Actions of p—~torli on projective spaces

TOR SKJELBRED

A p~torus of rank k is a direct product T = (Z_p)k of the
group gp 'of order p where p 1s a prime, The fixed point
set of an action of a p~torus on a projective space has been
studied extensively by P.A.Smith, A.Borel, G.E.Bredon, W,Y.
Hsiang and J.C.Su [2,3,5,6,7,11]. The results for p=2 and for
P an odd prime are usually quite different. For p odd there
is the following conjecture of Bredon., Let Ep denote the fileld

of order p.

Conjecture. For an action of Ep on the quaternionic progective

space HP™ , there is at most one component of the fixed point
set which has the Ep cohomology groups of some HP™ with

m>0 .,

Bredon has shown [3] that this conjecture holds for n >p ~ 2 .
Hsiang and Su [7] have shown that it holds for all n in case
a p~torus T of rank at least two is acting effectively, 1In
the first part of this paper, we will show that the conjecture

does not hold for T=§p if one allows HPn to be replaced by a

space X with F_ cohomology ring isomorphic to that of 2122l

P
We give examples of this kind for n < (p+1)/2 . 1In case

n=(p+1)/2, we show that the Steenrod operation p' is non-

¥
trivial in H (X;Ep). We also give an upper bound for the sum
of the dimensions of the components of the fixed point set which
have the F

P
A consequence of the counterexamples is that the invariants of

cohomology of a gquaternionic progective space.

Ep cohomology will not suffice to prove Bredon's conjecture.
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For actions on the complex projective space co? , the Ep
cohomology of the fixed point set is completely known, with
theory and examples in perfect correspondence, However, relative-
ly little is known about actions without fixed points., A.Borel
(1] nas shown that (gp)2 acts on anp—1 without fixed points.
We prove that when a p-torus T acts on ng-1, then all
maximal isotropy groups K have the same order and that the
index ([T:K] divides m , For p=2, we must assume that T
acts trivially on H*(X;Z/4Z) . There are actions bj projective
transformations of T = (Zp)za on _QPpa-1 with maximal isotropy
groups K=(§p)a , hence [T:K] equals m in this case,

We will assume that the T actions we consider are such that the
localization theorem for the equivariant cohomology ring

H*,, (X;Ep) is valid, This is the case if X is compact or if
the Ep cohomology dimension of X 1is finite., We assume that

X 1is paracompact, in any case,
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1« Actions of p=tori on quaternionic projective space

Let H be the division ring of quaternions and let G=Sp (1)
be the group of quaternions of modulus one.lLetting Hn+m+2

be a right vectorspace over H , the linear transformations

g(qo’ “G’qn+m+1 )=(qo, L ”qn’gqn_l_'] goee ’gqn_'_m_'_‘])’g E G

define an action of G on HPn"'m"'1 with fixed point set

F=F 4+F° where F =HP® and F%= RP® ., We shall modify this
action outside a tubular meighbourhood of F1 . in the process
of doing this we replace HPn+m+1 by a cell complex X which
has even dimensional cells only and with XNPHPn+m+1 for
sufficiently big primes p , Here XNPY means that the cohomology
rings H*(X;Ep) and H*(Y;Ep) are isomorphic., The fixed point
set In X has two components F1 and F2 where F1 = HP®
and Fg~p HP®  for p sufficiently large. We notice that the
normal bundle of HPD'ZHPn+m+1 is m+1 times the quaternionic
Hopf bundle m whose unit sphere bundle 1s a principal G
bundle, We will view TN as an orthogonal bundle where G is
a group of bundle automorphisms. Then G acts semifreely on
the discbundle D(n) with fixed point set HPP=F' ,

For any space X where a topological group G is acting
contimously, we set X =(ExX)/G where Ey 1is a universal
free G space and G acts diagonaliy on EdKX « VWe set
H*G(X;A) = H*(XG;A) . Given a fibre bundle n over X with
sfructural group S, such that G acts as a group of bundle
automorphisms of 7N ccvering the action on X , the resulting
bundle Ng over Xq has the same f;bre and structural group
as M ., In case G=Sp(1) 4is acting trivially on HP® and 7

is the quaternicric Hopf bundle, M4 is a four dimensional
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orthogonal vectorbundle over (HPn)G=HPQKBG, where BG=EG/G .
Thé Euler class of 7N is a generator x € HA(HPn;g); and the
Euler class of 7, is x +u where H*(BG:g)=§[u], deg u=4,
The discbundle N=D((m+1)n) is the equivariant normal discbundle
of HP'c HPn+m+1,, and the Euler class of Ny - (HPn)G is
(x+u)m+1. Since x+u is not a zerodivisor in H*(HPn X BG;Z)=

