Serre [5] proves the following duality theorem:

Let X be a compact complex manifold, $\dim X = n$, and let W be a holomorphic vector bundle on X, and W^* the dual bundle of W. Then the vector spaces $H^{p,q}(X,W) = H^q(X,\mathcal{O}^p(W))$ and $H^{n-p,n-q}(X,W^*) = H^{n-q}(X,\mathcal{O}^{n-p}(W^*))$ are (canonically) dual to each other, in particular, they have the same (finite) dimension.

To prove this, he resolves the sheaf $\mathcal{O}^p(W)$ of germs of holomorphic p-forms with coefficients in a holomorphic vector bundle W in two (fine) ways:

$$0 \to \mathcal{O}^p(W) \to \mathcal{L}^{(p,0)}(W) \xrightarrow{\delta} \mathcal{L}^{(p,1)}(W) \xrightarrow{\delta} \cdots \to 0$$

$$0 \to \mathcal{O}^p(W) \to \mathcal{D}^{(p,0)}(W) \xrightarrow{\delta} \mathcal{D}^{(p,1)}(W) \xrightarrow{\delta} \cdots \to 0,$$

where $\mathcal{A}^{(p,q)}(W)$ is the sheaf of germs of \mathcal{C}^∞-forms of type (p,q) with coefficients in W, and $\mathcal{D}^{(p,q)}(W)$ is the same kind of distributional forms.

Thus one can calculate $H^q(X,\mathcal{O}^p(W))$ from either sequence. Since $\mathcal{D}^!$ is dual to $\mathcal{A} = \mathcal{C}^\infty$, this is a natural procedure. The above result is a consequence of the well-known Grothendieck lemma, and of the fact that if $T \in \mathcal{D}^{(p,0)}(U)$, U open in \mathcal{O}^p, satisfies $\partial T/\partial \bar{z}^j = 0$ for $j = 1, \ldots, n$, then T is a holomorphic function.

Concerning the Grothendieck lemma for distributions, Serre refers to a paper of Dolbeault [1], in which this distributional Grothendieck lemma is stated. However in this paper Dolbeault gives no proof, but says that this is an unpublished result of Grothendieck.
We propose to give a proof of the distributional Grothendieck lemma below. The proof is modelled on the method in Narasimhan [4]. According to Narasimhan, this is the method of Grothendieck, as exposed by Serre. We also prove the statement about the distribution \(T \) above, and this proof is a generalization of the 1-dimensional proof in Gunning [2].

We first need the following lemma.

Let \(L', K, L \) be compact subsets of \(\mathbb{R}^s, \mathcal{C}, \mathcal{C}^n \) respectively. Denote by \((t, z, w) \) points in \(\mathbb{R}^s \times \mathcal{C} \times \mathcal{C}^n \). Let \(g \in \mathcal{L}'(U) \), where \(U \) is an open subset of \(\mathbb{R}^s \times \mathcal{C} \times \mathcal{C}^n \) containing \(L' \times K \times L \), and suppose \(\partial g/\partial \overline{w}^k = 0 \) for \(1 \leq k \leq n \), where \(w = (w^1, \ldots, w^n) \). Then there is a distribution \(f \in \mathcal{L}'(U') \), where \(U' \) is some open set contained in \(U \) and containing \(L' \times K \times L \), such that \(\partial f/\partial \overline{w}^k = 0 \) for \(1 \leq k \leq n \) and \(\partial f/\partial \overline{z} = g \) in \(U' \).

Proof: For simplicity, we assume that \(s = 0 \), as this does not affect the proof. We may also suppose that \(g \in \mathcal{C}'(\mathcal{C} \times \mathcal{C}^n) \), since we can multiply \(g \) by a \(\mathcal{C}_c^\infty \) function having support in \(U \) and being equal to 1 in a nbh. of \(K \times L \), and then consider \(g \) in this last nbh. Thus we assume \(g \) is a compactly supported distribution in \(\mathcal{C} \times \mathcal{C}^n \). The proof is somewhat technical, and we divide it into three parts:

I) A statement needed to define a distribution \(f \) in II).
II) Define \(f \) and prove that \(f \) is a distribution.
III) Show that \(f \) is the distribution we seek.
I) For \(\varphi \in C^\infty (\mathbb{C} \times \mathbb{C}^n) \), let \(\tau_{\alpha} \varphi \in C^\infty (\mathbb{C} \times \mathbb{C}^n) \) be the translation by \(\alpha \in \mathbb{C} \times \mathbb{C}^n \), thus \((\tau_{\alpha} \varphi) (z,w) = \varphi((z,w)-\alpha) \).

If \(\varphi \in C^\infty_c (\mathbb{C} \times \mathbb{C}^n) \) and \(\xi \in \mathbb{C} \), put \(h(\xi) = \langle \xi , \tau_{(\xi,0)} \varphi \rangle \). Then \(h \in C^\infty_c (\mathbb{C}) \), and we have \(\frac{\partial h}{\partial \xi}(\xi) = -\langle \xi, \tau_{(\xi,0)} \frac{\partial \varphi}{\partial \xi} \rangle \).

