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Abstract If f{u.] 1is a strongly continuous one parameter group
of unitaries on a Hilbert space 38 , there is a unigque selfadjoint
operator h on R , the infinitesimal generabor, such that wu. =
exp ith for all +t €IR . The operator A = exp h, defined by
spectral theory, is positive self-adjoint. Roughly speaking, A
is the analytic continuation of u. to the point 2 =-1 .

In the case of a strongly continuous one parameter group of iso-
metries on a Banach space one still has an infinitesimal generator,
Recently also the analogue of A has been defined and is called
the analybtic generator [2]. Implicitly this operator has played
an important r6le in the Tomita-Takesaki theory for von Neumann
algebras [12,14,15,16].

The spectrum of the infinitesimal generator is always real and
one would expect, as in the case of unitaries, that the spectrum
of the analytic generator would always be positive. After all,
intuitively speaking, the analytic generator is the exponential
of the infinitesimal generator. In this paper we give an example
to show that even in fairly normal cases this is not true in gene-
ral. In our example the whole complex plane is in the spectrum.
We apply this result to obtain an example of two unbounded opera-
tors, both of which have positive spectrum, but such that the
Banach space tensor product with respect to a certain cross-norm
also has the whole complex plane in its spectrum.
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1. The analybic generator

Let 3 be a Hilbert space. By B (%) we will denote the set of
all bounded linear operators in d ., Tt is well known that A (R)
is the dual of a Banach space which is uniquely determined up %o
isometric isomorphism. It is called the predual of ® () and
it can be identified with the Banach space of all trace class ope-
rators in 3R . The o-weak topology on (3 (3Q) is the weak topo-
logy induced by %he predual, i.e. the w*-topology on B (R) as

a dual space, (3,81,

Let [ut , t€ R} be a sbrongly continuous one-parameter group of
unitaries on 3 . For any t € R we define a linear operator 2

on B(R) by
at(x) = u;;xut

Clearly every Cy is disometric and o-weakly continuous. More-
over {G't , t € R} is a one-parameter group of isometries and it is

o-weakly continuous in the sense that for all x € ®(IR) +the map
t ek - O:.t(x)

is continuous with respect to the o-weak topology on @B () .

For such groups one can define an "analytic generator” as follows

L2l.

1.1 Definition The analytic generator of the group {o, ,t € R}

is an operator A on @B (R ) whose domain D(A) consist of
8ll elements x € (3(3%) for which there is an operator valued
complex function F.  defined on the strip -1 < Imz <0,

bounded and continuous on this strip, analytic in the interior,



and such that
Fx(t) = u_b(x) for all t €RR .

Of course (B (&R ) is considered here with its o-weak topology.

Remark that such a function must be unique, because if there
were two such functions, having the same value on 1R, the
difference would vanish on IR, one could use the reflection
principle and obtain a function defined and analytic for

-1 <Imz <1 and zero for Im z = 0 ., Such a function must

be zero.

Therefore given ¥ € O(4) one can define A(x) by
A(X) = FX(‘“i) &

It is immediately clear that ) (A) is a linear space and

that A dis linear on &L {(4) .

Roughly speaking the analytic generator A is the analytic exten-
sion of .y to the point 2z =-~1 ., This is easily seen in the

following examples.

1.2 Bxamples. In the definition of A we have not used the ex-

plicit form of the Cp We could as well have taken the unitary
group {ut} on 3¢ itself, with the norm topology, to obtain

an operator which we will denote by A . It is not hard to
verify that in this case A = exp h where h is the infinite-
simal generator of {ut] in the sense that U = exp ith for
all t €IR ., In particular A 1is a positive non-singular self-

adjoint operator on 3@ and ug = A for a1l b em .