H*(HPn:Z)[u] , the Gysin sequence of the bundle

(1.1) "5 o (ow), > (%),

is short exact.

m-+1 *
(1.2) 0= Hé(fmn;;)(fil) Hy (HPP32) - Hy (oN3Z) » O

Since G acts freely on dN , +the projection (bN)G - dN/G is
dN/G , the mep T defines

a homotopy equivalence, Setting Y
a uniyue homotopy class of maps nl s y- (HPn)G such that
n1* is surjective in cohomology. Dividing by the action of G

in the bundle (1.1), we obtain a bundle
0
(1,3) HP® » Y— ppt

For any fibre bundle F1 - B1 - X1 where fibre and base are
cell complexes, the total space B, has a natural cell gecom-
position with the cells corresponding to the cells of X, X F, ,
but with possibly non-cellular attaching maps. This cell de-

composition can be used to construct maps from B1 s We thus

have, by (1.3) ,
Y = (HPm:X S4)U cells of dimension 4k, 2 < k < n+m ,

where TO(s%) = P! c HWP® = F1, and HP® 1is a fibre of (1.3) .
Suppose now that we have a map g:Y*HPm « Then G acts
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semifreely on the space X = Nug HP" obtained by attaching

N to HP® by oN - dN/G =7Y > HP™ , and the fixed point set
is HP™4+HP™ » We will construct a map like g so as to obtain
the right cohomology ring for X . Thus we will prove,

Theorem (1.4) For any two integers n,m > 1, there is a cell

complex X with cells of even dimensions only and a semifree
action of Sp(1) on X such that the fixed point set has two
components F1 and F2 with F1 = HP® and F2 is a sub-
complex of X , For primes p with (p+1)/2>n +m+ 1, we
have X ~ P and B~ mPR ., If (p+1)/2 =n 4+ m 4+ 1,

p
then the Steenrod operation P1 is nontrivial in H*(Xﬂip) .

Corollary (1.5) For any two integero n,m > 1, there is a cell

complex X with cells of even dimensions only and a semifree
circie action on X such that the fixed point set has two
components F' and F° with F' = HP® , and, writing X ~_ Y
when the rational cohomology rings H*(X;e) and H*(Y;Q) are

isomorphic, Fo~_ HP", end X~  HPMMT |

Proof: To construst g,, we begin with gO:HPm v S4 - HP"
which is the identity on HP® and maps S® such that there is
a generator vyt HA(HPm;g) with g:(y) = ﬂ1*(x+u) | (uP® v 84 )

Lemma (1.6) The obstructions to extending g, to Y 1lie in

finite groups without p - primary components for primes p

with (p+1)/22n +m + 1,

Proof: Those obstructions lie in the groups T, 4 (#HP™) for

2< k< n +m ., There is the exact homotopy sequence
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—~

0>y (s +3) >y (P™) >y 1 (8%) -+ 0

For q odd and p an odd prime, Wi(Sq) has trivial p-

primary component for i < q + 2p-4, [10,p.517] , hence we

find that ni(HPm) has trivial p-primary component for 1 < 2p.
Thus for 4(n+m) - 1< 2p , i.ec n4m+l < (p+1)/2, the
obstructions to extending g, lie in groups with trivial p-
primary component, The obstruction group n4m+3(HPm) contains

an infinite cyclic group, but the obstruction elements lie in the
torsion subgroup. To see this, we may pass to the rational
homotopy category, letting fQ : XQ - YQ be the rational form

of amap £f=X~2Y of simply con;ected cell complexes [12] .
When Y(k) 1s the k-skeleton of Y , +there 1s a unique
extension of g,, g, : (Y(hm)) - (HPm) An homotopy element

