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Introduction. A locally compact group G is said to be an 

[FC] group if all of its conjugacy classes -1 {xgx :xEG} are 

precompact. The class [FIA] consists of all locally compact 

groups G possessing pre compact inner automorphism group I( G) , 

where I(G) is equipped with the relative topology from Aut(G) , 

the group of all topological automorphisms with the usual Birkhoff 

topology. The class [FIA] is contained in [FC] G belongs 

to the class [SIN] if there is a fundamental system of neighbor-

hoods o~ the identity ~ , invariant under inner automorphisms. 

One has [FIA] = [FC] n [SIN] • See [4] • 

We shall assume the reader is familar with Mackey~s theory of 

induced representations as outlined in [1] • We refer to [16] 

and [17] for notation undefined in the present paper. Good 

references to the theory of the classes of group discussed here 

are [4] , [11] , and [14] • Structure theory and other basic 

information will be found there. 

The paper is organized in the following way, In section 1 we 

prove that the dual space ~ of all equivalence classes of 

unitary continuous irreducible Hilbert space representations of 

an [FC] group G has a finite number of connected components 

iff the subgroup of all periodic elements in G is finite 

(x E G is periodic if the closed subgroup generated by x is 

compact). t} is endowed with the Hull- kernel topology. 

Our proof depends on an analysis of the orbits in the dual space 

ft of a closed normal subgroup H of G under the action of G 

by inner automorphisms: 

X•p(h) -1 all x· E G h E H p E fl = p(x hx) , , , . 
Under suitable conditions on the group H and the orbit G•p 

we show that G·p is finite (1~4). 
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This result also turns out to be useful in section 2 where we 

study square-integrable irreducible representations and prove that 

among the [FC] groups only those of type I may possess such 

representations. 

This gives that v E e is square-integrable iff {n} is open 

in e 
We hope to study this·q~estion for a larger class of groups at 

a later occasion. 

In [17] we studied the connection between the toplogy of the 

dual and the group structure for [FC] groups. The main results 

of the present article extend Proposition (2.1), (3), and Theorem 

(2.4) of [17] , where type I and [FIA] assumptions were posed 

on the groups. 

1. In this section the groups will not be assumed separable. Let 

G be a locally compact group and B a subgroup of the auto

morphism group Aut(G) . G is an [FIA]~ group if B has 

compact closure in Aut(G) • The set y~B(G) of B-charactere 

consists of the nonzero extreme points of the convex set of 

continuous positive definite B-invariant functions ~ on G with 

~(e) ~ 1 • B(G) is given the topology of uniform convergence 

on compacta. 

If G E [FIA]~ and B ~ I(G) there is an open and continuous 

surjection t 6 +~B(G) given by t(v)(x) = f_ < voa(x)v,v > da , 
B 

where v E Hv with I lvl I = 1 , x E G , and da denotes normal-

ized Haar measure on the compact group B , [14] Lemma 5.1. 

(1.1) Lemma. Let G E [FIA]~ where B is a subgroup of Aut(G) 

containing I(G) , and fix p E e . Put 

-1 (ap)(g) = p(a (g)) , all a E B , g € G . 
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Then the map lJi a ~ BP , B ~ e , is continuous. 

Proof. If f : G ~ ~ , put fB(g) = f(B-l(g)) , all 

B € B , g € G • Let t : e ~;tB(G) be the open and continuous 

surjection defined in [14] Lemma 5.1 • It is easily seen that 

t(Bp) = t(~)B , all B ~ B , p E e ; in other words the following 

diagram commutes: 

where ~ : B ~ t(p)B ie continuous by [14] Lemma 5.6. Since 

t is open and surjective it follows that lJi is continuo.us. 

Q. e. d. 

If H is a closed normal subgroup of the locally compact G , 

put I(H,G) = the set of all inner automorphisms of G restricted 

to H • Thus I(H,G) is a subgroup of Aut(H) . 

If p E A then G acts on p by inner automorphisms 

: x•p(h) = p(x-1hx) , all x E G , h E H . 

(1.2) Corollary. Let G E [FIA]-, H a closed normal subgroup 

of G , and p E ~ . Assume that each point x.p of the orbit 

G.p is open in Bp , where Bp is given the topology induced 

from A • Then G.p is finite. 

Proof. We have H E [FIA]~ , i.e. the closure B of I(H,G) in 

Aut(H) is compact. By lemma (1.1) B operates continuously·. 
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on the orbit Bp • Hence Bp is compact and this implies G·p 

is finite, since each point of G•p is open in Bp • 

Q. e. d. 

We got the idea of the next two results from the arguments on 

page 283 of [12] • 

(1.3) Lemma. Let H be a compactly generated closed normal 

subgroup of the locally compact group G • Suppose that for each 

h € H , h * e , there is a continuous G-invariant function 

~ = ~h : G ~ ~ such that ~(h) * 0 and ~(e) = 0 Then H 

possesses a fundamental system of G-invariant neighborhoods 

of e , i.e. H € [SIN]G • 

Proof •. Arguing as in [3] 17.3.7 we see that the following 

condition is satisfied: 

(•) If c is a compact subset of H such that e ~ c then 

there is a neighborhood v of e in H such that v n c = ¢ 
and v is G-invariant. 

·~ 

The Lemma then follows as (3] 17.3.8. 

Q. e. d. 

( 1. 4 ~ Lemma. Let G € [FC] , H a compactly generated closed 

normal subgroup of G such that each G-orbit a·x = 
{y{xH)y-l . y € G}. in G/H is finite. Assume p € ~ is such that . 
each point X•P of G·p is open in ft Then G•p consists of 

only a finite number of points. 

