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Johan Moldestad and Dag Normann 

Several results in the theory of recursion in higher types 

indicate that the effect of a higheJ:• type functional on the lower 

types does not reflect the high type, i.e. the same effect could 

be obtained by functionals of relatively low type. The two main 

results here are : 

Plus - 1 -theorem. (G. Sacks [6] for k = 1, [7] for k > 1). 

Let H be a normal functional of type> k + 1. Then there exists 

a normal functional F of type k + 1 such that k- sc(F) = k- sc(H), 

i.e. the same subsets of tp(k-1) are x•ecursive in F and H. 

Plus - 2- theorem. (L. Harrlngton [1]. 

Let H be a normal functional of type > k + 2. Then there exists 

a normal functional F of type k + 2 such that k-en(H) = k-en(F), 

i.e. the same subsets of tp(k-1) ax•e semirecursive in F and H. 

The results in this paper also indicate that higher types cannot 

have too much influence on lower types. The key is the Skolem-

Lowenheim theorem. Among the results we mention 

1. Let n < m. A c tp(n)t x tp (m) be Kleene-semicomputable. 

Let x E B ~ Vy E tp(m) <x,y> E A. Then B is This 

result may be relativized to a functional of type n + 1. 

2. Let ko be the type-k-functional that is constant zero. Let F 

be a functional of type < k. Then, for i < k-2 

i-sc(F,kO) = i-sc(F), i-en(F,kO) = Vtp(i)(i-enF) 
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3. Let n,m ~ 1. Then there is a functional F of type n + 2 

such that for k ~ n, k + 1 - en(F) = TI~(tp(k)). 

4. Tin-positive inductive definitions over tp(n) 
1 

least fixedpoints. 

All these results have relativized versions. 

have 

This paper includes results from Moldestad & Normann [5]. 

There we proved a relativized version of 4 for n = 1, and 

derived 2 for k = 3. The proof of 3 from 2 follows the 

same ideas as in [5]. Also the discussions in§ 8 of this paper 

are from [5]. These results and ideas are jointly due to both 

authors. The notion of recursion structures and theorem 1 are 

due to the second author. 

2. Notation. 

We will work with Kleene-recursion on objects of finite type, 

and we assume familiarity with the contents of Kleene [3]. We 

define the types as 

tp(O) = w, tp(i+1) = tp(i)w. 

Let X c tp(O)ko 1 x ••• , 
k 

x tp(n) n. 

We say that X is 60 
0 

if X is Kleene-recursive. 

Assume 6n is defined. Let Tin = En = 6n • 0 

n vtp (n) ( E~), nk+1 = 

,.n Tin n 't'n 
0 k = k "k ' 

0 

n 
l:k+1= 

0 0 

3tp(n)(Tin) 
k 

u 
kEw 

F, Q, H, Q will denote formal symbols for functionals. To each 

symbol there is assigned a number indicating the type of the interpre­

tations, F, G, H, U will denote standard interpretations of the 

symbols, !F, 9 , 21/, 1v other interpretations. 
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3. Recursion structures. 

-+ 
Let F be a list of functional symbols, a the associated 

list of type-indicators. 

Let i,j E ~, i < j. By a type i 1 j 1 a-recursion structure 

we mean a structure 
-+ 

0(. = <A
0

, • • o ,Ai, o o • ,Aj, ~,E> such that 

i k < i -+ Ak = tp(k) 
A 

i < k ~ j -+ Ak S k-1 w 

-+ -+ 
ii ~ is an interpretation of F such that if F is a symbol 

of type k, then !7' is in Ak. 

iii Each ~ is closed under primitive recursive operations. 

iv AC is satisfied in ot 

v E is the evaluation-relation on 

E(x,y,n) ._ x(y) ~ n 

We will explain iv a bit : 

Let ~ be a formula in L(ot) (the 1.order language with 

constants for all elements in A ••• A .) 
0 ' , j 

k
2 
~ j- 1 • Assume 

t1tt= Va E Ak
2 

3B € A~ <r(a,S) 

Let k = max(k ,k +1). Then 
1 2 

k-1 
Ol:l= 3f3 € AkVa E Ak tp{a,A. x 

1 
tl(a,x)). 