We check this: If \(0 \neq t \in \mathbb{R} \), then \(\frac{h(\xi+t)-h(\xi)}{t} \)

\[
\frac{\tau_{(\xi+t,0)} \varphi - \tau_{(\xi,0)} \varphi}{t} \rightarrow \frac{\tau_{(\xi+t,0)} \varphi(z,w) - (\tau_{(\xi,0)} \varphi)(z,w)}{t} \quad \text{as } t \to 0
\]

\[
\lim_{t \to 0} \frac{\varphi(z-\xi-t,w) - \varphi(z-\xi,w)}{t} = - \frac{\partial \varphi}{\partial x}(z-\xi,w) = - (\tau_{(\xi,0)} \frac{\partial \varphi}{\partial x})(z,w),
\]

where \(z = x+iy \), with \(x, y \in \mathbb{R} \). Similarly, if \(0 \neq t \in \mathbb{R} \),

\[
\lim_{t \to 0} \frac{\tau_{(\xi+t,0)} \varphi(z,w) - (\tau_{(\xi,0)} \varphi)(z,w)}{t} \quad \text{as } t \to 0
\]

\[
= - (\tau_{(\xi,0)} \frac{\partial \varphi}{\partial y})(z,w).
\]

We now prove that \(\lim_{t \to 0} \frac{\tau_{(\xi+t,0)} \varphi - \tau_{(\xi,0)} \varphi}{t} = - \tau_{(\xi,0)} \frac{\partial \varphi}{\partial x} \) and

\[
\lim_{t \to 0} \frac{\tau_{(\xi+t,0)} \varphi - \tau_{(\xi,0)} \varphi}{t} = - \tau_{(\xi,0)} \frac{\partial \varphi}{\partial y}, \text{ for } t \in \mathbb{R}, \text{ that is that}
\]

these limits hold in the Fréchet space \(C^\infty_c (\mathbb{C} \times \mathbb{C}^n) \).

Consider the first limit. Let \(m \) be a non-negative integer and \(A \) a compact subset of \(\mathbb{C} \times \mathbb{C}^n \). Denote for the moment by \(D \)
a differentiation monomial in the real coordinates of \(C \times \mathbb{C}^n \),
and by \(\| \|_{A,m} \) the semi-norm in \(C^0(\mathbf{O} \times \mathbb{C}^n) \) given by \(A \) and \(m \), using monomials of order \(\leq m \). Then \(\| \frac{1}{t} (\tau(\xi + t,0) \varphi - \tau(\xi,0)\varphi) + \tau(\xi,0) \frac{\partial \varphi}{\partial x} \|_{A,m} \)

\[
= \sup_{\text{ord } D \leq m} \sup_{(z,w) \in A} |D(\frac{1}{t} (\tau(\xi + t,0) \varphi - \tau(\xi,0)\varphi) + \tau(\xi,0) \frac{\partial \varphi}{\partial x})(z,w)|.
\]

Consider for instance the case \(D = \partial / \partial u^k \), where \(w^k = u^k + iv^k \) with \(u^k, v^k \in \mathbb{R} \). Then \(\frac{\partial}{\partial u^k} (\frac{1}{t} (\tau(\xi + t,0) \varphi - \tau(\xi,0)\varphi) + \tau(\xi,0) \frac{\partial \varphi}{\partial x})(z,w) \)

\[
= (\frac{1}{t} (\tau(\xi + t,0) \varphi - \tau(\xi,0)\varphi) + \tau(\xi,0) \frac{\partial \varphi}{\partial x})(z,w) \frac{\partial \varphi}{\partial u^k}.
\]

Similar expressions hold for \(\partial / \partial v^k \), \(\partial / \partial x \), \(\partial / \partial y \), and other monomials \(D \). All these expressions tend uniformly to zero on the compact set \(A \) as \(t \) tends to zero. Hence the first limit expression in (2) above, and similarly also the second, is true. By the above expressions we therefore get, since \(g \) is continuous on \(C^0(\mathbf{O} \times \mathbb{C}^n) \), that \(\partial h / \partial \xi_1 \) and \(\partial h / \partial \xi_2 \) exist, where \(\xi = \xi_1 + i\xi_2 \) with \(\xi_1, \xi_2 \in \mathbb{R} \), and further

\[
\frac{\partial h}{\partial \xi_1} (\xi) = \langle g, \tau(\xi,0) \frac{\partial \varphi}{\partial x} \rangle \quad \text{and} \quad \frac{\partial h}{\partial \xi_2} (\xi) = \langle g, \tau(\xi,0) \frac{\partial \varphi}{\partial y} \rangle .
\]

This gives \(\frac{\partial h}{\partial \xi} (\xi) = \langle g, \tau(\xi,0) \frac{\partial \varphi}{\partial z} \rangle \), and also, when applied

several times,

\[
\frac{\partial^{\alpha + \beta} h}{\partial \xi_1^\alpha \partial \xi_2^\beta} (\xi) = (-1)^{\alpha + \beta} \langle g, \tau(\xi,0) \frac{\partial^{\alpha + \beta} \varphi}{\partial \xi_1^\alpha \partial \xi_2^\beta} \rangle .
\]

The last shows that \(h \) is \(C^\infty \). We must show that \(h \) has compact support. Choose \(R > 0 \) and a compact set \(B \) in \(\mathbb{C}^n \) such that \(\text{supp } g \cup \text{supp } \varphi \subset K_R \times B \), where \(K_R = \{ |z| \leq R \} \).

