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Although several authors have been interested in the Hilbert
scheme Hilbd(Pz) parametrizing finite subschemes of length d
in the projective plane ([I1], [12], (F1], [F2], [Br] among
others) not much is. known about the topological properties of this
space. The Picard group has been calculated ([F2]), and the
homology groups of Hilb3(P2) have been computed ([H]). In this
paper we dive a precise description of the additive structure of
the homology of 'Hilbd(PZ), applying the'results of Birula-
Bialynicki ([B1 ], [B2]) on the cellﬁllar decompositions defined by
a torus action to the natural action of a maximal torus of SL(3)
on Hilbd(Pz). A rather easy consequence of the fact that this
action has finitely many fixpoints is that the cycle maps between
the Chow groups and the homology groups afe isomorphisms. In
particular there is no odd homology, and the homology groups are
all free. The main objective of this work is to compute their
ranks: the Betti numbers of Hilbd(Pz).

As a byproduct of our method we get‘simiiar results on the
homology of the punctual Hilbert scheme and of the Hilbert scheme

of points in the affine plane.



It seems naturzl to generalize our results to any toric

smooth surface. FHowever, we give the results only for the .

o

rationel ruled surfaces En with an indication of éhe necéssary
changes in the procfs.

For simplicity we work over the field of complex numbers, but
with azn appropriate interpretation cf the word "homology" our

results remain valid over any base field.

§1
Let P2 be the projective plane over €. For any positive
integer d, let Hilbd(Pz) denote the Hilbert scheme parame-
trizing finite subschemes of P? of length d. If A? denotes
the complement of a line in P2, let Hilbdﬁaz) denote the open
subschemé of Hilbd(P2) corresponding to subschemes with support
in AZ2. Furthermore let HildeAz,O) be the closed subscheme of
Hilbd0A2) parametrizing subschemes supported in the origin.

For any complex variety X, let H, (X) Dbe the Borel-Moore
homology of X (homology with locally finite supports). By the
i-th Betti number bi(X) we shall mean the rank of the finitely
generated abelian group Hi(x). Let x(X) = Z(-i)ibi(X) be the
Euler-Poincaré characteristic of X. As usual, A, (X) 1is the Chow
group of X, and cl:A _(X)— H, (X) is the cycle map (see [Fu] ch.
19.1). |

If m and n are non-negative integers, let P(m,n) denote
the number of sequences n>by>b;>...?b_ = 0 such that Jb; = m.
If n>m, then P(m,n) = P(m), the number of partitions of m. Let

P(m,n) =0 if m or n is negative.



(1.1) Theorem. (i) Let X denote one of the schemes Hilbd(Pz),

e s | , wesme Ay o . - .
ﬂllbabﬁz), or Hilb (&4,0). Then the cycle map cl:A*(A) > H*(K)

is an isomorphism, and in particular the odd homology vanishes.

(i) Dby, (Hilp¥(@2)) = ) I P(p.dy-0)P(d,)P(2d,-1,r-d,)
and y(Hilb(@2)) = 7 5(a.)P(d,)P(d,) -
——— . b, o 0 1 2

do'l'dl'l'a.z"‘d

(iii) bzk(Hilbd(AZ)) = P(2d-k,k-d) and x(Hilb¥A?)) = 2(d).

(iv) b.. (Hi1b3(a2,0)) = P(k,d-k) and y(Hilb™a?,0)) = P(d).

2k(
Remark. The Betti numbers of Hilb3(P?) were determined bv A.
Hirschowitz ([E]). In table 1 we have listed the Betti numbers of

Hilbd(@2) for 1<d<io0.

k 0 i 2 3 4 5 6 7 8 ] 10
d

1 1 1

2 1 2 3

3 1 2 5 6

4 1 2 6 10 13

5 1 2 6 12 21 24

6 1 2 6 i3 26 39 47

7 1 2 6 13 28 4 74 83

8 1 2 6 13 29 54 24 131 150

9 1 2 ) 13 29 56 105 167 232 257
10 1 2 6 13 29 57 110 189 298 395 440

Table 1.