Let k < j, 
1 -

We assume here the existence of some standard coding of lower 

functionals to higher functionals. 
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We say that a set A = Ak is in at if its characteristic function 

is an element of Ak+1 • 

ot is absolute if well-roundedness is absolute with respect 

to OL. 

Now we are going to code some i,j,cr-structures as elements 

of tp(i+1) 

Let q = <xi~,···,xj> be a sequence of type (i+1)-elements. 
+ 

Let f be a list of elements from tp(i) of the same length as 
+ 
F. Define 

Remark: There is a possibility that z ak may be a many-

valued function. However, 

'Each a~ is single-valued' is given by a 6l+1-statement 

in q. From now on we will, given q, assume that the a~'s are 

well-defined. 

Now, given q, let Ak = tp(k) for k < i 

z € tp(i)} for i < k ~ j 

Define ~ to be where k is the type-number of n 
+ + 

Let t1'( = <A
1 

, • • • ,Aj, fF ,E>. We say that q,f code (}(_. 

For the sake of simplicity we denote 'i,j,a-recursion 

structure' by 'structure' when no ambiguity may arise. 

Lemma 1 • 

a 
+ 

'q,f code a structure' is 6i+1 
1 • 

+ 
b If i > o, then 'q,f code an absolute structure' is 

If i = o, then this is rrl 
1 

• 
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Proof. The language of ot. is ari thmetizable over OC, and 

thus 'truth in 0[• is ~ 1 (Ot)-expressible. A set quantifier 
1 

over 0&:. is nothing more than a type i +1-quantifier, and 1 • order 

quantifiers in Ot. are tp(i)-quantifiers. Thus by standard coding: 
+ 

'q,f code an ~ such that dt.l= AC' 
i+1 + 

is ~ (q,f), uniformly 
1 

in q,f. The rest of the properties of a structure are arithmetic 

over 0'(, and thus in <q,f>. 

This proves ..§!:• To prove b note that ·0{. is absolute if 

VT E loti(T E (wf) ~ T E wf), where 
ot 

wellfounded relations. wf is TI1 for i = 0, 
1 

wf denotes the 

but ~i+ 1 else. 
0 

Remark: For i > o, we always assume that a structure is 

absolute, since this does not affect the definability. Moreover, 

in our proofs, we do not need the full axiom of choice. We may 

give an upper estimate of the complexity of the formulas we need 
+ 

AC to hold for. In that case '<q,f> codes a structure' will 

be ~i 
n for some n, irrespectively of whether i = 0 or i > o. 

4. Recursion in the structures. 

The purpose with these structures is to simulate recursion in 
+ 

a list of objects F over tp(i+1). We know from Kleene [ 3] 
+ 

that when the maximal type in F is j' then no tp(j-1 )-
+ 

functionals, except those in F, will occur in any subcomputation. 
+ 

When 0 is a computation in F, we let 0 be the list obtained 

from 0 by replacing Fn by n in 0 for each F n in F. 
-+ 

By the computation tree of a computation in F, we mean 

{<o-,cr->; o is an immediate subcomputation of o , which 
1 2 1 2 

again either is a subcomputation of the given computation or is the 

given computation}. The computation tree will then be a subset of 
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tp(j-2), and it will be well-founded. Moreover, there is a 

formula w such that 
+ 

T :1.s a computation tree_. Tis well-founded & w(T,F). 

+ 

nJ-1_ 
1 

Given ~, wat(T,ar) has a natural interpretation, and we 

have two possibilities in defining recursion in higher types over 

ot: 

1. We use Kleene's inductive definition of recursion in higher 

types, i.e. an outside definition. The only new there is 

schema 8: 

Let x1 E Ak and let e be the index of schema 8. 

We then say 

· { e } « ( x
1 

, .. o , xk ) ~ n c-c> xi ( >.. y E Ak _1 { e ' } Ot ( y , x 
1 

, o o o , xk )) Q£ n • 

2. We define 

· {e}Ol (x
1 

, • o o ,xk) ~ n <-:> OJ_ ~ 3T (T is a computation 

tree for <e,\ ,o•o,xk,n>-) • 

Lemma 2. 

Let OL be .a structure. Then 1 •. is equivalent to 

3. {e}
01 

(x
1 

, o • • ,xk) a~ n ~ (3T E I O't I) (T is well founded 

& or. I= T is a computation tree for 

Proof. 

