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Several results 1n the theory of recursion in higher types
indicate that the effect of a higher type functional on the lower
types does not reflect the high type, i.e. the same effect could
be obtalned by functionals of relatively low type. The two main

results here are :

Plus - 1 - theorem. (G. Sacks [6] for k =1, [7] for k > 1).

Let H be a normal functional of type > k + 1. Then there exists
a normal functional F of type k + 1 such that k- sc(F) = k- sc(H),

i.e. the same subsets of tp(k-1) are recursive in F and H.

Plus - 2 - theorem. (L. Harrington [1].

Let H be a normal functional of type > k + 2, Then there exists
a normal functional F of type k + 2 such that k-en(H) = k-en(F),

i.e. the same subsets of tp(k-1) are semirecursive in F and H.

The results in this paper also indicate that higher types cannot
have too much influence on lower types. The key is the Skolem-

Ldwenheim theorem. Among the results we mention

1. Let n<m. A ctp(n) x tp(m) be Kleene-semlcomputable.
Let X € B = Vy € tp(m) <x,y> € A, Then B 4is 1. This

result may be relativized to a functional of type n + 1.

2. Let k0 be the type-k-functional that is constant zero. Let F

be a functlonal of type < k. Then, for 1 < k-2
i-sc(F,kO) = 1-sc(F), i-en(F,kO) = vtp(i)(i-enF )
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3. Let n,m > 1, Then there is a functional F of type n + 2

such that for k <n, k + 1 - en(F) = Hg(tp(k)).

L, Hn-positive inductive definitions over ¢tp(n) have H? -
1

least fixedpoints.

All these results have relativized versions.

This paper includes results from Moldestad & Normann [5].
There we proved a relativized version of 4 for n = 1, and
derived 2 for k = 3. The proof of 3 from 2 follows the
same ideas as in [5]. Also the discussions in § 8 of this paper
are from [5]. These results and ideas are jointly due to both
authors. The notlon of recursion structures and theorem 1 are

due to the second author.

2. Notation.

We willl work wlth Kleene-recursion on objects of finlte type,
and we assume famillarity with the contents of Kleene [3]. We

define the types as
tp(0) = w, tp(i+1) = tp(i)m.

K
Let X < tp(0)X0 xeee, xtp(n) M.

We say that X 1s AJ 1f X 1s Kleene-recursive.

Assume A? 1s defined. Let n? = z? = A? .
n _ tp(n),.n n _ .tp(n), . n
Meeq =V (Zy)s  Iygyq® 3 (M)
n n n n+1 n
AR = P s A = U A
K X K * 0 cew K

F, G, H, U will denote formal symbols for functionals. To each
symbol there is assigned 2 number indicating the type of the interpre-
tations, F, G, H, U will denote standard 1lnterpretations of the

symbols, F,g ’ g{,% other interpretations.



3. Recursion structures.

-
Let F be a list of functional symbols, o the assoclated

list of type-indicators.

Let 1,J € w, 1 < J. By a type i,]J,0-recursion structure

we mean a structure

-
o = <Ao,--o,Ai,eo«,AJ,‘:¥',E> such that

b

k <1+ A = tp(k)
- A

1<k<i+A < w
> -»>

11 & 1s an interpretation of F such that if F 1s a symbol

of type k, then F is in Ak.

1ii Each Ak i1s closed under primltive recursive operations.

AC 13 satisfied in 0OC

|<

E 1s the evaluation-relation on U A .
k< ¥

I<

E(x,y,n) = x(y) «n
We wlll explain iv a bit :

Let ¢ be a formula in L(O0L) (the 1.order language with
constants for all elements in Ao,o--,AJ.) Let k1 <7,
k2 < J-1. Assume

OLE Vo € A, 3B € Aqua(a,B)

2

Let k = max(k;,k2+1). Then
‘ kf1
O(l- 38 € A Vo € A o(a,) x° B(a,x)).

We assume here the exlstence of some standard coding of lower

functionals to higher functionals,



We say that a set A < Ak 1s in OC 1f its characteristic function

1s an element of Ak+1'

OC 1s absolute 1if well-foundedness l1s absolute wilth respect

to OL.