In the case where the infinitesimal generator h of {ut} is



bounded it is clear that u,  has an analytic extension to all
of €, namely exp izh . Bubt then QD(A) = B () and for
any x € B(3) we will have

FX(Z) - euthdceth

go that A(x) = ePxel = 47 xn o

Cioranescu and Zsido [2] have proved that the operator A is o-
weakly closed and that 1ts domain is o-weakly dense (in fact in a
much more genersl situation). In this particular case the o-weak
density of & (A) can casily be obtained from spectral theory
(see also section %), The closedness of A is more difficult to
obtain, however the weaker condition that A is closed in the norm
topology on (B (32) follows in an easy way from the maximum modu-
lus principle for the strip. The proof of this fact is the easy
part in Cioranescu's and Zsido's proof of the o-weakly closedness

of A . We include it here for complelteness.

1.5 Proposition The operator A is closed in the norm topology

on R(I) .

Proof ILet {x, } be a sequence in PDA), and x and ¥y
operators in B(32) such that

i) X, ° X

ii) Alx) -y
both in the norm topology.

Then with the notations of 1.1 we have
liFXn(t)—FXm(t)ll = fog () - o (x DN = Nz, - %Ml -

On the other hand, from the uniqueness of the analytic extension,

it is easy to see that a € eD(A) implies a%(a) € D(A) for



all t €k and
F(6-1) = A(a(a)) = a (A(a))

Then

1

[P, (t-i)~ Fxm(twi)ﬂ oy (A0, )) = & (G D]

n

1t

IXCIOETICII I

From the maximum modulus principle for the strip [7] it now

follows thak

gy ()= F, (2] < mae Ly gl 4 IAGe) = AGID

for all =z in the strip 8 = {z€¢€| Imz €[-1,0]].

S0, from the assumptions on X the functions Fx form a
cauchy sequence uniformly on this strip S and the?efore con-
verge uniformly to a function F defined and bounded on B .
Cleaxrly I’ will also be continuous on and analytic inside the
strip with respect to the o-weak topology since I 1is the

uniform limit in the norm topology of such functions and the

norm topology is stronger than the o-weak topology.

Now as F(:) =lim F (t) =1jmlmt(xh) - at(x) we have that
11
% € D(A) and T = F, . Tinally A(x) = F(-i) =1limF (-i) =
i3}
1imA (x,) =¥ .

This proves that A is closed in the norm topology on B () .



2, The spectrum of the analybtic generator

For the examples 1.2 it is very easy to locate the spectrum of
the analytic generator. In the case of the unitary group {ut}
the analytic generator A is positive selfadjoint and therefore

its spectrum o(A) is conbtained in R’ .

In the second example one can show that o(A) = G(A"q)c(ﬂ); from
spectral theory it is not difficult to obtain that at least
c(A) D G(A“q)o(ﬁ) . To obtain the other inclusion one can argue

as follows. We define two operators A, and A, on BER) by
Ay(x) = N Ay(x) = x4 .

then A = Aqug while A,E and A2 commute. Then we know thal

o(h) GCAq)oG(Ag) . Now one can eagily verify that o(A1)== o@fq)

Thus one night expect that o(A) < R* in general, after all
roughly speaking A i1s the exponential of the infinitesimal gene-
rator which always has real spectrum as we are working with iso-

metries.

We will now proceed to show that in genersl one will not have that
o(4) © R" . In fact in our example o(A) = ¢ . All this is close-
ly related to a counterexample in [16] where the question of the

spectrum came up.
We will deal with a very specific example.

2,71 Notation Tet 3R be the Hilbert space cﬁg(R) of (equiva-

lence classes of) sguare integrable functions on IR with respect

to Lebesque measure. For the group of unitaries we will take



the translations. So
(0 8)(8) = &(s-t)
where & € 0(2(]’.{) and s,t € IR .

It is well known that the {ut} defined in this way form a

strongly continuous one-parameter group of unitaries on R .

Now we are going to debermine certain operators in the domain
D (L) of the analytic generator of the group {at} associated to

the group {ut} as in section 1.