3 ~ 1 follows by induction on rank (T) • 

<e ,x ,••o,xk,n>-). 
1 1 

1 ~ 3 We prove this by induction on the length of the computation. 

The only nontrivial case is case 8. 
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Let ~ ,•••,xn be given, each x1 € Ak1 for some k1 < j-1. 

Let or let 
-+ 

x be from fF. 

Let e be the index such that 

Assume that 

-+ -+ 
{e} (x ,•••,x ,f) 

0( 1 n = x(Ay € Ak 2{e'} (x ,•••,x ,?f)). 
- ffC 1 n 

-+ 
Assume that A.y € Ak_2{e' }oz: (x

1
, • • • ,xk,JZ) is total over Ak_ 2• 

By induction hypothesis 

+ 

• Vy € Ak_ 2 3T € Aj_1 3n (T is wellfound~d & O(p llJ(T,JZ') 

& <e' ,x
1 

, o o • ,xn,n> is the top of T). 

Moreover, $ is such that T is unique (no standard computation 

has nonstandard subcomputations), and if <e' ,x
1 

, • • • ,xk,n >- and 

<e',x
1 

,•••,xk,m> are two computations where at least one is standard, 

then n = m. This is proved by induction on the length of the standard 

computation. Then we may apply AC on * and obtain a well-founded 
-+ 

computation tree for <e,x
1 

, .. •,xk' f!:,n'>. 

lemma 2. 

This ends the proof of 

Remark. By this lemma, 1.and 2. are equivalent for absolute 

structures, and 1. defines a stronger concept thant 2. i.e. all com-

putations by 1. will be computations by 2. When nothing else is 

stated, we use 2. as our definition. 

-+ -+ 
6. F-structures and weak F-structures. 

Definition. Let F be a list of functionals. Let Ol be a 

structure. 

i We say that OL is an F-structure if whenever x
1 

,•••,xk € Ai+1 

we have 
-+ -+ 

· { e } ()"'(. ( x
1 

, • • • , xk ¥ ) Of n ~ { e } K ( x 
1 

, • • • , xk , F ) Of n • 
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Remark. {e}K denotes the Kleene-computable function with 

index e. x
1 

, • o o ,xk are all elements of type (i+1), so this 

is meaningful. 
+ 

ii or_ is a weak F-struc!ure if whenever x
1 

, • • •, xJc € Ai +1 we 

have {e}K(x
1 

,•••,xk,F) Of n • {e}t'!(x
1 
,•••,xk,Jl) Of n. 

+ + 
Remark. 'q,f code an F-structure' will be semicomputable 

+ 
in F and i+2E. 

+ 
Lemma 3. Assume j < i+3. If ot is an F-structure, then Qr 

+ 
is a weak F-structure. 

+ 
Proof. We prove that '{e}K(x ,•••,x ,F) Of n 

1 n 
.,.· {e}I'H" (x ,• •• ,x , ~) Of n by indUction on the length of the Kleene-

Vl. 1 n 
computation. The induction will be trivial except in case 8, and 

then only recursion in some F of type k from F is interesting. 

So assume 
+ + 

· { e} K ( x 
1 

, • • • ., xn, F) = F (X y { e ' }( y , \ , • • • , xn ,F)) Of n . 
+ 

By induction hypothesis Xy E Ak_2 {e'}K(y,~ ,••o,xn,F) = 
+ 

='AyE Ak_ 2{e'}t"l. (y,\ ,•••,~,/F) E Ak_1 • (Here we use that j < i+3). 

Then f/F(Xy E Ak_ 2{e'}ot (y,x
1 

,•••,xn,cff) = m for some mEw, and 
. + 

{eL,..,. (x , .... ,x 'ff) Q:! m. 
v L 1 n 

+ + 
Since 01 is an F-structure, '{e}K(x ,•••,x ,F)~ m. 

1 n Then n = m. 

Remark. The condition that j ~ i+3 is essential for this 

lemma. Assume the lemma holds for j = i+4. Let F be a normal 

type j+4-functional. Then j+2-en(F) is closed under type (j+1)­

existential quantifiers.(MacQueen [4] or Harrington & MacQueen [2]). 
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By the lemma, however, and lemma 4, the following holds 

~ is not a computation in F on type j+1 

... 3(q,f) (q,f code an i,i+4-F-structure 

& ~ is not a computation in ff). 