Fh

The Betti numbers b, (Hilb%(P?)) are listed for 1<d<i0 and
0<k<d. For d<k<2d = dim Hild“(P2) the number b2k(Hilbd(P2)) is

given by Poincaré duality.



(1.2) Corollary. (Briancon; [Br] v.3.3.) HildeAz,O) is irre-

ducible.

Proof. By a result of Gaffney-Lazarsfeld (see [Ga] or [I2] theorem

2), any irreducible component of Hilbdiﬁz,o) has dimension at
least d-1. From (iv) of theorem (1.1) it follocws that
bZk(Hilbq(ﬂ\.z,O)) =1 if k =4a-1 anéd 0 if k>d-1. The corollary

follows from [Fu] lemma 19.1.1. 0

Let S denote the graded z¥algebra freely generated by

CyeeessCq ci,...,cé and c%,...,ca_] where the degree of Cyr C§

and c; is 1i. Denote by Sk the graded part of S of degree k.

- 3 A2 =
(1.3) Corollary. _I_Jg 2k<d, then bZk(H"'lb (P2)) = rszk.

Proof. Assume 2k<d. Let dg. d1, dy, p and r Dbe indices such
that the corresponding term in the expression for b2k(Hilbd(P2))
in (1.1) part (ii) is non-zero. Then P(Edzwr,r—d2)¢0 and r-d,>0.
Therefore p = k—d]—r<k—d]-d2 and hence
2p<2k—2d]—2d2<d42d]—2d2<do. Thus p<dg-p and P(p,do~p) = P(p).

We may therefore write

b,y (Hi1b%(@2)) = pXﬁ P(p)P(d,)B(k-d,-p)
r=]

where B(j) = ] P(2m-j,j-m). This completes the proof since the
m

Hilbert function of z[c],cz,...] is P(3j) and that of

.Z[C2IC31000] iS B(j)o . . D

The reason for giving this corcllary is the follcwing. Let

7:7— Hilb3(P2) be the universal family and let ¢:Z— P? be the



* . - -
natural map. Then &, = 7 _¢ 092(1) are vectorbundles cf rank ad

4
on Hilbd(Pz). The Chern classes of EO' E

candidates for algebr& generators of the Chew ring of HEilp(P2).

1
. . . - - - P Y P 5
fore maps surjectively ontc the subalgebra of A (Hilb (P<)) gene-

rated by the Chern classes of the L'

s. The coroilary can thus be

= ~

regarded as evidence for the £ollowing conjecture

(1.4) Conjecture. A (Hilb“(P2?)) is cenerated as a Z-algebra by

the Chern-c¢lasses of EO, E] and Ez.

We end this secticn by recalling two results which are

fundamental for this work.

Following Fulton ([Fu] example 1.92.1) we say that a scheme X

has a cellullar decomoosition if there is a filtration

X = X,'1 o Xn_1 Se..D XO o X_] = @ by closed subschemes with each

a disjoint union of schemes Uij isomorphic to affine

spaces A 3. The Uij's will be called the cells of the decom-

position.

(1.5) Proposition. Let X be a scheme with a cellullar decomposi-

tion. Then for 0<i<din X

i (X) =0

(1) Hy, 4

(idi) Hzi(x) is a Z-mcdule freely generated by the classes of the

closures of the i-dimensional celis.

(iii) The cycle map cl:A (X)— E (X) is an isomorphism.
= kg




For a proof of this proposition see [Fu] chapter 19.1.
Let X be a variety with an action of Gm and let x be a
fixpoint. Then there is an induced action. of Gm on the tangent
g - . _Od‘- rS ~
space TX,x' The part of Tx,x where the weights of Cm are

‘g . + . .
positive is denoted by (TX x) . The following theorem is proved
14

in [B1]‘and B2 ].