For any g € J;xglR), the bounded measurable functions on R ,
there is a bounded operator Mg in B3 (®R) such that

(1,8)(5) = &()5(s)
where € € J:g(]R) and s € R . Moreover IIMgH = sl where

llell.. is the essential supremum of g .

We will now give a sufficient condition for an operator of the

form Mg with g € J:m(l%) to be in the domain L(A) of A ,

2.2 Temmna Let g: R - C be bounded and continuous, and sup-

pose that g has a bounded and continuous extension g to the
strip 8 = {z€€ | Inz€ [-1,0]} which is analytic inside 8,

then Mg € D(A) and

AQm,) = Mgﬁi

where g“i(t) = g(t-1) for t €I .

Proof For each 2z € § let g? denote the function defined

by
g%(t) = g(t+2z) for all & €W .



Then define F(z) =M This is possible because every g”

gz’
is bounded since g is bounded on S .

We claim that F(t)

[

at(ﬂg) . Indeed

il

(at(I‘Ig)%)(S) (u¥rM_u, € )(s) = (P'Igut §)(s+t)

t' gt

il

g(s+5)(u 8)(s+t)

13

g(s+t)E(s)
g’ (=)E(s)

(Mgtg)(s)

i1

where & € J,(R) and t,s € R,
\ = = B o
So at(Mg) Mgt (t)
Wext ||F(z)l| = nMan = [lg%|l which is uniformly bounded in

z € 8 as g was assumed to be bounded on S .

Clearly P(-~i) = M _3 - S0 it suffices to proof that F is

continuous on S and analytic inside S .

Since the o-weak and weak topology coincide on bounded sets
[3,8] it is sufficient to show that for any pair &,,8, € J,(R)

the function

+CO
2 €8 = (P(2)8,8,) = | B(t+2)8,(6)E,TEat

is continuous and that it is analybic inside S .
The continuity follows from the continuity of g, the bounded-
ness of g and the dominated convergence theorem. The analy--

ticity can be proved from Fubini's theorem and Morera's theorem.
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As in this case o(A) = R" it is not so hard to show thatb
o(4) D JR* . In fact using the previous lemma one can easily see
that R" Cc Po(A) where Po(A) is the pointspectrum of A .

However we prove more

2.3 Temma Po(A) = RV,

Proof. Define a function g(t) = exp(irt) for A fixed in R
and © € IR , Then clearly g satisfies the conditions of the
previous lemma and g(z) = exp iz . Then

g () = §t-1) = et g(t)
and therefore

AM )Y =M . ="M
g8 g”
showing that R c Po(4) .

To prove the converse inclusion take ) € € and assume the

existence of x € oQ(A) such that = £ 0 and A(x) = Ax.
Then Fx(ﬁ) = at(x) and Fx(tui) = a%(A(x)) =h.at(x) =XJEKCE).

If A =0 this would imply Ex(tmi) = 0 for all ¢t € R which
again by Schwartz reflection principle would yield F_ =0 and

X-':Oo
So A £ 0 and we may put A = exp(atbi) with a,b € R .

Define  G(z)

il

exp(-~iaz) . FX(Z) for z in the strip S .

Then G(t-1)

11

exp(-iat) exp(-a) exp(a+bi)FX(t)

l:

exp(bi) G(t) .

Clearly ||G(z)|| < max {1,exp(-aImz)} ||[F(z)|| so that also G
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is wniformly bounded on the strip 8 .

Then using the relation G(t-1) = exp(bi) G(t) the function G
can be extended periodically, "twisted' with the factor expbdi,
%o a function analytic over € and still bounded as | exp bil=1.
Then it has bo be constant so that either G 13 identically
zero, or exp bi =1 and X = expa € R" . However G = O

would imply F = 0O and x = 0 which is a contradiction. This

proves the lemna,

2.4 Remarks  From the proof of the lemma we see that if A(x) =

(expa)x with x #0, then x = FX(O) = exp(~-iat)FX(t) =

exp(—-iat)oct(x) so that
a.t(x) = exp(iat)x

which was to be expected.