By MacQueen'a theorem this would be semicomputable in F. Also note 

that lemmas 3 and 4 give a new proof of MacQUeen's result that for a 

functional F of tp k+2, k+1-en F is not closed under 

tp(k)-existensial quantifier. Our proof works for all functionals 

in which k+1E is recursive. MacQueen's proof is by a delicate 

analysis of the subcomputation-relation and works for all functionals • 

..... 
Lemma 4. Let F be a list of functionals of type a, 

a
1 

,•••,an E tp(i+1), where i < j, j >max a. Then there are q,f 
4 

from tp(i+1) coding an i,j ,o-F-structure tJt.. such that 

a
1 

, • • •, an E Ai +1 • Moreover 07..- will be absolute. 

Proof. Regard the structure 

..... 
ota = <x,tp(i+1),•••,tp(j),F,al ,•eo,an,E,=>xE tp(l),l < i 

By Skolem-Lowenheim theorem, let OL' be a substructure of ot.. 
0 

such that Ol' and OLare elementarily equivalent and ot' has 
0 

the same cardinality as tp(i). Let OL be the transitive structure 
..... 

obtained from Since oto is an F-structure and OLand or. 
0 ..... 

are elementary equivalent, ot. will be an F-structure. 

Now assume that T E Ak is wellfounded in 0t • Then T comes 

from a T' ~Y Mostowskis isomorphism, and by elementary equivalence, 

T' will be well-founded in the real world. A descending chain in T 

will be mapped on a descending chain in T' by the inverse Mostowski's 

isomorphism. This proves .the lemma. 
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Lemma 5. Let ()"& be a structure. Then there exists a list 
~ ~ 

of functionals F such that Ot is a weak F-structure. Moreover if 
~ 

S is a type i +2-symbol in F and for some S, S I' Ai +1 = r.; (the 

interpretation of S in tJt ) , then we may interprete S by S. 

Remark. For technical reasons we cannot prove the theorem 

for more than one s, for instance if r.; = r.; while S * S the 
1 2 1 2 

proof won't work. 

Proof •• We will define a function ~= ldtl ~ V such that 

x € Ak ~ ~(x) € tp(k), and such that 

{e}K (~(x1 ),•••,<v(xn)) ct m-=> {e}ot.(x
1 

,•••,xn) Co! m. 

The converse of this implication will not hold in general. We 

define ~ by induction on the type k. 

k < i+1 , let ~ be the identity. 

Else, assume that ~ is defined for all elements in Ak. Let 

X € Ak+ 1 , y € tp(k). 

If y ~ ~"(A ) k-1 (= q>-image of Ak-1) = q>( z) r ~" (Ak-1) 

some z € Ak' then let ~(x)(y) = x(z). 

for 

(If X = r.; and y € tp(i+1), then we are in this case if y € Ai+1 • 

Thus ~(r.;)(y) = r.;(y) = S(y) here). 

Else, let q>(x)(y) be anything you want, for example q>(x)(y) = 0 

(If x = r.;, we may choose ~(r.;)(y) = S(y) in this case. 

We must verify that there is no ambiguity here. We prove that 

for x E Ak' y € Ak 

~(x) r tt>"(~k-1) = q>(y) r ~"(Ak-1) -=> x : y 

Uniqueness on type k+1 will then follow. 
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Let x E Ak' y E Ak' X * y. Then there is a z E Ak_1 
such that x(z) * y(z). But 

~(x)(~(z)) = x(z) and ~(y)(~(z)) = y(z). 

Thus 

Here we have used uniqueness of ~ on Ak~ 1 and Ak. 

Now we prove by induction on the length of the computation 

that {e}K(~(x ),·•·,~(xk)) ~ n ~ {e} (x ,•••,xk) ~ n. 
1 (/{_, 1 

Since ~(x1 )(~(xj)) = xi(xj) by definition, all cases except case 8 

are trivial. Assume xi E Ak and 

By the induction hypothesis we have for all y E Ak_ 2 

and 

q>(x) j ~"A k-2 

<.p(xi)(Ay{e}K(y,q>(x
1 

),•••,c.p(xk))) = xi(x) = {e}CJ{ (x
1 

,•••,xk). 

