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Although several authors have been interested in the Hilbert 

scheme Hilbd(lJ?2) parametrizing finite subschemes of length d 

in the projective plane { [Il ], [I2], (Fl ], [F2 ], [Br] among 

others) not much is known about the topPlogical properties of this 

space. The Picard group has been calculated ([F2]), and the 

homology groups of Hilb 3 (II? 2 ) have been computed ( [H ] ) • In this 

paper we give a precise description of the additive structure of 

the homology of Hilb.d(lP 2 ), applying the results of Birula

Bialynicki ( [Bl j, [B2 ]) on the cellullar decompositions defined by 

a torus action to the natural action of a maximal torus of SL(3) 

on A rather easy consequence of the fact that this 

action has finitely many fixpoints is that the cycle maps between 

the ChCM groups and the homology groups are isomorphisms. In 

particular there is no odd homology, and the homology groups are 

all free. The main objective of this work is to compute their 

ranks: the Betti numbers of Hilb0 (1P2). 

As a byproduct of our method we get' similar results on the 

homology of the punctual Hilbert scheme and of the Hilbert scheme 

of points in the affine plane. 
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It seems natural to generali~e our: results to any toric 

E~ooth surface. Eowever, we give the :esul~s only for th~ . 

rational ruled sur£aces IP'n with a~ indication of tll~ nece~sary 

changes in the proofs. 

For sinplicity we \'>.'Or~<.: over ~he fieled of complex nqmbe:::;s, but 

with c.n appropriate interpretation of the word 11homo1o9y'' our 

results remain v~lid over any base field. 

§1 

Let IP 2 be the projective plane over c. Jrc:>r a~y po&:JitiV+l 

integer d, let Hilbd(P 2 } qenote the ailbert echeme par~ne

trizing finite subschemes of f22 o:e 1e:n~h Q.. It 4\? dep,otes 

the complement of a, line in IP 2 , .let Jii.~.:}:ld(D>.. 2 ) denote the open 

subscheme of Hilbd(~2) ~orresponding to sUbschemas with $Upport 

in ~ 2 • Fu;r;'thermore let iiilbd(h\2, 0) be the closeq ~up.scnerne of 

Hilbd(~.2 } pax-ametrizing subschemas suppox-t~~ in the <:>rigin. 

For any complex variety X, let H* (X) b~ the :ao;rel..,.t""..oore 

homology of X (homology with locally finite supports). By the 

i-th Betti number bi(X) we shall mean the ~an~ o~ tbe finitely 

generated abelian group Hi (X). Let ;dX) = r (-1) ibi (X) be the 

Euler-Poincare characteristic of x. As usual, A*(X) is the Chow 

group of X, and cl:A*(X)"-+ f.t*(:X:) is the cyclE! map (see (Fu] ch. 

19.1). 

If m .and n are non-negativ' integers, let P(:m,n) denote 

the number of sequences n~b0 >b 1 ) ••• ~bm = 0 sucn that Lbi = m. 

If n:>m, then P (m, p) = P (m), the numbel:' of pal;"titions of m. Let 

P(m,n) = 0 if o or n is negative* 
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( 1.1) Theorem. ( i) Let X denote one of the schemes Hilbd(tP2}, 

?~ • l. d ( lf1 2 0 ) hJ.. 0 it'.. 1 ° ~1en the cycle map Cl •P. ("'') ..). U (V') ··-* h ,\..I. ' _'\. • 'X 

is an isomorphism, and in particular the oC.d hor:tology vanishes. 

Furthermore, both groups are free abelian groups. 

and p (d) • 

( iv) P(k,d-1<::} and 'H'1bd(m2 0)) X l J.J.. tr.\. I = p (d) • 

Remark. The Betti numbers of Hilb 3 (~ 2 ) were determined by A. 

Hirschowitz ([Hj). In table 

Hilb d (li? 2) for 1 < d < 1 0 • 

0 2 3 4 

1 1 1 
2 1 2 3 
3 1 2 5 6 
4 1 2 6 l 0 1 3 
5 1 2 6 12 21 
6 1 2 6 1 3 26 
7 1 2 6 1 3 28 
8 1 2 6 13 29 
9 1 2 6 1 3 29 

10 1 2 6 1 3 29 

•N"e have listed the Betti numbers of 

5 6 7 8 9 1 0 

24 
39 47 
49 74 83 
-11 .'::).., 94 1 31 150 
56 105 167 232 257 
57 110 189 298 395 440 

Table 1. 

