Discrete series Tor locally compact grousns
by

T. Sund

Let G be a locally compact group. By a representation of &
we mean a strongly continuous homomorphism of G into the group of
unitary operators on some Hilbert space Hﬂ . In the present ar-
ticle we are concerned with the behavior of integrable and sguare-
integrable representations under the inducing process, [9], together
with their topological properties as points in the dual space G
of G .,

In [1%] we proved if p is an integrable cyclic representation of

K, K being a closed subgroup of G, then the induced represen-
tation Indﬁ(p) is also integrable. The converse of this assertion _
does not hold (see e.g. Example (1.8)), however we show the following:
I Ind%(p) is completely integrable then p is completely inte-
grable; see Definition (1.1) for notation. Using the Mackey theory
of induced representations we then derive that exponentisl Lie groups
have no completely integrable irreducible representations.

By an [IN] group we mean a locally compact group possessing a
compact neighborhood of the identity e invariant under inner auto-
morphisms. G 1is an [TC] group provided all of its conjugacy
clagses {yxyfn : Y€G} are relatively compact, [4]. We let &
be the set of all equivalence classes, under unitary equivalence,
of irreducible representations of G endowed with the Fell-topology.
This topology may be described as the inverse image of the hull-

kernel topology on the space Prim(G) of all primitive ideals in




the group  C*-algebra C*(G) , under the map

m € C*(G) - kerm € Prim(G), [2]. Denote by ér the reduced dual
of G, i.e. @r is the subspace of e consiating of all the re-

presentatinons that are weakly contained in the regular representa-
tion of G (7w dis weakly contained in p provided kerm 2 kerp

where m and p are regarded as represenbtations of C*(G), [2]).

The following conjecture due to Dixmier is still open.

Ll

(*) Conjecture. Let G be a locally compact group, T € G square-

N Ty

integrable., Then {m} is open in Gr where G, 1is given the

relative topology from G .

In Section 2 we study this question, succeeding to verify the con-
jecture for the class of separable [IN] groups. In fact we prove
the somewhat stronger result that every square-integrable irredu-
cible representation is an open point of 6 . This is known to be
false in general. Our proofs depend on earlier results of the
author for [I'C]” groups [12], together with Mackey's little group
method, [9]. It turns out that our method works for a somewhat
larger class than [IN], namely for all groups G possessing an
open normal [FC] subgroup. Hence the conjecture (*) holds for

many nilpotent ILie groups with compact centers.

1. Before beginning we establish some more notation., If K
is a closed subgroup of G and p a represenbation of K we let

Indg(p) be the unitary representation of G dinduced by p, [9].

For essentially bounded complex valued functions ¢ on G let

H¢HG denote the essential supremum of o .



-3 -

(1.1) Definition. A cyclic representation =w of G is said

o be integrable (resp. square-integrable) if there is a cyclic

vector v for m such that the coordinate function x - (n{x)v,v)
is integrable (resp. square-integrable) w.r.t. left Haar measure

on G .

A representation w of G is completely integrable (resp. comple-

tely square-integrable) if all of its coordinate functions are in

Lq(G) (resp. L2(G)) w.r.t, left Haar measure on G .

The discrete series of & constitutes all the irreducible subrepre-

sentations of the left regular representation of G on the Hilbert

space LE(G) .

If G is unimodular and 1 € G then ™ is completely square-
integrable iff 7© is square~integrable iff mw belongs to the dis-
crete series of G ., The first of these equivalences does not hold
for non unimodular groups, see e.g. Example (1.7). Tor arbitrary
locally compact G we have m € G is square-integrable implies
is equivalent to a subrepresentation of the (left) regular repre-
sentation (the proof given in [2] 14,1.1. for unimodular groups is
valid in the general setting).

The subset of & consisting of classes whose elements are
square-integrable representations is denoted by @S , If wedg
is integrable we have m € @S, since the functions =x - (w(x)v,v)
are bounded.,

We come now to the principal result of this section.

