Introduction

Let G be a compact Iie group acting as a transformation
group in Euclidean space R . It is a conjecture that the orbit
space R/G is acyclic for integral cohomology. Conner and Floyd
have proven that this conjecture holds if G is finite and if G
is abelian, 2,61 . In [1], they also proved the conjecture to
hold when G d4is a closed subgroup of 80(5). TFor any G, the
rational cohomology group H*( R™/G;Q) is acyclic, this is a result
due to Borel, see [1]. Since H*(IBﬂ/G;ZD is a torsion group, it
suffices %o shows that H*(]BH/G;Eb) is acyclic for each prime p ,
where Zmb is the field of order p. We therefore consider the
conjecture that for each G space X with H*(X;}Ep) acyclic,
the cohomology of the orbit space, H*(X/G;Imb) is also acyclic.

By a technique which we will call the Borel induction step (1.71),
(1], this conjecture depends on the existence, for each gimple con-
nected nonabelian G, of a G space X without fixed points such
that H*(X;I@p) and H*(X/G;Imp) are acyclic. We will construct
a number of such G spaces, with the exceptions listed in the fol--

lowing theorem.

Theorem 1. Let G be a compact connected simple nonabelian Iie

group, and let p be a prime number. With the only possible ex-

ceptions listed below, there is a compact, finite-dimensional space

X where G 1is acting without fixed points and such that H*(X;Eb)

o

and H*(X/G;Eb) are both acyclic. The possible exceptions are,
p=2, G=0, B, B, s0(2%), su(e®), a > 3, 52", a > 2,
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p =5, G=]E89 and

SU(pa), a>"1.
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Tor » =2, none of the groups listed in theorem 1 are con-

tained in SU(E) .

Theoren 2. Let X Dbe a space where a group G is acting, and

such that H*(X;]Fg) is acyclic, If G 1is a closed subgroup of
SU(6) , then the cohomology group H*(X/G;ng) is also acyeclic.

For p > 7, the possible exceptions listed in theorem 1 are
of the form SU(n), n=p® . This is surprising, since the unitary
groups are usually the best-~behaved groups when cohomology is con-
cerned, In question 4 at the end of the paper, we malke precise
the kind of result that needs to be proven for SU(H?) .

Let X Ve a G space and let f£:X - X be an equivariant
nap such that the orbit map ' preserves the components of X/G.

We then want to ask what are the eigenvalues of f*
in H*(X; k), and if they are related to the eigenvalues of f'*
in H*(X/G; k) . By the substitution Z - £* or 2 - f£'%*, we
can consider H*(X3 k) and H*(X/G; k) as k[Z] modules, and
the eigenvalues of f£* or f'* then correspond to the simple k[Z]
submodules of H*(X; k) or of H*(X/G;Ik) . There is a close rela-
tionship between the acyclicity of Imn/G and a property of the

eigenvalues of f£* and f'* ,

Theorem 2. Let G be a compact Lie group achbing on a space X,

and let f:X - X be an equivariant map, Assume that the orbit
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space X/G is connected. Then each simple QLZ] submodule of

Hi(X/G; Q) for each i>0 ig igomorphic to a QLZ] submodule of

HJ(X; Q) for some j>0O . Here the module structures are given by

Z - f£'* and Z - f*, respectively.

The above theorem includes the statement that H*(X/G;Q) is
acyclic when H*(X3;Q) is; this is seen by taking f %o be the
identity map. ILet A(X) be the ring gnerated (ss a free Abelian
group) by the wmonoid of equivariant meps X - X , which preserve
the components of X/G ., Then H*(X) and H*(X/G) are A(X) mo-
dules. Theorem 3 is valid for the A(X) module structures, in
the sense that for each 1i>0, each simple A(X) subquotient of
Hi(X/G; ) is isomorphic to an A(X) subquotient of HJ(X; Q) for
some J>0O . This reformulation of the question if (and for ratio-
nal cohomology, the theorem that) RY/G is Ik-acyclic for all ac~
tions of G on IR" , makes this kind of gquestion more interesting
and may be a help in sebttling the question itself.

Montgomery has conjectured that TR?/G is contratible when a
compact Iie group G is acting on TR . It is well known that
R"/¢ is simply connected. A main result of Comner's paper [1]
is that if H*( IRm/K; 7) 1is acyclic for all actions of a closed
subgroup K of G on some IRm, then R"/K is an absolute
neighbourhood retract, and hence is locally contractible and con-
tractible. Conner proves, using Floyd's maps of degree zero (see
below), that R*/80(k) is contractible for k<5 .

Throughout this paper we make some basic topological assump-
tions on the G spaces, namely that the action of G has a finite
number of conjugacy classes of isotropy groups, and that X dis re-

gular, paracompact and of finite cohomology dimension over Z .



It suffices however +to prove the results of this paper when X 1isg
compact, since the extension to the more general case 18 an easy
technical trick made possible by the fact that the Hsiang test
spaces defined below are inverse limits of compact differentaple G
manifolds. The technical problem thus avoided is the question of
the validity of certain Leray spectral sequences, To‘avoid such
technicalities, we will by and large confine our attention To the
case where X 1is compact,

I want to express my gratitude to Professor Wu-yi Hsiang for
pointing out to me the conjetures conserning ]Rn/G, and for ex-
plaining some points of [7] as well as showing me how to construct
equivariant self-maps of the 26 dimensional representation of the

exceptional group Iy .
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1. Cohomology eigenvalues of equivariant maps.

In this chapter we will show that the conjecture on acyclic
orbitspaces is equivalent to a conjecture on cohomology eigenvalues
of equivariant maps. The more general eigenvalue statement sheds
light on the Borel inductionstep, and enables us to construct a
large number of E‘_p acyclic G spaces without fixed points and
with ]Fp acyclic 'orbitspaces. We will briefly describe Borel's
induction step, and extensions of this technique. A mapping torus

construction will give the new G spaces just mentioned.

Let Tk be one of the prime fields IFP and Q, and let G be a

compact Lie group. There are three interrelated conjectures on the

cohomology of orbit spaces of G spaces,

% -scyclicity conjecture. When X is a G space with H*(X; Xk)

acyclic, then H¥*(X/G; k) is also acyclic.

Tet V 'be a module over an algebra A over the field Ik .