(1.€) Theorem. (Birula-Bialynicki). Let X be a smooth prcjective

variety with an action of Gm' Suppose that the fixpoint set
) .

t-+0

(i) X has a cellullar decomposition with cells X, .
+

) .

{xy,...,%x_} 4is finite, and let X, = {x€X|lim tx = x.}. Then
1 n , . i i —_—

(idi) TX‘,x. = (T

X, x.
1’71 |



§2.

| From now on we fix a system of homogeneous cocrdinates
TyeTysT, of P2, Let G = SL(3,C) be the maximal torus con-
sisting of all diagonal matrices. We denote by xo,x],xz the
complex characters of G such that for any g&é€G we have

g = diag(ho(g),x](g),kz(g)). Then G acts on P2 via

gTi = ki(g)Ti, and orr points (ao,a],az), this action is given by

]a],hz(g)-]az). The .fixpoints are

-1 -
glag.ay.a,) = (Ag(g) ag, A, (g)
clearly P, = (1,0,0), P, = (0,1,0) and Py = (0,0,1).

Let L be the line T, = 0, and put F, = {po}, F, = L-Pg,

2
and F, = P2-L. Then Fiqal, and they define a cellullar decom-
position of P2. The one-parameter subgroups $:6_ » G inducing
this cellullar decomposition are those of the type
o(t) = diag(t¥0,+¥1,e¥2) here w.<w;<w, and w.+wy+w, = O.
- 0" "2 0o"™M "2

The action of G on P? induces in a natural way an acticn
of G on ‘Hilbd(PZ). If Z < P? corresponds to a fixpoint of
this aétion, clearly the support of 'Z 1is contained in the

P of G. Hence we may write 2 = Z_UZ U22

1 2} 0 1
where Zi is supported in Pi and corresponds to a fixpoint in

fixpoint set {PO,P

dc '
Hilb “(P2), where d, = length(0, ).
‘ i

(2.1) Lemma. The action of G on Hilbd(Pz) has only finitely

many fixpoints.

Proof. A point of Hilbd(Pz) is a fixpoint if and only if the
corresponding ideal I in C[TO'TI’TZJ is invariant under G,
which is the case if and only if I is generated by monomials.

These ideals obviously form a finite family.



L B, . ers 1 G . . .
It is well known that Hilb (P2) is smooth and projective
([er]l, [F1]). Hence (1.5) and (1.€é) apply to the acticn of any
A 5 - N
sufficiently general cne-parameter subgroup of G on Hilb (P2),
ané we have proved the statements in (1.1) par: (i) concerning
o 4 , 2 : £ ! 24 ° . . N
Hilb (P<). To prove the rest of (1.1) it remzins to count the
cells of a given dimension. For this purpose we use a decomposi-

-
;)

tion of the Hilbert scheme which we now preoceed to describe.

J [k

For any 2 < P? of finite length d we can write T unigue-
ly as a disjoint union 2 = Z_.UZ UZ, where eacn 2, is a closed

subscheme of P2 supported in F;- Put d&,(2) = length(0, ). For

any triple (do,d1,dz) of non-negative integers with d = d0+d]+d2,
we define W(do,d],dz) to be the (locally closed) subset of

Hilbd(Pz) corresponding to subschemes Z with 4,(2) = d;, for

4,
i=0,1,2. Clearly Hilb (P?) = U W(dgy:d,.d,) .
dy+d+d,=d
Let ¢ be any one-parameter subgroup of G respecting the
,F],Fé} cf P2. Then ¢ induces a

cellullar decomposition {FO

cellullar decomposition cf Hilbd(Pz), and W(do,d],d2) is a union

of cells from this decomposition. In fact, let Z Dbe in

W(do'd1'd2) and . write 2 = zouz]uzz. Then, as -0, ¢(t)(zi)

approaches a subscheme supported in P,. Thus W(do,d],dz) has a

cellullar decomposition and (1.5) applies to it.