The Betti numbers b 2k(Hilbd(!P 2 )) are lis·ted :£o,r 1 ~d<:lO and 

O<k<d. For d<k(2d =dim Hilbd(~ 2 ) the number b2k(Hilbd(~2)) is 

given by Poincare duulity. 
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(1.:2} Corollm:v. (Briancon; [Br] V.3.3.) Hilbd(.t?~ 2 ,o) is irre-

ducible. 

Proof. By a result of Gaffney-Lazarsfeld (see [Ga] or [I2] theorem 

"") . d 'b1 - H'lbd' 2 0' L. , any 1.rre uc1. .1-e component or _l. . ts , J has dinension at 

least d-1. From (iv) of theorem (1 • 1.) it folla'ls that 

k = d-1 0 if k>d-1. The corollary 

follows from [Fu] la~ i9.1.1. 0 

Let S denote the graded Z-algebra freely generated by 

c 1 , • • • , c d, c l' . . . , c d and where the degree of c c! i' .J. 

and c'! is 
1. 

i. Denote by Sk the graded part of S of degree k. 

Proof. Assume 2k(d. Let do~ d 1 , d 2 , p and r be indices such 

that the corresponding term in the expression for b 2k (Hilbd(IP 2 )) 

in ( 1 . 1) part ( ii) is non= zero. Then P (2d r f r=d 2 H=O and r-d2 :;.O. 

Therefore p = k-d 1-r<k-d1-d2 and hence 

2p<2k-2d 1 -2d2 (d~2d 1 -2d2 (a0 • Thus p(d0~p and P(p,d0-p} = P(p). 

We may therefore write 

b2k(Hilbd(~ 2 )) = I~ P(p)P(d1)E(k-d1-p) 
p.al 

where B(j} = 2 P(2m-jffj-m). This completes the proof since the 
m 

Hilbert function of Z[c 1 ,c2 , .•. ] is P(j) and that of 

~ (c 2 ,c 3 , ••• ] is B( j). 

The reason for giving this corollary is the following. Let 

0 

and let ~=Z~ ~ 2 be the 
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natural map. Then Ei = -:t*t!J*OG?2 (i) are vectorbundles of rank d 

on Hi 1 b d (tP 2 ) • ar:.d are natural 

candidates for al<;ebr2. generators o£ t11'2 C11C'v·i ring of '~ Eilb -(.!? 2 ) • 

T:"le algebra S .... -
l..nere~ 

fore maps surject.i vcly onto the s u.balgebra of A* ( Hil;, 0 {lP 2)) ge!le-

rated 0y -t.he C'nern classes of the ti • s. The co:::ollary can thus be 

regarded as evidence for the follmdr:g conjectm:e 

(l .4) Conjecture. A*(Bilbd(k? 2)) is generated as a .z-algebra by 

and 

t"le end this secticn L-y recalling t• .. ;o results which are 

fundamental for this work. 

Following Fulton ( [Fu] example 1 . 9. 1 ) we say that a scheme X 

has a cellullar decomoosition if there is a filtration 

X = X => X 1 ::::::l ••• => x 0 ::::::l X 1 = ¢ by closed subsche~es 'Ylith each 
n n- -

x. -x. , 
J. J.-1 

a disjoint union of sche.'i1es 

n .. 

u .. 
:!.J 

isomorphic to affine 

spaces lA ~J The U .. 's will be called the cells of the decom
l.J 

position. 

(1.5) Proposition. Let X be a scheme with <:1 cellullar decomposi~-

tion. Then for O<i<din X 

( i ) H2 i + l (X ) = 0 

( ii) H2 i (X) is a .z-mcdule freely generated by the classes of the 

closures of the i-dimensional cells. 

(iii) The cycle :uap Cl:~~. (X)-->- H (X) 
')'\' * 

~s an isomorphism. 
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For a proof of this proposition see [Fu] chapter 19.1. 