By a decomposition factor of V we will understand a simple A

module of the form VE/V’I where V, & V2 C V are submodules of V.
The module Vg/V,i will also be called a simple subquotient of V .,
We do not insist that V be of finite dimension, and hence there
may be an infinite number of nonisomorphic decomposition factors

of V . We will consider A(X) decomposition factors of H (X3 k)
and of HJ"(X/G; &) where U = Ei>o i . By a constant A(X) mo-
dule V we will understand a module such that (& a; £ )x = La,x

for all (Zai fi) € A(X) and all x €V,



k - eigenvalue conjecture. For a G gpace X such that X/G ig

connected, each decomposition factor of the A(X) module B (X/G3Ic)

is also a decomposition factor of the A(X) module H (X; k) .

It is clear that if the Ik-eigenvalue conjecture holds, then the

k—-acyclicity conjecture will also hold.

It - test space conjecture. There is a G space 2 without fixed

points such that both H*(Z; k) and H*(Z/G; k) are acyclic.

Lemna (1,1) (Borel's induction step)

If the Tc-acyclicity conjecture holds for all proper closed sub-

groups of G and if the Xk-test space conjecture holds for G ,

then the Ik-acyclicity conjecture holds for G .

Proof [1]. Let X be a k-acyclic G space and let Z Dbe the
test space. ILet Z x X be a G space with the diagonal action
and set 7 Xy X = (ZxX)/G . There are ‘natural maps induced by the
two projections,

Z/GX 04X, X X/G
(1.2)

X/GZ - ZXGX ~ 7/G

where the fibres are X G(x) = Z/GX and G{z) Xg X = X/G—Z .
Since @, £# G for =z € Z, the assumpbtions imply that H*(X/GZ;I[I{)
and H*(Z/GX; k) are acyclic for all x € X and 2 € Z2 , The
Vietoris-Begle theorem implies that H*(X/G;k) = H*(Z XGX;I:) =

= H*(2/Gslk) , and hence is acyclic. Hence the Ik-acyclicity con-

jecture holds for G .
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Theorem (1,%) If the identity component G° of G is_asbelian,

then the k-eigenvalue conjecture holds for G and all fields Ik .

Proof. If the theorem holds for a closed normal subgroup N < G,
and if it holds for the quotient group G/N, then it holds for G
since X/G = (X/N)/(G/N) . Hence we may assume that G is either

a finite group or a circle group. In case G is a circle group,
let N Dbe a finite subgroup containing all finite isotropy groups.
Then G/N 1is acting semifreely on X/N, hence we need to prove the
theorem for semifree circle actions only, If G is finite, let
HCG be a p-Sylow subgroup when k = }FP, and let H = 1 when
k = Q . Then H*(X/G;Ik) - H*(X/H; k) is injective. Since H

is solvable, we may assume G = Z%) in case G is finite.

Tet G = Z

p 9
Set T = F(Zb,x) , and consider the diagram of long exact sequences

k = Q%, and let X be a G space .

of Tk cohomology induced by the projection (XG,FG) - (X/G,F) ,
where XG = EG Xa X with EG a contractible free G space , and

the projection X, - X/G is given by G(e,x) - G(x) .

Lo

- HLX,F) - HA(X) - HA(E) Hy(X,F) -

p 1 T pe

- H*(X/G,F) ~ H*(X/G) » H*(¥) H*(X/G,F) -

1o

Since G 4is acting semifreely, there are two isomorphisms in the

diggram, From this we obtain a long exact Mayer-Vietoris sequence,
&
- H*X/G) -~ BH*F) o Ha(x) - HE(F) - (1.4)

This is a sequence of A(X) modules, via the restriction map
A(X) = A(®) . Tt suffices to prove the theorem when X/G is con-
nected. If F is not empty, then X is also connected. ILet SX

be The unreduced suspension of X, and let v be a vertex of SX .



We then have isomorphisms of A(X) modules, H (X3 k) ¥H*(SXvik)
and H'(X/6; k) ¥ H*(SX/G,v; k) . Let E, r>1, be the spectral
9

sequence converging to Hé(SX,v; k) with

By = C*(Bys H*(SX,v; &k)) .

Then E:c' is a spectral sequence of A(X) modules and each decom-
position factor of E’I is a decomposition factor of H+(X; k) .
Hence each decomposition factor of Er, 1< r <, and of
Hé(SX,v; &) is a decomposition factor of H'(X; k) . The locali-
zation theoren for E'Zp actions now implies that each decomposition
factor of HZ(SF,v; k) end of H*(SF,v;Ik) is a decomposition
factor of H"'(X; k) . Using a relative Mayer-Vietoris sequence of

the Torm (1.4) ,

= HY(SX/G,v) - HY(SP,v) @ HY(SX,v) - HE(SF,v) -,

we see that every decomposition factor of H*(8X/G,v; k) YH(X/G; k)
is a decomposition factor of H'(X; k) . This completes the proof
when ¥ is not emplky. When T is empty, we have H*(X/G; k) =
Hé‘r(X; k) . Tet E,, r>1, be the spectral sequence converging

to Hé(X; k) with E, = G*(BG;H*(X; k)) . Here each decomposition

factor of Eit for t>0 is s decomposition factor of H (X3 k) .
If X dis connected, ESO = HS(BG; k) is a constant A(X) module.

If H+(X; k) has no constant decomposition factor, then no differ-
ential could map nontrivially into Eie , r>2, and hence H*(By;k)
C H&(X; k) . But this is not the case since the fixed point set is
empty. It follows that H:(X; k) has a constant decomposition

factor. Hence each decomposition factor of K, r>1, and of

H*(X/G; k) = Hi(X; k) 1s a decomposition factor of H (X3 &) .

It ¥ 1is not connected, it must have p components which are
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being permuted transitively by G . Hence, E5° = H*(Z%, B:ﬂ%) .
the group cohomology of Z%) with coefficients in the left regular

representation Zkizb , and it follows that ESO =0 for s>0.,

Thus for (s,t) # (0,0), each decomposition factor of EDt, r>2,
i8 a decomposition factor of H (X;Jk) . Thus the same holds for

Hg(x; k) ¥ H'(X/G; k), and this concludes the proof for G finite.

If G is a circle group acting semifrecly, we may assume that X
is connected, and a proof quite similar to the one given above,

will apply for any coefficient field.

It follows from the above theorem and its proof, that if we want to
prove the Ik--eigenvalue conjecture for all G, it suffices to do

50 in case G 1is simple, connected, and of dimension > 1 .

Remark. In case the fixed point set is not emplty, the above proof
uses the suspension of X, which need not be paracompact unless X
is compact. Avoiding the suspensions, we can use the absolute Mayer-

Vietoris sequence (1.4) and a more careful algebraic argument.

In order to discuss the relationship bebween the eigenvalue conjec-
ture and the test space conjecture, we need the cohomological
lemma (1.5). Here the Hsiang test spaces are of importance.