1 = Sle+3 - up? i; torsion if and onlv v o+ vanishes in

H (HP™ Ute4m+4;9). Hence, the obstruction to extending g, to
Cy(bm+h) 5o trivial if and only if g;(y)mM:O in H*(YQ)T

Here g;(y) is a class in HA(YQ). Restricted to HL’(HEm v 84;9),
we have g;(y) = g:(y)Q ='n1*(x¥a)Q, by definition of g. B
When the homotopy

equivalence (bN)G -» Y 1is understood, we have

gq()™! = 1 ()Gt = T ()™ = 0, by (1.2) . This
c;mpletes thefproof;of Lemma (1.6) .—

Let HP® = K-ﬂwe K1*** Kz—.s. be the sequence of Lemma (1.8).
The mapping telescope of this sequence is the space HP®  with
all primes q with (q+1)/2 < n+m+1 made invertible, Re-
placing g, by the composite map gy = fgo, f=fi...f2f1 ’

gy * whvst > P - K, it is clear that the obstruction to
extending g, will be mapped to zero {n ﬂ¥(Ki) for big 1i .
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Hence g4 extends to g:e Y~ Ki for some 1 , We set

F° =K ,g:Y~>F , andvwe define X =N ung . Then G

acts semifreely on X with fixed point set F = F‘1'+F2 where
F'=HP" and Fo~) HP" for primes p with nsm+t < (p+1)/2 .

As a cell complex, N is obtained from ON by attaching a cell
of dimension 4k for m+1 < k < n+m+1 and F° has a cell of
dimension 4k for O0<k<m, Thus, X has a cell of
dimension &4k for O < k < n+m+1 and those are all the cells

of X, There is an exact sequence,
' *

. * !
(1.7) 0 » #(, an; 2) S H(x3z) - 3 #UFSz) - o,

where ®; : FL € X and a: X X/F% = N/oN . Let z € H*(X;2)
be a generator, We must show that z% 1s a generator of
H'3(X;E,) for all primes p with (p+1)/2 2 nim#1 and all a.
Since @Z is an isomorphism for q <m , z? 1is a generator for
a<m, To show that i T generator, we will consider

the skeleton X(4m+4) = F2 U ehm+4, by construction, The cell of

dimension 4m+4 is attached by the map

| g
S¥3 C AN - BN/G = Y= F2, where SY™*3  ig the fibre of
N » F' = HP® . This map fits into a commutativediagram

SN —— Y

v U \i
£

ghm3 wp® - F2

Thus f defines a map of mapping cones, f1 : HPm+1 - X(4m+4) ¢
Since f£* : HA(FZ; Ep) - HA(HPm;Ep) is an isomorphism, it
follows that £'* : H*(x(4m+4);§p) » (P IE) 1s an
isomorphism, hence ol PO genarator, Since H4m+4(N,bN;§)
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1s generated by the Thom class, it is not difficult to see,
using (1.7), that z generates the algebra H*(X;Ep) if
¢1* : HA(X;EP) - HA(F1;EP) is nontrivial, We have seen that the

Euler class of the bundle N, - F1G is (x+u)m+1

« Clearly
this Euler class is w:a* (U) where U is the Thom class in
th+4(N,bN:g) » The ring H;(X;gp) is generated in degrees
<4m+h by u and w where w is a 1lift of z over -
Hé(X;g) - HA(X;Z) . Hence there is a homogeneous polynomial

P with coefficients in F_ such that o' (U) = P(w,u) .

P
Setting ®) (W) = a x+asu € Hé(F1: Z), we obtain,

(x+u)m+1 = wﬁ a*(U) =,m:P(w,u) = P(a1x+a2u,u) ’

in Hy(F' 3 E)) . Since mHl <p, it follows that a, # O
(mod p) , hence the composite map Hé(x;gp) - H“(x;gp) - HA(F1;EP)

nontrivial.

Lemma (1.8). Lett K be a cell complex without cells of

dimension one and let S bDe a set of primes. Then the localized
homotopy type S_1K can be obtained as the mapping telescope
(or homotopy direct limit) of a sequence
if f
- 1 3
K = KO K1 - K.2 Peaes
where each Ki has the same number of cells in each dimension

as K, and each fi induces an isomorphism of cellular chain
groups 8'10*(Ki_1) = S'1C*(Ki) .

Proof: This is an immediate consequence of D . Sullivant's

1

construction of S” 'K by attaching cones on S-local spheres

[12].
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It follows from Theorem (1,9) below that the condition n+m+1 <
(p+1)/2 cannot be relaxed, In fact for every odd prime q
with (g+1)/2 < n+m+1, the ring H*(X;Eq) 1s not generated

by one element when X 1s the space of Theorem (1,4). In case
(p+1)/2 = n+m+1, 1f the Steenrod operation P! were trivial in
H*(X§Ep)' it follows from Theorem (1.9) that n+m <(p-3)/2 .
This”contradiction shows that P1 is nontrivial for this p.

Theorem (1.9). Assume that T = Zp acts on a space X~p Hpt

where p is an odd prime and let F1, ...,Fs be the components

of the fixed point set, Assume that F¥~pHPki with
ki >0 for i<q. Ifq2>2, then

< (p-1)/2 .

k LN N k
1+ ky +eoet Ky

If the Stenrod operation P! is trivial in H*(X;Ep), then

q

We will summarize Hsiang's result [5] on the structure of the

*
equivariant cohomology ring HT(X;EP) when a p-~torus T acts

k

on X ~ HP", As an algebra over H*(BT;EP), we have

* . - * )
Hp(X3E,) = H (BpiE,) Y]/ (H(Y))

where Y - y € H#(X;Ep) and the restriction of y in g

(X;Ep) is nontrivial., The polynomial H(Y) has the form

<]
H(Y) = 0 (v - 4)%1*" where %, + 1 = dim H*(Fi;_F_‘p) and

A, =;pf(y) where pf is the homomorphism H;(X) - Hﬁ(Pi) =
* - v .'”
H (By) defined by a point pJ_E:FsL . Setting o, : F' C X,

* R *
we have Ker ¢, = (y-Ai)kl+1 . HT(X;EP) . When Fi~p mp¥i

) *
with k; >0, we have ®.(y) = yy+A; where y; 1is a generator

of HA(Fi;Ep). The differences Ai-AJ¢O lie in
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the ring generated by BH1(BT;EP) where B is the Bockstein

operator,

Proof of Theorem (1.9):t In case T =2, we have

p'
H*(BT;EP) = E [tKu) where degu = 1, t = B(u), and u

2--—0.

Setting r = (p+1)/2, there is a polynonvial f£f(Y) = CoYr +
%, . 1

C, ¥ 4,0+ C. with C, € H'(By; E,) and P'(y) = £(y) .

We have Ai = aitz and Ci = citZi

P! 1s trivial in H (X;E,) if and only if C, =0 if and
2

where ay,c,€ F,e Hence
only if deg f(Y) <r = (p+1)/2., As @I(y) = y;+a;t° for
i<q, weget

@, (£(y)-2a,tP*1) = o] (P (y) - PT(a;t?)) = P'(y;) = b; ¥}

for some b, € Fp It follows thatrthe polynominal f£(Y) -

2aitp+1 is divisible by (Y = aitz) 1 vhere ri=min(r,k +1);
hence the derivative £'(Y) is divisible by (Y—aitz)ri—
and i§1(ri-1) < deg f(Y) = 1<r -1, Since r; 2 min (2,2)=2_

’

we must have ry =1 <r -1 when q 22, and so, ry=k;+1,

This gives the inequality .%1ki < deg £(Y)-1 < (p~1)/2, completing
1=
the proof,

D act on a space Xb'pHPk such that

the fixed pointset has more than (p+1)/2 components. Then the

Proposition (1,10) Let T =2

fixed point set consists of k+1 acycdic components, k < p ,
and the Steenrod operation P! 1s trivial in H*(X:EP) . For
each odd prime p and each k < p, there is a space XNPHPk

with an action of Zp with k+1 isolated fixed points.,

Proof: We keep the notation from the proof of the above theoren,

setting F(Y) = £(Y) - 2Ytp-1 . Thus we have P1(y)=F(y)+2ytp'1.
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There is a relation of Steenrod operations [4], 2p? = (P1)2,

hence we obtain_

2P (y)=P (F(y)+2yt?~ D (v)F' (v)+07 (£)oF (y) /o t+P" (y)2tP~ -2yt 2P-2

1 is a derivation. Since F(Y) is a

keeping in  mind that P
weighted homogeneous polynomial in t and Y, we have
tOF(Y)/dt = F(Y)=-2F'(¥).

