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Introduction. A locally compact group G is said to be an 

[FC] group if all of its conjugacy classes -1 {xgx :xEG} are 

precompact. The class [FIA] consists of all locally compact 

groups G possessing pre compact inner automorphism group I( G) , 

where I(G) is equipped with the relative topology from Aut(G) , 

the group of all topological automorphisms with the usual Birkhoff 

topology. The class [FIA] is contained in [FC] G belongs 

to the class [SIN] if there is a fundamental system of neighbor-

hoods o~ the identity ~ , invariant under inner automorphisms. 

One has [FIA] = [FC] n [SIN] • See [4] • 

We shall assume the reader is familar with Mackey~s theory of 

induced representations as outlined in [1] • We refer to [16] 

and [17] for notation undefined in the present paper. Good 

references to the theory of the classes of group discussed here 

are [4] , [11] , and [14] • Structure theory and other basic 

information will be found there. 

The paper is organized in the following way, In section 1 we 

prove that the dual space ~ of all equivalence classes of 

unitary continuous irreducible Hilbert space representations of 

an [FC] group G has a finite number of connected components 

iff the subgroup of all periodic elements in G is finite 

(x E G is periodic if the closed subgroup generated by x is 

compact). t} is endowed with the Hull- kernel topology. 

Our proof depends on an analysis of the orbits in the dual space 

ft of a closed normal subgroup H of G under the action of G 

by inner automorphisms: 

X•p(h) -1 all x· E G h E H p E fl = p(x hx) , , , . 
Under suitable conditions on the group H and the orbit G•p 

we show that G·p is finite (1~4). 
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This result also turns out to be useful in section 2 where we 

study square-integrable irreducible representations and prove that 

among the [FC] groups only those of type I may possess such 

representations. 

This gives that v E e is square-integrable iff {n} is open 

in e 
We hope to study this·q~estion for a larger class of groups at 

a later occasion. 

In [17] we studied the connection between the toplogy of the 

dual and the group structure for [FC] groups. The main results 

of the present article extend Proposition (2.1), (3), and Theorem 

(2.4) of [17] , where type I and [FIA] assumptions were posed 

on the groups. 

1. In this section the groups will not be assumed separable. Let 

G be a locally compact group and B a subgroup of the auto­

morphism group Aut(G) . G is an [FIA]~ group if B has 

compact closure in Aut(G) • The set y~B(G) of B-charactere 

consists of the nonzero extreme points of the convex set of 

continuous positive definite B-invariant functions ~ on G with 

~(e) ~ 1 • B(G) is given the topology of uniform convergence 

on compacta. 

If G E [FIA]~ and B ~ I(G) there is an open and continuous 

surjection t 6 +~B(G) given by t(v)(x) = f_ < voa(x)v,v > da , 
B 

where v E Hv with I lvl I = 1 , x E G , and da denotes normal-

ized Haar measure on the compact group B , [14] Lemma 5.1. 

(1.1) Lemma. Let G E [FIA]~ where B is a subgroup of Aut(G) 

containing I(G) , and fix p E e . Put 

-1 (ap)(g) = p(a (g)) , all a E B , g € G . 
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Then the map lJi a ~ BP , B ~ e , is continuous. 

Proof. If f : G ~ ~ , put fB(g) = f(B-l(g)) , all 

B € B , g € G • Let t : e ~;tB(G) be the open and continuous 

surjection defined in [14] Lemma 5.1 • It is easily seen that 

t(Bp) = t(~)B , all B ~ B , p E e ; in other words the following 

diagram commutes: 

where ~ : B ~ t(p)B ie continuous by [14] Lemma 5.6. Since 

t is open and surjective it follows that lJi is continuo.us. 

Q. e. d. 

If H is a closed normal subgroup of the locally compact G , 

put I(H,G) = the set of all inner automorphisms of G restricted 

to H • Thus I(H,G) is a subgroup of Aut(H) . 

If p E A then G acts on p by inner automorphisms 

: x•p(h) = p(x-1hx) , all x E G , h E H . 

(1.2) Corollary. Let G E [FIA]-, H a closed normal subgroup 

of G , and p E ~ . Assume that each point x.p of the orbit 

G.p is open in Bp , where Bp is given the topology induced 

from A • Then G.p is finite. 