If \(|\xi| > 2R \) and \((z,w) \in K_R \times B \), then \(|\xi - z| \geq |\xi| - |z| = |\xi| - |z| > R \), thus \((z - \xi, w) \notin K_R \times B \). Hence \(\text{supp } g \cap \text{supp } \tau(\xi,0)\varphi = \emptyset \).
for $|\xi| > 2R$, and thus also $\langle \psi, \tau(\xi, 0) \psi \rangle = 0$ for $|\xi| > 2R$, which gives $\text{supp } h \circ K_{2R}$.

II) For $\psi \in C_0^\infty (C \times C^n)$, let $\langle f, \phi \rangle = -\frac{1}{4\pi} \int \frac{\langle e_{\tau(\xi, 0) \phi} \rangle}{\xi} \, d\mu(\xi)$, where μ is Lebesgue measure on C.

Then $\mathcal{L}(C \times C^n)$

We check this:

By I) $\langle f, \phi \rangle$ is well-defined. (ξ^{-1} is integrable over C).

Clearly, f is linear. To prove that it is continuous, it suffices to prove that it is continuous on $\partial_{K \times B}^\infty (C \times C^n)$, by properties of L^p spaces [Trèves [6]], where $K_R = \{ |z| \leq R \}$, B compact in C^n. We can also take $K_R \times B$ so big that $\text{supp } \psi \subset K_R \times B$, as in I) above. As in I) $\text{supp } \langle \psi, \tau(\xi, 0) \phi \rangle \subset K_{2R}$ for $\psi \in K_R \times B$. Introducing polar coordinates, (r, θ), on C, we get

$$\langle f, \phi \rangle = \frac{1}{4\pi} \int \frac{\langle e_{\tau(\xi, 0) \phi} \rangle}{\xi} \, d\mu(\xi) = \frac{1}{4\pi} \int_{K_{2R}} \frac{\langle e_{\tau(\xi, 0) \phi} \rangle}{\xi} \, d\mu(\xi)$$

$$= \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \frac{\langle e_{\tau(\xi, 0) \phi} \rangle}{\xi} \, d\mu_{e^{i\theta}}$$

$$\leq \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \langle e_{\tau(\xi, 0) \phi} \rangle \, d\xi \, d\theta \leq 4R^2 \langle e_{\tau(\xi, 0) \phi} \rangle$$

where $\langle e_{\tau(\xi, 0) \phi} \rangle$ attains its maximum on \{ $|\xi| \leq 2R$ \} $= K_{2R}$ at $\xi_0 \in K_{2R}$.

For $\xi \in K_{2R}$ we have $\text{supp } \tau(\xi, 0) \phi \subset K_3 \times B$, and the continuity of e gives for some constant $C > 0$ that $|\langle e_{\tau(\xi_0, 0) \phi} \rangle | \leq C \sup_{D} \sup_{D} \sup_{D} \text{D}(\tau(\xi_0, 0) \phi)(z, w)$, where D means
differentiation monomial in real coordinates of \(\emptyset \times \emptyset^n \), and the
D-sup is taken over monomials of order less then some integer, we have
\[D(\tau(\xi_0,0)\varphi) = \tau(\xi_0,0) (D\varphi), \]
and for \((z,w) \in \emptyset \times \emptyset^n\) we have
\[|\tau(\xi_0,0) (D \varphi) (z,w)| = |(D \varphi) (z - \xi_0,w)| \leq \sup_{(z,w) \in K_R \times B} |(D\varphi)(z,w)|, \]
since \(\text{supp } \varphi \subseteq K_R \times B\). Thus
\[|\langle \xi_0, \tau(\xi_0,0) \varphi \rangle| \leq \sup_{D} \sup_{(z,w) \in K_R \times B} |(D \varphi)(z,w)|. \]
By the above we then get
\[|\langle f, \varphi \rangle| \leq 4 R^2 C \sup_{D} \sup_{(z,w) \in K_R \times B} |(D \varphi)(z,w)|, \]
continuity, since \(\sup_{D} \sup_{(z,w) \in K_R \times B} |(D \varphi)(z,w)|\) is a semi-norm on
\(C^{\infty}_{K_R \times B} (\emptyset \times \emptyset^n)\), which proves
III) Remember now that in the beginning of the proof we multiplied
the original \(g\), call it here \(\xi_0\), by a \(C^{\infty}_{\emptyset} (\emptyset \times \emptyset^n)\) - function
with support in the given \(U\) and being equal to \(1\) in a nbh, \(U'\) of \(K \times L\). More accurately we do this as follows: Let \(U_1\)
be open in \(\emptyset\) and \(U_2\) open in \(\emptyset^n\), such that \(K \times L \subseteq U_1 \times U_2 \subseteq U\),
and let \(\theta_1 \in C^{\infty}_{\emptyset} (U_1)\) and \(\theta_2 \in C^{\infty}_{\emptyset} (U_2)\) be such \(\theta_1 = 1\) in a nbh, \(U_1'\) of \(K\) and \(\theta_2 = 1\) in a nbh, \(U_2'\) of \(L\). Then let
\(\theta \in C^{\infty}_{\emptyset} (U)\) be \(\theta(z,w) : = \theta_1(z) \cdot \theta_2(w)\). We have then
\(\theta = 1\) in \(U' := U_1' \times U_2'\).
We take our g as $g_\epsilon = \epsilon g_0$. If $\varphi \in \mathcal{C}^\infty_c (\mathbb{C} \times \mathbb{C}^n)$ has support in $\mathbb{C} \times U'_2$, then we get $\langle \partial g / \partial w^k, \varphi \rangle = \langle \epsilon_1 \frac{\partial g_0}{\partial w^k}, \varphi \rangle +$