Since W(do,d d2)=w(do,0,0)xw(0,d],O)XW(O,O,dZ) we get

] 8

L4

(2.2) Lemma. b?_k(Hilbd(tp?)) =

) } b, (W(@.,0,0))b. (W(0,d,,0))b, (W(0,0,d.)).
dg*d +d,=d p+gtr=k 2P 0 2q 1 2r 2

This reduces our problem to the calculation of the Betti numbers of

W(do,0,0), W(O,d],O) and W(0,0,dz).



§3.
'he spaces W(4,0,0), w(0,&,0) and WwW(0,0,d) are zll contained in

ﬂ

Eilbd(Pa). Iin the previous section we saw that they are unions of
cells from a cellullar decomposition of Hilb%@zl The cells con-
tained in W(d4,0,0) (resp. W(0,d4,0), wW(0,0,8)) are exactly those

corresponding to fixpoints supported in PO (resp. P], P,). e

o

are thus reduced to the study of G-invariant subschemes of P
concentrated in one fi‘p nt of G. Any such subschemes is con-
tained in a G—invariant affine plane. Hence we are interested in
idezis of R = C[x,y] of finiﬁe colength, invariant under the
action of a two-dimensional torus T given by +.x = A(t)x and
t.y = p(t)y, where A and p are two linearly independent charac-
ters of T. We shall also denote by A and p the elements in
the representation ring of T induced by the corresponding one-
dimensional representétions.

Let I be such an ideal. Then since I is T=invariant, it
is generated by monomials in x and y. Hence the number
bj = in ‘{klxjy €1} exists for each integer 3>0. Clearly bj = 0
if 3J>>0. Let =r Dbe the least integer such that br = 0. The

I 3

bj form a nen-increasing sequence and bj = length(R/I) = 4.

j=0
’ b b y P r
Furthermore v 0,xv 1,...,x3y j,...,x‘ is a (not necessarily mini-
mal) set of generators for I. Note that this sets up a one-one
correspondence between T-invariant ideals cf colength d in R and
partitions of d.
For any ordered pair a = (¢,B) of integers, let R[e,B],

also denoted R[a], be the R-module - R with the action of T

given by t.xmyn = k(t)m“au(t)nagxmyn; In the representation rin
of T we may write R[a,5]= ) aPp

p?-a

g>=-B
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(3.1) Lemma. There is a T-equivariant resolution

r M r
0 —= ®R[-Eij——~ @R[-_Z_i]-—> I— 0
i=1 i=0 =
vhere n. = (i,b ) and d. = (i,b.). If e, = Db -b for
. =i =] —_— =1 i == i-1 71 =—
1<i<r +then - N\
X O © o e e o o 0
vlx 0 .
M= 0 yeZ P .
Lo '
. 0
. X
®r
0 e o o © o o ® y J.

.

Proof. This amounts to checking that M is equivariant and that

. b.
. . b b . ,
“he maximal minors of M are vy 0,xv 1,...,x3y 3,...,xr, which is

straight forward. : d0

(3.2) Lemma. In the representation ring of T we have the identi-

ty

. b, ,=-s=-1 . .

Hom_(I,R/I) = ) (At w7,
1<i<j<r s=b |

b -S

-1y,

‘Proof. First we prove that HomR(I,R/I)=Exté(I,I) in a T-equi-

¢

variant way. The T-equivariant exact sequence
0— I— R— R/I— 0
induces a T-eqﬁivariant sequence
0— Hom,(I,R/I)— Exté(l,l)—» Ext!(I,R)— Ext!(I,R/I)— O

The last map of this sequence is an isomorphism because



~

Ext!(I,R) = Ext2(R/I,R) = Ext2(R/I,R/I) = Extl(I,R/I).

% \-R

o

2

To compute Extl(I,I) we use the T equivariant complex

A B
v v v v
) — w = R — oF;
E, @E, (HOSMO)G(E]GL]) E, GEj
r T
vhere E. = ©R[-d.] and E, = © R[-n.]. The maps A and B
0 1= 1 1 3= =i
) . Vo, . v . . -
are given by A = (id v@M,M ¢id, ) and B = (M eldE ,~id VGM).
. b= 0. w
‘_:0 - . A,.‘l

The cckernel of B is Extl(I,I), the middle homclegy is
HomR(I,I) = R, and A is injective. Hence in the representation

ring we get the formula

R+ ) R[n.-gj] - ) RMRh,-n,]- 1} R[gi?gj] + ) R[;j-gi].

1<i<r 1<i,j<r =737 0<i,j<r 1<i<r

0<j<r ~ 0<j<r
r <igj< £ir K,, = ~d . -Rin.-n, |- ~d, + . ~n,
For 1<i<j<r define Ky R[QJ gl-1] {El EJ] R[g_i_j gl_‘] R[QJ gl]
and Lij = R[Ei-gj]-R[gi—gj]-R[Qi_1—§j]+R[gi_]—gj]. Then,

regrouping the terms in the formula above, it is easily verified

that Extl(z, 1) = Y K,.+L,.. Now usihg that d. = (j,b.) =and
R 1<igi<r = —J -

that n, = (i,b;_ ;) we get

4

Kij _ .Z. | 7\pup - ) . 7\Puq - z 7\PP‘CI - X. 'xqu
p?i=j-1 p>i-j pri=j-1 p?>i-j
> - > -1 I - > -
P 17P PP 7P PPy PPy TRy
- Zi-i-1 a ) x1~3-1uq ]
> - -
q b1—1 bj—] q>bl_] bJ
b. -1
=1 —<_7 bs_ s-1
= 2 T ]u ] .
s=Db,
J
By 1 s=by_,
In a similar way one checks that Lij = ) A3 B T . O
s=b
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§a.
We ncw proceed to compute the Betti numbers of W(0,0,4), W(0,4,0)
and W(4g,0,0}. We start with WwW(0,0,4d).

As all the subschemes cf P? corresponding to points in

: T, T
W(0,0,d) are contained in the affine plane Spec cfﬁg,—l] we put
2 "2
TO T]
X =7 and y = z—. In the computation in §3 we may take T = G;
2 =2 '

. . _ L=
then A = Aolz and p = K]Az .

Choose a one-parameter sukbgroup ¢:Gm+G given by

.. W, W . .
p(r) = clag(two,t 1,£72) where Wo<vy W, and wptwy+w, = 0. Then

roplr) = and pod(t) =t ! . More generally, for any

character x“uB of G we have xapso¢(t) = ta(wo-w2)+6(w1-w2).

Pick a cell U £from the cellullar decomposition of Hilbd092)
defined by ¢, contained in W(0,0,d). We want to compute its

‘dimension. The cell U corresponds to a fixpoint of G in

T, T
Hilbd(Pz), contained in Spec C —l,ﬁl] = Spec C[x,y], hence to an
2 72

invariant ideal I in ¢€([x,y]. According to (1.2),
dim U = dim T  where T is the tangent space of HilbdﬂPQ) at
the fixpoint. There is a canonical G-equivariant identification

T=HomR(I,R/I) where R = C[x,y] (see [G6r]). We may assume that

Y2
w] —‘N.|

in HomR(I,R/E) has a positive weight with respect to ¢ if and

>>0. Then any one dimensional representation x“uB occurring

only if @<0, or a« =0 and B<0. It folilows from (3.2) +hat

b. -1 b.
=1 . b, ,=s-1 r Jj=1 s=b.