Proof. We have H E [FIA]~ , i.e. the closure B of I(H,G) in 

Aut(H) is compact. By lemma (1.1) B operates continuously·. 
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on the orbit Bp • Hence Bp is compact and this implies G·p 

is finite, since each point of G•p is open in Bp • 

Q. e. d. 

We got the idea of the next two results from the arguments on 

page 283 of [12] • 

(1.3) Lemma. Let H be a compactly generated closed normal 

subgroup of the locally compact group G • Suppose that for each 

h € H , h * e , there is a continuous G-invariant function 

~ = ~h : G ~ ~ such that ~(h) * 0 and ~(e) = 0 Then H 

possesses a fundamental system of G-invariant neighborhoods 

of e , i.e. H € [SIN]G • 

Proof •. Arguing as in [3] 17.3.7 we see that the following 

condition is satisfied: 

(•) If c is a compact subset of H such that e ~ c then 

there is a neighborhood v of e in H such that v n c = ¢ 
and v is G-invariant. 

·~ 

The Lemma then follows as (3] 17.3.8. 

Q. e. d. 

( 1. 4 ~ Lemma. Let G € [FC] , H a compactly generated closed 

normal subgroup of G such that each G-orbit a·x = 
{y{xH)y-l . y € G}. in G/H is finite. Assume p € ~ is such that . 
each point X•P of G·p is open in ft Then G•p consists of 

only a finite number of points. 

Proof. Assume each point of the orbit G·p is open in ft 

Put cr =(f) 't and N = {x E G : cr(x) = I} • N is a closed normal 
TEG·p 

subgroup of G (it is normal because of the definition of cr ) and 

cr may be lifted to a representation of the factor group G/N • 



5 

Replacing G by G/N , without change of notation, we may 

assume that a is injective. 

Fix h0 E H with h 0 * e • Since a(h0 ) * I we may choose 

a vector v E H
0 

with I lvl I = 1 and a(h0 )v * v • Put 

~(h) = 1 - <a(h)v,v> all h E H 

Then ~ ls continuous, a-invariant , ~(e) = 0 , and ~(h0 ) * 0 

so that HE [SIN]G by Lemma (1.3). 

Now we consider the topological group ~obtained as follows: 

~ and G are to be equal as sets, however, ~ is equipped with 

the topology in which the induced topology on H is unchanged, 

and which makes H open in ~ • Then Cj E [SIN] since 

H E [SIN]~ . By hypothesis ~/H has finite ~-orbits and it 

follows that ~ E [FC]- . Hence ~ E [FIA] = [FC] n [SIN] , and 

we may apply Corollary (1.2) to see that the ~-orbit of p is 

finite, Clearly, G·p and ~·p are identical, and the proof is 

complete. 
Q. e. d. 

Recall that the set of all periodic elements of an [FC] 

group G forms a closed characteristic subgroup P of a , [4] , 

called the periodic subgroup. 

(1.5) Proposition. Let G E [FC] Then the dual space ~ has 

only a finite number of connected components iff the periodic 

subgroup P is finite. 

Proof. Suppose ~ has only a finite number of connected 

components. We may fix a compact open a-invariant subgroup K of 

P such that G/K ~ Rh x D where D is a discrete group with a 

finite number of a-orbits , [11] Proposition 2.1 • Since K is 

compact a/k is embedded in ~ as an open and closed subspace in 

the natural way. By hypothesis each connected component ~~ of 6 
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is open and closed. Let a E LfiK , the above implies that the 

connected component of a in a is actually contained in G/t 
Hence the number of connected components in 

_ _..._ 
G!K is finite. 

We shall see next that P/K is finite. Now G/K is an 

[FIA] group , hence we may use the continuous and open surjection 

t : ·6/lt-+ )[(G/K) , ([14] 5.1 and 5.2) • It follows that X(G/K) 

has only a finite number of connected components. By [16] 
/l 

Proposition (2.10) the periodic subgroup of G/K , ~hich equals 
•· 

P/K , is finite. 

It remains to show that K is finite. Since K is compact 

each 'IT E d lies over some G-orbit G·p in * We shall 

denote by 

of p E * 
e p,K the set of all 'IT E ~ which lies over the orbit 

Each ~ p,K is an open and closed subspace of 

~[17] Lemma (1~2)) and hence the connected component ~'IT of each 

'IT E ~p,K is contained in ~p,K • By hypothesis the number of 

~ K~ must then be finite. It is well known that the -~ 's p, p,K 

are in bijective correspondence with the a-orbits in * , so that 

the number of orbits is finite. By Lemma (1.4) each orbit is 

finite, and hence ~ is finite. Then a well known result says 

that K is finite, [2] • 

Conversely, assume the periodic group P is finite. By [11] 

Proposition 2.7 G = Rn x H where H is a discrete [FC] group , 

hence G E [FIA] and it follows from [6] p. 79 (remark d) that 

e has only finitely many connected components. 