The fact that Po(A) © R’ was implicitly used in [14,15]

The more difficult part however is to show that also € (0,
€ o(A) . To do this we first define an analytic branch of the log

function.

Define log z = lnlzl +1argz where Iarg zJ <7 ., 8o this func-
tion is defined and analytic except for =2 negative real. Wix

o €¢ and take 0O < e <1 . Then define functions 'é;'e by

ge(z) =-log(z-i) + log(z~ie) - alog (z+i+ie) + alog (z+21)

These functions are defined and analytic for ~e-~1 < Imz < €.

Denote the restriction of g, to R by g, .
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2.5 Lemma  The funotiohs g, are bounded on IR and sgatisfy

the conditions of lemma 2.2, so that Mg € oD(A) .
€

Moreover HA(ME; ) oM, | remains bounded as € - O while
M - 00
I |

In pavticular - € o(hd) .

Proof. To show that g, satisfies the conditions of lemma 2.2
we have to verify that ge is uniformly bounded on the strip

= {z€¢|mz€ [-1,0])

Now |g.(z)] < lTn[szlel | + la] llnlzf';?ie |+ 2u(1+|a])

and if now Imz € [-1,0] +this function remains bounded at in-
finity. (This is the reason why we had to add the additional

terms without the ¢ ),

Then ge(t—-i) +ag () = ~log(t-21i) + log(t—i-ie)
~-a log(t-i) +& log(t-ie)
- & log(t+ie) +o Log(t+i)
- aalog(t+i+ie) ol log(t+2i)

2 2
la.I )1ln L -+2ﬂ(1+[c:[‘)2

t2+(1+e)2

8o lgg(t-i)+a g(b)] < (3+
< (’1-:—lu.l2)ln2+2n(’1+|a.|)2

If we call this last nunber N then we have that

A, d+aM, |l <N forall O0<e <1
g, g =

while on the other hand

2 2
5)] > % in et el in (Bt L om
lee (0] 2 3 10 tre o n(t +(1+e) )= Crrleben

and g lle > llnel - la]in2 - 2n(1+]al)
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so that [|M, || = llgllc = « when ¢ - 0.
Se

This completes the proof.

So we have obtained the following result.

2.6 Theorem With the notations 2.1 and definitions 1.1 we

have o(A) = ¢ while Po(A) = RV,

Remark In a forthcoming paper it will be shown by Zsido that in
general either o(A) = € or o(d) € ]R+, he will also give other
examples for which o(A) = @ [17]. We would like to thank Prof.

Zsido for discussions concerning this material,

5. The tensor product case

The previous example can be used to show that even under nice sgitu-
ations the tensor product of two operators with positive spectrum

can have the whole complex plane in its spectrun.

Let X and Y be two Banach spaces, and let A and B be two
bounded linear operators on X and Y respectively., If X @ Y
is the completion of the algebraic tensor product of X and Y
with respect to some uniform crossnorm, there is a unique bounded
linear operator A ® B on X ® Y such that (A®B)(x®y) =

Ax ® By for all x € X and y € Y . Moreover J[a®B| = j&] |IBf .
L9

To find the spectrum A ® B one considers A®B = (A®@1)(1®B)
where 1 denotes the identity operator both on X and Y, and
gince one can show that o(A®1) = o(A) and o(1®B) = o(B), it
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follows from the fact that A ® 1 and 1 © B commute that

o(A®B) € o(A) o(B) ,

In fact Brown & Pearcy [1] have proved equality when X and Y
are Hilbert spaces, and X @ Y +the Hilbert space tensor product,
vhile Schecter [11] has extended this result to Banach spaces and

any uniform reasonable cross norm. See also [5].