Assume that X dis a compact connected G space and let f£:X - X
be an equivarisnt map, Let &= llm X be the inverse limit of

the system

If X has no fixed points, then X, has no fixed points.

Becauvse G is compact, we have XifG = limf.X/G .
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Hence H*(X 4 Xk) = 1£mf*H*(X;3k)
and H* (X /G k) = 1gmf.*H*(X/G;]k) o

Thus if £* 4is nilpotent in H'(X; k) and if F£'* is nilpotent
in H'(%/G; k), we see that the Ik-test space conjecture holds for
G, by setting Z = X, . Floyd has proven that for G = so(2n+1) ,
there is an action of G on a gsphere X without fixed points, and
an equivariant map f:1X - X of degree O, and hence that
H*(X.4 2Z) is acyclic., Moreover, the quotient space X/80(2n+1)

is contractible ([1] p.352, for a proof, see [7]). Hsiang and
Hsiang [7] show that for any connected nonsbelian G, there is a
sphere X which is a G space without fixed points and an equi-
variant map f£:X - X of degree O . Tt is generally not known if
£'* ig nilpotent in H'(X/G; %) . We will call X the Hsiang

test space for G and note that it is an inverse limit of differ-

enbiable G manifolds.

Lemma 1.5). Let % be a compact comnected G space without fixed

points which is either a differentiable & manifold or a directed

inverse limit of differentiable G manifolds. Let X be a connected

G space , and let pr, : Z X, X = 2/ be the projection. Assume

that the Xk-eigenvalue conjecture holds for all Gz’ z € Z ., Then

in the exact sequence

pry”
0 -~ A* = E'(Z/6;Kk) - HYBx,X;k) - B* - O,

each A(X) decomposition factor of A* or B* is a decomposition

factor of H+(X;Jk) . Here A* is a constant A(X) module.

Proof, Assume first that 2 dis differentiable., Then 2/G has a

triangulation [11] such that the singularity stratas are subcomplexes.
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For each simplex o € Z/G, choose a point z € ¢° and set G, =G, .
The spectral sequence converging to H*(Z Xa X; k) assocliated to

the skeletal filtration of Z/G, has the form Er’ r>1,
where E, = I H*(0, 30) ® H*(X/G; k) .

Heve H°(2/G; k) € Ego and each decomposition factor of Eit .

r>1 , is a decomposition factor of Ht(X/GO;]k) for some ¢, and
for t>0 it is hence a decomposition factor of H+(X;]k) , by
assumption. Thus each simple decomposition factor of B* is a de-~
composition factor of H+(X;]k) . If A* £ 0, then some differen-
tial a_ :E:"7 - 52°, ©>2, must be nontrivial, end hence H'(X;lk)
must have a constant decomposition factor for the same reason as
before.

If 7 = limi%‘ is an inverse limit of differentiable manifolds 2.
a cofinal system of Z, will be without fixed points, since 7 18,

We obtain exsct sequences,
A * E pr/‘ * * E3
0 : H (Zi/G,Jk) - H (Zi>Y}X’3k) - BY - o,

and the direct limit of those sequences is the sequence of the lemma.

Therefore 1t suffices to remark that each decomposition factor of

. e -
LimB* 1g a decomposibtion factor of some B; and hence of H ({3k).
)

Proposition (1.6). Let G be a compact Tie group and let k be

a field. Then the Ik-eigenvalue conjecture holds for all dosed sub-

groups of G if and only if the X k-~test space conjecture holds for

all connected nonabelian simple subgroups of G .

Proof, Assume that the I k-test space conjecture holds for the non-
abelian connected simple subgroups of G, and let K< G be a

closed subgroup., 3By induction we may assume that the k-eigenvalue



conjecture holds for all proper eclosed subgroups of K . If K
is not connected, we see that the Xk-eigenvalue conjecture must
hold for K by applying theorem (1.3) to the finite group K/K° .
If X 1is connected but nol simple, then K 1is covered by K,]xK2
wvhere K, and K, are proper subgroups of K and hence the Ik-
elgenvalue conjecture must hold for K . If K is simple connected,
we use btheorem (1.%) if X is a circle. If K is nonabelian, let
Z be the Hsiang test space. Then H*(Z/K; k) is acyclic by assump-
tion and by lemma (1,1). Tet X be a compact X space. Using the
mapping

Z/K, = XX - X/K
we see that H*(Z>%(X;Zk) ¥ H*(X/K; k) Dbecause H*(Z/H; k) is
acyclic for all closed subgroups of K . BSince 7 dis an inverse
limit of differentiable K manifolds, we can use lemma (1.5) to ob-

tain an exact seqguence
0 - Lk - H*X/K;Kk) - B* - 0
where k & H*(%/K; k) and B* % H'(X/K; &) . It follows from

lemma (1.,5) that every decomposition factor of B* is a decompo-

sition factor of H' (X; k) .

Conversely, assume that the Xk-eigenvalue conjecture holds for all
Kc G, and let 2 bhe the Hsiang test space for K . Since
H'(Z3 k) = 0, it follows that H'(%/K; k) = O, so that the Ik-test

space conjecture holds for all connected nonabelian simple K< G

"It is well known that the Q-test space conjecture holds for every
¢ whose identity component G° is nonabelian. TLetting T be a
maximal torus of G and N(T) its normalizer, the homogeneous

space Z = G/N(T) is Q-acyclic, and 2/G is a point [1]. Propo-
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sition (1.6) then implies,

Theorem (1.7). Every A(X) decomposition factor of H'(X/G;Q) is

an A(¥) decomposition factor of H+(X;C£),

We will now introduce an equivariant mapping torus construction
which we will use to verify the Ik-test space conjecture for a num-
ber of simple groups. Let f,g:X - Y be two continous maps and

let the mapping torus T(f,g) be the identification space obtained

from X x [0,1] U Y by identifying (x,0) with g(x) € ¥ and
(x,1) with f(x) €Y. Let

i Xxf{o,Mluy - 2(f,s)
be the resulting identifiaction map. Let f',g': X/G - 1/G Dbe
the maps of orbit-spaces. There is a natural homeomorphism
o(f,8)/G= T(f',g') .

There is a natural map j: T(f,g) - g1 where g = [0,11/£0,1} ,
given by Jji(x,t) =t . To compute the cohomology of T(f,g), we

use the Mayer-Vietoris sequence of the subspaces
. = .~} ~
A =37'11/3,2/3) and B = T(£f,8) 3§ (1/3,2/3) .

This sequence has the form

lo

) I
- H*(1M{(f,g)) = H*X)eH*(Y) - H*X)oH*(X)
where I has the matrix form
1 g*
L: »
1 i*

Dividing by the exact subsequence

L
0 - HYX)®0 =~ alsg(H*X)eoH*(X)) -0,
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the result is a long exact sequence,

.8y S menee,e)) - w85 m@ S

This sequence is naturally isomorphic to the long exact cohomology

sequence of the pair (P(f,g),Y) .

When X =Y , and g = 1y, we set T(f) = P(1y,f) . Tet ™ e
the mth power of the map f . There is a map a®  such that the

diagram commutes,
p(e™ Z w(£)

\ y
81 EE> Sq,

th

Here z" denotes the m power homomorphism of the circle group.

Note that T(f) = 1(Xx[0,1]) where (x,1) is identified with
(£(x),0) . The map a® is defined as follows,

a%i (x,a) = i (tYx), ma-q) for a/m < a < @+1)/m
0<q¢g<m1, where g 1is an integer.
a™ is multiplicative in the sense that

aa™ - @™y (™) - peD) - () .

Lemma (1.9). Let p be a prime and let f£: X = X be a self map

on a compact space X such that H*(X;IWD) is finitely generated.

Let T(f15 be the inverse limit of the system

apP

n+71 n_ gb . apP
cee o n(fP ) o (P ) T eee 2 m(eP) o (e)

Then H*(T(fxulﬁp = H*(X;IFP)(q) where H*(X;}Fp)(q) is the

largest subspace of H*(X;iﬁb) on which I-f* ig nilpotent.
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Proof. Define i_: X = B(f") by i (x) = i(x,0) . Then igd" =14,
and hence there is a limit map it X - T(£") . The maps a% are
maps of pairs, % (P(e™), iO(X)) - ([@(£), iO(X)), and hence define

homomorphisms of sequences of the form (1.8). The coefficient group

is Imb o
.* n
o £*P 5
> HH*(X) RS g*(D(£¥ )) RS H*(X) > H¥ (X)) ——>
n N n
[P $aP” Y1 P

-+ n+-1

> me(x) Lo mroeP ) °>H*(X) L e O

Here Tt = I%—f*+~~o--+f$(p“4) . For sufficiently big n, the kernel
n n n
of (I-£*P) = (I-£*)P is independent of n . Then 6.t =0,

and hence,

e

ES F2d n
In(a®*) ¥ T(i2a®") = In(if) = Ker (I-£4)P = H*(X; mp)(") )

Jt follows that

e Sy, o g g PR o7y, oY, 1)
H*(T(f )3 ]Fp) = lim H (T(t ),E‘p) = H*(X; :IFP)

Theorem (1.10). Assume that there exists a compact connected G

space X without fixed points with an equivariant map f:X - X

sucn that I-f* 4is an subomorphism of H+(X;]Ep) and I-f£'* is

an subomorphism of H+(X/G;Imb) . Then the Imp—test space conjecture

holds for G .

Proof. Betting Z = T(fﬁj) as defined sbove, we have Z/G = T(f'oo)u
Lemma (1.9) implies that H*(Z;Zmb) = H*(Z/G;Zﬁﬁ) ¥ ]Fp . Since X
is without fixed points, 2 cannot have fixed points. Hence 2

satisfies the conditions of the Imb—test space conjecture,
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Remark (1.11). There is a version of (1.10) which permits a mapping

torus of the form T(f,g) to be used. Let X and Y Dbe connected
G spaces without fixad points and let f,g:X = ¥ he equivariant
maps such that g*-f* is an isomorphism H'(Y; k) - H'(X; k) and
such that g'*~f£'* ig an isomorphism H+(Y/G;]k) - H+(X/G;]k) .
Then if the Ik-acyclicity conjecture holds for all proper subgroups

of G, it also holds for G . We will only give a sketchy proof.

Set T = T(f,g)3; it bhen follows from (1.8) that

§*: H*(s'; k) - H*(T; k) is an isomorphism, and that

j'* s B8y I) - H*(D/G; k) is an isomorphism. TLebting o, be
the mapping cone of js T = Sq, it follows that H*(Cj;Zk) is
acyclic, and hence by assumption that H*(CJ/K; k) is acyclic for
all proper subgroups K of G . It follows that

h H*(Sq; k) - H*(T/K; k) is an isomorphism for all subgroups K
of G . Let Z be an arbitrary G space with H*(Z; k) acyclic,

let 2z €42, t €T, and consider the diagrams,.

Z/Gt —_ 7 X 7 > T/G

/G, —> T x5 T —> 3/G
3y e’ V=

1 1

5 —_—> 5 XZ/G > Z/G

There are isomorphisms,

(8" ) T HH(D/G; ) ¥ HN(T %, %5 )

I

12

n*(s' x2/63 &)

and hence H*(Z/G; k) is acyclic.

Assuming that the Ik-acyclicity conjecture holds for all proper sub-

groups of G, the main question considered in this paper is how to
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compute H*(Z/G; k) when 7 is a G space without fixed points
with H*(Z; k) acyclic. In this situation there is a Vietoris-

Begle isomorphism, for every G space X without fixed points,

pTi H*(X/G; k) ¥ H*(Z Xg X3 k) .

Phus there is a homomorphism
(pr)~'pry s HY(2/G; k) - BA(Zxg ;&) F B (X/6; k) .

and this homomorphism is natural for equivariant meps f:X =Y of

G spaces  without fixed points.

Lemma (1.12), Assume that the Ik-acyclicity conjecture holds for

all proper subgroups of G, and let X be a connected G space

without fixed points such that H'(X; k) has no constant A(X)

decomposition factor. Then there is an exact sequence

0 - H*2/G;%k) - H*X/G;Xk) - B* -~ O

where B* has no constant A(X) decomposition factor.

Proof. This follows dirvectly from lemma (1.5).

Theorem (1,13), With the assumptions of lemma (1,12), let Y be

a connected G space without fixed points such that H'(¥; &) has

no constant A(Y) decomposition factor. Let X = ¥ be the join

of X and Y with the natural inclusion i:X < X * Y . Then the

dimage of
i*s H¥*((X*Y)/G; k) - H*(X/G; k)

is isomorphic to H*(Z/G; k) where Z is a G space withoub

fixed points and with H*(Z; k) acyclic, We assume that X and Y

are compact.
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Proof. Because H (X+Y; k) € H'(X; X&) @ HY(Y; k), H'(X+¥; &) has
no constant A(Y) decomposition factor, where A(Y) ¢ A(X*¥Y) . It
follows from lemma (1.712) that there is a commutative diagram with

exact rows,

0 —> H*(2/G; k) —> H*(X/G; k) ~—> B* w=> O

- fue fi

0 w> H*(Z/G; k) -—> H*((X+Y)/Gj Ic)—> C* —> 0 ,

where C* has no constant A(Y) decomposition factor. Hence
i* s ¢*¥ = B* dis trivial, and the proof is completed by diagran

chasing.

Let X be the sphere of Floyd-Hsiang that has a G action without
fixed points and admits an equivariant self map of degree zero. If
the Ik-acyclicity conjecture holds for all proper subgroups of G,
then H*(X /G; k) dis isomorphic to the image of

i* s (X)) /Gy k) - H*(X/G; &) .
Thus, the group H*(X,./G; k) is independent of the choice of equi-
variant map of degree 0O, and we need only compute the effect of
1 in cohomology, rather than the effect of the complicated self
maps of degree zero. We hope that this observation will turn out

to be of use.
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2. Degrees of some equivariant maps of spheres without fixed points.

[

In this chapter, we will establish the followiﬁg list of triples
G, V, d, where G 1is a simple compact connected Lie group, V is a
real linear representation space of G, and d is bthe degree of
some equivariant self map of the unit sphere S,]V . Moreover, V
will have no direct summand of dimension one, and the quotient space
S,]V/G will be contractible. Wu-yi Hsiang has constructed a self-
map (2.12) of degree 4 when G = T, , and dim V = 26 ., Also,
there i1s a construction in the thesis of Robert A, Oliver [9] which
produces a finite cell complex Z which is a IFL; space without
fixed points such that 7/ T, is contractible and H*(2; IE‘2) is
acyclic, Hence the ]Fz-mtest space conjecture holds for }F4 , using

either result.

The List (2.0).

G v Gl condition, remark
so(2ns1) g2 B 1= (o) 0<k<n

S0(2n) 5= BPR 1= () 1<k<n -1

S0(n) so(n) 40K n=2k+1, 2k+2
8U(n) su(n) 1 - (ﬁ) 1<k<n-1

Sp{n) sp(n) 1 - QK(?:) 1<k<n

Sp(n) Af I 1~ () 1<k<n-"

@2 ainV = 9 -1 (2.11)

IE‘L,_ dimV = 26 4 (2.12)
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G v d condition, remark
Ee eg 1-27 80(10)80(2) c Eg
]E7 e -1 dim e is odd
E, eq 1~ 51627 80(14)80(2) < T
G g 1= || W = Weyl group

We shall need the two theorems below to compute the degrees of
equivarisnt maps of differentiasble G manifolds. More complete
results, and proofs, will appear elsewhere [10]. TFor the sake of
simplicity, we will assume that M 1s a compact connected differen-
tiable G manifold without boundary, and that M and the interior
of M/G are orientable., Iet f: M - M be a continuous equivari--
ant map., Then in the orbit space, we obtain ' : (M/G,3(M/G)) -
(11/G,2(M/G)) , and hence f' has a degree. Let G be connected,

and let H be the principal isotropic group.

Theorem (2.1). The degrees of f and of the orbit map ' are

equal if the adjoint action of the normalizer N(H) of H pre-

serves the orientation of o . If H is finite, this always holds.

Lemma (2,2), Let G be a torus or a finite p-group acting on a

sphere M ., Let f: M~ M be an equivariant map, and let F c N

be the fixed point set. Then the degrees of f and of le are

equal if G 1is a torus, and they are equal mod p if G 1is a

p-group. If there are no fixed points in M, the degree of f 1is

1 if @ is a torus, and it is = 1 (mod p) if G is a p-group.

e i
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Let AdG be the adjoint representation of the group G on its

Iie algebra g . Let h < g be the Cartan subalgebra corresponding
to a maximal torus T . The singular hyperplanes through the origin
of h cut out the Weyl chambers in h and determine a simplicial
structure on S,h . Each AdG orbit in 5,8 intersects each sim-
plex of 8,h in exactly one point, and the Weyl group W = N(®)/T
acts simply transitively on the set of top dimensional simplexes of

5.0 .

/!

Theorem (2.%). The unit sphere 8,6 of the adjoint representation

of G admits an Ad, equivariant self map of degree 1wl .

Proof, ILet 0 be a top dimensional simplex of S4h as described
above, Given any map f: o - S,4h with C, © Cf(x) for x €0
where qx is the centralizer of x in G, i% extends uniquely to

an equivariant map £ ng - ng . We let f be a homeomorphism
£: 0~ 8h-0

which is the identity on the boundary of o . Then ¢ isg napped
with degree -1 over [W|-1 simplexes. Since Wo = S,h, it is
clear that deg (flsqh) = 1-|W| . Using lemma (2.2), we conclude

that deg £ = 1- |W| because h = gT o

To construct more self maps of ng we will first consider W
equivariant self maps of the unit sphere of h . We will consider
the more general case of Coxeber groups. Liet h be a Fuclidean
space with a set of hyperplanes {ai} and let W be the group

generated by orthogonal reflections in the 8y s such that,

(1) W permutes the hyperplanes {ai} ,
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(2) +the hyperplanes a; determine a triangulation of Sjh,

(%) each top dimensional simplex ¢ of the triangulation (2)

intersects each W orbit in a single point,

(4) the isotropy group of =x € h, wx, is generated by the

reflections in the hyperplanes a; which contain x .

(5) W, acts simply transitively on the set of top dimensional

simplexes containing x .,

Of courge, (1) - (5) are interdependent., ILet & and 8 be oppo-
site faces of o, such that o = a*8, the join of o and B8 .

We then define a map faB: g - th by
f(x) =x for x €, £f(y) =s-y for y € o,

and f maps the shortest geodesic form x to ¥y onto the shortest

geodesic form x to -y, with constant speed, when x € B and

vy £ o,

Clearly, if m € o 1lies on a hyperplane a5 9. then so does faB(m)'

This is clear if m € o or me€p . If nm € a; - a - 8, then we

note that a, N ¢ is a face (of some codimension) of o, and hence

aif10 = O, * Bi where ai,si are faces of a,8 . The geodesic ly-

ing in ¢ going from Bi to o, containing m 1is contained in ay s
- . -

hence faﬁ(m) € a; . It follows from (4) that WcoW . when m' =

faB(m), and by (3), faB extends uniquely to an equivariant map

faB : th - th »

Lemma (2.4). Let ]faB(d)] be the number of top dimengional sim-

plexes in faﬁ(o) . Then the degree of faB: S;h ~ 8,h is

(~1)a+1[faﬁ(o)l, where a = dim o .
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Proof. This is clear except for the sign. Let L[3 be the smallest
linear subspace of h containing B, and let RB denote the ortho-
gonal reflection in LB . It is easily seen that deg (RBf&B) >0 .

The codimension of LB in h is a+ 1, hence (--”I)a4'qdegfq8> 0 .

In the sequel, we shall only use maps fas where o 1is a vertex,
dim o = O . We also must computethe degree in the orbit space
S,]h/w of f&ﬁ . Ve begin with the case of the symmebtric group.
Tet BR" be Euclidean space with coordinates (x,],..,,xn) and seb

. 2 2
h = {xlth..-l-xn:O} . Let S,lh - g 2 = {x€h|x,‘+.,.+xn=’1] , and

choose 854 = {Xlxi =XJ.} as the set of hyperplanes. Reflection in
aij generates the symmetric group W = Sn and

o = {x€ nmglxqzxgz...z_xn] is a simplex of dimension n-~2 .
Lemna (2,5). The S, sSpace g2 just defined admits maps of the
Lform fOLB of degrees

1- @), 1<k<nA .,

It admits maps of the form fa.B whose degrees in the orbil space

are
1 - (?;) y O0<k<m when n =2m+12> 3,
1 - (E) , 1<k<m-1when n =2m > 4 .,

Proof. The action of B, on h is given by

(wx)i =X 4 4 WEB ,
w1
when 5  is considered as a permutation group of {1,...,n} o The

ne-2

n-2 dimensional simplexes of S are of the form wo where

{12
wo = {x€8 |'xw,} Z Xy 2 e —?-Xwn} .
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We choose an orientation of ¢, and hence obtain an orientation

of Sn'"2 . We orient the orbitspace by requiring that the homeo-
morphism ¢ - Sn"g/Sn be orientation preserving. Then the degree
of the homeomorphism wo - Sn"g/Sn (given by x = Sn(x)) equals

the degree of wi: 0 - wo, and this degree is det (w)=%1.

Let Ve be the vertex of ¢ which lies on the hyperplanes a

for i #k, 1<k<n-1 ., Let o = vy * By, and set fk:ka3k°

13+

Let

L, = {xeSnmglxi>x for i # kl;

-1
then ¢ is a neighbourhood of v, in L, and
Lk =g U fk(c) .
A simplex 1«}40 lies in Lk if and only if wi < w(i+1) for i#fk.

This follows from the above sets of inequalities describing wo and

LK . A permutation with the property
Lot wi <w(is)  for i 4k,

is determined by the set w{1,...,k}, hence there are ({;) such
permutations., It follows from lemma (2.4) that deg =1~ (E) R
qikin"/‘ v
We define
_ - =2 _ .=
N(k,n) = % {deg (1T » 877°/8) | T=vocn] .
It is then clear that
PR ¢ D24 . a2 ~
deg (JE‘k : S /Sn S /Sn) = 1-N(k,n) .
Mso, N(k,n) = &£ {det (w) |w € lk} » This number can be compubted by

induction on k and n ., Recalling that

det (w) = (-D°, ¢ = cardf{(i,i) |i<j,wi>wi} ,
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we set 1, =1y Ul where w €1, when w(1) =1, eand w € 1

when w(k+1) =1 , Accordingly,

N(k,n) = N(k=1,n-1) + (=N, n-1) .

Hence, WN(k,n) = N(k-2,n-2) + (=) N (k-1,0-2) + (~1)W(k-1,n-2) +
Nk, n-2) = N(c-2,0-2) + N(k,n-2) .
Using those recursion formulas for N(k,n), we find,

¥(2q+1,2m) = 0 for all g, m, and,

N(2q+1,2m4+1) = W(2q,2m+1) = N(2q,2m) = (]él) .

If n =2m1, it follows that degfy = ~N(k,2n+1) , 1<k<2m,
takes the values 1 - (2) , 0<g<m . Incase n =2m, deg :E‘I’{ =
1-N(k,2n), 1<k<2m-1, takes the values 1 and 1 - (1;1) R

1<q<m-1 . This completes the proof.

Lemma (2.6), Let W Dbe a Coxgter group generated by reflections in

the hyperplanes a; of a Buclidean space h, such that (1)~ (5)

holds. Thon for each vertex v of the simplicial complex Sjh,

there is a W equivariant map fve i B,;h -~ B, of degree
1 - [W:Wv] o

Proof. Let o© = v*fB be a top dimensional simplex containing the
vertex v . Set L, = crvaB(c) . For each top dimensional simplex
t of B,h, there is a unique top dimensional simplex T conbtain-
ing v such that + c L. . By (5), those simplexes T are per-
nuted simply transitively by Wv . It follows that the number of
simplexes of top dimension contained in L, is ([W:¥W,] . Temma

(2.4) then implies that degf_, = 1~[W: WV] .

AL
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Bxample., With the notation of lemma (2.5) and its proof, the iso-

tropy group of v, is 8 x8 , ©8 . Hence (2.5) and (2.6) give
: n

the same result, deg £ = 1~ [Sn : Skxsn-x-k] = 1 - 1{) .

K

Theorem (2.7). Let G be a simple connected compact ILie group of

rank > 2 . Let K be the centralizer of a circle subgroup of G

such thab the identity component of the centre of K is the circle

subgroup. Then the unit sphere S,}g of the adjoint representation

of G admits an eguivariant self map of degree 1 - [WG:WK] where

WG, WK are the Weyl groups of G, X .

Proof. Let T « KX <G be a maximal torus of K and of G, and
let h ck € g be the corresponding Lie algebras. The centre of
k contains an edge of a Weyl chamber in h with respect to G .
Set W = WG, and let v € S,k N centre (k) . Then W, = WK, Let
v+ 8 be a top dimensional simplex of S’lh , Wwith respect to W .

Then degf,; = 1~[w:wv] by lemma (2.6), FEach G orbit in $.8

B
intersects v *B = ¢ 1in a single point, and the isotropy group Gx
of x € h is the unique closed connected subgroup of G containing
T vwhose Weyl group is the subgroup WX < W . Hence the relation
Gx jout Gy holds for x,y € h 4if and only if WX < wy . It follows
that vaIO exbonds uniquely to an eguivariant map I3 S,ig - ng o

By lemmo (2.2), degf = deg fyp = 1 - [w:wv] = 1-[WG: WK] .

Examples (2.8). We will list a number of examples of a simple

group G and a maximal rank subgroup K with centre of dimension
one, Both G and K are compact connected Lie groups, and K 1is

the centralizer of the central circle group.
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S0(14)80(2) < Wy , LWG : WK] = 5-16-27,
80(10)80(2) < W , WG:WK] = 27,
U(k)Sp(n-k) < Sp(n) , (VG : WK] Qk(ﬁ) , 1<k<n,

S(Uk)U(n-k)) < SU(n) , WG : WK] = (), 1<k<n-1,

S0(n-2k)U(k) © 80(n) , (WG : VK] = 2C1) , 1<k <m

when n = 2m+1, 1<k<m-2 when n = 2m .

i
i

U(n) © 80(n) , (WG s WK] = 2® when n = 2m+1,

(WG : WK when n = 2m .

In addition to the adjoinlt representations, there are other repre-
gsentations admitting self maps based on the triangulation defined

by certain Coxeter groups.

Lemma (2.9)., Tet V = SS R" be the linear space of symmetric
matrixes of trace O , and let g € O(n) act on this space by

g(v) = gvtg; . Then V is an irreducible representation of 0(n),

and the unit sphere S5,V admits equivariant self maps of degrees

1 - (f;) s, O0<k<m when n = 2m+1 ,

and of degrees

1 - (?j) s 1<k<m-1 when n ==2Zm>4 ,

The orbit space S,]V/So(n) is contractible.

Proof, Tet Eg < 0(n) Ybe the subgroup of diagonal matrixes. The
fixed point set in V, F( ZZg,V) consists of all diagonal matrixes
A in V, A = diag(x;,...,% ) . The isotropy group O(n), con-

t

sists of all g € 0(n) such that ghA g= A, that is, such that

gh =g . If x; Ax5 for i #j, it follows that O(n), = Ziny
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If the different values of Xy oCcUT M,,e0.,My times, M, +...+m,
=n, O(n)A o O(mq)><,..><0(ms), the embedding in 0(n) being de-
termined by the orthogonal splitting of RY into eigenspaces of A of

dimensions Dygoeeyly o Since every orbit contains a diagonal ma-

s
trix, it follows that ZES' is the principal isotropy group of the
action. The normalizer of EZS is generated by the permutations of
the X5 and by'EEg . Let W = Sn be the group of permutations.
It is clear that the action of Sn on h = F(:ZS,V) is the Coxeter

group of (2.5). Each 8, orbit in h intersects the cone
¢={ren]|x2...2%x]

in a single point. For A € h, the isotropy group O0(n), deter-

mines the sebt of those hyperplanes

on which A lies, and conversely, this set determines the isotropy
gToup O(n)A . The same statement holds for the isotropy group
(Sn)A , hence (Sn)A determines O(n)A’ and. O(n)A determnines
(Sn)A = O(n)Af}Sn . TFor a matrix B € V, the orbit O0(n)(B) dinter-
sects C in a single point obtained by arranging the eigenvalues of
B in decreasing order, and hence, C ¥ V/0(n) = V/80(n) . It fol-
lows that 81V/SO(n) ig contractible. Every equivariant map

foz th - th with respect to Sn exbends uniquely to an equiva- -
riant map f: 85,V - SV . Since the principal isotropy group for
the action of 80(n) < O(n) is %5~ which is finite, theorem (2.7
implies that the degree of f equals the degree of £ :Sq/SO(n) -
SqV/SO(n) in the orbit space. To conclude the proof, we note that

8,V/80(n) = 8,h/8 , eand use lemma (2.5).
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2

()Iin be a real irreducible summand of the

Lemma (2,10, Let V = A

natural representation of Sp(n) in the space of skewsymmetric 2n

by 2n complex matrixes. Then the unit sphere qu admits Sp(n)

equivariant self maps of degrees

1 - (E) 3 /’,f.kf_n"’/l ’

and the orbit space 81V/Sp(n) is contractible,

Proof. When M, are 2 by 2 complex matrixes, let

diag(Mq,.oa,Mn) be the 2n by 2n nabtrix constructed diagonally

from those blocks. BSet

» O “./1 d J d- (n -)
J = an = diag(Jseee,d
/F O bl ] 3 b

o(n,0) = {g€8L(2n,0) | gl g~ 1,

and set Sp(n) = Sp(n,C)nu(en) .

et A bea 2n by 2n matrix, and let g € Sp(n) . Then,
det(zI-gh g J) = det(zI- gAdzg™") = det(zI~AJ), and hence the
eigenvalues of AJ are invariant under the action gAtg;. It
follows that Tr(AJ) = Tr(gAiﬁgJ) . Now define o(A) = JKJ"q, and
notice that ©(AB) = o(L)e(B) , o(K) = FEY, and o(®a) = Yp(a) .

Define,

t

v A =0}

11

{Alp(A) =A, Tr(AJ)=0, A+

1t

and, V 2 h {diag(x,]j’onngxnj) l Xie IR, EXi = 0} a

Then Sp(1)" < Sp(n) is acting trivially on h, and letting zzﬁ
and T be subgroups such that ™  is a maximal torus of Sp(ﬂ)n,
and J € iﬂﬁ c ™ < g5p(1)?, & direct computation shows that h =

P( ZZE,V) , and hence,

h = F(Zy,V) = PO, V) = F(sp(1)",V) .
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Replacing the entries in a permutation n by n mabrix according

‘10 0 0
1 - , O - s
o 1 o 0O

we obtain an embedding Sn < Bp(n), and Sn acts on h by per-

to the rule

muting the xi's o Thus h is isomorphic to the Sn space of
lemma (2.5). The principal isotropy group of V is Sp(1)?, accor-
ding to [8], and hence every orbit intersects h , Tor a point x€h

we have isotropy groups

(Sn)X = qux ca s XSmk,Sp(n)X = Sp(m,l)x o e e XSp(mk) °

Hence those groups determine each other, and every Sn equivariant
map of h extends uniquely to a gp(n) equivariant map of V .

The orbit space 8,V/8p(n) = 8;h/S  is contractible. By 1emma(2.§%
there are equivariant self maps of degrees 1 - (E) y, 1<k<n-1 ,

of Ssh, and since h = F(T™,V), it follows that the extension to

S,V have the same degrees by lemma (2.2).

Lemma (2,11). Let V De an irreducible representation of G of

0dd dimension > % , Then the unit sphere SqV admits an equivari-

and self map of degree -1 . The group G2 and the simple groups

of odd rank all admit irreducible odd dimensional representations

such that the orbsit space of qu is contractible.