(1.2) Theorem., Lebt G be a separable locally compact group

and H a closed subgroup. Assume G/H has a G-invariant measure.

If p 1is a cyclic representation of H and 1w = Indg(p) then we



have
(i) w is cyelic
(i) If p is integrable then mn is integrable
(iii) Jf 7w is completely integrable then p is completely

integrable,

Proof. (i) snd (ii) follows as Proposition (1.6) in [13]
since the proof given there for unimodular groups may be adapted to
this more general sibuation. Note only that the ‘cyclic" function
£ in that proof may be chosen from Lq(G) rather than from CC(G)
(there is an inaccuracy at that point in [1%]). Also, £ may be
chosen such that f(x"q) = T(x) ; see [5] Section 3. After these
remarks the proof in [13] goes through.

To show (iii) assume all the coordinate functions
x = (n(x)v,v) are integrable. This is equivalent to the following:

The linesr functionals

Fo:LX@) 0 L@ -~ s £ - (n(o)v,v)

are continuous in the norm |[[-fl;; all v € H . That is, given

v € Hﬁ there is a constant Cv such that
[2 ()] = [(nle)v, ] < o fiell,

for all £ € X&) n (@), (see [2) 14.6.1).

Let u € Hp be arbitrary and put
0 1
mu(k) = (p(Ku,u) 3 all ke L (H)NL (H) .

We wish to prove that @, is a continuous linear functional on

L) n Lq(H) in the norm ”"H o This will imply integrability

of the corresponding coordinate function

h = (pth)u,u) 3 H - @€,
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Now, since m = Indg(p) we have from Blattner's theory of

positive definite measures and induced representations thav

£ ooulf) =g ) 5 £ €@,
is a measure associated to 1 . Hence we may assume 7 1S con-
structed from (Y in the usual way (sece e.g. [13] the proof of
(1.6)). By (5] Theorem 3.1 +there is an £ € L'(G) such that [f]
ig a cyclic vector for w and in addition

u(y) = (ﬂ(w)[fj,[f])u , 8ll ¥ € ¢ (@) .

~

It k € OC(H) let Xk be any extension of k +to a continuous
function with compact support on G such that HEHG = [ikllg

(Tietze's extension theorem), Then

lo, ()] = lo,Glm| = [l
|01, 12D, | < opliiellg

It

Celtklly 3 a1l kx € c (1),

il

o~

where Of is a constant depending only on f .

Thus o is a corntinuous linear functional on ﬁItH) n Lq(H) .

QED,

In view of the easy fact that every cyclic representation of

a compact group is integrable the following result is clear.

(1.3) Corollary. Let w Dbe a representation of the separable

group G and assume T = Indg(p) where X 18 a compact subgroup
of G and p 1s a cyclic representation of K . Then n is in-

tegrable,

In what follows we shall assume the reader is familiar with

Mackey's little group method, {9]. If H is a closed normal sub-



group of G and p € ﬁ, G acts on p Dby inner automorphisms:
wep(h) = p(x" hx) , all x€H, heE€H.

If m € G and the restriction nlH is a multiple of a direct
) R
integral J o(s) du(s) over some G-orbit Geo in H we shall

°
Fal

p
say that w_ lies over (Tthe orbit of) p . We denote by G

Pl
the set of all m € G such that m lies over p, where p € f .
The isotropy group of p is denoted by G(p) . Thus
G(p) = {x€G:xep~p} . In case 1 lies over p € H it follows
from Mackey's theoxy that 1w = Indg(p)(o) for some O € G(p);,H’
({9] Theorem 8.,1),
Next we use Mackey's little group method to derive some conse-

guences of Theorem (1.2) (iii). The following lemma will be helpful.

(1.4) Tenma., TLet H Dbe a closed normal subgroup of G and

let m € & Do integrable.

(1) It p € and p is a subrepresentation of the restrichion

wlg then p is integrable.
(2) If p € it} is integrable then all the representations xep

in the G-orbit of p are integrable.