$\langle \epsilon_1 \partial_2 \frac{\partial g_0}{\partial w^k}, \varphi \rangle = 0$, since $\partial g_0 / \partial w^k = 0$ and since

$\partial \partial_2 / \partial w^k = 0$ in U'_2.

With g constructed in this way, f is the distribution we seek. (4)

Check: Let $\varphi \in \mathcal{C}^\infty_c (U')$. Then for any $\xi \in \mathcal{C}$ we have supp $\tau (\xi, 0) \subset \mathbb{C} \times U'_2$, and the above gives: $\langle \partial f / \partial w^k, \varphi \rangle =$

$\langle f, \partial \varphi / \partial w^k \rangle$

$= \int_0^1 \frac{\langle \xi, \tau (\xi, 0) \varphi \rangle}{\xi} \, \text{dm} (\xi) = \int_0^1 \frac{\langle \xi, \tau (\xi, 0) \varphi \rangle}{\xi} \, \text{dm} (\xi)$

$= - \int_0^1 \frac{\langle \partial g / \partial w^k, \tau (\xi, 0) \varphi \rangle}{\xi} \, \text{dm} (\xi) = - \int_0^1 \frac{0}{\xi} \, \text{dm} (\xi) = 0.$

Thus $\frac{\partial f}{\partial w^k} = 0$ in U', which is part of what we need. Further, for $\varphi \in \mathcal{C}^\infty_c (U')$, we have $\langle \partial f / \partial \bar{z}, \varphi \rangle = - \langle f, \partial \varphi / \partial \bar{z} \rangle$

$= \int_0^1 \frac{\langle \xi, \tau (\xi, 0) \partial \varphi / \partial \bar{z} \rangle}{\xi} \, \text{dm} (\xi) = \int_0^1 \frac{\langle \xi, \tau (\xi, 0) \partial \varphi / \partial \bar{z} \rangle}{\xi} \, \text{dm} (\xi)$

$= - \int_0^1 \frac{1}{\xi} \int_{\mathbb{C} \setminus \{0\}} \frac{1}{\xi} \langle \xi, \tau (\xi, 0) \varphi \rangle \, \text{dm} (\xi), \text{ by I}. \text{ Since } d \xi \wedge d \xi = 2 \, \text{idm}(\xi),$

we have $\langle \partial f / \partial \bar{z}, \varphi \rangle = - \frac{1}{2 \pi i} \int_{\mathbb{C} \setminus \{0\}} \frac{\partial}{\partial \bar{\xi}} \langle \xi, \tau (\xi, 0) \varphi \rangle d \xi \wedge d \xi$
\[\frac{1}{2\pi i} \int_{\mathcal{C} - \{0\}} \frac{1}{\xi} \left(\langle \xi, \tau(\xi,0) \phi \rangle \right) \wedge d\xi. \]

Now if \(\alpha \in \mathcal{O}^\infty(\mathcal{C}) \), then in \(\mathcal{C} - \{0\} \) we have \(d(\alpha \xi^{-1} d\xi) = d(\alpha \xi^{-1}) \wedge d\xi = \xi^{-1} \alpha d\xi - \alpha \xi^{-2} d\xi \wedge d\xi = \xi^{-1} \alpha d\xi \wedge d\xi \). In the above calculation this gives

\[\langle \alpha f / \partial \overline{\omega}, \phi \rangle = - \frac{1}{2\pi i} \int_{\mathcal{C} - \{0\}} d(\langle \xi, \tau(\xi,0) \phi \rangle \frac{1}{\xi} d\xi) \]

\[= \lim_{\epsilon \to 0} - \frac{1}{2\pi i} \int_{|\xi| \geq \epsilon} d(\langle \xi, \tau(\xi,0) \phi \rangle \frac{1}{\xi} d\xi) = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int \langle \xi, \tau(\xi,0) \phi \rangle \frac{1}{\xi} d\xi \]

\[= \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\mathcal{C} - \{0\}} \langle \xi, \tau(\epsilon e^{i0},0) \phi \rangle d\epsilon = \langle \xi, \tau(0,0) \phi \rangle = \langle \xi, \phi \rangle \text{, since } \xi \tau(\epsilon,0) \phi \text{ is continuous.} \]

We see now that \(\partial f / \partial \overline{\omega} = \gamma \) in \(U' \). Since this \(\gamma \) equals the original \(\gamma \), called \(\gamma_0 \) in part III), in \(U' \), the lemma is proved.