Now we are going to code some 1,],0-structures as elements
of tp(i+1) :
Let q = <xin,'°-,xj> be a sequence of type (i+1)-elements.
-> .
Let £ be a list of elements from ¢tp(1) of the same length as

-3
F. Define

z -
Oy4q =AY xi+1(<y,z>)

z Yy -
Inductively define “k+1(ak) = Xy (<y,2>).
Remark: There 1s a possibllity that aﬁ may be a many- .

valued function. However,

'Each aﬁ is single-valued' 1s given by a A§+1—statement
iIn q. PFrom now on we will, given q, assume that the aﬁ's are

well-defined.,

Now, given gq, let A, = tp(k) for k <1

A, = {ai ; z € tp(1)} for 1 <k <

(74 fn
Define dil to be a  where k 1s the type-number of F, .
> >
Let OJY= <Al,=-~,AJ,¢,E>. We say that q,f code JL.

For the sake of simplicity we denote 'i,J,o0-recursion

structure' by ‘'structure' when no ambiguity may arise.

Lemma 1.
' > 141
a 'q,f code a structure' is A1 .
-
b If 1 > 0, then 'q,f code an absolute structure' 1is A1+1 .

If 1 = 0, then this is n: .



Proof. The language of U is arithmetizable over OT, and
thus 'truth in ' 1is A:(Cm)-expressible. A set quantifier
over ¢ 1is nothing more than a type i+1-quantifier, and 1.order

quantifiers in ¢€ are tp(i)-quantifiers. Thus by standard coding:

- >
'q,f code an O such that JLE AC' 1is A}+1(q,f), uniformly

in q,f. The rest of the properties of a structure are arithmetic

n+1

over (r, and thus [ in «<q,f>.

This proves a. To prove b note that O 1s absolute if

VT € |OU|(T € (wf) = T € wf), where wf denotes the
o 141

wellfounded relations. wf 1is H: for 1 = 0, but A else.
Remark: - For 1 > 0, we always assume that a structure 1s

absolute, since thils does not affect the definabllity. Moreover,
in our proofs, we do not need the full axlom of cholce. We may

give an ubper estimate of the complexlty of the formulas we need
AC to hold for. In that case '<q,;> codes a structure' will

be Ai for some n, 1rrespectively of whether 1 =0 or 1 > 0,

by, Recursion in the structures.

The purpose wlth these structures 1s to simulate recursion in

&>
a 1list of objects F over tp(i+1). We know from Kleene [ 31

->
that when the maximal type in F 1s J, then no ¢tp(j-1)-

functionals, except those in , Will occur in any subcomputation.

F
When § 1s a computation in ﬁ, we let §  Dbe the list obtailned
from § by replacing Fn by n 1In § for each Fn in ﬁ.

'By the computation tree of a computation in ﬁ, we mean

{<6:,o;>; § 1s an immediate subcomputation of & , which
agaln eilther 1s a subcomputation of the glven computation or is the

glven computation}, The computation tree will then be a subset of
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tp(J-2), and it will be well-founded. Moreover, there is a H3'1-

formula ¥ such that

>
T 1s a computatlon tree e= T is well-founded & (T,F).

- .
Glven @4, wdt(T,gr) has a natural lnterpretation, and we

have two possibilitles in defining recursion in hlgher types over
R

1. We use Kleene's inductive definlition of recursion in higher
types, l1.e. an outside definition. The only new there is
schema 8:

€ A and let e be the index of schema 8.

Let x ”

i

{e}(xl,-oo,xk) & N = xi(xy{e'}(y,xl,-oo,xk)) «n .

We then say
'{e}dz(ﬁ srresx) = n o= x,(Ay € Ak-1{e'}az(y’x1’°°°’xk)) o~ n,

2. We define
'{e}ol(xl 50°0,X,) & n e O Ear (T 1is a computation

tree for <e,xl,--°,xk,n>') .

Lemma 2.

Let JU be a structure. Then 1. 1s equivalent to

3. {eh7t(x1,°°-,xk) an e (3T € |00]) (T 1s well founded

&8 JUF T is a computation tree for <e1,x1,-°°,xk,n>_).
Proof,
3 =1 follows by induction on rank (T) .