Q. e. d. 

2. This section is devoted to the study of square-integrable 

irreducible representations of [FC]- groups. J. Dixmier has asked 

if such representations are necessarily open as points in the 

reduced dual ~r of separable locally compact (unimodular) type I 

groups G . ([3] 18.9.1) • In [15] M. Rieffel studied this 
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question using Hilbert algebra tecniques, concluding that more 

group theoretic considerations would be necessary. R. Lipsman 

showed that the answer to Dixmier's question is affirmative for. 

split-rank one semisimple groups, [10]. The author settled the 

question for type I [FC] groups in [17] Theorem (2.4). 

In this connection it is interesting to note that noncompact 

[SIN]-groups have no square-integrable irreducible representations, 

which may be seen as follows: If ~ E ~ is square-integrable 

we may assume ~ is a subrepresentation of the left regular 

representation of G on L2(G) , hence ~(f) is a compact 

operator for all f 

~(f)h(x) = J0 k(x,y)h(y)dy all x € G,h € L2 (G) ; 

where the kernel -1 k(x,y) = f(xy ) • Now we choose f equal to 

the characteristic function Xv of a compact invariant neighbor­

hood V of e . Then Xv is a central function on G and we 

have 

~<xv>~<<P> = ~<xv * <P) = 1T(tp * xv> = ~(q>)n<xv> , 

all q> € L1 (G) • In other words, ~<xv> commutes with the 

irreducible ~ 

' 
and hence ~<xv) = c (V) I where c(V) E <V 

Letting h € H~ with llhll = 1 we have 

c(v) = <n<xv)h,h~ = fv<~(x)h,h>dx , 

and since ~ is continuous and G € [SIN] there is a compact 

neighborhood V of e , invariant under inner automorphisms, such 

that o(V) * 0 • ~bus the identity operator on H~ is compact 

and this forces 

G is compact. 

dim H < co • 
~ 

By a result of A. Weil ([18] p. 70) 

We shall prove below that the type I hypothesis in [17] . . 

Theorem (2.4) gives no loss of generality. In fact we shall 
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demonstrate the following: If G € [FC] is separable and 

n € e is square-integrable then G is type I • Along the road 

we generalize to multiplier representations the well known result 

stating that for infinite discrete groups the left regular repres­

entation fails to have irreducible subrepresentations. We shall 

therefore need some facts concerning multipliers on locally 

compact groups. ' 

Let w be a normalized multiplier on the locally compact uni­

moduiar group G, i.e., w : G x G ~ s1 has the properties 

(i) 

(ii) 

(iii) 

all 

w(x,e) = w(e,x) = 1 

w(x,y)w(xy,z) = w(x,yz)w(y,z) 
-1 w(x,x ) = 1 , 

x,y,z € G , and 

(iv) w is a measurable function of GxG into s1 • 

Here s1 denotes the circle group. 

We let 

-1 -1 
f *wh(x) = JGw(x ,y)f(y)h(y x)dy , 

all f,h € C (G) ,xEG 
c 

, and 

-1 f*(x) = f(x ) 
' 

all f € C (G) , x E G • 
c 

The set C (G) 
c of all complex valued continuous functions on G 

with compact support becomes a Hilbert algebra with the multiplica­

tion and involution defined above and the L2- inner product. We 

shall denote this ~lbert algebra by A(G,w) . 

Let n be a unitary continuous irreducible w-representation 

of G on the Hilbert space We say that is 

square-integrable if all the coordinate functions x ~ <n(x)v,v> 

(•) I.e. n(x)n(y) = w(x,y)n(xy) , all x,y E G • 



9 

are L2 - ructions of G , or what amounts to the same, if n is 

unitary equivalent to an (irreducible) direct summand of the left 

regular w-representation Lw of G on the Hilbert space L2 (G) , 

where 

w -1 -1 2 Lyf(x) = w(x ,y)f(y x) , all f € L (G),x,y € G • 

Given an w-representation p of G we may form a 

multiplicative*-representation (also denoted by p ) of the 

algebra A(G,w) in the usual way: 

p(h)v = fa h(x)p(x)vdx , all v € H , 
p 

h € A(G,w) . 

The algebra representation corresponding to Lw is given by left 

convo.lL. t ion, 

It is easy to verify that the irreducible w-representation 

n of G is square-integrale iff the linear map ht~ n(h) is 

continuous, i.e., there is a constant C such that 

lln(h)ll ~ Cllhll 2 ' 
all h € A(G,w) • 

In what follows we shall have the opportunity to apply the theory 

of square-integrable representations of Hilbert algebras as 

developed in [15] The following result is analogous to 

Corollary 5.12 in [15] where it is proved for ordinary unitary 

representations. 

(2.1) Lemma. Let G be an infinite discrete group. Then G 

has no irreducible square-integrable multiplier representations. 