This proves ·the claim. 
-+ -+ 

By letting F = <P( ff-), the lemma also follows. 

6. Applications on large quantifiers. 

Theorem 1. 

Let 0 < i < j, S a functional of type~ i+1. 

Let A = tp ( i) x tp ( j) be semicomputable in S. Define B by 

X E B ~ Vy E tp(j)<x,y> E A. 
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Then B is ni(S) in the following sense : 
1 

of 

6°(S) = recursive in s. The rest is as in the definition 
0 

Proof. Let e be a Kleene-index such that 

<x,U> E A ~{e}(x,U,S) ~ O. Thus 

X E B ._ VU { e }( X , U , S ) c.t 0 • 

Claim. 

~ V(q,u,s) E tp(i) (q,u,s codes <A
0

,•••,Aj,'UJ,z;,F> 

& I; = S n Ai & X E Ai+1 • {e}t'[ (x,rtu, z;;) c.t 0). 

Proof of claim. 

~ Let q,u,s be given satisfying the premise. By lemma 5 

we find U such that OL is a weak u,s-structure. By assumption 

{e}(x,U,S) c.t 0, and since ot is a weak U,S-structure, 

{ e} ( x ,'lll, z;;) c.t 0 • 
()1_ 

• Let U be given. By lemma 4, let 0Z be a U,S-structure 

containing x. Obviously S n Ai+1 = z;;. By assumption 

{e}Ot (x,'t4z;;)C¥ 0 , and since Ot is a U,S-structure, 

{e}K(x,U,S) ~ O. 

By the claim, the theorem follows, since what is inside the 

paranthesis is 6i(S). 
0 

Corollary 1. If A~ tp(i) xtp(j) is Kleene semi-

computable and B is defined by 

x E B.-VUE tp(j) <x,U> E A, 

then B is ni. 
1 
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Corollary 2. Let i < j-1. Let S be a type i+1 

functional. jo the constant zero type j-functional. 

Moreover, if S is normal, then j i i+1-en(S, 0) = IT (S). 
1 

Proof. jo is uniformly computable in any type-j-functional U, 

i.e. there is a primitive recursive function f such that 

· {e}(x,S,jO) ~ n ~ vu € tp(j) ({f(e)}(x,S,U) ~ n). 

To obtain the first part, use theorem 1. To obtain the second part 

c i+1-sc(S), and 1+1-en(S,jO) note that when 

is closed under 

S is normal, 

\ftp(j-2). 

Corollar;y; 3. Let n,m > 0~ i < n. Then there exists a 

functional F such that i+1-en(F) over type (i). 

Proof. For n = m = 1, this is well known, let F = 2.E. 

For m = 1, n > 1, let F = <n+ 2o,n+1E>. By corollary 2, 

However, for n > 1. The corollary then follows 

in this case. 

For n > 1, m > 1, let S be the characteristic function of a 

complete E~-1.-set. Again S 

n+1-en(n+ 2o,s) = nn(S) = nn 
I m" 

is normal and since n 
n+1-sc(S) c llm' 

Remark. It is not lcnown whether some E~-sets are envelopes 

of functionals. However, we have 

and if 

En is never the n+1-envelope of any functional of type > n+2, m 

n+1-en F c;: En m for a functional of type n+2, then 

n+1-en F c ll~. This is seen by the result; of MacQueen [ 4] that says 
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There exists a set A which is semicomputable in F such that 

<e,cr,k> is not a F-computation ~ 3x(x,e,cr,k) E A, where 
cr is a tuple in tp(n) and x varies over tp(n). 

1. Skolern..:Lowenheim and inductive definitions. 

In Moldestad & Normann [5] we proved a result on relativized 

rr1 -inductive definitions as a key to recursion in 30. For 
1 

n = 1, corollary 3 was proved. The proof in [5] may be genera-

lized to higher types. We prove the theorem here, although we 

have no applications of it. 

Before we are able to formulate our result, we need a defini­

tion of Tin relative to a set of higher type objects. 
1 

Let S be a functional of tp(n+1), A= tp(n), 
.... 
x objects of 

type ~ n. 
.... 