This gives,
2yP=2P? (y)=F (y) (F' (y)+3tP~ 1 )+2yt?P~2 |
(1.11)  2y(yP~1=t2P=2)_p(y) (F' (y)+3tP"T)

Asimilar equation is used by Bredon [3].
For each component Fi of the fixed point set,
F(a,;t%)=p; F(y)= p; (P (y)-2yt?~)=p'(a,t%)~2a,t**'=0 . This

2 s 1<1<s, are roots of F(Y) .

shows that the ait
If there are more than (p+1)/2 components, the number of roots
exceeds the degree of F(Y), hence F(Y)=0, From (1.11) it
follows that 2y(y?~1-t2*2)o0, hence H(Y) must divide

y(YP 1t2P2yn (veot?), (c € F,) . Since H(Y) is square-free,
we have k;+1 = dim H*(Fi;Ep)=1 for all i , meaning that

each FL is Ey acyclic, Farther, P1(y)=F(y)+2ytp'1=2ytp—1
implieg that P1

is trivial in H*(X:Ep) . It also follows that
k+1=deg H(Y) <p .

To construct examples, let X be the 4k skeleton of the
loopspace 085 in the unique cell structure with even dimen-
sional cells only., Then, XKNPHPk for k< p as H*(OS5;Z)

is a ring of divided powers of one variable [10,p.514] .

We now use James' construction [8] of OSA° fora.pointed space

A, where ZIA is the reduced suspension of A, There are closed



k-1

subspaces X° < X' < ... with ux¥=0%A and XK/x¥M=aa...An

(k fold smash product). This construction is functorial for

maps leaving the bape point fixed, We take A=SL' with a _Z_p

action with two fixed points, Then Zp acts on X

with two fixed points. Hence Zp has k+1 isolated fixed

points in Xk .
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2. Actions of p~tori on projective spaces without fixed points

let p>2 be a prime and let T be a p-torus, We want to
consider actions of T on a space X such that H*(X;Ep)

is a ring generated by one element, and the fixed point set is
empty. For example, there is a principal S1 bundle

BPzn-1 - an'1 s, showing that Z, acts on the real projective

space BPzn-1 without fixed points.

Lemma (2,1) When p is odd, every action of zp on X has

fixed points if H*(X;Ep) 1s generated by one element of even

degree, When p=2, every action of gz on X has a fixed point
if H*(X;EZ) is generated by an element of even degree , and

Z, acts trivially on H (X;Z/42) .

We remark that since the mod 2 Steenrod algebra is generated by
i
2

P, 1 >0, it follows that if H (X;E,) 1s generated by one

element, and dim H*(X;Ez) > 3 , then the generator has degree

i

2, 1i>0 . The next lemma follows from Bredon (31 .

Lemma (2,2) Under the conditions of Lemma (2.,1), each cemponent:

FL of the fixed roint set is either acyclic over Ep or
H*(Fi:gp) is generated by an element of even degree,
Proof of Lemma (2.1): Consider the spectral sequences E(2) and

E(1) of the bundle XX, *B  with coefficlents in z/p°z
—p-

and in Z/p§=E « For each prime p >2, we have that
* * P dd B 2 dd
Eg (2) » E37(1) is onto and HUB, ; z/p°Z)>H%(3, JEp) is
= =p
trivial where both maps are reduction mod p . It follows
that the spectral sequence E(1) has trivial differentials,

because the generator of H*(X;gp) is of even degree, hence the




- 1 -
fixed point set is not empty.

Lemma (2.3) A 2-torus T of rank > 3 cannot act freely on a

space X, RP® , 1If Z, X Z, acts freely on X , then the
action on H(X;Z/4Z) is triviel and n+1=O(mod 4) .

Proof: Assume that T=(§2)3 acts freely on X . Let (E, , dr)

be the spectral sequence for §2 cohomology of the bundle

XX : By . Let O# x€ H (XiE,) , and notice that the differentials
dr(xr-1) s When defined, are elements of the ring '
H' (Bp3E,)=F,[t, t,ts;] modulo the images of d, for s<r .