Let X be a variety with an action of G 
m 

and let x be a 

fixpoint. Then there is an induced action of 6 on the tangent 
m 

space Tx . ,x The part of T x,x 

positive is denoted by 

in [S 1 ] and [B2 ] • 

+ 
(TX, X) • 

where the weights of rs are 
m 

The following theorem is proved 

(1 .6) Theorem. (Birula-Bialynicki). Let X be a smooth projective 

variety with an action of G • m 

{xl, •• • ,xn} is finite, and let 

Suppose that the fi:\:point set 

X.= {xEXIlL~ tx = x1.}. 
l. t+O 

Then 

(i) X has a cellullar decomposition with cells X .• 
J. 

(ii) T x. ,x. 
l. l. 

+ 
= (TX, X,) • 

l. 
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§2. 

rrom now on we fix a system of homogeneous coordinates 

TO,T1 ,T2 of li? 2 • Let G 5:: SL(3,C) be the maximal torus con-

sisting of all diagonal matrices. We denote by "'o' A.l ' "'2 the 

complex characters of G such that for any gEG we have 

g = diag( "'o (g), A.1 (g), A.2 (g)). Then G acts on IP2 via 

gT i = A.i (g)T i' .and on· points (a0 ,a 1 ,a2 ), this action is give.n by 
-1 -1 -1 

g(a0 ,a 1 ,a2 ) = (A. 0 (g) a 0 ,A.1 (g) a 1 ,A.2 (g) a 2 ). The .fixpeints are 

clearly P 0 = (1 , 0, 0) , P 1 = ( 0, 1 , 0) and P 2 = ( 0, 0, 1 ) • 

Let L be the line T = 0, and put 
2 . 

and 
i 

Fi~ , and they define a cellullar decem-

position of P 2 • The one-parameter subgroups • :G + G inducing m 

this cellullar decomposition are those of the type 

~(t) = diag(two,twl,tw2) where w0 <w1 <w2 and w0+w1+w2 = o. 
The action of G on IP 2 induces in a natural way an action 

of G on If Z c:: IP 2 corresponds to a fixpoint of 

this action, clearly the support of z is contained in the 

fixpoint set {P 0,P 1 ,P2 } of G. Hence we may write z = z0uz 1uz2 

where z. 
l. 

is supported in P. 
~ 

and corresponds to a fixpoint in 
d, 

Hilb 1 (IP 2 ) , where = length(Oz.>· 
.1. 

(2.1) Lemma. The action of G on Hilbd{~ 2 ) has only finitely 

many fixpoints. 

Proof. A point of Hilbd(p2) is a fixpoint if and only if the 

corresponding ideal I in C[T0 ,T1 ,T2 ] is invariant under G, 

which is the case if and only if I is generated by monomials. 

These ideals obviously form a finite family. 0 
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It is well known that Eilbd(~ 2 ) ig smooth and projective 

( [Gr ], [Fl ] ) • Hence ( 1 • 5) and ( l . E) apply to the action of 2.ny 

sufficiently general one-para~eter subgro~p of G on 

and we have proved the statements in (1 .1) par~ (i) concerning 

To prove the rest of count the 

cells of a given dimension. Por this purpose vle use a decorr.posi-

tion of the Hilbert sche.T.e vlhich v:c ncM procc~c to. describe. 

For any z c: f?2 of finite lBngth d '.vc can \¥-ite z u.n:.qu.e-

ly as a disjoint union ... -... - '? U'7. U"' ... 0 "'l ""2 where each z. 
~ 

.ls a closed 

subscheme of ~2 supported in F .• 
l. 

Put di(Z) = length(Oz.). 
.l 

For 

any triple (d 0 ,d 1 ,a2 ) of non-negative integers with d = d 0+a1+a 2 , 

we define W(d 0 ,a 1 ,d2 ) to be the (locally closed) subset of 

corresponding to subschemes z \'lith d . ( z ) = d . 
~ ~ 

for 

' 0 . d( ") f ) 1 = ,1,2. Clearly H~lb ~~ = u W\d 0 ;d 1 ,a2 . 
d 0+d 1+d 2=d 

Let $ be any one-parameter subgroup of G respecting the 

cellullar decomposition {F 0 ,F 1 ,F2} of IP 2 . Then ¢ induces a 

cellullar decomposition of Hilbd(~ 2 ), and W(d 0 ,d 1 ,d2 ) is a union 

of cells from this decomposition. In fact, let Z be in 

approaches a subscheme supported in 

Then, as 

P.. Thus 
J.. 

cellullar decomposition and (1.5) applies to it. 