We now need some notation:

For \(U \) open in \(\mathbb{C}^n \), let \(D'(p,q)(U) \) be the forms of type \((p,q) \) with distributional coefficients ("currents"). Thus \(\omega \in D'(p,q)(U) \) can be written \(\omega = \sum a_{IJ} dz^I \wedge d\overline{z}^J \), with \(a_{IJ} \in D'(U) \), \(I \) and \(J \) multi-indices of length \(p \) and \(q \) respectively, and \(dz^I = dz^{i_1} \wedge \ldots \wedge dz^{i_p} \) if \(I = (i_1, \ldots, i_p) \) etc.

The operator \(\delta \) acts as usual: \(\delta \omega = \sum_{IJ} \frac{\partial a_{IJ}}{\partial \overline{z}^j} d\overline{z}^j \wedge dz^I \wedge d\overline{z}^J \).

We now have Grothendieck's lemma, the proof of which is found in Narasimhan [4]. (In the \(\mathcal{O}^\infty \)-case) Since it is short, we give it for completeness.

\textbf{Grothendieck's lemma}

Let \(K_1, \ldots, K_n \) be compact sets in \(\mathcal{C} \) and \(S = K_1 \times \ldots \times K_n \subset \mathbb{C}^n \).

Let \(\omega \in D'(p,q)(U) \), where \(q \geq 1 \) and \(U \) is a nbh. of \(S \). If \(\delta \omega = 0 \), then there exists \(\omega' \in D'(p,q-1)(U) \) such that \(\delta \omega' = \omega \) in a nbh. of \(S \).
Proof: If \(1 \leq v \in \mathbb{Z} \), let \(A^p,q_v = A^p,q_v(S) \) be the space of elements \(w \in \mathcal{D}^p(p,q)(U) \) defined in a nbh. \(U = U(w) \) of \(S \) and such that \(w \) does not involve \(dz^v, \ldots, dz^n \). Thus \(w = \sum_{IJ} a_{IJ} dz^I \wedge dz^J \) where \(J = (j_1, \ldots, j_q) \) with \(1 \leq j_1 < \ldots < j_q \leq v-1 \).

If \(v > n \), then \(A^p,q_v \) is the space of elements \(w \in \mathcal{D}^p(p,q)(U) \) defined in a nbh. \(U = U(w) \) of \(S \). Also if \(w \in A^p,q_1 \) and \(q \geq 1 \), then clearly \(w = 0 \), and thus the lemma is trivial if \(w \in A^p,q_1 \).

Suppose the lemma is true for all \(w \in A^p,q_v \), and let \(w \in A^p,q_{v+1} \). We can write \(w = dz^v \wedge w_1 + w_2 \), with \(w_1 \in A^p,q^{-1} \) and \(w_2 \in A^p,q \).

If \(\delta w = 0 \), then \(-dz^v \wedge \delta w_1 + \delta w_2 = 0 \). Since \(w_1 \) and \(w_2 \) do not involve \(dz^v, \ldots, dz^n \), we have \(\delta w_1 /\delta z^j = 0 \) and \(\delta w_2 /\delta z^j = 0 \)
(componentwise differentiation), for \(j = v+1, \ldots, n \). By our first lemma there exists \(\chi' \in \mathcal{D}^p(p,q^{-1})(U) \) in a nbh. \(U' \) of \(S \), with \(\delta \chi' /\delta z^j = 0 \) for \(j = v+1, \ldots, n \) and \(\delta \chi' /\delta z^v = w_1 \). Multiplying \(\chi' \) by a \(C^\infty(U') \)-function which is equal to 1 in a nbh. of \(S \), we see that there exists \(\chi \in \mathcal{D}^p(p,q^{-1})(\mathbb{C}^n) \) with \(\delta \chi /\delta z^j = 0 \) for \(j = v+1, \ldots, n \) and \(\delta \chi /\delta z^v = w_1 \) in a nbh. of \(S \). This implies that \(w - \delta \chi \in A^p,q_v \). Since \(\delta(w - \delta \chi) = \delta w = 0 \), there is, by the induction hypothesis, an element \(\psi \in \mathcal{D}^p(p,q^{-1})(\mathbb{C}^n) \) with \(w - \delta \chi = \delta \psi \) in a nbh. of \(S \).