A subgroup K< T has fixed points in X if and only if
d,(x)|Bg=0 , 1in other words if and only if d,(x) € PK where PK

is the prime ideal which 1s the kemel of H*(BT)*H*(BK) . We have

dy(x) = aytfta torastoib, totatbytst, +bst, t,

where a;,b; € F,. When K& T is the subgroup with PK:(t1,t2) ,
we have d2(x)=a3t§ mod PK , hence ai=1 when the action is
free, 1 = 1,2,3. Choosing K with PK=(t1+t2,t3), we have
dz(x)=b3t$ mod PK, hence b;=1 for i=1,2,5 . Choosing K with
PK = (t1+t2,t2+t3), we obtain dz(x)=0 mod PK, hence the
action cannot be free,

Assume that T=Z, X Z, acts freely. Then n must be odd,

and we will show that n # 4m+1 . Assuming n=4m+1, we will
calculate explicitly the spectral sequence Er « We set

ReH (BpiE,)=F,[t,,t,] and notice that E, is a bigraded R
algebra with 1. We must have d2(x)=t$+t1t2+t§ because every
other second degree form contains a linear form defining a
subgroup with fixed points, Let B be the Bockstein opefator

and notice that
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B 1 (dy ()= (B (£34t,,412) )= (£,8,(t,+t,) )=0.

It follows that d3(x2) = t1t2(t1+t2) (mod dz(x)) . Clearly,

B =0 for q odd and Ey°% 3 R/(th+t,t +t3) for 0 <aq< 2.

E3 is generated as an R algebra by xz=y, and
a5 (y?™7) = y®Pa5(y) = y*"tyt,(ty+t,) £ O . This is imposeible

as y2m+1 = 0 . Thus we must have

n+1=0 (mod 4), say n=4m~1, when T is acting freely.

If T acts nontrivially on Hn(X;g/4Z), there 1s a subgroup

K of order 2 which also acts nontrivially, Then, dim
HE(X;EZ)=2m, and a direct computation of the spectral requence
converging to Hﬁ(x;g) shows that H% (X32) # 0 for infinitely
many gq, this is a contradiction., (We will not make this ad

hoc  argument explicit because more general arguments are
available, using the G=Euler characteristic for free actions, If
we cannot use the universal coefficient theorem for H;(X;g) ’

then it should be replaced by 1imaH;(X;g/2a§), cfr. [9])

Lemma (2.4) Let K be a 2-torus acting om a space X such that
lH*(X;EZ) is generated‘by an element of degree n > 0, and

assume that the fixed point set F(K) is nonempty with

components Fl, 1< i< s . Set d; = dim H (F3E,) and let

n; 2 0 be the degree of the generator of H*(Fi;Ez) . Then

k| > >>:_3n/ni + # l1ia; = 2}

dy




- 16 -

Proof, If d = dim H (X;F,) < 2, the inequality is easily
verified, so we will assume 4 >3 ., When the group Z, acts
on X, Theorem (4.1) of Bredon [3] says that either

F(ZZ,X) is connected with a cohomology generator of degree

n/2, or F(ZZ,X) has two components F, and F, such that
H*(X:Ez) - H*(Fi;gz) is surjective for i=1,2. We will prove
the Iemma by induction on rank K, When K=Z,, the inequality
fdllows directly from Bredon'a result., If rank K > 2, choose
& subgroup Z,°K and consider the fixed point set F(gz) .

If it has two components F1 and F2, we may assume Fj“CF1

for i <a and FiCF, for 1> a . By induction, we have ine-

2
qualities.for the actions of
K/Z2 on F, and F,,

IK/z |> z n/n + # 1ild;=2,1i<a}

|¥/2,1> £ n/ng + # {1ld;=2,1>a]

i>a,d i>3
Those 1lnequalities add up to the inequality of the Lemma ,

If F(Za) is connected, the ineqality for the action of K/g2

on F(zZ,) is

|&/2,12 oSt/ + A {1la, = 2},
and the Lemma follows.,

Remark If d133 for all i and the action is cohomology
effective, that is, g (X,F(Z,)3E,) # 0 for all Z,°K, then
the inequality (2.4) is an equation,