1 » 3 We prove this by induction on the length of the computation.

The only nontrivial case 1s case 8,



Let X se0c, Xy be glven, each x; € Ag; for some k < J-1.

-
Let X = X ,eee,X, or let x be from F . Assume that x € A..

Let e be the index such that

{e}at(xl 9°°'9xn3§) = ny € Ak'z{e'}oz(xl "'°’xn’5c))°

->

' o o0
Assume that Ay € Ak_z{e }Ot(xi’ ,xk,?f) 1s total over A, ,.

By induction hypothesls

>
* Vy € A _, 3T € Ay_, 3n (T 1s wellfoundéd & J(F w(T, &)

k-2

& <e',x1,°-~,xn,n> is the top of T).

Moreover, ¢ 1s such that T 18 unique (no standard computation

has nonstandard subcomputations), and if <e',xl,°c-,xk,n>-and
<e',xl,--v,xk,m> are two computations where at least one 1s standard,
then n = m, Thils 1s proved by induction on the length of the standard
computation. Then we may apply AC on * and obtain a well-founded
computation tree for <ex ,-oe,xk,zi,n'>. This ends the proof of

1
lemma 2.

Remark. By thls lemma, 1.and 2, are equivalent for absolute
structures, and 1. defines a stronger concept thant 2, 1.e. all com-
putatiohs by 1. will be computations by 2. When nothing else is
stated, we use 2. as our definitlon.

> -+

6. F-structures and weak F-structures,
->

Definition, ILet F be a list of functionals, Let J7 be a

structure,

- +
i We say that (U 1s an F-structure 1f whenever X 5ot s Xy € Ai+1
we have
52 >
{e}ét(ﬁ 5o X ) 2= {e}K(xl,--o,xk,F) =~n ,
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Remark. '{e}K denotes the Kleene-computable function wilth

index e. X ,°°c,X, are all elements of type (1+1), so this

is meaningful,

->
i1 Oor 1s a weak F-struciure if whenever xl,---,%g € Ajyq We
have {e}K(xl"°°’xk’F) ~n e {e}az(xl,---,xk,jz) ™~ n,
-> >
Remark. '‘q,f code an F-structure! will be semicomputable
b
in F and %2,

>
Lemma 3. Assume J < i+3, If M 1s an F-structure, then O
-
is a weak F-structure.

->
— Proof. We prove that '{e}K(xl,o-o,xn,F) > n

see X é%) ~ n by induUction on the length of the Kleene-

»'{e}a_c(xl , n?

computation, The induction will be trivial except in case 8, and
->

then only recursion in some F of type k from F 1s interesting.

So assume
‘ >
{e}K(xl 5"'oxn,F) = F(Ay{e'}(y,xl 9"',xn:F>) = n .,

t o eo0 -
By induction hypothesis Ay Eaék_2{e }K(y,xl, ,xn,F)

= Ay € Ak_2{e'} (y,x1 ,-eo,,xn,F) € A 4- (Here we use that J < i+3).

4

Then % (Ary € Ak_2{e'} (y,x1 ,oo-,xn,é) =m for some m € w, and

) ot -
: q
{e}di(xlg",',xnd ) [~ 200 (I
> -+
Since {7 is an F-structure, '{e}K(xl,-oe,xn,F) «m, Then n = m.

Remark. The condition that J < 1+3 1is essential for this
lemma. Assume the lemms holds for J = i+l4., Let F be a normal
type j+U-functional. Then j+2-en(F) 1s closed under type (J+1)-

existential quantifilers.(MacQueen [4] or Harrington & MacQueen [2]).
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By the lemma, however, and lemma U4, the following holds

8§ is not a computation in F on type J+1

e 3(q,f) (q,f code an 1,i+4-F-structure
-
& 6 1s not a computation in F ).