R(x,A,S) is simple if R is defined using the 

connectives v and I, evaluation in types, the €-relation in 

tp(n) x rJP (tp(n)) and function symbols for all primitive recursive 

operations on tp(k) for k < n. 

We say that A occurs positively in R if all subformulas 

t E A occurs positively in R, where t is a term. We define 

as before, when we replace by simple relative to s. 

Let r: q.>(tp(n)) -+- tf(tp(n)) 

We say that r is a positive rrr(s)-operator if 1 X E f(A)' is 

rrn(S) such that A occurs positively. 
1 

Remark: ITn(S) has the usual closure properties, i.e. closure 
1 

under v,A and quantifiers of lower type. 

Theorem 2. If r is a positive rrn(S)-operator over tp(n), 
1 

\ 
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Proof. Let X € r(A) ~ Vy~(x,y,A,S), where ~ is fin 
0 

and A is positive in ~. 

Let B c tp(n). Define 

x E rB(A) ~ Vy E B~(x,y,A) & x E B. 

Note that rB will be a monotone operator. 

We say that B is sufficiently closed if 

B includes all tp(n-1)-elements and is closed under 

primitive recursion. 

Note that if x,y € B and B is sufficiently closed, then 

tp(x,y,A,S) ~ q>(x,y,An B,S) • 

Now let a E tp(n). Define Ba = {t..z(a(z,y)) ; y E tp(n-1)} • 

is 

Claim 1 'Ba is sufficiently closed' is 

Proof. Let ay = A. z a ( z , y ) • Primitive recursion in 

fin-definable, and equility is 
1 

n-1 n -definable. 
1 

Then observe 

x € r(A) ~ Va(B is sufficiently closed & x E B 
a a 

~ x € fB (A)). 
a 

We obtain 

Claim 2. 

Proof 

x € rY ~ Va(B is sufficiently closed and a 

by induction on 

X E B => X 
a 

y. For 

E r BY) • 
a 

y = 0 and for limit 

ordinals y this is trivial. 

Now let x E r(rY). 'rhen 

Let x € B and let y E B be arbitrary. a a 

Since Ba is sufficiently closed 
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~(x,y,rY A B~) will hold. 

By induction hypothesis, rY A B 
a. 

Thus ~(x,y,rBY) holds by monotonicity, and 
a. 

= rY B. • 
a. 

and the claim is proved. 

From the claim we derive 

x e r (10 

<> Va.(B a. is sufficiently closed 
(10 

• X € fB 
(J 

& X € B a. 

By the next claim the converse will also hold. 

Claim 3. If x ~ reo, then there exists an a. such that 

B is sufficiently closed, 
a. 

x E Ba. and x ¢ r; • 
a. 

Proof. Let K > !rl and let M = <VK,tp(n-1),x,S,E>. 

By Skolem-Lowenheim theorem M has an elementary submodel of 

the same cardinality as tp((n-1). Let~ be transitive, of 

cardinality tp(n-1) and isomorphic to the submodel of M. 

Let B = J(. n t p ( n ) • Note that s = s f B, and that .4, 1= x ¢ reo 
:At. 

Now (rco2k = rB since all lower-type quantifiers are made 

absolute. Moreover B is sufficiently closed since tp(n) is in 

it. By cardinality there is an a. such that B = B • a. 

Proof of the theorem. By claims 2 and 3 we obtain 

Since rB 
a. 

tp{n-1), 

Thus f
00 

is sufficiently closed & x E B a. 

is nothing more than an inductive definition over 
(10 

rB v1ill be 
a. 

is rrn(S). 
1 

Tin(S) uniformly in a., by standard p:r•oof. 
1 
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It is still an open problem whether TI~-positive inductive defini-

tions have Tin-fixpoints (over tp(n)). 
m 

Remarks. In claim 3 we did not use the fact that r was 

positive or Thus this claim holds for all definable 

inductive definitions. 

8. Some properties of jo. 

Theorem 3. Let s be a functional of type < n + 2. If 

n > 0 assume n+2E is recursive in s. Then 

i n + 2 sc(n+ko,s) = n + 2 - sc(S) 
' 

ii n + 2 en(n+ko,s) = Tin+ 1 ( s) for k > 3 • 
1 

Proof. ii is already verified, i follows by a reindexing 

f, i.e. 
n+k 

{e}s, 0 (x) ~ n * {f(e)}s(x) ~ m. 

n+ko can 'only check totality', so we replace recursion in 

n+ko by the total zero function on indices. 

here. See [ 5] • 

\'le omit the details 

The reflections that follow are done for recursion over tp(1). 

Similar reflections may be done for I'ecursion in higher types. 

Corollary 4. 

2-en( 30) 

2-sc ( 30) = the recursive sets 

2-sc( 3 0, 2 E) = 

For any functional U, let Th(U) denote the Kleene theory 

of U over tp(1) with associated length function. We see that 



- 18 -

Th( 2E) and Th( 2 E, so) have the same 2-envelopes and the same 

2-sections. In both theories we have arbitrarily long countable 

computations. However, if S is arbitrary of tp ~ 2 we shall 

see that in Th(S, SO) it is a 'quick' operation to check that 

a tuple is a computation. 

The set of computations in Th(S' so) 

expression. 

is given by a TI1 (S)-
1 

a is a computation~ Va 3n ~(a,n,a,S) 

where ~ is simple. Given a,n and a we may effectively in 

a,cr,S decide whether ~(a,n,a,S) holds or not. Thus there is 

aS-recursive function f such that f(a,a) + ~ 3n ~(a,n,a,S), 

and when f(a,a) + , the computation will be finite. 

Let g(a) = W(Xaf(a,cr)). If g(cr) + the length of the 

computation will be at most w. 

Corollary 5. 

compare lengths. 

Th{ 90,S) is not p-normal, i.e. we cannot 

Proof. It is not hard to construct a computation in t so 

with length greater than w, and which has a natural number 

as argument. p-normality and the observation above would yield 

that the set of computations were computable. 

Thus Th(2E) and TheE, 9 0) are different, although they 

have the same envelopes and the same sections. This contrasts 

that in the normal case, equality between evelopes gives 

equivalence between theories. 

Obser~e that 2-en(S, 9 0) will always be closed under 3w. 
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However, 

Conjecture. Let S be an arbitrary type-2-functional. 

In general, the functional 

<p(A,a) ~ 0 ~ 3n E w(<n,a> E A) 

will not be 3 0 ,S-computable in the sense .of Moschovakis i.e. 

there is no index e such that 

w s + w s< +) · {e} ' (e' ,x) ~ 0 ~ 3n{e} ' n,x ~ 0 

and 

ll<e,e'x>llw 8 > inf{ll<e',n,~,O>IIw 8 ; nEw} • 
' , 

The conclusion is false when S = 2 E. 

P. Aczel proved that the partial functional 

~(f) ~ 0 ._ 3nf(n) + 

is not computable in any total functional. 

Let n1 (S)-ind 
1 

= {roo • 
' 

r is a positive 

1rr: (S)Idf = Sup}lrl r is a positive 

IT1 (S)-operator} , 
1 

IT1 (S)-operator} • 
1 

Problem. Let IS, 3 0I denote the supremum of the lengths of 

computations in Th(S, 3 0). Will ? 

Remark. If the conjecture above is disproved for arbitrary 

S, we have a positive solution to the problem, by the first 

recursion theorem. We will always have !S, 3 0I ~ IIT 1 (S)I, since 
1 

the set of computations is given by a n1 (S)-inductive definition. 
1 
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We end this note by the following observation 

Observation. Let U € tp(n+2). Then the following 

statements are equivalent 

a U is normal 

b Th(U) over tp(n) is p-normal. 

Proof. a • b is well known. To prove ~ ~ a, regard 

the following way of computing n+ 2E. 

n+ 2E(Ax{e'}{x,y,U) 

Compute -+ OoU(Ax{e'}(x,y,U)). This converges if and only if 

AX{e'}(x,y,U) is total. 

+ To check if Yx{e'}(x,y,U) ~ 0, 

-+ functional ~({e'}(x,y,U)) where ~(x) 

we may use OoU 
jO if X : 0 

- ~ndefined o.w. 

on the 

When this computation converges, it will have shorter 
-+ length than the computation of O•O•OoU(Ax{e'}(x,y,U)), which 

converges. By p-normality then, we may decide whether 

~({e'}(x,y,U)) converges or not, i.e. compute n+ 2E. 
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