We further need the following theorem, a proof of which in the case of a Riemann surface can be found in Gunning [2]. To generalize that proof to the case of arbitrary dimension, we need a Cauchy formula in several variables. Since we will use differential forms, Stoke's theorem etc., it is convenient to use the Cauchy-Martinelli formula. This reads as follows: If \(f \) is a holomorphic function in a nbh. of \(\xi + K_R \subset \mathbb{C}^n \), where \(K_R = \{ z \in \mathbb{C}^n | |z| \leq R \} \), then
\[f(\xi) = (-1)^{\frac{n(n+1)}{2}} \times \frac{(n-1)!}{(2\pi i)^n} \int_{\xi+S_R} \frac{f(z)}{|z-\xi|^{2n}} w(z-\xi), \text{ where } S_R = \{|z| = R\} \]

and \[w(z) = \sum_{k=1}^{n} (-1)^k z^k dz_1 \wedge \cdots \wedge dz^n \wedge \overline{dz}_1 \wedge \cdots \wedge \overline{dz}_n. \] \(^*(\wedge\text{ means "omission", as usual})*\)

There is a simple proof in Lang [3].

The generalization of the theorem in Gunning is:

Let \(T \in \mathcal{D}'(U) \), where \(U \) is open in \(\mathbb{C}^n \), and assume that \(\partial T/\partial z^j = 0 \) for \(j = 1, \ldots, n \). Then \(T \) is a holomorphic function in \(U \).

Proof: Rewriting the Cauchy-Martineti formula, interchanging \(z \) and \(\xi \), and putting \(A = (-1)^{\frac{n(n+1)}{2}} \times \frac{(n-1)!}{(2\pi i)^n} \), we have \(f(z) = A \int_{S_R} f(z+\xi) w(\xi) |\xi|^{2n} \) for \(f \) holomorphic near \(z + K_R \). In particular, for \(f = 1 \) we get \(1 = A \int_{S_R} \frac{w(\xi)}{|\xi|^{2n}} \). If \(f \) is only \(C^\infty \) in a nbh. of \(z \), we get then:

\[f(z) - A \int_{S_R} f(z+\xi) w(\xi) |\xi|^{2n} = A \int_{S_R} f(z) w(\xi) |\xi|^{2n} - A \int_{S_R} f(z+\xi) w(\xi) |\xi|^{2n} \]

\[= A \int_{S_R} (f(z) - f(z+\xi)) w(\xi) |\xi|^{2n} \]

This quantity can be made arbitrarily small by taking \(R \) small enough, since \(f \) is continuous.

Thus we see

\[f(z) = \lim_{R \to 0} A \int_{S_R} f(z+\xi) w(\xi) |\xi|^{2n} \text{ for } f C^\infty \text{ near } z. \] (5)

To prove that \(T \) is holomorphic it is sufficient to prove that it is \(C^\infty \), and to show that, we will write any \(\varphi \in C^\infty_c(U) \) in a special form so that we can use the conditions given on \(T \). Let then, for \(\varepsilon > 0 \), \(U_\varepsilon = \{z \in \mathbb{C}^n | \text{dist}(z, \mathbb{C}^n - U) > \varepsilon\} \), and let \(\varphi \in C^\infty_c(U_\varepsilon) \subset C^\infty_c(U) \). Further let \(\rho \in C^\infty_c(\mathbb{C}^n) \) be such that \(\rho(\xi) = 1 \) for
\[|\xi| < \epsilon/2, \text{ and } \text{supp } \rho \subset \{|\xi| < \epsilon\}. \] By (5) we get, for \(z \in U_\epsilon \),
\[\varphi(z) = \lim_{R \to 0} \int_{S_R} \frac{\varphi(z + \xi)}{|\xi|^{2n}} w(\xi), \]
since \(\rho = 1 \) on \(S_R \) for \(R < \epsilon/2 \).

By Stokes we get, since the orientation of \(S_R \) is outward, observing that \(\xi \mapsto f(z + \xi)\rho(\xi) \) is defined for all \(\xi \in \mathbb{C} \) since \(z \in U_\epsilon \):
\[\varphi(z) = -\lim_{R \to 0} \int_{|\xi| \geq R} d[\varphi(z + \xi) - \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi)] \tag{6} \]

Here the \(d \) is w.r.t. \(\xi \). We have
\[d[\varphi(z + \xi) - \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi)] =
\[d\varphi(z + \xi) \wedge \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi) + \varphi(z + \xi) d[\frac{\rho(\xi)}{|\xi|^{2n}} w(\xi)]. \]
Since each term of \(w \)
contains \(d\xi^1 \wedge \cdots \wedge d\xi^n \), we see
\[d\varphi(z + \xi) \wedge \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi) = \delta \varphi(z + \xi) \]
\[\wedge \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi) = \sum_{j=1}^n \delta \varphi(z + \xi) \frac{\partial \rho(\xi)}{\partial \xi^j} \] \[d\xi^j \wedge \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi). \]