By MacQueen's. theorem this would be semicomputable in F. Also note
that lemmas 3 and 4 give a new proof of MacQueen's result that for a
functional F of ¢tp k+2, k+1-en F 1s not closed under
tp(k)-existensial quantifier. Our proof works for all functionals
in which k+1E is recursive. MacQueen's proof 1s by a delicate

analysis of the subcomputation-relation and works for all functionals;

. ->
Lemma 4. ©Let F be a list of functionals of type o,

>

@ sty € tp(i+1), where 1 < J, J > max o. Then there are gq,f
+
from tp(i+1) coding an 1i,J,0-F-structure J¢ such that

o ,ce*,0, € Ay 4. Moreover 0L will be absolute.
Proof. Regard the structure
-5
= + LX) ces =
0% <x,tp(i+t1), ,tp(J),F,al, b0 sBy=> o tp(1),1 < 1

By Skolem-L&wenheim theorem, let OL' be a substructure of 0?)
such that (JU' and Oibare elementarily equivalent and @' has
the same cardinality as tp(l). Let OC be the transitive structure

-
obtained from @{'. Since 0{0 is an F-structure and OT and OQ

are elementary equivalent, (¢ will be an ;-structure,

. Now assume that T € Ak i1s wellfounded in v . Then T comes
from a T' by Mostowskis isomorphlsm, and by elementary equivalence,
T' will be well-founded in the real world. A descending chain in T
will be mapped on a descending chain in T' by the inverse Mostowski's

isomorphism.  This proves -the lemma.
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Lemma 5. Let ¢ be a structure. Then there exists a 1list
’ > -+
of functionals F such that O¢ is a weak F-structure. Moreover 1if
-5

S 1s a type 1+2-symbol in F and for some S, S| Byyq = © (the

interpretation of S in 2 ), then we may interprete S by S.

Remark. For technical reasons we cannot prove the theorem
for more than one S, for instance 1if cl = c2 whille S1 ¥ S2 the

proof won't work.

Proof.. We will define a function ¢: |dZ| = V such that

x € A, = @(x) € tp(k), and such that

k
Aely (w(xl),°°',w(xn)) o m e {e%gz(xl,oo-,xn) ~ m,

The converse of this implication will not hold in general. We

define ¢ Dby induction on the type k.
k <141, let ¢ Dbe the identity.

Else, assume that ¢ 1s defined for all elements 1n Ak. Let

X €A 4, TE tp(k).

If y [ o"(A _4) (= o-image of A, ,) = o(z) I o" (A _,) for
some z € A, then let e(x)(y) = x(z).
(If x=¢ and y € tp(i+1), then we are in this case if y € Ai+1'
Thus (z)(y) = t(y) = S(y) here).
Else, let (x)(y) be anything you want, for example ¢(x)(y) = 0
(If x = ¢, we may choose o(z)(y) = S(y) 1in thils case.

We must verify that thére 1s no ambigulty here. We prove that

for x € A y € A

k? k
o(x) T o"(A _4) = o(y) Po"(A _4) »x=y

Uniqueness on type k+1 wlll then follow.
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X # y. Then there i1s a z € A 4

Let x €A y €A

k? k?
such that x(z) #% y(z). But

o(x)(e(z)) = x(z) and e(y)(o(z)) = y(=z).
Thus
()T o"(a ) * oy) [ e"(8, ;) -
Here we have used unlqueness of ¢ on Ak~1 and Ak'

Now we prove by inductlon on the length of the computation

that '{e}K(@(xl),...,w(xk)) o n o= {e}mﬁ(xl,o..,x ) = n.

Since w(xi)(w(xj)) = xi(xj) by definition, all cases except case 8

are trivial., Assume Xy € Ak and

Hedglolx ), eee,0(x)) = 0lxy) Oyle Ty, o0x ), eee,0(x)) .
By the inductlion hypothesls we have for all y ¢ Ak—2

e gloly) olx doeen,0(xy)) = {e'}, (y,x ,eee,x)) .
Let x = Ay € A, , {e'xat(y,xl,oo-,xk). Then

o(x) [ o"a, _, = Ay{e}K(y,w(xl),--°,@(xk))I‘ ©"AL 5
and

©(xg) Oyledy(y,o(x )00 ,0(x.))) = z,(x) = {e%%.(xl,'°°,xk)»
This proves the claim.