Theorem (2.5) Iet T be a p~torus acting on a space X such

that the ring H* (X;Ep) is generated by one element of even
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degreoe and such that T has no fixed points in X . Then for
each maximal isotropy group K, the index [T:K] divides dim
H*(X;Ep) and for p odd, IKIZZITI, whereas 2|K|22kﬂ for
p=2. When p is odd, all maximal isotropy groups have the same
order, and if K and L are subgroups with F(K)#? and
F(L)#9, and |K|>|Ll, there is a subgroup ASK with |AL|=|Kk|
and F(AL) # 0 . ‘

Proof, Assume that p 18 odd and let K be a maximal isotropy
group for the action of T , Let F(K)i be a component of
F(K). The group which keeps F(K)i invariant is equal to K,
for if K€L and L/K = Zp and F(K)i is invariant under
L, then F(LFX)}) #0 by Lemma (2.1). Since K 1s a
maximal isotropy group, this 1s a contradiction ,It follows that
T/K permutes the components of F(K) freely. Since F(K) has
at most |K| components,we obtain |T/K|§|Kl or |K|22iT|.
Let Y be a union of one component of F(K) from each T/K
orbit of components. Then, dim H*(X§EP)=dim H*(F(K):Ep)=
dim H'((T/K)Y3E,)=[T:K] . aim H'(Y;E). Let K and L be
subgroups with F(K)#2,F(L)#@, and |K|>|Ll, Both K and L
must have fixed points in each component Y of F(KNL), hence
Y is invariant under KL. Thus the group N=KL/KNL=
(K/KNL)X(L/KNL) 1is a transformationgroup on Y, Since |L/KnLﬁ<|NL
L/KNL 1is not a maximal isotropy group for the action of
N on Y. Hence there is an element a€ K-L such that the group
‘(a)L has fixed points in Y, and, consequently,F({a)L,X) # @
Replacing L by <(a)L and repeating the above argument if
|(dLI<|K|, we find a subgroup A< K with |ALl=|K|l and
F(AL,X)#¢ . If |LI<|kl, it follows that L and K cannot
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both be maximal isotropy groups, that is, |Ll=|k| for maximal
isotropy groups L and K.

When p=2, and K< T is a maximal isotropy group, let F(K)i

be a component of F(K) and let L > K be the stabilizing

subgroup of F(K)i; then L/K acts freely on F(K)i, and
|L/xl=1,2, or 4 by lLemmas (2.1) and (2.3). If 1=K, then

[7:k] divides dim H (TF(K)'3E,). If |L/K|=2, then dim

g (r(k)L, F,) 1s even, hence dim H*(TF(K)i‘F )=[T:L]aimH*(F(K); F2)
is divisible by [T:K]. If |L/K|=4, +then, by Lemmas (2,1)

and (2.3), F(K)i~2 RP*™" hence [T:K] must divide

dim H*(TF(K\i'Ez) in this case as well, It follows that

dim H'(X;F,)=dim H"(F(K);E,) 1is divisible by [T:K] .

To prove the inequality 2[Kl22|Tl, we first assume |L/K|=1 or 2,
Then F(K) has at least |T/K|/2<|T/L| components, hence
|kI>l7/KI /2 or 2|k|%T. If |L/K|=4, we have F(K)~,RP

as above, m>1, Since we areassuming that H*(X;EZ) is generated

lime

by an element of degree n=2az2, the inequality of Lemma (2.4)
yeilds, counting only the components T-‘F(K)i of F(K) ,

|kl >l T/Lln > 2l7/L] = |/K]|/2

which shows that 2|K|22|T\. This concludes the proof of the
theoren.

Remark If p=2 and X~, CP" and T acts trivially on
H*(X;Z/hz), then, for maximal isotropy groups K and L, we
have |K|=|L| and |K|Z|T|
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3., Examples of actions of p-tori without fixed points

In this section we will give some examples of actions in order
to show that the inequalities of Theorem (2.5) cannot be
generally improved. For each integer a>1, we will construct

a group T? of linear transformations of gpa as follows: Set

a
Qp = 9[21,...,za]/(z§-1,,..,zz-1) and let p € C be a primitive

pth roof of 1. We define generators fi and g; (1§ifa) of
T® py

(o a o, o o

1 ay _ . 1,1 a

fi(Z,' ...Za ) - p 21 ..-.Za

a o o o

1

gi(Z11oooZaa) = Zi Z1 n-ozaa

There are relations,
fi8,=8,%; » f3fy=f %y, and g;8.58.8y for i 4 3,
fi=gf=1, and f;g;=pg, ;.

