Since cp is positive almost everywhere we also have 

that 

(3.11) 

which gives the relation in the weak sense between the function 

V-E1 and the eigenfunction cp • Since V is a multiplication 

with a measureable function we have that, for any f E F2 , 

[H1 ,f] = [H,f] = -217f•\7- Af (3.12)' 

on the domain 

Let us now assume that H1 = H+V is essentially self adjoint and 

that o1 = cpO is in D(H) as well as in D(V) , and that the 
2 first order 

measure dll 1 = cp dll has regular)lerivatives with corresponding 

osmotic velocity e1 • Let f E F2 then f0 1 is in D(V) since 

m1 E D(V) is equivalent with Vfcp E L2 (dll) • Now l!fl!-:o < rx:> and 

by assumption Vcp E L2 (dll) so that fo 1 E D(V) • Moreover by 

(3.12) we have 

(3.13) 

That is 

(3.14) 

and -llf-S1 ·17fEL2 (dll 1) sincethecoraponentsof 81 arein 

L2 (dll 1 ) by assumption. Hence, since o1 E D(H) so that if" H01 
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is well definedJwe have that fo1 E D(H) • 

Since now 1l(H1) :::> D(H) n D(V) we have therefore that 

f01 E D(H1) • But then again by (3,12) and (3.14) we have 

i.e. 

Hence 

(3.15) 

H1m1 = (-Lif+~f)o1 - ~ 1 ·Vf0 1 (3.16) 

coincides on F
2o 1 with the unique diffusion oper-

ator given by ll 1 • We have therefore the following theorem, 

Theorem 3.4 

Let ll be a quasi invariant, N-ergodic probability measure 
first order 

on N' with bounded regular/derivatives, Let V be measurable 

and in L2(d!l) such that H1 = H + V is essentially self adjoint 

with eigenvalue E1 Stfoh that H1 > E1 • Then the corresponding 

eigenfunction 
2 

is positive ll - almost everywhere,such that 

dJ.l1 = cp d!J 

vatives and 

and on 

is quasi invariant, If moreover ll1 
01 = cpO are in D(H) n D(V), then 

first order 
has regularjderi-
2 F 01 c D(H) n D(V) 

we have that H1-E1 coincides with the infinitesimal 

generator for the unique diffusion process generated by ll1 • 

VIe have also the following theorem 

Theorem 3.5 

Let the assumptions be as in the previous theorem. If in 

addition H1 = H + V is self adjoint i.e. D(H1) = D(H) n D(V) 

then H1 - E1 is the infinitesimal generator for the unique diffu­

sion process generated by ll 1 , 

Proof: By the previous theorem we have that if H• is the diffu­

sion operator generated by ll 1 , then H' coincides with H1 - E 1 
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2 on F o1 • Hence H' = H+V-E1 

is the Friedrichs extension of 
.l. 

on ' so 

on 

by definition H' 

F2o Hence the 1 

domain of H12 is exactly the elements for which the form 

makes sense as continued from From 

this it follows that 

.l. 
D(H 12 ) 2 D(H) n D(V) • 3. 17) 

Now if H1 = H + V is self adjoint we have that 

D(H1 ) ~ D(H) n D(V) , 3. 18) 

Therefore 

3.19) 

Now by a well known theorem ((27J; 1),Ch.VI,'l'h.2.11. wo have ·(;hat 

of all J.ower bounded self adjoint ex-t;ensions of the operator H1 - E1 
restricted to F2o · only the Friedrichs extension 

1 ' 
which has domain contained in the domain of the form i.e. in 

'· D(H•2) , Hence by (3.19) H1 is the Friedrichs extension. This 

proves the theorem. [] 
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These theorems then lead us to another type of perturbation of sym-

metric diffusion processes vrhich 

a quasi invariant measure on N' 

we shall now consider. Let l-1 be 
first order 

with regular/derivatives and let 

p(s) > 0 be a measurable function that is positive l-1 - almost 

everywhere such that dl.l' = pdl.l is a probability measure. Then 

l-1' is obviously quasi invariant, and let us now further assmne that 
first order 

l-1' has regular/derivatives. \o/e get then that the osmotic velocity 

p' for ~· is given in terms of the osmotic velocity P of ~ by 

P'(S)x = x•Y'lnp+P(s)·x, 
_) 

(3.20) 

and the assumption is then that S'(s)x E L2 (d~') • We see this is 
1 .1. 

the case if for instance llp 2 as vrell as p 2 !3 ( s) • x are both in 

L2(d~) • For such perturbations we have the following theorem. 