-> >
By letting F = (&), the lemma also follows.

6. Applications on large quantifiers.

Theorem 1.

Let 0 <1 <J3, S a functional of type < i+1,
Let A < tp(1) xtp(j) be semicomputable in S, Define B by

X € Bew vy € tp(J)ex,y> € A.
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Then B 1is Hf(S) in the following sense

Ai(S)_: recursive in S. The rest is as in the definition

n
of Hm.
Proof. Let e be a Kleene-index such that
<x,U> € A e=={e}(x,U,8) « 0, Thus

X € B e vU{e}(x,U,3) = 0 »

Claim. VU{e}(x,U,3) « 0

> ¥Y(q,u,s) € tp(1) (q,u,s codes <Ao,--o,Aj;u4;,F>

ET=80h & x€h,, e}, (xWr) «0).

Proof of claim.

= Let q,u,s be glven satisfying the premise, By lemma 5
we find U such that 9C iz a weak U,S-structure. By assumption
{e}(x,U,3) « 0, and since Ot 1s a weak U,S-structure, '

(Xs’U/,C) e~ 0,
< Let U be given. By lemma 4, let ¢Z be a U,S-structure

{e}
oC
containing x. Obviously S n Ai+1 = . By assumption
{e}ﬁt(x;hz;)u 0 , and since (7 is a U,S-structure,
{e},(x,0,8) « 0.

By the claim, the theorem follows, since what 1s inside the

paranthesis is Ai(S).

Corollary 1. If A c tp(i) xtp(J) 1s Kleene semi-

computable and B 1is defined by

X €B e VU € tp(J) <x,U> € A,

then B 1is nf.
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Corollary 2. Let 1 < j-1. Let S be a type 1i+1

functional. j0 the constant zero type J-functional.
Then 1+1-en(S,%0) < nf(S).
Moreover, if S 1s normal, then 1+1-en(S,jO) = H?(S).

Proof. jO is uniformly computable in any type-j-functional U,

i1.e. there 1s a primltive recursive functlon f such that
{e}(x,5,%0) & n == VU € tp(3) ({f(e)}(x,5,U) = n).

To obtain the first part, use theorem 1., To obtain the second part
note that when S 1is normal, A%(S) c i+1-sc(S), and i+1—en(S,JO)

is closed under th(J'z).

Corollary 3. Let n,m > 0, 1 < n. Then there exists a

functional F such that i+1-en(F) = HS over type (1).

Proof. For n =m = 1, this is well known, let F = ZE,

<n+2 n+1E

For m=1, n>1, let F = 0, >. By corollary 2,
(n+20’n+1E) - r[n(r.1+1rE).

1

n+l-en
n+1 n
However, nti-sc( E) c A1 forr n > 1. The corollary then follows

in this case.

For >1, m>1, let S be the characteristic functlon of a

n
complete z$_1—set. Again S 1is normal and since n+1-sc(S) < Aﬁ,

n+2

n
nt1-en("0,8) = n?(s) = I,

Remark. It is not known whether some Zﬁ-sets are envelopes
of functionals. However, we have

% 1s never the nt1-envelope of any functional of type > n+2,

m
and if n+l-en F ¢ Z; for a functional of type n+2, then

ntl-en F < Aﬁ. This is seen by the result of MacQueen [4] that says .
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There exlsts a set A which 1s semlcomputable in F such that

<e,0,k> 1s not a F-computation e= 3x(x,e,o,k) € A, where
¢ 1s a tuple in ¢tp(n) and x varies over tp(n).

7. Skolem-L3wenheim and inductive definitions.

In Moldestad & Normann [5] we proved a result on relativized
H:-inductive definitions as a key to recursion in 20, For
n = 1, corollary 3 was proved. The proof in [5] may be genera-
lized to higher types. We prove the theorem here, although we

have no applications of it.

Before we are able to formulate our result, we need a definl-

tion of H? relatlve to a set of higher type objects.