(2.2) Lemma. 

t+O, ij>(t)(Z.) 
::!. 

W(d 0 ,d 1 ,d2 ) has a 

This reduces our problem to the calculation of the Betti numbe~s oi 

w ( a0 1 0 t 0 ) 1 w ( 0 1 a1 1 0 ) and W(O,O,d..,). 
"~ 
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§3. 

The spaces ~'7(d,O,O), vJ(O,d,O) and ~~(O,O,d} are all contained in 

., . 1 bd {I!.) 2 ) 
t~~- j.:; • In the previous section we saw that they are unions of 

cells from a cellullar decomposition of Hilb~~- The cells con-

tained in W(d,O,O) (resp. W(O,d,O), \'J(O,O,d)) are exactJ.y t.hcse 

corresponding to fixpoints supported in 

. are thus reduced to the study of G-invar~ant subschemes of 1?2 

concent=ated in one fb .. -point of G. }\ny such :::mbschernes is con-

ta:!.ned in a G-i!'lvariant affine plane. Hence \O:e are interested in 

ideals of R = C[x,y] of finite colength, invariant under the 

action of a two-dimensional torus T given by t.x = A.(t)x and 

t.y = ~(t)y, where A. and ~ are two linearly independent charac-

ters of m 
J. • We shall also denote by A. and 1J. the elements in 

the representation ring of T induced by the corresponding one-

dimensional representations. 

Let I be such an ideal. Then since I is T-invariant, it 

is generated by monomials in x and y. Hence the number 
. k 

b.= inf{klxJy EI} exists for each integer j~O. Clearly b.= 0 
J J 

if j> >0. Let be the least integer such. that b = 0. 
r 

The 

b. 
J 

form a non-increasing sequence and 

furthermore 
b . b. 

bo 1 J J r y ,xy , ••. ,x y , ••• ,x 

.,.. 
Lb.= length(R/I) =d. 

j=O J 

is a (not necessarily mini-

mal) set of generators for I. Note that this sets up a one-one 

correspondence between T-invariant ideals of colength d in R and 

partitions of d. 

For any ordered pair ~ = ( c, ~) of integers 1 let R [a, ~] 6 

also denoted R [~], be the R-mcdule · R \.;ith the action of T 

gi.·ven ·oy ~ m n '(•)rn-a (t)n-~ rn n ~sX }"' = !\. ._ J.l. X 1..,. ~ 

of T we may w-rite R[a, p] = I ;x_P~q· 
p>-a: 
q>-~ 

In the representation ring 
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(3.1) Lemma. There is a T-equivariant resolution 

0--;. 

\'there n. :::: {i,b. 1) 
-J. J.-

1 <i<r then 

M ::::: 

r ~1 

<» R [-n. 1-
-J.-

i=l 

r 
9 R [ -d . ] ---+ ! --->- 0 

. 0 -~ l.= 

and d. = (i,b.). If e. = b. 1-b. 
-l, .l. l. J.- l. 

r ~el 0 .. .. • .. • .. 0 .. 
.X 0 .. 
ye2 •r .. 

~ 

• .. 
0 .. 

0 .. 
:c • e 

0 r .. • • .. • " " y 

for 

Proof. This amounts to checking that ~~I is equivariant and that 

the ll'.axima 1 minors of ~t 
b b . b. 

are y o,xv l, ••• ,xJy 3 , ••• ,xr, which is 

straightforward. 0 

(3.2) Lemma. In the representation ring of T we have the identi-

ty -
2 

l<i<j<r 

Proof. First we prove that HomR(I,R/!)=Ext~(I,I) in a T-equi

variant way. The T-equivariant exact sequence 

induces a T-equivariant sequence 

The last map of this sequence is an isomorphism because 
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Ev~ 1 (l.- R): ~v+EC,R· f1 J.- 1 R) '··'-:R I "'"'"'"-£<. ~ 

To compute ExtJ;(I,I) we use the T equivariant complex 

\'There E = 
0 

are given by 

.. , 
A B 

Ev ""'E (.,.... v ·"'.., ) { Ev ""'.,.., ) . Ev ... -0 \Ci 1 --"' l!lo ..,·.r..o 8 1 ~r ... , __,. 1 °.!!io 

r r 
e R [-d.] 