The centre C of T2 is generated by p , and T2/C is
abelian. The subgroup Tf generated by the f, and the sub-
group Tg generated by the g; are both p~tori of rank a, and

the natural map
X

a
Tp X Tg » IT'¢/C

is an isomorphism. The defining representation of T® of
degree pa is irreducible. In fact, the pa monomials

ol a .

11...Zaa span linear subspaces invariant under Tf which is

represented in those subspaces by pa different characters.

YA

Also, Tg permutes those monomials trgpsitively, hence the
representation of T® is irreducible. On the Grassmann variety

a
a ©f k-dimensional subspaces of gp , the subgroup C

k,p
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acts trivially and it follows that the p-rorus Ta/C of rank

2a acts on G a without fixed points. In particular we
k,p
1

a
obtain an action on gPp ' without fixed points.

.1

Remark . The group T ' and the corresponding action on gPp-1

is defined by A. Borel [1]. He also shows that (53)3 acts
on the Cayley projgective plane without fixed points.,

It is clar that F(Tf,gPpa'1) has p2 isolated fixed points
represented by the monomials in Z1,...,Za, and that Tf is a
maximal isotropy group. Thus the inequalities of Theorem (2.5)
cannot by improved since we have |K|2=|T|=p2a and [T:K] =
p?=dim H*(X;Ep) for the action on X=gPpa'1.

Let E, be the cohomology spectral sequence of o |
X Xp 2 Bps T=T, xrrg . Let =x£ H2(X;Ep) be a generator,

and let d=d3(x) € H3(BT;EP) . Then a subgroup K€ T has

fixed points in X if and only if dIBK = 0. We have, for p odd,

* .
H (BT’,F_‘p) = Ep[t,]'.co,tza]<s1’...’52a>

where deg si=1 and B 8y = t, where B 1is the Bockstein

i
operator. Let Ci be the subgroup generated by fi if i<a,

and by 8i-n if i>a. Then we choose generators 84 such that

8 | B, =0 for i # J . We have

1

Sk + X C s:t_ .

d=_ I ©5 515, i25%17 51%

1<y<k
Since x 1lifts to integral coefficients, d must be an integral
class, and g(d) = 0. It follows that C gk = 0 and CiJ+ch=o'
hence

d= ZC S.8_e
Bj_(JJi 19
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To determine the c_,, it suffices to restrict the action to

Ji
the subgroup CJCi c Pfxré. IT g #£ i+a, CJ and C; generate
an abelian subgroup of Ta, hence CJCi must have fixed points,

a
hence ch =0, and d=B i§1aci S; Si4a” By permuting the

subscripts of 21""’Za € gp s, Wwe obtain automorphisms of the.
representation of Ta, inducing an automorphism of T2 which
permutes the sets {fq""’fa}9 {g1...,ga}, §s1,...,sa}, and
{S1+a"“'82a} accordingly. It follows that the c; are
independent of i, hence,

-

(5§ 83407514a51)

a
d=c B X 8y Sj.9 =3¢ P ’

i=1 2" 73

I Mo

Here I(s; s s,) is a symplectic form on H1(BT;EP) y

i+a Siva®i
and the maximal subspaces where this form vanishes are all of
dimension a. Thus we can verify the statements of Theorem

(2.5) on isotropy groups by using properties of nondegenerate

forms.

In the case p=2, the equation B(d)=0 implies

* . _
d_lEU i3 it (ti+tJ) where H (Bp;F,)=Folt sseesty 1. Using
permutation invarisnce and the fact that C, CJ has fixed points

for i<g#i+a we obtain, d=B'Z1ti t;,q- Thus, for the action
1=
of T=(Z2)28, the statements of Theorem (2.5) on isotropy groups

follow from properties of the quadratic function X tit The

i+a®
a
representation of T2 in 92 is real, hence TfXTg acts
a
on RP2 -1 without fixed points. The differential d2 of the

generator of Egz is % ti ita *
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