Let S be a functional of tp(n+1), A c tp(n), X objects of
type < n. R(X,A,S) is simple if R is defined using the
connectives v and 71, evaluation in types, the €-relation in

tp(n) x %P (tp(n)) and function symbols for all primitive recursive

operations on tp(k) for k < n.

We say that A occursg positively in R 1if all subformulas

t € A occurs positively In R, where t 1s a term. We define

H?(S) as before, when we replace A:(S) by simple relative to S,

Let T: 4(tp(n)) + P(tp(n))

We say that I' 1s a positive H?(S)—operator if 'x € T(A)' 1is

H?(S) such that A occurs positively.

Remark : H?(S) has the usual closure properties, i.e. closure

under v,A and quantifiers of lower type.

Theorem 2. If T is a positive nn(S)-operator over tp(n),
1

then p® is nn(S).
1



- 15 -

Proof. Let x € T(A) e= Vyo(x,y,A,S), where ¢ 1s A

and A 1s positive in ¢.

. Let B < tp(n). Define

X € PB(A) > Yy € Bp(x,y,A) & x € B.

Note that T will be a monotone operator.

B
We say that B 1s sufficlently closed 1f

B includes all tp(n-1)-elements and is closed under

primitive recursion.
Note that if x,y € B and B 1is sufficiently closed, then
w(x,y,A,3) e o(x,y,AN B,S3) .

Now let o € tp(n). Define Ba = {Az(a(z,y)) ;3 y € tp(n-1)1 .

Claim 1 'B  1is sufficiently closed' is a.
- 1

Proof. Let o, = Az o (z,y). Primitive recursion in oy
is A?-definable, and equility 1s Hf-1—definab1e. Then observe

X € T(A) = Vu(Ba is sufficlently closed & x € Ba

= X € Tp (4)).
o

We obtain
Claim 2. x €7 = Vu(Ba is sufficiently closed and
Y
X € Bu = X € FBa).

Proof by induction on v. For y = 0 and for limit
ordinals vy thils 1s trivial.

Now let x € T'(rY¥). Then

vyo(x,y,T'). Let x € B, and let y € B be arbltrary.

Since Ba is sufficlently closed
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o(x,y,T7 A B,) will hold.
By induction hypothesis rY A B < r.YanB =T
? (!—-Ba o Bd.
Thus w(x,y,FBY) holds by monotonicity, and
o

x € Ty (FBY) = FE+1 and the claim is proved.
o o

Prom the claim we derive

X €T = Va(Ba is sufficlently closed & x € B

€ To
e X B
(¢}

By the next claim the converse will also hold.

Claim 3. If x ¢ I'", then there exists an ¢ such that

B 1s sufficiently closed, x € B and x ¢ PE .
o a

Proof. Let K > |Tr| and let M = <V, tp(n-1),x,8,€>.
By Skolem-LOwenheim theorem M has an elementéry submodel of
the same cardinality as tp((n-1). Let 4 be transitive, of
cardinality tp(n-1) and isomorphic to the submodel of M.
Let B =./Nn tp(n). Note that %AL = S [ B, and that wék:x ¢ re
Now (Fm)%’ = FB since all lower-type quantifiers are made

absolute. Moreover B i1s sufficiently closed since tp(n) 1s in

it. By cardinality there is an o such that B = Ba.

Proof of the theorem. By claims 2 and 3 we obtain

X € T° o= Va(B, 1is sufficiently closed & x € B = x € rB“).
' o

Since FB is nothlng more than an inductive definition over
o
tp(n-1), PBw will be Hn(S) uniformly 1n o, by standard proof.
1

o
Thus I~ 1s n?(s).
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It is stlll an open problem whether Hg-positive inductive defini-

tions have Hg-fixpoints (over tp(n)).

Remarks. In claim 3 we did not use the fact that T was
positive or H?(S). Thus this claim holds for all definable

inductive definitions.

8. Some properties of j0.

Theorem 3. Let S Dbe a functional of type < n + 2, If

n > 0 assume n+2E is recursive in S. Then

1 n+2-sc(™¥,8) =n+ 2 - sc(8)

n+k mts) for k > 3 .

1i n + 2 - en( .