In the unbounded case the situation is quite different. It has
been considered by Ichinose [5] and by Simon and Reed [6], As was
remarked by Ichinose, in general it is not to be expected that
o(A€B) = o(A) o(B) hecause the product of two closed sets need
not be closed., Make his example with o(A) =N and o(B) =
{n"q,ne N} so that o(A) o(B) = §° which is not closed. Then
one might expect that o(A®B) = o(A) 0(B) . In the same paper
however an example is given of two operators A and B such that

o(A) = {0} and o(B) = N while o(A®B) =C ,

In Ichincses example A and B are operators on Hilbert spaces,
B selfadjoint but A nilpotent. To prove that o(A®B) = € he
uses a result due to Taylor on operators with non-empty resolvent
get, [13]). We will now give an other example based on our previous

results,

Therefore 1et JR be a Hilbert space, and {ut} a strongly con-
tinuous one parameter group of unitaries. Let & be the unique
non-gingular positive self-adjoint operator on R such that

z).it-—-ut for all t € I]; .

LY
Denote by 3R the conjugate Hilbert space of J , i.e. the set

with addition as in 3R but new scalar multiplication end scalar



-

product defined as

(A,E) ECx3:® - )&
(g,m) e xR - (M

Then {ut} as well as A may be considered as operators on Ef
because # and R coincide as sets. Clearly also on ' we will
have that {ut} is a strongly continuous one parameter group of
unitaries, and that A is a positive non-singular self-adjoint
-1t

operator. However on 32‘ we will have up = A instead !

!
Now let 22® 3 denote the algebraic tensor product of JR and
n
3¢, If x e B(HX) and vy = 2 g en; € WX we denote
1=

n
<¢QX> = iEq(X gi,ni> °

Clearly <{¥,x) is bilinear and one can show that

yil = sup |{¥,x)
ol ”X”gﬂ ¥,%x |

defines a uniform cross norm on gg ® IR (9] and we will let

¥ & 3 denote the completion of R ® IR with respect to this
norm. Then we have identified (B () as the dual spase of
R 3&‘, see also [10].

Now we define «g on @3(3%) as before, and an operator, denoted
by A ® 2V on R* o3¢ by

Dos™) = (4=

1

oM

10y |8 € Be)ny eP (a7

-1 o -1
and (A®@87 )¢ = B AL @0 0y

1=

We then have the following lemma

3,1 TLemma The analybic generator A of {a%} is contained in

the adjoint of A ® 2,
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Proof. Teb x € D(A), and & € D), n € DL .
Then by the definition of A there is a complex function I
defined, bounded and continuous on the strip S = {z€C,

Tmg € [-1,0]}, analytic inside and such that

£() = (o GOE,m), £(-i) = AG)E,N)

Now (at(x)g,ﬂ) = (uézfut £,1) = <xut g,utTD, So (at(x),§®19
= {x,u, §@u. M .

Because & € gD(A) and 1 € éb(Amq) and because A dis the
analytic generator for u, on R end 51 is the analytic
generator for u,  on a%‘ we have that there are vector valued
functions p and g on the strip 8, bounded and continuous

on B8, enalytic inside S and such that
p(t) = u. 8 a(t) = u.n
p(-i) = A ¢ a(-1) = a1 q

By uniqueness of analytic extensions we must have that
£(z) = {x,p(z)®q(z))

so that in particular

/]

A8, = £(-1) = (p(-1)@q(~1)) = {x, 88847 1)

1

(x,(A® s Nyeen)) .

Then the following is an casy application.

3.2 Theorem With R and u, as in section 2 we have

a(aes™™ = ¢ .

/'

Proof. Denote A, the adjoint of A ® A as an operator on

(B(®) . Then OCAébﬂ“q)w U(Aq) {4}, By the previous lemma
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/’ a

But as A is an extension of A lemma 2.5 is still valid

1

for A, so that G(Aq) = (0 .
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