Further,
\[d[\frac{\rho(\xi)}{|\xi|^{2n}} w(\xi)] = d[\frac{\rho(\xi)}{|\xi|^{2n}} \varphi(\xi) + \varphi(z + \xi) d[\frac{\rho(\xi)}{|\xi|^{2n}} w(\xi)] \]
\[= \delta[\frac{\rho(\xi)}{|\xi|^{2n}} \varphi(\xi) + \frac{\rho(\xi)}{|\xi|^{2n}} d \varphi(\xi) \varphi(\xi) \wedge \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi)] \]
\[= (-1)^{n-1} \frac{n(n+1)}{2} (2i)^n \sum_{j=1}^n \delta \varphi(z + \xi) \frac{\partial \rho(\xi)}{\partial \xi^j} \wedge \frac{\rho(\xi)}{|\xi|^{2n}} d\xi^j \wedge d\xi^j \wedge \delta \varphi(z + \xi) \wedge \frac{\rho(\xi)}{|\xi|^{2n}} w(\xi). \]
\begin{align*}
= & \left(-1\right)^{n-1+n(n+1)} \frac{1}{2} (2i)^n \sum_{j=1}^{n} \frac{\partial}{\partial z^{j}} \left[\frac{\rho(z)}{\xi^{2n}} \right] \xi^{j} \, d\xi^{j} + (-1)^{n-1} \frac{\rho(z)}{\xi^{2n}} \sum_{j=1}^{n} \frac{\partial}{\partial z^{j}} \left[\frac{\rho(z)}{\xi^{2n}} \right] \xi^{j} \, d\xi^{j} \\
= & \left(-1\right)^{n-1+n(n+1)} \frac{1}{2} (2i)^n \left\{ \frac{\partial}{\partial z^{j}} (z+\xi) \frac{\rho(z)}{\xi^{2n}} \xi^{j} + \varphi(z+\xi) \tilde{h}(\xi) \right\} d\xi^{j} \\
= & \left(-1\right)^{n-1+n(n+1)} \frac{1}{2} (2i)^n \tilde{h}(\xi) \, d\xi^{j},
\end{align*}

where we have put \(\tilde{h}(\xi) = \frac{n-1+n(n+1)}{2} \). Putting all this together, we get

\[
\frac{d}{dz} \left(\varphi(z) \frac{\rho(z)}{\xi^{2n}} \right) = \left(-1\right)^{n+1} \frac{(n-1)!}{(2ni)^n}.
\]

In (6) above we now get, since \(A = (-1)^{n-1} \frac{(n-1)!}{(2ni)^n} \):

\[
\varphi(z) = \lim_{R \to 0} - \left(-1\right)^{n-1} \frac{n+n(n+1)}{2} (2i)^n \left\{ \sum_{j=1}^{n} \frac{\partial}{\partial z^{j}} (z+\xi) \frac{\rho(z)}{\xi^{2n}} \xi^{j} + \varphi(z+\xi) \tilde{h}(\xi) \right\} d\xi^{j}.
\]

Since the \(n \) first integrals all converge as \(R \to 0 \), then so does the last, and we get

\[
\varphi(z) = \left(-\frac{1}{n}\right)^{n-1} \left\{ \sum_{j=1}^{n} \frac{\partial}{\partial z^{j}} (z+\xi) \frac{\rho(z)}{\xi^{2n}} \xi^{j} d\xi^{j} + \varphi(z+\xi) \tilde{h}(\xi) d\xi^{j} \right\}.
\]

Let \(h_{j}(z) = \left(-\frac{1}{n}\right)^{n-1} \left\{ \varphi(z+\xi) \frac{\rho(z)}{\xi^{2n}} \xi^{j} d\xi^{j} \right\} \), and

\[
h(\xi) = \left(-\frac{1}{n}\right)^{n-1} \tilde{h}(\xi) = \left(-\frac{1}{n}\right)^{n-1} \left\{ \sum_{j=1}^{n} \frac{\partial}{\partial z^{j}} (z+\xi) \frac{\rho(z)}{\xi^{2n}} \xi^{j} \right\}.
\]
We then get, (supp \(\rho \) is compact):

\[
\varphi(z) = \sum_{j=1}^{n} \frac{\partial h_j}{\partial z_j}(z) + \int_{C^h} \varphi(z+\xi)h(\xi)dm(\xi).
\]

Here \(h_1, \ldots, h_j \in C_c^\infty(U) \), and also \(g \in C_c^\infty(U) \), where \(g(z) = \int_{C^h} \varphi(z+\xi)h(\xi)dm(\xi) \).

This is clear, since supp \(\varphi \subseteq U_\varepsilon \) and supp \(\rho \subseteq \{|\xi|<\varepsilon\} \).

If we further assume that \(\text{supp} \varphi \subseteq U_{2\varepsilon} \subseteq U_\varepsilon \), then supp \(g \subseteq U_{\varepsilon/2} \).

In fact, let \(z \in U-U_\varepsilon \). If \(|\xi| \geq \varepsilon \), then \(h(\xi) = 0 \) since \(\rho(\xi) = 0 \), and thus \(\varphi(z+\xi)h(\xi) = 0 \). If \(|\xi| < \varepsilon \), then \(z+\xi \in U-U_{2\varepsilon} \), and thus \(\varphi(z+\xi)h(\xi) = 0 \cdot h(\xi) = 0 \), which proves (8).

Let further \(\theta \in C_c^\infty(U) \) be such that \(\theta = 1 \) in a nbhd. of \(\overline{U_{\varepsilon/2}} \).

Then the function

\[
C^h \ni \xi \rightarrow \langle \theta T, \xi \rangle_c = \langle \theta T, \tau^{V}_{\xi} \rangle_c
\]

is translation, \(\tau^{V}_{\xi} \) is translation, \(\tau^{V}_{\xi}(z) = h(-z) \) and \((\theta T)_z \) means that \(\theta T \) acts w.r.t. \(z \).