»S)

Proof. 11 1is already verified, 1 follows by a reindexing

f, 1.e.
n+k

(1% O(x) mn = {£(e)}S(x) =~ m.

n+k0 can 'only check totality', so we replace recursion in

n+k0 by the total zero function on indices. We omit the details

here, See [5]. |
The reflections that follow are done for recursion over tp(1).

Similar reflections may be done for recursion in higher types.

Corollary 4,
2-en( 20)

2-en(%0,%2E) = 2-en(%E) = H; .

2-sc( %) the recursive sets ,

2-s¢(%0,%E) = 2-sc(%E) = Ai .

For any functional U, 1let Th(U) denote the Kleene theory

of U over +tp(1) wlth associated length function. We see that
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Th(2E) and Th(%E, %0) have the same 2-envelopes and the same
2-séctions. In both theorles we have arbitrarily long countable
computations. However, 1f S 1s arbitrary of tp < 2 we shall

see that 1n Th(S,SO) 1t 1s a 'qulck' operation to check that

a tuple 1s a computation.

The set of computations in Th(S, %) 1is glven by a Hi(S)-
expresslon,
o 1s a computation e= Vo 3In ¢(a,n,s,S)
where ¢ 1s simple, Gilven a,n and o we may effectively in
0,0,3 decide whether ¢(a,n,0,S) holds or not. Thus there is

a S-recursive function £ such that f(a,0) + < 3In ¢(a,n,0,S),

and when f(a,0) ¢+ , the computation will be finite.

Let g(o) = Whaf(a,o)). If g(o) + the length of the

computation will be at most w.

Corollary 5. Th( ®0,S) 1is not p-normal, i.e. we cannot

compare lengths.

Proof. It 1is not hard to construct a computation in ' %0
with length greater than w©, and which has a natural number
as argument. p-normality and the observatlon above would yield

That the set of computations were computable.

Thus Th(2E) and Th(*E,®%0) are different, although they
have the same envelopes and the same sections. This contrasts
that in the normal case, equallty between evelopes gives

equlvalence between theorles.

Obserwe that 2-en(S,%0) will always be closed under 3%.
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However,

Conjecture. Let S be an arbitrary type-2-functional.

In general, the functional

p(A,a) = 0 «= 3n € w(<n,a> € A)
will not be 30,S-computable in the sense of Moschovakis 1.e.
there 1s no index e such that

(et 5 (e, %) ~ 0 e an{e} 5 (n, %) ~ 0
and

||<e,e'x>|lw,S > _’Lnf‘{||<e',n,'J?,O>||W,S 3 N E w}e

The conclusion 1s false when S = 2E,

P. Aczel proved that the partial functional

@(f) = 0 e Inf(n) +
is not computable in any total functional.

©0

Hr I 1s a positive Hi(S)-operator} >

Let n:(S)-ind

IH:(S)Idf Sup}|Ir'| T is a positive Hi(S)-operator} .

Problem., Let |S,%0] denote the supremum of the lengths of

computations in Th(S,%0). Will |[s, %] = lni(s)l ?

Remark. If the conjecture above 1s disproved for arbitrary
8, we have a positive solution to the problem, by the first
recursion theorem. We will always have |[S,°%0] < IH:(S)I, since

the set of computations is given by a ! (S)-inductive definition.
1
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We end this note by the following observation :

Observation. Let U € tp(n+2). Then the following

statements are equivalent
a U 1is normal

b Th(U) over tp(n) 1s p-normal.

Proof. 2 =Db 1is well known. To prove b = a, regard

the following way of computing n+2E.

n+2E(Ax{e'}(x,§,U) :

Compute OoU(xx{e'}(x,§,U)). This converges if and only if

ax{e'}(x,¥,U) is total.

To check if Vx{e'}(x,§,U) ~ 0, we may use 00U on the
0 if x =0

functional o({e'}(x,y,U)) where o(x) =
ndefined o.w.
When this computation converges, 1t wlll have shorter
length than the computation of O-O-O°U(xx{e'}(x,§,U)), which
converges., By p-normallty then, we may declde whether

w({e'}(x,§,U)) converges or not, l.e. compute n+2E.
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