Proof, Tor Gg, we take the 7/ dimensionsl representation whose
unit sphere is GE/SU(B), and for G of odd rank, we take V = g,

the Lie algebra of G, with the adjoint representation.

Theorem (2,12) (W.Y, Hsiang). The irreducible representation of

I, of dimension 26 admits an equivariant self map of degree 4 on
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the unit sphere. The orbit space ot the unit sphere is contrac-

tible.

Proof. The weights of this representation are the short roots of
Imﬁ and two O-weights, Using Hsiang's theory of isotropy groups
[8], we let T < Spin(8) < Spin(9) « ¥, , where T is a maximal
torus. Since the roots of Spin(8) are the long roots of T,
none of those are weights, and hence P(7,V) = F(Spin(8),V) which
is a 2 dimensional subspace, h say, of the representation space
V  of dimension 26, Restricted to Spin(9), the representation
V splits as a sum of three representations, (i) a trivial one-di-
mensional representation, (ii) the usual representation of Spin(9)
in 289, and (iii) the isotropy representation of ZEA/Spin(Q) .
Hence, dimF(Spin(9),V) =1 . Let N be the normalizer of £pin(8)
in T, , then N/Spin(8) = 85’ the symmetric group of order 6.
Conjugation by N gives two conjugates Spin{(9)' and Spin(9)"

of 8pin(9). Then F(Spin(9),V) N F(Spin(9)',V) = F(F,,V) = 0,
and it follows thalt setting

1% - (epin(9) vy, i-0,1,2, 1t cn,

the 1% are three lines in h vermuted trangitively by 85 .
Thus the representation of S5 in h is effective, and it follows

that the isotropy groups of points x € h are
)i Spin(8), and Spi (9)(i>
gy Sk s pL .

Let w € ¢ be a primitive 6th root of unity, and choose an isome-

h such that the isotropy group of ot is Spin(9)(i>,

n

try €

i =0,1,2. It follows from Hsiang [8] that the isotropy groups

i

are all of maximal rank, hence every orbit in V intersects h .

We then find that every orbit in 8,V intersects the arc
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o = {exp(nit/3) | 0<t<1}c@=h
in a single point, and hence that
S,]V/]F4 =g}
is contractible. Also, the map f:0 - th given by
flexp(mit/3)) = exp(4mit/3)

extends uniquely to an equivariant map 8,V + 8,V . By lemma (2.2),
this map has degree 4 because h = F(T,V) and flsqh has degree# .

Remark. It follows that the extension of T by the 3~Sylow sub-
group of the Weyl group of ﬁ%_ has no fixed points in SqV . Using
lemma (2.2), this implies that every equivariant self map of qu
has degree = 1(mod %) . In fact, looking closely at h, we see

that those maps are all of degrees 6k + 4, k €Z .

Here is a proof of theorem 1 of the Imtroduction., Accoxrding to
theorem (4.40), if a group G has an irreducible linear represen-
tation V such that the unit sphere qu admits a self-map of
degree # 1(mod p), and such that the orbit space qu/G is con-
tractible, then the n%utest space conjecture holds for G . There-
fore, it suffices to show that, with the exceptions mentioned in
theérem 1, such representations V are proveded by the list (2.0).
The validity of the list itself is a consequence of (2.3), (2.7),
(2.8), (2.9), (2.10), (2.11), and (2.12).

As examples of how to use the list, let us consider the cases
80(n), SU(n), and By . Tor S0(n), n>5, there is a map of
degree 1 - 2K for some k >1 . As 1.0k £ 1(mod p) for all
odd primes p, only the prime 2 causes a problem. The Floyd map

of degree 0O in case G = 80(2n+1) settles those groups for all
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primes, If G = SOCQn), n > %, there are maps of degrees 4L~(§),
1<k<n-1, in the list (2.0). If - (i) = 1(mod 2) for all

those k, then n is a power of 2, and hence G = £0(2%) . This
leaves G = 80(2%) with the prime 2, and they appear in the list
of exceptions of theoren 1,

FPor G = SU(n), there are self-maps of degrees 1-«(?), 1<k<1.
if 4-—(?) = 1(mod p) for 1<k<n~-1, then n = p? . The local
isomorphisms SU(2) ~ S0(3) and SU(4) ~ S0(6) settles the problem
for those two groups, with p = 2 . The other pairs (p,SU(p?))
appear in the list of exceptions of theorem 1.

TFor G = ZES , we see that there is a self-map of degree 1- 16275,

and hence the primes 2, 3,and 5 remain unsettled in this case.

For a given prime p, the smallest simple groups (by the relation
of local inclusion) in the list of exceptions of theorem 1 are, for
p=2, G=G& and Sp(4), and for p>3, G = SU(p) .

Since &, has no nonconstant complex representation of dimension
<7, and Sp(4) has no such representation of dimension < 8, it
follows that SU(6) contains no simple group appearing in the list
of exceptions of theorem 1, with p = 2 . Thus the Iﬁgwtest space
conjecture holds for all simple subgroups of SU(6) . This proves
theoren 2 of the Introduction.

Theorem % of the Introduction follows from theorem (1.7).




Further Questions,

1. Let T =(§Zp)k ack on X such that X/T is connected and

let £: X~ X be an equivariant map, Let M(u) EITp[u] be the
polynomial of smallest degree such that M(£*) wvanishes in

Hi(X; JFP) for all i>0 . It then follows from theorem (1.3) that
M((r|F)*) is nilpotent in Hi(F;JEp) for all i>0 where F is
the fixed point set. Is M((f|P)*) actually trivial for i>0, or

is there an example showing that it need not be trivial ?

2. Conversely, let M(u) be a polynomial such that M((£{m)*)  is
trivial in H+(F;Iﬁp) . Can one conclude that in H+(X;1Ep),
KerM(f*) = Ker M(£*)%?

3. Let p be a prime, Is it true that for each simple group G,
there is an integer N such that for each Zﬁﬁnacyclic G'Space Xy
the cohomology group H*(X/G;Zmb) is generatéd,by at most N ele-
ments lying in degrees < N”?‘This is an approximation to the Imbh

acyclicity conjecture,

4, Yor each prime p, is there a compact connected SU(pa) space
X without fixed points such that neither H+(X;]Ep) nor
H+(X/SU(pa);:Eb) has constant A(X) decomposition factors, where
A{X) is the ring generated by the monoid of equivariant maps

X - X ., - There are such spaces when pa =2 or 4 .,

5. Can the irreducible representations of E, and 1E7 with prin-
cipal isotropy groun Spin(8) provide contributions to the ligt
(2.0)? See Hsiang [8] for the maximal weights of those represen-

tations,
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