That \(\langle \theta T, \tau^{V}_{\xi} \rangle_c \) is well defined, follows since \(\text{supp} \theta T \) is compact and the \(C^\infty \) statement follows as in part I) of the proof of our first lemma. By (8) we have \(\langle T, g \rangle = \langle \theta T, g \rangle \), and further

\[
\langle T, g \rangle = \langle \theta T, g \rangle = \langle \theta T, \int_{C^h} \varphi(z+\xi)h(\xi)dm(\xi) \rangle
\]

\[
= \langle \theta T, \int_{U_{2\varepsilon}} \varphi(z+\xi)h(\xi)dm(\xi) \rangle = \int_{U_{2\varepsilon}} \langle \theta T, \tau^{V}_{\xi} h \rangle \varphi(\xi)dm(\xi) \tag{10}
\]

We must prove the last equality, and after that we will quickly finish the proof of the theorem. Consider \(\int_{C^h} h(\xi-z)\varphi(\xi)dm(\xi) \) as a limit of Riemann sums of the form \(\sum_{\alpha} h_{\alpha}(\xi_{\alpha}-z)\varphi(\xi_{\alpha})m(S_{\alpha}) \), where \(m(S_{\alpha}) \) is the measure of a rectangle \(S_{\alpha} \) containing \(\xi_{\alpha} \). More generally, if \(D \) is a differentiation monomial of order \(p \) in the
real components of \(z \in \mathbb{C}^n \), then we have
\[
D \int_{\mathbb{C}^n} h(\xi - z) \varphi(\xi) dm(\xi)
\]
\[= \lim_{\alpha} \sum_{\alpha} (-1)^{P(\alpha)} h(\xi_{\alpha} - z) \varphi(\xi_{\alpha}) m(S_{\alpha}) \] . These sums converge uniformly w.r.t. \(z \) on compact sets, and thus \(\lim(z \to \infty h(\xi_{\alpha} - z) \varphi(\xi_{\alpha}) m(S_{\alpha})) \)
\[= (z \to \int_{\mathbb{C}^n} h(\xi - z) \varphi(\xi) dm(\xi)) \] in the space \(C_c^{\infty}(\mathbb{C}^n) \). By continuity of \(\theta T \) on this space we get
\[\lim(\theta T, z \to \infty h(\xi_{\alpha} - z) \varphi(\xi_{\alpha}) m(S_{\alpha})) = \langle \theta T, \int_{\mathbb{C}^n} h(\xi - z) \varphi(\xi) dm(\xi) \rangle \] . The left hand side of this equals
\[
\lim_{\alpha} \sum_{\alpha} \langle \theta T, h(\xi_{\alpha} - z) \varphi(\xi_{\alpha}) m(S_{\alpha}) \rangle . \] Since this is a Riemann sum for
\[\int \langle \theta T, h(\xi - z) \varphi(\xi) dm(\xi) \rangle, \] (by (9) above the integrand is \(C_c^{\infty} \) with support in \(\text{supp} \varphi \)), we get
\[\langle \theta T, \int_{\mathbb{C}^n} h(\xi - z) \varphi(\xi) dm(\xi) \rangle = \int_{\mathbb{C}^n} \langle \theta T, \tau_{\xi} h \rangle h(\xi) dm(\xi), \text{ for } \varphi \in C_c^{\infty}(U_{2\varepsilon}) . \] Thus (10) above is proved.

By (7) and (10) above we get for \(\varphi \in C_c^{\infty}(U_{2\varepsilon}) \), using the fact that \(\partial T / \partial z^j = 0 \) for \(j = 1, \ldots, n \) :
\[\langle T, \varphi \rangle = \langle T, \sum_{j=1}^{n} \partial \varphi / \partial z_j + \int_{\mathbb{C}^n} \varphi(z + \xi) h(\xi) dm(\xi) \rangle
\]
\[= \sum_{j=1}^{n} \langle T, \partial \varphi / \partial z_j \rangle + \langle T, \int_{\mathbb{C}^n} \varphi(z + \xi) h(\xi) dm(\xi) \rangle
\]
\[= \sum_{j=0}^{n} \langle \partial T / \partial z^j, h_j \rangle + \langle T, \int_{\mathbb{C}^n} \varphi(z + \xi) h(\xi) dm(\xi) \rangle
\]
\[= \int_{U_{2\varepsilon}} \langle \theta T, \tau_{\xi} h \rangle h(\xi) dm(\xi), \text{ and here } \xi \to \langle \theta T, \tau_{\xi} h \rangle, \]
which is independent of \(\varphi \), is a \(C_c^{\infty} \)-function, by (9) above. Thus \(T \) equals the \(C_c^{\infty} \)-function \(\xi \to \langle \theta T, \tau_{\xi} h \rangle \) in \(U_{2\varepsilon} \). Since this holds for all \(\varepsilon > 0 \), we have that \(T \) is a \(C_c^{\infty} \)-function, and thus holomorphic.

\[\text{QED.}\]
References:

