Introduction. A locally compact group G is said to be an

[FC]™ group if all of its conjugacy classes {xgx_l:xeG} are
precompact. The class [FIA] ™ consists of all locally-compact
groups G possessing precompact inner automorphism group I(G) ,
where I(G) 1is equipped with the relative topology from Aut(G) ,
the group of all topological automorphisms with the usual Birkhoff
topology. The class [FIA]  is contained in [FC] . G belongs
to the class [SIN] if there is a fundamental system of neighbor-
hoods of the identity € , invariant under inner automorphisms.
One has [FIA] = [FC]™ n [SIN] . See [4] .

We shall assume the reader is familar with Mackey”s theory of
induced representations as outlined in [1] . We refer to [16]
and [17] for notation undefined in the present paper. Good
references to the theory of the classes of group discussed here
are [4) , [11]1 , and [14] . Structure theory and other basic
information will be found there.

The paper is organized in the following way. In section 1 we
prove that the dual space 8 of all equivalence classes of
unitary continuous irreducible Hilbert space representations of
an [FC]  group G has a finite number of connected components
iff the subgroup of all periodic elements in G is finite
(x € G is periodic if the closed subgroup generated by x is
compact). @ is endowed with the Hull - kernel topology.

Our proof depends on an analysis of the orbits in the dual space
i of a closed normal subgroup H of G under the action of G
by inner automorphisms:

x-p(n) = o(x thx) ,all x€G ,he€H,pef.
Under suitable conditions on the group H and thz orbit Gep

we show that G+.p is finite (1.4).



This result also turns out to be useful in section 2 where we
study square-integrable irreducible representations and prove that
among the [FC]~ groups only those of type I may possess such
representations.

This gives that 1w € & is square-integrable iff {w} is open
in @& .

We hope to study this question for a larger class of groups at
a later occasion.

In [17] we studied the connection between the toplogy of the
dual and the group structure for [FC]  groups. The main results
of the present article extend Proposition (2.1), (3), and Theorem
(2.4) of [17] , where type I and I[FIA] assumptions were posed

on the groups.

1. In this section the groups will not be assumed separable. Let
G Dbe a locally compact group and B a subgroup of the auto-
morphism group Aut(G) . G is an [FIA]é group if B has
compact closure in Aut(G) . The set :{B(G) of B-=charactersa
consists of the nonzero extreme points of the convex set of
continuous positive definite B-invariant functions ¢ on G with
p(e) < 1., B(G) is given the topology of uniform convergence

on compacta.

If G € [FIA]é and B o I(G) there is an open and continuous

surjection ¢t : G-+3£B(G) given by t(m)(x) = IE < moB(x)V,v > dB ,

where v € H_ with llvi]l =1, x € G , and dB denotes normal-

ized Haar measure on the compact group B , [14] Lemma 5.1.

(1.1) Lemma. Let G € [FIA]g where B 1is a subgroup of Aut(G)

containing I(G) , and fix p € & . Put

(Bo)(g) = (B Y(g)) , all BEB, g€q




Then the map ¢ : g -+ Bp , B - d , 1s continuous.

Proof. If f : G- € , put fP(g) = £(8 % (g)) , all
BEB, g€G. Let t : @ »?EB(G) be the open and continuous
surjection defined in [14] Lemma 5.1 . It is easily seen that
t(Bp) = t(p)B , all Bp«€ B, p € & 3 in other words the following

diagram commutes:

where ¢ : B = t(p)B is continuous by [14] Lemma 5.6. Since
t \is open and surjective it follows that ¢ dis continuous.
Q. e. d.
If H is a closed normal subgroup of the locally compact G ,
put I(H,G) = the set of all inner automorphisms of G restricted
to H . Thus JI(H,G) is a subgroup of Aut(H) .

If p € ! then G acts on p by inner automorphisms

: xep(h) = p(x thx) , all X € G , h € H .

(1.2) Corollary. Let G € [FIA]l , H a closed normal subgroup

of G, and p € f{ . Assume that each point x.p of the orbit
G.p 1is open in Bp , where Bp 1is given the topology induced

from fi . Then G.p 1is finite.

Proof, We have H € [FIA]& , i.e. the closure B of I(H,G) in

Aut(H) is compact. By lemma (1.1) B operates continuously-



on the orbit Bp . Hence Bp 1s compact and this implies G-p
is finite, since each point of Ge.p is open in Bp .

Q. e. d.

We got the idea of the next two results from the arguments on

page 283 of [12] .

(1.3) Lemma. Let H Dbe a compactly generated closed normal

subgroup of the locally compact group G . Suppose that for each
h€H, h#*e , there is a continuous G-invariant function

¢ =@ G + C such that ¢(h) #+ 0 and ¢(e) = 0 . Then H
possesses a fundamental system of G-invariant neighborhoods

of e, i.e. HE [SIN]G .

Proof..Arguing as in [3] 17.3.7 we see that the following

condition is satisfied:

(x) If C is a compact subset of H such that e § C then
there is a neighborhood V of e in H such that VvV n C = ¢

and V 1is G-invariant.

The Lemma then follows as [3] 17.3.8.
Q. e. d.

(1.4) Lemma. Let G € [FC] , H a compactly generated closed

normal subgroup of G such that each G-orbit G+'x =
{y(xH)y“l :y € G} in G/H 1is finite. Assume p € i is such that
each point x-p of G+p 1is open in i . fThen Gep consists of

only a finite number of points.

Proof, Assume each point of the orbit G.p is open in f .

Put o =T and N = {x € G : o(x) = I} . N is a closed normal
T€EG-p

subgroup of G (it is normal because of the definition of ¢ ) and

o may be lifted to a representation of the factor group G/N .



Replacing G by G/N , without change of notation, we may
assume that o¢ is injective.

Fix hO
a vector v € Hc with |lvll =1 and c(ho)v $# v . Put

€ H with hO # ¢ . Since d(ho) ¢ I we may choose

¢(h) = 1 - <o(h)v,v> all h € H .

Then ¢ is continuous, G-invariant , ¢(e) = 0 , and w(ho) # 0
so that H € [SIN]G by Lemma (1.3).

Now we consider the topological group ﬁ obtained as follows:
% and G are to be equal as sets, however, % is equipped with
the topology in which the induced topology on H is unchanged,
and which makes H open in 4 . Then Y € [SIN] since
H € [SIN]ly . By hypothesis 9/ nas finite Y-orbits and it
follows that ¢ € [FC]1™ . Hence Y€ [FIA]™ = [FC1™ n [SIN] , and
wWe may apply Corollary (1.2) to see fhat the 3 -orbit of p is
finite., Clearly, G+p and %up are identical, and the proof is

complete.
Q. e. d.

Recall that the set of all periodic elements of an [FC]~
group G forms a closed characteristic subgroup P of G , [4] ,

called the periodic subgroup.

(1.5) Proposition. Let G € [FC1 . Then the dual space ¢ has

only a finite number of connected components iff the periodic

subgroup P is finite.
Proof. Suppose 8 nas only a finite number of connected

components, We may fix a compact open G-invariant subgroup K of
P such that G/K = Rh x D where D 1is a discrete group with a
finite number of G-orbits , [11] Proposition 2.1 . Since K is
compact §7K is embedded in & as an open and closed subspace in

the natural way. By hypothesis each connected component zﬁﬂ of &



is open and closed. Let o € G/K , the above implies that the
connected component of a in G is actually contained in G/E .
Hence the number of connected components in §7ﬁ is finite.

We shall see next that P/K is finite. Now G/K is an
[FIA]  group , hence we may use the continuous and open surjection
t : G/R »X(G/K) , ([14] 5.1 and 5.2) . It follows that X (G/K)
has only a finite numbe; of connected components. By [16]
ﬁroposition (2.10) thelperiodic subgroup of G/K ,ﬂyhich equals
P/XK , is finite. |

It remains to show that K 1is finite. Since K is compact
each 7 € & 1ies over some G-orbit G-p in R . We shall
denote by ép,K the set of all w € & which lies over the orbit

of p € £ . Each Gp is an open and closed subspace of ¢

K
. . ,
¢[17] Lemma (1.2)) and hence the connected component V% of each

T € Gp is contained in Gp K By hypothesis the number of
3

K
Gp’K@'muBt then be finite. It is well known that the '@;’K ‘s
are in bijective correspondence with the G=-orbits in R , 80 that
the number of orbits is finite. By Lemma (1.4) each orbit is
finite, and hence f is finite. Then a well known result says
that K is finite, [2] . |

Conversely, assume the periodic group P is finite. By [11]

" ¥ H where H is a discrete [FC1~ group ,

Propogition 2.7 G =R
hence G € [FIA]  and it follows from [6] p. 79 (remark d) that

8 has only finitely many connected components.

Q. e, d.

2., This section is devoted to the study of square-integrable
irreducible representations of ([FC]  groups. J. Dixmier has asked
if such representations are necessarily open as points in the
reduced dual Gr of separable locally compact (unimodular) type I

groups G . ([3] 18.9.1) . In [15]) M. Rieffel studied this



question using Hilbert algebra tecniques, concluding that more
group theoretic considerations would be necessary. R. Lipsman
showed that the answer to Dixmier“s question is affirmative for
split-rank one semisimple groups, [10]. The author settled the
question for type I [FC]  groups in [17] Theorem (2.4),

In this connection it is interesting to note that noncompact
[SIN]-groups have no square-integrable irreducible representations,
which may be seen as follows: If m € 8 is square~integrable

we may assume T 1is a subrepresentation of the left regular
representation of G on L2(G) , hence w(f) is a compact

operator for all f € Ll(G) 5

T(£)n(x) = [ok(x,y)h(y)dy , all x € 6,h € L5(@) ;

where the kernel k(x,y) = f(xy_l) . Now we choose f equal to
the characteristic function Xy ©of a compact invariant neighbor-
hood V of e . Then Xy is a central function on G and we

have
T(xy)m(e) = 7y, * ®) = 10 * xy) = w(O)nxy)
all ¢ € Ll(G) « In other words, ﬂ(xv) commutes with the

irreducible = , and hence ﬂ(xV) = ¢(V)I where c¢c(V) € C .

Letting h € Ho with 1{lhl}l = 1 we have
¢ (V) = <m(xy)h,h> = jv<n(x)h,h>dx s

and since 7 1is continuous and G € [SIN] there is a compact
neighborhocod V of e , invariant under inner automorphisms, such
that e(V) # 0 . Thus the ideptity operator on HTr is compact
and this forces dim H1T < o , By a result of A. Weil (([18] p. 70)
G is compact.

We shall prove below that the type I hypothesis in [17]

Theorem (2.4) gives no loss of generality. In fact we shall



demonstrate the following: If G € [FC] is separable and

e B is square-integrable then G 1is type I . Along the road
we generaiize to multiplier representations the well known result
stating that for infinite discrete groups the left regular repres-
entation fails to have irreducible subrepresentations. We shall
therefore need some facts concerning multipliers on locally
compact groups. h

Let w be a normalized multiplier on the locally compact uni-

1 has the properties

moduiar group G , i.e., ®: G x G ~> S
(1) w(x,e) = w(e,x) =1
(i1)  w(x,y)w(xy,z) = w(x,yz)u(y,z)
(iii) o(x,x7%) =1,
all x,y,z € G , and

(iv) w 1is a measurable function of GxG into S1 .

Here S1 denotes the circle group.

We let
f x h(x) = IGw(xﬂl,y)f(y)h(y'lX)dy R

all f,h € CC(G) s XEG , and

£*(x) = f(x'I) R all f € C(G) , x € G .

The set CC(G) of all complex valued continuous functions on G
with compact support becomes a Hilbert algebra with the multiplica-
tion and involution defined above and the Lz— inner product. We
shall denote this Hilbert algebra by A(G,w) .

Let 7 be a unitary continuous irreducible w-representation
of G on the Hilbert space Hﬁ‘) . We say that = is

square-integrable if all the coordinate functions x =+ <mw(x)v,v>

- . - —— —— - -

(%) Iie. 7(x)n(y) = w(x,y)w(xy) , all x,y € G .



are L2 - fuctions of G , or what amounts to the same, if m is

unitary equivalent to an (irreducible) direct summand of the left
regular w-representation LY of G on the Hilbert space LZ(G) s

where
L?f(x) = w(x_l,y)f(y-lx) , all f € L2(G),x,y € G .

Given an w=-representation p of G we may form a
multiplicative*-representation (also denoted by p ) of the

algebra A(G,w) in the usual way:

p(h)v = IG h(x)p(x)vdx , all v € Hp » he€ A(G,w) .

The algebra representation corresponding to L? is given by left

convolution,

Lf = ha f , all h € A(G,0) , £ € L7(a) .
It is easy to verify that the irreducible w-representation
m of G 1is square-integrale iff the linear map h = w(h) is
continuous, i.e., there 1is a constant C such that
lia(h)il < Clihll, , all hE€ A(G,w) .

In what follows we shall have the opportunity to apply the theory
of square-integrable representations of Hilbert algebras as
developed in [15] . The following result is analogous to

Corollary 5.12 in [15] where it is proved for ordinary unitary

representations.

(2.1) Lemma. Let G be an infinite discrete group. Then G

has no irreducible square-integrable multiplier representations.

Proof. Let w be a normalized multiplier on G . Since A(G,w)
has an identity we see from [15] Corollary 5.11 that every
square-integrable irreducible representation of A(G,w) has finite

dimension. Hence the same holds for the irreducible square-inte-
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grable w-representations of G . Suppose w 1is such a finite
dimensional w~representation of G , and consider the central

1

group extension defined by ® : (e) » S - G(w) » G » (e) .

Let xo: t » t be the generating charaeter of the circle group

S1 s and X, éen extension of X, to an w-representation of

T xeaq) .

G(w) (for example, we may let %o(s,x) =s ,all s €8
Then the representation 7t = §0®w is an ordinary unitary
representation of G(w) and is of finite dimensjon.

If 7w were square-integrable, so were T (since 81 is compact).
But A. Weil has proved that noncompact groups have no finite
‘dimensional square-integrable representations, [17] p.70, and

G(w) is noncompact since G dis infinite.

Q. e, d.

Let ®w be a multipler on the discrete group G . x € G is
said to be w-regular if w(x,a) = w(a,x) whenever a commutes
with x . If x € G 1is w-regular then all conjugates yxy“'l
of y are w-regular ([7] Lemma 3) . In order to illustrate

that the above result has applications in the theory of multiplier

representations we prove thé following.

(2.2) Corollary. Let G be a discrete group, ® a normalized

multiplier on G . Suppose the number of finite w-regular
conjugacy classes is finite. Then the left regular w-represen-

tation L® is type I 4iff G is finite.

Proof. By [7] Theorem 3 LY is the direct sum of a finite
number primary w-representations . If ¥ is type I it follows
that LY is a direct sum of irreducible w-representations .

Hence G is finite by Lemma (2.1). The converse is clear.

Q.e.d.
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We turn next to the main result of this section. The structure
theory of [FC]  groups, [4], [11], and Mackey’s theory of induced
representations, [1], are important ingredients of our proof.

If H is a closed subgroup of G and p a unitary representation
of H we denote by Indg(p) the unitary representation of G
induced from p . If 1 1is a representation of a factor group
of G we let T~° be the inflation of 1 back to G:1%(g) = (&)

where g P & denotes the quotient map.

(2.3) Theorem. Let G € [FC] be separable.

(1) Suppose there is an irreducible discrete summand of the
regular representation of G on L2(G) . Then G 1is of type I,
and G satisfies an exact sequence of topological groups
(e) » K+ G > R » (e) where K is compact.

(ii) 7 € & 1is square-integrable iff {w} is open in & .

Proof. By the structure theorem for [FC]  groups we may

L 3 -
choose an open normal subgroup H of G on the form

(e) » K+ H->pg" 4 (e) where K is cofpact.' Such groups H are well

known to be (and easily seen to be) type I, [11]. Assume there
is a square-integrable representation w in & . Since H is
open in G we may use the restriction of Haar measure on G to
H as a Haar measure on H , Then it becomes clear that each
vector v € Hw gives a square-integrable coordinate function

h » <wm(h)v,v> for the restriction NIH . Henée ﬂIH splits
into a direct sum of irreducible square~integrable representa-
tions of H '(Kunze [9], Corollary to Thm.2), and it may be seen
that wl,; 1s concentrated on a single G-orbit in B . Ty

= m®t , for some p € i . Now H is type I and therefore [17]

TEG.p
Theorem (2.4) implies {x+p} is open in & , all x € G .
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Hence, by Lemma (1.4) the orbit G-+p dis finite, and the isotropy
group G(p) = {x € G : x+p = p} has finite index in G .

We show next that G(p)/H is finite. Now 1w = Indg(p)(o)
for some o in G?;;; s, and o 1is on the form 38w> where vy
is an irreducible multiplier representation of G(p)/H (say w-re-
presentation) and vy” its inflation back to G(p) , and P
denotes some extension of p to an é-representation of G(p) ,
[1]. Since w is square-integrable vy is so ([8] Corollary 11.1).
Thus G(p)/H is finite by Lemma (2.1).

- Hence IG/HI <« @ and H is type I so that G must be type I
([5]1 Corollary 2.5). Hence {m} is open in & by [17]
Theorem (2.4).

Since H is in the form (e) » K > H » R? » (e) G must be on
the form (e) » K » G2 R® x F » (e) where X is compact and F
is finite. Replacing K with p_l(f) the theorem follows.

Q. e. d.
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