+ -j-1 Pi- -
™= 7 R St TR R R aL
1<i<j<r s=b, j=1 s=b,

J J
. r r
The number of summands in the first sum is ) ) (bj 1—bj) s
i=t j=i 7

r ' r
Y b, , =4 and in the second sum there are Yy (b, .-b.) =D

i=1 *
e

summands. Therefore dim U = dim T = d+b .
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In order to cormoute cne of the Betti numbers of W(0,0,d), say
Po! k(W(0,0,d)), we hrave to count the number of cells of dimension
X. Since there is a one-cne corresvondence between invariant

0 i
~of g, bzk(w(o,o,d)) is the number of partitions of 2d-kx in

ideals of €[x,y] of colength d and partitions b.>b,>...>b_= 0
&
parts rounded by ¥-d. We have proved

(4.1) Proposition. bzk(W(0,0,d)) = pP(2d-k,k-4).

Remark. This concludes the proof of theorem (1.1) part (iii) since

W(0,0,d)2Hi10%(a2) .

Next we turn to W(d,0,0). Subschemes of P2 corresponding

to points in W(d4,0,0) are supported in P

T T

are contained in Spec C[T 2]. Put x =
0 To

In particular they

T

2
;r-a. In the

o

L}

and vy

R

=1
computation in §2 we may take T = G, A = Kl O]' and =-K210 .

Choosing a one-parameter subgroup ¢ with w0<wl<w2 and
W, -w '

1 _0>>0, and reasoning as above, we get
Y20
I
-1 s-b.,
+ - 1
™= 1 I
1<i<j<r s=bj-

: Y o
where T is the tangent space to Hilb (P2) at the fixpoint

corresponding to the partition b.>b >...>br =0 of d4d. Hence the

0- 1
r
dimension of the corresponding cell is ) ) (b._‘-b.)
i=1 §=i+1 I J
r
izloi = d-b,. This gives

(4.2) Proposition. 0, (W(4,0,0)) = P(k,a-k).
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Remark. This proves theorem (1.1) part (ii) since

4 ~
w(d,0,0)=Hilb (A%, 0).

m
The last case to treat is W(0,d4,0). This time we put x = T%'
T
o 2 - -1 - -1
v = ET' A= hol] ., anéd p k2K1 .

As usual, let & be a cne-parameter subgrcup of G with

Y c 5 3 ] g o
wo<w]<w2. Let M ue be a one-dimensional representation of G

8

. . . . 4
with «p<0. Since wo—w]<0 and w,-w1>0 the weight of A p
with respect to ¢ 1is positive if and only if ¢<0 and B8>0.

Using this and (3.2) it is easily verified that

b. ,-1

3=1 -s=1
L

. b.
T+= ) 7\J.]]u:l.‘
1<ig

b,
J

i<r s

where T is the tangent space of Hilbd(Pz) at the fixpoint

corresponding to the partition bo>b >...>br = 0 of d. Hence all

1
the cells in W(0,d4,0) =are of dimension d, and we get

0 iﬁ k=+d
(4.3) Prooosition. b2k(W(0'd'0)) =\p(a) if k=d'

Substituting the expressions of (4.1), (4.2) and (4.3) in the
formula in lemma (2.2) we get theorem (1.1) part (ii). This con-

cludes the proof of (1.1).



Denote by Fn the rational, ruled surface P(OPlequ(—n)). h-§
maximal torus T of the auvtomorphism gioup of [, is of dimension

two anrd has four fixpoints on & _. It is easily checked that for

an appropriate class of one-parameter subgroups of T, the weights

i

on the tangent space of n

at two of these fixpoints are of
opposite sign, and at the two remaining fixpoints, the two weights
are respectively positive and negative. Thus the corresponding
cellullar decaomposition of Fn contains a point, two copies of

Al, and an A?. Adapting the proof of (1.1) to this situation we

e
gec

sronmm

(5.1) Theorem. The cycle map cl:A*(Hilbd(Fn))—* H*(Hilbc(Fn)) is

an isomorphism, and in particular the odd homology vanishes. The

homolegy groups are free abelian groups. Furthermore,

bzk(Hilbd(Fn)) =

) - ) P(p,d~p)P(d,)P(&,)P(2d,-r,r=d,)

and

N |
x(Hilb (F_)) = P(d.)p(d,)p(d,)pP(4,).
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