~-o -J_ .... -
and E = 

1 
e R (-!1. 1. 

.: - -1.-
~--1 

The rr..ap~ 

A = ( id ~ ... '1, r-1 v 0idh' ) and 
...,v . "'"'! .c..o -

and B 

The cokernel of B is zxtJ(I~I)~ the ~iddl~ hocolo~J is 

HomR(I~I) = R, and A is injective. Hence in the representation 

ring we get the formula 

R + l: R[n.-d.]- I R[n.-n.]- L R[d.-d.] + L R[d.-n. ]. 
l<i<r -1. -J l<i,j<r -1. -J O<i,j<r -1. -J l<icr -J -1. 

O<j<r O<j<r 

For l<i<j<r define K .. = R[n.-d. 1 ]-R[n.-n.]-R(d.-d. 1 ]+R(d.-n.] 
l.J -J -1.- -J_ -J -J -1.- . -J -1. 

and L .. = R [n. -d . ]-R [n.: -n . ]-R [d. 1-a . ]+R [d. , -n . ] • Then, l.J -1. -J -..~. -J -1.- -J -l.-1 -) 

regrouping the terms in the formula above, it is easily verified 

that ExtR1 (!,I) = 2 K~ .+L... Now using that d. = (j,b.) and 
1 (i~j<r ..:..J 1.J -J J 

that n. = (i,b. 1 ) we get 
-l. 1.-

K. ~ = 
l.J 

= ~ i-j-1 q 
t.. A. 1.1. -

q>b. 1-b. 1 
1.- J-

b. 1-1 
J-

= I 
s=b. 

J 

In a similar way one checks that L .. = 
l.J 

r A.pl).q 
p:>i-j 
q>b. 1-b. 

l.- J 

b. -1 
J-l . 1 s-b. 1 \" J- l.-L A. I! 
s=b. 

J 

0 
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§4. 

We ncrv; proceed to compute the Betti nu..-rnbers of W(0,0 8 d), \'l(O,d,O) 

and ~Hd,O,O). We start vlith Vl(O,O,d). 

As all the subschemes of F 2 corresponding to points in 

W ( 01 0 6 d) are conta.ined in the affine plane Spec 

m 'T' J.o 
and 

-, 
In thP- cor.1putation in §3 X = ":l = . \ole r.lay 

T2 'i' 

-1 
- 2 

-1 
then A = ;\0\2 and iJ. = AlA2 • 

w1oose a on~-para~eter subgroup ¢ : G -+G given by 
m 

( ) -· ( t..>~o wl w") d ¢' t = Cl.ag t , t , t L where .._.,0 <\'11 <w2 an 

( ) __ tw 0-w ?_ ( ) w . -w 2 Xo¢ t and ~o¢ t = t 1 • More 

take T ;::; G; 

Then 

character Xcp.~ of G we have Xa~~o¢(t) = 

generally, for any 

~a(w 0-w 2 )+R(w 1 -w2 ) 
~ . 

Pick a cell u from tne cellullar decomposition o£ Hilbd(~2) 

defined by ~, contained in W(O,O,d). We want to compute its 

dimension. The cell U corresponds to a fixpoint of G in 

d Tl Tl 
Hilb (IP 2 ), contained in Spec C G_r-,T] = Spec c [x, y], hence to an 

2 2 

invariant ideal I in C(x,y]. According to {1.2), 

dim U = dim T+ where T is the tangent space of Hilbd(IP 2) at 

the fixpoint. ~nere is a canonical G-equivariant identification 

T"'HomR(I,R/I) where R = c [x,y] (see [Gr]). \'le may assume t1u~.t 

w -w 
2 0 >>0. Then any one dimensional representation :\a:~f3 occurring 

wl-wl 

in Ho~(I,R/I) has a positive weight. with respect to «11 if and 

only if ~<0, or a= 0 and ~<0. It follo~s from (3.2) that 

b -1 
r b. ,-1 

J-
l 

s=b. 

. . 1 b. 1 -s-l 
l.-J- l.-A ~ . + ,l 

J=l 

j-1 s-b. l ~ J-1 
s=b. 

J J 

r r 
The number of summands in the first sum is L I (b. 1-p.) = 

i=l j=i J- J 
r 
I b. 1 = d and in the second sum there are 

• 1 l.-l.= 

summands. Therefore dim U = dim T+ = d+b0 • 

r 
I (b._l-b.)- bo 

j=l J J 
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In order to co~ute one of the Betti nu~bers o= W(O,O,d), say 

b 2k(W(O,O,d)), we have to count the n~~ber of cells 

k. Since there is a one-one correspondence between invariant 

ideals of <::: [x,y] of colength d and part.it.ions 

of d, b 2k(W(O,O,d)) is the n~ber of partitions of 2d-k in 

parts bounded b-.t k-d. We have proved 

(4.1) Proposition. b.,..k(N(O,O,d)) = P(2d-k,t;-d). 
~-

:::;: 0 

Remark. This concludes the proof of theora~ (1 .1) part (iii) since 

W(O,O,d);Hilbd(~2). 

Next we turn to w ( d, 0, 0). Subschemas of 11? 2 corresponding 

to points in W(d,O,O) are suppo.rted in Po. In particula::: 

contained in 
Tl T2 T1 

and are Spec c [;y;-,TJ. Put .... = TO" ... 
0 0 

computation in §2 we may take T = G, 
-1 

;\. = AlAO , and 

w -w 
w1-w0 >>0, and reasoning as above, we get 

2 0 

b. -1 
J-1 .. s-b. 1 }: A J- J.l! J.-

s=b.· 
J 

y = 
T2 
it'Q" 

where T is t.he tangent space to ~ilbd(IP 2 ) at the fixpoint 

they 

In the 

corresponding to the partition b 0 )b1 ) ••• )b = o .. r of d. Hence the 

dimension of the corresponding cell is 

r 
2 b. = d-b0 . This gives 

. l J. J.= 

(4.2) Proposition. o2k(W(d,O,O)) = P(k,d-k). 
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Remark. This proves theorem (1 .1) part (ii) since 

The l~st case to treat is W(O,d,O). This tL~e we put 

As usual, let $ be a o~e-parameter subg~cup of G with 

Let 

with a;~<O. Since 

be a one-dimensional representation of G 

•,;0-'l,o; 1 <0 and '<'t 2-w1 >0 tne weight of ~ ~~.~.~ 

with respect to ¢l is positive if and only if c::: <0 and ~ >0. 

Using this and (3.2) it is easily verified that 

where T is the tangent space of Hilbd(ll? 2 ) at the fixpoint 

corresponding to the partition b0 >b1 > ••• >br = 0 of d. Hence all 

the cells in W(O,d,O) are of dimension d, and we get 

'o 
(4. 3) Pronosition. b 2k(W (0, d, O)) ~ G(d) 

if k*d 

if k=d. 

Substituting the expressions of (4.1), (4.2) and (4.3) in the 

formula in lemma (2.2) we get theorem (1.1) part (ii}. This con

cludes the proof of (1 .1). 
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§5. 

Denote by the rational, ruled surface 1P(Ocr;de>01P1 (-n)). A 

maximal torus T of the automorphiSTJ group of IF n is of dimension 

t1.vo and has four fixpoints on IF • 
n 

It is easily checked th.at for 

an appropriate class of one-parameter subgroups of 'i' -' the weights 

on the tangent space .t= [? _.._ 
t\'10 of these fixpoints are of o ... C. I.-

n 

opposite sign, and at the two re.'Tiain.ing fixpoints, the two w·eights 

are :::-espectively positive and negati,!e. Thus the corresponding 

cellullar decomposition of IF 
n 

contains a point, two copies of 

f'A 1 d f'l'i.,. '-"":~. , an an ln.- Adapting the proof of (1 .1) to this situation we 

get 

(5.1) Theorem. The cycle map cl;A*(nilbd(lF 0 ))---+ H*(Hilbd(!F 0 )) is 

an isomorphism, and in particulc.r the odd homology vanishes. The 

homology groups are free abelian groups. Furthermore, 

b2k(Hilbd(~n)) = 

and 
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