Proof. The proofs of Lemma (1.1) and Lemma (1.2) given in

[13] are valid for integrable representations,

(1.5) Proposition. Suppose N is a closed normal subgroup

of G . Fix w € N and let G(w) be the isotropy subgroup of ® .
Assume G/G(w) has a G-invariant measure, 7 € ¢ is completely
integrable, and 7n lies over w . Then Gew consists entirely of

integrable representations,
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Proof. Suppose 1m € ¢ is completely integrable and lies
over w € N . By virtue of [9] Theorem 8.1 7 = Indg(w){ﬁ) for
some o € G(w);,N . By Theorem {(1.2) o is complebtely integrable,
and since w is a subrepresentation of of|N it follows from
Lemma (1.,4) (1) that p is integrable., Thus each x-w ; x € G,

is integrable (Temma (1.4) (2)).
QED.

(1.6) Corollary. Let N be a closed normal subgroup of G

and assume N is type I and regularly embedded in G . Suppose
G/G(w) has a G-invariant measure for all w € ¥ . If N has no
integrable irreducible representations then there is no completely

integrable irreducible representation of G .

Proof., If w ¢ aw Ny vere completely integrable then w were
9

integrable by Proposition (1.5).
QED,

A (solvable) Lie group is said to be exponential provided its

exponential map is a bijection from the Iie algebra to the group.

(1.7) Corollaxry. Let G be an exponential Iie group. Then

G has no completely integreble representations.

Proof. The nilradical N of G is regularly embedded, [10]
Corollary 2, and N has no integrable irreducible representations,
being simply connected and nilpobtent. Thus G has no completely
integrable irreducible representations (1.6)

QED.,

In orxder to illustrate the results above we shall give some

examples.




(1.8) Example. ILet G Dbe the "ax+b" group:

o {

multiplication, G is an exponential ILie group snd there is exactly

a b
(O 1): ato, bEEI%} with the usual topology and mabtrix

one square--integrable m € & . It may be verified that m 1is notv
completely integrable (in fact, © ig not even completely square-

integrable), [7].

(1.9) Example. Consider the group

n 2nwib
¢ ={fc ¢ : n €% ,0 ER|
L O /1 j

with multiplication

on eEﬂiG P eETIi'r SN e2rri o8By
o A | (é 1 ) <o 1

and the obvious topology from Z and the circle T .

Let 1y : egﬁie - egﬂie be the generating character of the circle

group ' . ‘P may be identified with a closed normal subgroup N

/ eEnie
I . 1

The isotropy group of ¥ under the action of G on N by inner

of G

automorphisms is seen to equal N . Hence 1 = Indg(x) is an irre-
ducible representation of G . ™ may be realized on a space of
functions from G dinto The complex numbers as follows.

n, 2118 . 11 ,
0 i

ENe s : 2
where % |£(@M|[“ < o .
M= OO

' S}
Letting £ > O be such that X £(2™) < +2 it may be seen that

-0



the coordinate function

(2n eaﬂi@> } <n(%n eEﬂiB)f,f>

N 0 1 |
is integrable on G . Thus w 1is integrable.
Tetbting f € Lg(G) s, I >0, 'bé such that <§)f(2m) = +0D  one
may verify that the corresponding coordinate ESthion ig not inte-
grable, Thus 1 1is not completely integrable.. (MNote that G is
unimodular, )

Hence Theorem (1.2) (ii) is as good as possible: X 1s completely

integrable without 1 = Indﬁ(x) being completely integrable.

2. In this section we study square--integrable irreducible
representations. Our main result states that for G € [IN] each
T € és forms an isolated point of é, thus justifying the name
"discrete series' for this class of groups. All our groups will

be separable.

(2.1) Proposition. Let G be unimodular and assume G con-

tains an open normal subgroup N . If m € GS then m € ép N for
b
some p € ﬁ, where ép N consists of only a finite number of ele-
b
mentg; all of them being square-integrable. Moreover,

.G " .
m = IndG(p)(o) for some ¢ € G(p)p,N and we have |G(p)/N| < .