:rheor~~9 

JJet ~ and ~' be two equivalent quasi invariant measures 
first order 

on N' both of which have regular/derivatives. Let H and H' 

be the corresponding diffusion operators,then zero is an eigenvector 

of the same multiplicity for both operators. In fact there is a 

natural one-to-one isomorphism of the respective eigenspaces corres-

pending to the eigenvalue zero. 

;p:~·2.2£: By theorem 2.11 we have that the eigenspace for the eigen­

value zero is in a one-to-one correspondence v1ith the set of func­

tions in L~(d~) which are invariant under translations by elements 
L 

in N. Since by assumption ~·and ~· are equivalent, there is 

a natural one-to-one isomorphism between L2 (d~) and L2 (d~'), 
which takes N-invariant functions of L2 (d~) into N-invariant 

functions of L2 (d~'). This isomorphism then induces a one-to-one 

isomorphism of the eigenspaces of H and H' , to the eigenvalue 
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zero. This proves the theorem. [] 

still be a quasi invariant measure on N' 
bounded 

vTi th regulru\ JJet 1-1 
first order 

/derivatives and let now be the corresponding diffusion operator, 

and sl-l(t) the corresponding diffusion process. If 1-tn converge 

vleakly to some measure u then H .... H in the sense that for 
' ' 1-ln 1-l 

any f and g E F2 vre have ·t;hat (fon,HI-lngon) .... (fO,H!-lgO) • 

Vle do not lmovT however whether ~(t) converge weakly to s!-l(t), but 

\·ie shall see that if gi-l ( t) converge v;eakly to some J:Iarlcov process 
n 

tre n under slight regularity conditions this l"larkov process is the 

process ~;11 generated by HI-t • In fact vie have the follmving 

theorem. 

~h~_<J_reJJL2. 7 

Let 1-tn be a sequence of quasi invaria.r:tt probability measures 

on N', where N c K c N' is a nuclear rigging of a real separable 
bounde~irst order 

Hilbert space H, such that 1-tn has regula'r/derivatives and con-

verges\1eakly to a measure 1-1, where 1-1 is also quasi invariant and 
first order 

with regularjderivatives. 

Then for all f and g in F2 vie have that 

If moreover the osmotic velocities pn(s) of 1-tn h~ components 

uniformly bounded in L2 , i.e. for any x E N there is a ex > 0 

independe-nt of n such that 

j[pn(S)·xl 2d~-tn(s) < c~ 

then,for any f and g in F2 , E(f(sl-ln (O))g(sl-ln (t))) has a uni­

form bounded second Cl.erivative with respect to t • If moreover 

the process sl-l (t) convergesv.eakly to some process r](t) in the 
n 
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sense that the joint distribution measure of {s~ (t1 ), ••• ,s~ (tk)) 
n n 

converges vTeakly to { 1']( t 1 ),, •• , 11( tk)) for any k and any 

t 1 _:: ... _::tk then, E[(f(1'](0))g(1'](t))] is a twice differentiable 

function of t and 

for any f and g 

!1arkov process,then 

In particular if 1'](t) is a 

H =II 1'] ~ 
on F2 , \•There H

11 
is the infinitesi-

mal generator of 1'] • 

Proof. Since 

(£0 ,H gO ) = J IJf·~gd 
~n ~n ~n N' ~n 

(3.21) 

the first convergence is obvious. Since for f E F2 vTe have that 

is in D(H ) 
~n 

and 

n m = (-l'lf- f3 (s)'1f)o • 
~n~n n ~n 

(3.22) 

By the assumption on f there is a orthogonal projection PE of 

finite dimensional range E c N such that f(s) = f(PEs) • We 

then have 

\'There c. = c and e1, ••• ,ek is an orthonormal base of E in 
1. e. 

1. 
D2 D1 K and llfll') and llfll1 are the and norms of f respecti-

L. 

vely, where D2 and D1 are the Banach spaces defined in section 2 

below formula (2. 33). 1-Je see that the estimate (3. 30) is independent 

of n, so that 

(3.24) 

is continuously tvlice differentiable with a uniformly bounded second 
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derivative 

( 3.25) 

If Su (t) converge weakly we have in particmla.r that (3.24) con­
·n 

verge and the limit is E[f(TJ(O))g(f](t))] • Since the second deri-

vative is uniformly bounded the first derivatives 

-tH 
-(H fO.., ,e Un 

un '"'n 
(3 .26) 

converge uniformly to the first derivative of the limit. This 

gives us then that 

.At E If ( fJ ( 0) ) g ( fJ ( t) ) Jit=O = ( fO , H gO ) • 
UL U !_! ll 

( 3 .27) 

Now assume that TJ(t) is a Markov process. Then by the convergence 

of the processes s -. rt and their invariant measures u .... u we see 
1-ln n 

that TJ(t) is homogeneous with invariant measure u , and sincethe 

are symmetric under time reflection so is Hence the 

infinitesimal generator Hfl of fJ is a positive self adjoint 

operator in L2 (du) with o(x) ~ 1 as an eigenfunction of eigen-

value zero of Hfl • Hence 

-tH 
E(f(TJ(O))g(TJ(t))) = (fo,e flgo). 

From (3.27) we then get that 

theorem, 

= H u on 

( 3.28) 

This proves the 
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4. The Euclidean Markov fields as diffusion processes 

The free Euclidean I'larkov field in d+ 1 dimensions is the 

generalized random field ~(x) on Rd+ 1 such that 

( 4.1) 

where 
(4.2) 

and d+1 

$(p) = (2n)- ~f eipx ~(x)dx , (4.3) 

and m > 0 is a constant called the mass of the free Euclidean 

Markov field. If d = 0 or 1 we have to take m > 0 in order 

for (4.2) to be well defined. The right hand side of (4.1) is 

obviously a continuous 

nuclear Schwartz space 

on its dual S'(Rd+1 ) 

positive definite function on the real 

S(Rd+1) so that (4.1) defines a measure 

, i.e, the space of tempered distributions 

on Hence the generalized random field ~(x) is a random 

field of tempered distributions, 

It is well known that ~(x) is a Markov field, but we shall 

not need that here. 

However let cp E S(Rd) , then (cp&o,.)(i,t) = cp(x)•o(t-,.) 

is in the Sobolev space Jl/_1 , in fact 

where 

( ) f ( ~2 2)~ 1 ~<~) 2 ~ cp ,cp ..1. = P +m 2 cp P .I dp 
-., d 

R . 
(4.5) 

with 

~ ~ 

cp(p) 
d 

= (2n)- ~Je-ilix cp(x)dx. 
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From (4 .• 1) we get that 

(4.6) 

definite 
Hence since the right har.d side of ( 4.6) is a positive /continuous 

function on the real nuclear space S(Rd) we have that the con­

ditional expectation of the measure with respect to the a-algebra 

generated by functions of the form (f,~0 o
1

) exists and defines 

a measure on The corresponding random variable with 

values in s'(Rd) we have already denoted by s(x,t) , Hence 

t ~ s(i,t) is a stochastic process with values in S1 (Rd) , 

Let now ~J,0 E M(s'(Rd)) be the probability measure whose Fourier 

transform is given by (4,6) , i.e. , 

(4.7) 

where (s,~> is the dualization between S 1 (Rd) and S(Rd) • 

1).
0 

is then a Gaussian measure on s'(Rd) and we see easely that 

it is quasi invariant with respect to translations from S(Rd), 

in fact if 

a.(g,cp) = 
d'to ( s+cp) 

Cli:lT~T 0 

(4.8) 

then 

a.(s,cp) 
-(~,cph 2(w:p, s> 

(4.9) = e 2 e 

where 
~(~) (~2 2)~ ~(~) I!XP P = P +m 2 cp P 

and 

From (4.9) it easely follows that 

(4.10) 

first order 
~0 has regular;derivatives 

and that the osmotic velocity ~(s) is given by 
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(4.11) 

which is obviouPly in L2 (d<J.) • 

It is well known that t ~ g(x,t) is a Markov process in 

s'(Rd) We shall see now that this process is the diffusion 

process given by the nuclear rigging 

(4.12) 

first order 
.and the quasi invariant measure 1J.

0 
with regular jderi vati ves in 

the sense of theorem 2,9. We formulate this in the following 

theorem 

Theorem L~. 1 

Consider the nuclear rigging 

and the measure 1J.
0

E vfbt(s'(Rd)) given by 

-l(cp,cp)-1,. 
= a 2 

first order 
Then l.l.o is quasi invariant with re&ularjderivatives and the 

diffusion process given by u
0 

and the nuclear rigging by theorem 

2. 9 is the free Euclidean llfarkov field in d + 1 dimensions. 

Proof: 

Since the free Euclidean Harkov field induces a Markov process 

t ... g(x,t) on s' (Rd) , we have only to show that this process 

has the same infinitesimal generator as the diffusion process 

given by theorem 2.9. 

By (L~.1) vle have that 
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(4,13) 

where 

(4.14) 

_, J->2 2 where w(p) = · p +m Taking the deri va ti ve of ( l~, 13) with 

respect to t at t = 0 we get 

(4.15) 

From this it follows that for f and g in Fi(s'(Rd)) we have 

that 

- ~ J f ( S ( 0) ) g ( S ( t) ) d•1 ( S ) = J V'f ( S ( 0) ) • Vg ( S ( 0) ) d!-1 ( S ) 1 ( 4, 1 6) 

which proves that the infinitesimal generators coincide on F2 . 

Noreover let e -tHo be the semigroup genera ted by the free Euclidean 

Markov field, then we have the following well known formula 

. < ) . ( -tw ) e-tlb: el g,cp : = : e l g,e cp : (4.17) 

where 
(4.18) 

Hence the linear span of J(s,cp) for cp E S(Rd) is invariant 

e -tH (d ) under the semigroup "o and it is obviously dense in L2 1-1 

therefore it is a core for the infinitesimal generator H
0

• 

Now this core is obviously contained in F2 which proves the 

theorem. 0 
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Now in one space dimension i.e. d = 1 the perturbations of 

the free Euclidean Markov field by local interactions of different 

types have been intensively studied, For simplicity we shall here 

restrict our attention to the polynomial interactions. So let 

p(s) be a real polynomial of one real variable s such that p(s) 

is bounded below. Moreover let p(:::n) be the closed subspace of 

L2 (d~0 ) generated by polynomials of degree at most n on S' 

i.e. by functions of the type (c?1 's) ••• <Ci)c· s> 
are in S(R) and If; E s I (R) and k < n • Let 

orthogonal complement of P (:;:n-1 ) in P (_:::;n) • 

Let us now define for any h E L2(R) 

: sn: (h) = r: g(x)n:h(x)dx 
R 

as the unique element in p(n) such that 

where Cil1 • • .. • Cf>tc 
p(n) be the 

(4.19) 

n 
= n!J •• J n G(y.-x)~.(y.)h(x)dy.dx, . . 1 l l l l 

l= 
(4.20) 

where 
1 J 2 2 _L jpx G(x) = ~ (p +m ) 2 e · dp • (4.21) 

R 

Since the projections of <~1 ,s) •.. (Cjln,s) on P(n) obvi­

ously span a dense subset of p(n) , (4.19) gives us a densely 

defined linear functional on p(n) , In fact this linear func-

tional is bounded in as much as its square norm may be computed 

to be 

(4.22) 

which is finite since G(x) has only a logarithmic singularity. 

In fact since G(x)n is in L1(R) (4,21) is finite for any 

h E L2 (R) • 
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we define 

:p: (h) = 
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2n 
= E a sk 

k=o k 
(4.23) 

(4.24) 

for any h E L2 (R) , and since P(i) are orthogonal for different 

i we have that (4.23) is an orthogonal sum in L2 (d1J
0

) • In par­

ticular we have that 

2 2n 2 JJ k ll:p:(h)l! 2 = E ~ k! G(x-y) h(x)h(y)dxdy. 
k=o 

(4.25) 

Let now H
0 

be the diffusion operator generated by 1-1
0 

and the 

real rigging S(R) c L2 (R) c S•(R) VIe have seen that H
0 

is 

the infinitesimal generator of the Markov process given by the 

free Euclidean Markov field, 

Let Vk(s) be the real function in L2 (d1J
0

) given by 

(4.26) 

where is the characteristic function for [-1,1] and p(s) 

is a real polynomial which is bounded below. It is well Jr..nown, 

see for instance ref. [23] 3) that 

(4.27) 

is essentially self adjoint and bounded below and has an isolated 

simple eigenvalue E1 such that H1 ;;: E1 . The corresponding 

eigenfunction g1 (s) may be chosen positive 1-1
0

- almost every-

where, The measure 

(4.28) 

is therefore equivalent with 1-lo , hence quasi invariant with re-

spect to translation in S • n (x) = 1 
0 
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Lemma 4,1 

Let cp E S(R) and Pep the intinitesimal generator for the 

one parameter unitary group of translations by tcp in L2 (d~0 ) 

Then i[Pcp,H1 ] is a densely defined operator whose closure is 

given by 

where p' is the derivative of p and x1 the characteristic 

function for [-1,1] • 

£!22f: The proof follows immediately from the fact that 

i[Pcp,H1 ] is the derivative at t = 0 of eitP~1eitPcp = 
where 

and 

with 
1 

J :(~+cp)n(x): dx = 

-1 

'l'he or em 4. 1 

k : ( S+cp) (X) : dX , 

0 

(4.29) 

(4.30) 

(4.31) 

first order , 
~l is a quasi invariant measure on S•(R) which has regular'\, 

derivatives, Moreover the components of the corresponding osmotic 

velocity s1 have L2 (d~1 ) norms which are bounded uniformly in 

1 if the coefficients of 1 are small enough. 