Proof. Let w be a normalized multiplier on G . Since A(G,w) 

has an identity we see from [15] Corollary 5.11 that every 

square-integrable irreducible representation of A(G,w) has finite 

dimension. Hence the same holds for the irreducible square-inte-
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grable w-representations of G • Suppose ~ is such a finite 

dimensional w-representation of G , and consider the central 

group extension defined by w : (e) ~ s1 ~ G(w) ~ G ~ (e) . 

Let X : t i-+ t be the generating charaoter of the circle group 
0 

s1 
' 

and xo an extension of xo to an w-representation of 

G(w) (fo:r example, we may let 
t'V 

X 

Then the representation 
#'OJ 

T = X ®'Jr 
0 

0 
(s,x) = -s , all s e s1 

is an ordinary unitary 

representation of G(w) and ie of finite dimensjon. 

, X € G) 

If ~ were square-integrable, so were T (since S~ is compact). 

But A. Weil has proved that noncompact groups have no finite 

dimensional square-integrable representations, [17] p.70, and 

G(w) is noncornpact since G is infinite. 

Q. e. d. 

Let w be a multipler on the discrete group G . x E G is 

said to be cv-regular if w( x ,a) = w(a, x) whenever a commutes 

with x . If x E G is w-regular then all conjugates -1 yxy 

of y are w-regular ([71 Lemma 3) . In order to illustrate 

that the above result has applications in the theory of multiplier 

representations we prove the following. 

( 2. 2) Corollary. Let G be a discrete group, w a ·no•rmalized 

multiplier on G • Suppose the number of finite w-regular 

conjugacy classes is finite. Then the left regular w-represen­

tation Lw is type I iff G is finite. 

Proof. By [7] Theorem 3 Lw is the direct sum of a finite 

number primary w-representations • If Lw is type I it follows 

that Lw is a direct sum of irreducible w-representations • 

Hence G is finite by Lemma (2.1). The converse is clear. 

Q.e.d. 

• 
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We turn next to the main result of this section. The structure 

theory of [FC] groups, [4], [11], and Mackey~s theory of induced 

representations, [1], are important ingredients of our proof. 

If H is a closed subgroup of G and p a unitary representation 

of H we denote by Ind~(p) the unitary representation of G 

induced from p . If T is a representation of a factor group 

of· G we let T ~ be the inflation of T back to G:T .,-(g) = T(g) 

where g ~ g denotes the quotient map. 

(2.3) Theorem. Let G E [FC] be separable. 

(i) Suppose there is an irreducible discrete summand of the 

regular representation of G on Then G is of type I, 

and G satisfies an exact sequence of topological groups 

(e) ~ K ~ G ~ Rn ~ (e) where K is compact. 

(ii) TI E ~ is square-integrable iff {n} is open in ~ . 

Proof. By the structure theorem for [FC] groups we may 

choose an open normal subgroup H of G on the form 

(e) ~ K ~ H ~ Rn ~ (e) where K is cofupact. · Such groups H are well 

known to be (and easily seen to be) type I, [11]. Assume there 

is a square-integrable representation TI in e Since H is 

open in G we may use the restriction of Haar measure on G to 

H as a Haar measure on H • Then it becomes clear that each 

vector v E HTI gives a square-integrable coordinate function 

h ~ <TI(h)v,v> for the restriction niH . Hence niH splits 

into a direct sum of irreducible square-integrable representa-

tions of H (Kunze [9], Corollary to Thm.2), and it may be seen 

that niH is concentrated on a single G-orbit in A : niH 

= m·®T , for some p E A • Now H is type I and therefore [17] 
TEG·p 
Theorem (2.4) implies {x·p} is open in ~ , all x E G • 
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Hence, by Lemma (1.4) the orbit G·p is finite, and the isotropy 

group G(p) = {x E G : x•p ~ 

We show next that G(p)/H 
~ ........ 

for some a in G(p)P , and 

p} has finite index in G . 
G is finite. Now TI = IndG(p)(a) 

,... ... 
a is on the form p®y where y 

is an irreducible multiplier representation of G(p)/H (say w-re-

presentation) and its inflation back to G( p) , and p 

denotes some extension of p to an w-representation of G(p) , 

[1]. Since TI is square-integrable y is so ([8] Corollary 11.1). 

Thus G(p)/H is finite by Lemma (2.1). 

Hence IG/HI < oo and H is type I so that G must be type I 

([5] Corollary 2.5). Hence {TI} is open in ~ by [17] 

Theorem (2.4). 

Since H is in the form (e) ~ K ~ H ~ Rn ~ (e) G must be on 

the form P . n (e) ~ K ~ G~ R x F ~ (e) where K is compact and F 

is finite. Replacing K with p-1(f) the theorem follows. 

Q. e. d. 
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