Proof, Since m € @S and G is unimodular, all the coordi--
nate functions of ™ are in LE(G), (2], and it follows since N
is open, that nlN splits into a discrete direct sum of square-
integrable irreducible representations of N (Kunze [8] Cor. to

Thm, 2). Now N is normal in G and the usual argumeants give




~
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that WIN is concentrated on exactly one G-orbit in fr s

ﬂlN = e 0 , for some p € ﬁ o

o) o
G/G(p) .

G . - .
Hence 1 . IndG(p)(U) for some o € G(p)p,N , (9] Theorem 8.1,
Moreover, o is on the form ¢ ~ p @ y' where y is some multi-
plier representation of G(p)/N (say o-representation), and p

is an extension of p %o an G-representation of G(p), [9].

Since N is open ¢ is a subrepresentation of n]N (Mackey's
subgroup theorem, or direct verification). Thus ¢ is square-inte-
grable, and this gives easily

r ) 2‘

] [(y(®)v,v)|“dx < @ ; 81l v € H,

G(w)/N

i.e., Y 1is a square-integrable multiplier-representation of the
discrete group G(w)/N . By [12] Lemma (2.1) G(w)/N must then
be finite., Now each element of ap,N ig induced from a represen~
tation of G(p) on the form p & 7' where T 4is an irreducible
o~representation of G(p)/N . By the finiteness of G(p)/N there
is only a finite number of nonequivalent p ® 7', and this yields

the finitenegs of é .
p,N

QBD.

We now assume G is an [IN] group. ILet N be the set of all

1 1y €G} is relatively

x € G such that the conjugacy class {[yxy
compact. N 1is obviously a normal subgroup of G, and since G
contains a compect neighbourhood of e invariant under inner aubto-

morphisms N is open, By abuse of notation N is called {he FC-

subgroup of ¢ . Let m € @S . By the above result there is a

s A G
o € N, such that m € G and T = IndG(O)(p) where

oN

Fa

| GloyN| < o and p € G(o)0 N

Since ﬁ[N splits into a direct sum of irreducible square-inte-
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grable representations, ﬁs £ @ so that N is type I ([12] Theorem

(2.3)). We have proved the following result.

(2.2) Corollary. Let G be an [IN] group, N the open normal

FC-subgroup., If 1 € ¢ is square-integrable then N is typel,
and we have 7 € éc y for some o S ﬁﬁ . Also, the stability

. L] bl ~

.- G
group G(o) is typeI, and T = IndG(G)(p) for some ¢ € G(C>G,N'
Let G be an {IN] group and N its FC-subgroup. If mWE @S
we may pick a p € ﬁn such that = € @p N (2.2)., Write
L) ¥

miN ~me® %.p . By (2.2) N is a type I [FC]™ group and sa-
G&/G(p)

tisfies thereby an exact sequence of topological groups
(e) » ¥ » N - R* - (o)

where K isg compact, [11] the note preceeding Theorem (1.3). Now
X is dinvariant under all the automorphisms of N, in particular
it is normal in G, [4] Theorem %.16, (1).
Since K 1is compact m € aw,K for some w € ﬁ, and in addition
éw,K is open in a ({11) Lemma (1.2)).
The proof of our next theorem requires the following lemma,

(2.2) Lemma. Let G be an [IN] group, N the FC-subgroup of G.

Suppose ég £ @ and let K be a maximal compact subgroup of N
(K exists since the hypothesis yields N is type I ). Then K
is normal in G .
: o + 7 A G
Let m € G, and pick w € K such that m € Gw,K . If vy € Gw,K
and y # 17 then vy lies over the discrete G-orbit of some Géiﬁs,

and we have
B G
Y = Indg(qy(w)

-

for some @ € G(o)0 W oo
9
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Proof, Assume Y € é. » and vy £ 7n , We have y!K = ne @D
oo i @, X -. G/G (UJ )
for some n € {1,2,53..e,3%} . Putting A = y|N, A has a direct

&
KXol

integral decomposition (centraldecomposition)

o)
A= [ k(s)A(s)au(s)
i}
for some standard Borel measure @t on ﬁ, where each A(s) is an

irreducible representation of N and kx(s) its multiplicity
(0 < x(s) <), [2] 8.4.2,
Hence

‘ <

K = jﬁ k(s)(A(s)|K)ap(s) .

1
Now each A(s) is irreducible so that A(s) € i) for some
w(s),K

U)(S) € K.
N/K acts continuously on K by inner automorphisms, and since i
is discrete and N/K :JRn is commected 1t follows that the orbits
in K are gingletons; in particular the stability group N(w(s))
equals N . Thus

5,
M) K ~ m(s)w(s) , where 1 < m(s) gtié .

Writing n(s) = k(s)n(s) we have

@
MK~ jh n(s)w(s)du(s)
N
Algo
MK ~ v} K ~ ne ® Xew .
%G (w)

Comparing these two decompositions of LIK it follows that a.a.
w(s) equels some Xew . Hence A(s)|K ~ n(s)X.w for some
% € 6/G(v) (a.a. s € N), that is, A(s) € N .

Xew K

Pl
Since p € N we have
w, K

Pw e T

where T is some multiplier representation (say oa-representation)
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of N/K and 1' its inflation to N, and where @ is some exbten-
sion of w <+to an da-representation of N ([9] Theorem 8.1).
Clearly xe® 1is an irreducible a-representation of N extending
Xew, so that (%+0) ® r' € ﬁiw,K .
Now, since p ~ & ® 7' is square-integrable one easily verifies
that (x®)® 7' is square-integrable., By [11] Theorem (2.4), (4)

(in view of the maximality of K, P = K) we have ﬁ%*w g consists
9

only of the singleton (x-®) ® 7' . Hence
(xew) ® 7' 2 A(s) , a.a. s € N ;

thus A(s) € ﬁs, a.8, s €N, By [11] Theorem (2.4) a.a. A(s)
is open in ﬁ, and this gives p({r(s)}) >0, a.a. s € ﬁ, [3]

Theorem 3.2, so that the direct integral
@D
vIw 2 [ x(sdn(s)au(s)
N

decomposes into a discrete sum, say

leu?xi D VLR A

Now since N is normal in G one sees by the usual arguments that

all the hi‘s belong to the same G-orbit, say G.o, in N_ .

Fal

Hence vy € Gg N and it follows that
9

Yy =~ Indg(c) () , for some @ € G(O)G’N .
QED.

We are now in a position to prove the main result of this

section,.

(2,4) Theorem. Let G bhe a separable [IN] group and suppose

e

m € G 1is square-integrable., Then the singleton {m} dis open in g,

Fal

Proof, Assume nveas and let (Ynfilq be a sequence from G con-
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verging to T (we may restrict ourself to sequences since @ is
separable)., Fix w € ﬁ such that @ € éw K where K is a maximal

?
compact subgroup of the FC-subgroup N, as in Lemma (2.%). In
view of the fact that @m g is open in G we may assume each Y,
\ 1
~ ) : o
€ Gw,K . Let v € H, be arbitrary and pick a sequence <Vk>k=4 of

vectors vy € H  , such that

Px

(Pk(x)vkavk) i:: (n{x)v,v)

uniformly on compacta in G, [2]. In particular the above converges
uniformly on compacta in N . Hence m|N is weakly contained in

the set [pklN :n=1,2,340. } » If we write

nlN = k(n).@/@g(c )}E.O‘n 3 k(l’l) i:ﬁo [ nz/l,g,,?),uae,
n

it follows that the orbit Geo of w in N is weakly contained

y

in the collection of orbits 8 = {Geo  : n=1,2,3,... }, see e.g.
[3] Theorem %4.5. (here the orbit space N/G  is provided with the
quotient topology from ). Thus Geo € 8 .

Now each element x+0 in the orbit of ¢ is square--integrable
({13] Lemma (1.2)) and is therefore open in ﬁ', ¥ being an [FC]™
group ([12] Theorem (2.%)), Hence the orbit G-c is an open point
in §/¢ . Since Geo, - Geo in N/G we have G0 = Geo, for n
greater than a certain no . Hence Yo € aG,N for all n i_no and
since Gd,N is discrete in the relative topology from G we must
have y_ o~ n from a certain n on, and {n} is open in G .

n -
QED,

A closer inspection of the results obtained so far in this
section reveals that they are valid under slightly more general
conditions., In fact, let G be a separable locally compact group

and suppose that N is an open normal subgroup. Assume also that
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all the conjugacy classes C, = {mnmm/I tm€EN} of N are relati~
vely compact, i.e. N € [IPC]T . If m € G is square-integrable

we have ﬁs £ @ since N is open (see the proof of Proposition
(2.1)). M™wus N is type I ([12) Theorem (2.3)), and we may pick
a maximal compact subgroup K of N , invariant under all automor--
phisms of N ., It follows that all the arguments used in thé proofs

of (2,2), (2.3), and (2.4) are valid even in the present situation,

and we have the following improvement of Theorem (2.4).

(2.5) Theorem. Let G be a separable locally compact group

and assume Ghere is an open normal [IC]™ subgroup N of G . Then

~ A

the points of G_ are open in G .

As a consequence we immediately obtain the following resultb.

(2.6) Corollary. Let G be a nilpotent Lie group and G, its

identity component. Suppose GO/K ~ B® where X = GOF)Z(G), and
z(G) is the cenber of G . If G, # @ then the points of &, are

A

open in G .

Proof. If as # ¢ we must have Z(G) 1is compact, thus G, dis on
the form (e)- K - G, - R™ - (¢) where K is compacti and the
commutator group [GO,GO] must have compact closure. Hence 'GO

¢ [FC]T and the corollaxry follows from (2,5).
QED.

We illustrate the theory by an example.

(2,7) Example. Let H; be a connected simply connected nilpotent

Lie group with Lie algebra 9, isomorphic to the m-th order

Heisenherg algebra, i.e. there is a basis an'--aXmana°°°3Ym’Z
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for @ such that [Xi’Yj] = Z and all other brackets are zero.
Let L be a discrebe subgroup in the one~dimensional center of Hq
isomorphic to Z , Put H = Hﬂ/L . Wo may realize H as a "matrix"

group as follows., H consists of all (mi1)x (m:1) matrices on

the form
dl Xg o s e X e2n18
1 a V.
(j m

where the entries x , g (1<i, j<m) are real and 6 is real.
The multiplication in H is the obvious modification of ordinary
matrix multiplication. H has one-~dimensional compact center:
Z(H) ~ M, and H/Z(H) ~ R,

The collection of all infinite dimensional irreducible representa-
tions of H (equivalence classes) constitutes the discrete series
(these are the irreducible representations lying over nontrivial
characters of the center). Clearly H is an [FCI group and the
points of ﬁa arec open by (2.4). The same conclusion holds for

[

groups G with identity component isomorphic to H, see (2.6).

Having noted the close relationship bebtween [IN] groups and
certain nilpotent groups it would be natural to include a completve
discussion of Dixmier's conjecture for the labtter class., Using
Mackey theory and induction on the dimension of the group we have
verified the comngjecture for connected nilpotent Lie groups. We
onit the proof, noting that results of Auslander, Kostant, lMoore,

and Pukanszky combined with the fact that for nilpotent groups G
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the “Kirillov correspondence" between G and the orbit space 4/G
under the actlon of the coadjoint representation of G on the real
dual space gﬁ of the lie algebra %} of G is a homéomorphism,

(Brown [17).

(2.8) Proposition. TLet G be a connected nilpotent Lie group.

Then the points of és are open in é .

It should be noted that R. Lipsman has verified the conjecture
(*) for split-rank one gsemisimple Lie groups (Dual topology fown
principal and discrete series, Trans. Amer. Math. Soc. 152 (1970)
299-417) .

We hope to study the conjecture for a larger class of groups

on a later occasion.
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