Proof: Let cp E S(R) , then !31. cp is equal to twice the deriva-

tive of eitPcp0 1 at t = o, if it exists, so that f3l•cp is in 

L2(d~-tl) iff Ill E D(Pcp) and 

(4.32) 
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Now 

(4.33) 

so that 

Hl-El+C -1 
Pcpo1 =- Hl-El (H1 -E1 +C) [Pcp,H1 ]o1 (4.34) 

But (H1-E1+C)- 1[Pcp,H1-E1 ]o1 is in the range of H1-E1 , hence 

orthogonal to o1 , Now, for fixed C > 0 , (H1-E1 +C) (H1-E1 ) - 1 

is bounded in norm on the complement of o1 by a constant that 

depends only on the dtstance m1 from E1 to the rest of the 

spectrum of H1 , This distance m1 is called the mass gap for 

H1 and it is wall known (see [36] that if 

all the coefficients of p are small enough this distance is 

bounded from balow by a positive constant, Hence in that case 

(H1-E1+C)(H1-E1 )-1 is bounded in norm uniformly in 1 , Therefore 

I!Pcpo1 !1.:: c 11!(H1-E1+c)- 1[Pcp,H1 J(H1 -E1+c)-1o1 !1 (4.35) 

where c 1 is a constant that depends only on p 

lemma 4.1 it is therefore enough to prove that, if 

:p':(h)+(s,(-ll+m2)cp), then 

(Hl-El +c) -1 :p1: (Xl cp)(Hl-El + C)-1 

and C By 

:p1:(h) = 

(4.36) 

is norm bounded uniformly in 1 • But this follows from 

where c2 is independent of 1 

of the identity from ref. [34] , 

(4.37) 

This is proved by resolution 

We also remark that recently 

Glimm and Jaffe have proveu similar inequalities for the polyno­

mially interacting fields with Dirichlet boundary conditions [35]. 

From (4.36) we have that 

(4.38) 
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is a bounded operator with norm independent of 1 • Hence (4.35) 

is bounded with norm independent of 1 , This proves the theorem. 

0 
Now it follows from ref, [ 36 ] that if the coefficients of 

p are small enough then the process s1 (t) converges weakly to 

a process s(t) ' however it is not known whether s(t) is a 

Markov process, 

Consider now for f and g in F2 (S•) 

(4.39) 

which by the results of ref. [ 36 ] converge to 

(fo,e-tHgn) = E(r(g(o))g(s(t))J, (4.40) 

where H is tne physical Hamiltonian. 

By theorem 4.1 and theorem 3.7 we have that (4.39) is twice 

differentiable with respect to t and the first derivative con­

verges uniformly to the first derivative of (4.40). Hence we have 

in particular that lll converges weakly to a measure 1-1 which is 

actually the physical vaccuum 0 restricted to the time zero fields 

i.e, 

(4.41) 

Now from (4.36) it follows by standard method [3?, [23], 3) 

(4.42) 

and from lemma 4.1 that 

(4.43) 

first order 
Hence in the same way as for 1-11 we get that 1-1 has regular/de-

rivatives in particular that l..l is quasi invariant. Therefore 
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we have the following theorem, 

Theorem 4.2 

Let ~ be the physical vacuum restricted to the time zero 

fields as defined by (4.40). Then ~ is a quasi invariant mea-
first order 

sure with regular/derivatives, Moreover the physical Hamiltonian 

H restricted to F2o coincides with the diffusion operator gene­

rated by ~ , by theorem 2.9. 

Proof: This follows by what is said above and theorem 3.6. 

been 
Remark: Bounds of the form (4.37) and (4.41)have/resently proved 

also for the Dirichlet boundary conditions on the fields "by Glimm 

and Jaffe [35] • Hence theorem 4.1 and theorem 4,2 will also 

hold for the Dirichlet boundary conditions and their infinite 

volume limits, which also exist, by the method of Nelson [38~, for 

arbitrary even polynomial p • In this case there is no smallness 

condition on the coeffisients of p • 
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