Proof. Assume each point of the orbit G·p is open in ft 

Put cr =(f) 't and N = {x E G : cr(x) = I} • N is a closed normal 
TEG·p 

subgroup of G (it is normal because of the definition of cr ) and 

cr may be lifted to a representation of the factor group G/N • 
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Replacing G by G/N , without change of notation, we may 

assume that a is injective. 

Fix h0 E H with h 0 * e • Since a(h0 ) * I we may choose 

a vector v E H
0 

with I lvl I = 1 and a(h0 )v * v • Put 

~(h) = 1 - <a(h)v,v> all h E H 

Then ~ ls continuous, a-invariant , ~(e) = 0 , and ~(h0 ) * 0 

so that HE [SIN]G by Lemma (1.3). 

Now we consider the topological group ~obtained as follows: 

~ and G are to be equal as sets, however, ~ is equipped with 

the topology in which the induced topology on H is unchanged, 

and which makes H open in ~ • Then Cj E [SIN] since 

H E [SIN]~ . By hypothesis ~/H has finite ~-orbits and it 

follows that ~ E [FC]- . Hence ~ E [FIA] = [FC] n [SIN] , and 

we may apply Corollary (1.2) to see that the ~-orbit of p is 

finite, Clearly, G·p and ~·p are identical, and the proof is 

complete. 
Q. e. d. 

Recall that the set of all periodic elements of an [FC] 

group G forms a closed characteristic subgroup P of a , [4] , 

called the periodic subgroup. 

(1.5) Proposition. Let G E [FC] Then the dual space ~ has 

only a finite number of connected components iff the periodic 

subgroup P is finite. 

Proof. Suppose ~ has only a finite number of connected 

components. We may fix a compact open a-invariant subgroup K of 

P such that G/K ~ Rh x D where D is a discrete group with a 

finite number of a-orbits , [11] Proposition 2.1 • Since K is 

compact a/k is embedded in ~ as an open and closed subspace in 

the natural way. By hypothesis each connected component ~~ of 6 
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is open and closed. Let a E LfiK , the above implies that the 

connected component of a in a is actually contained in G/t 
Hence the number of connected components in 

_ _..._ 
G!K is finite. 

We shall see next that P/K is finite. Now G/K is an 

[FIA] group , hence we may use the continuous and open surjection 

t : ·6/lt-+ )[(G/K) , ([14] 5.1 and 5.2) • It follows that X(G/K) 

has only a finite number of connected components. By [16] 
/l 

Proposition (2.10) the periodic subgroup of G/K , ~hich equals 
•· 

P/K , is finite. 

It remains to show that K is finite. Since K is compact 

each 'IT E d lies over some G-orbit G·p in * We shall 

denote by 

of p E * 
e p,K the set of all 'IT E ~ which lies over the orbit 

Each ~ p,K is an open and closed subspace of 

~[17] Lemma (1~2)) and hence the connected component ~'IT of each 

'IT E ~p,K is contained in ~p,K • By hypothesis the number of 

~ K~ must then be finite. It is well known that the -~ 's p, p,K 

are in bijective correspondence with the a-orbits in * , so that 

the number of orbits is finite. By Lemma (1.4) each orbit is 

finite, and hence ~ is finite. Then a well known result says 

that K is finite, [2] • 

Conversely, assume the periodic group P is finite. By [11] 

Proposition 2.7 G = Rn x H where H is a discrete [FC] group , 

hence G E [FIA] and it follows from [6] p. 79 (remark d) that 

e has only finitely many connected components. 

Q. e. d. 

2. This section is devoted to the study of square-integrable 

irreducible representations of [FC]- groups. J. Dixmier has asked 

if such representations are necessarily open as points in the 

reduced dual ~r of separable locally compact (unimodular) type I 

groups G . ([3] 18.9.1) • In [15] M. Rieffel studied this 
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question using Hilbert algebra tecniques, concluding that more 

group theoretic considerations would be necessary. R. Lipsman 

showed that the answer to Dixmier's question is affirmative for. 

split-rank one semisimple groups, [10]. The author settled the 

question for type I [FC] groups in [17] Theorem (2.4). 

In this connection it is interesting to note that noncompact 

[SIN]-groups have no square-integrable irreducible representations, 

which may be seen as follows: If ~ E ~ is square-integrable 

we may assume ~ is a subrepresentation of the left regular 

representation of G on L2(G) , hence ~(f) is a compact 

operator for all f 

~(f)h(x) = J0 k(x,y)h(y)dy all x € G,h € L2 (G) ; 

where the kernel -1 k(x,y) = f(xy ) • Now we choose f equal to 

the characteristic function Xv of a compact invariant neighbor

hood V of e . Then Xv is a central function on G and we 

have 

~<xv>~<<P> = ~<xv * <P) = 1T(tp * xv> = ~(q>)n<xv> , 

all q> € L1 (G) • In other words, ~<xv> commutes with the 

irreducible ~ 

' 
and hence ~<xv) = c (V) I where c(V) E <V 

Letting h € H~ with llhll = 1 we have 

c(v) = <n<xv)h,h~ = fv<~(x)h,h>dx , 

and since ~ is continuous and G € [SIN] there is a compact 

neighborhood V of e , invariant under inner automorphisms, such 

that o(V) * 0 • ~bus the identity operator on H~ is compact 

and this forces 

G is compact. 

dim H < co • 
~ 

By a result of A. Weil ([18] p. 70) 

We shall prove below that the type I hypothesis in [17] . . 

Theorem (2.4) gives no loss of generality. In fact we shall 
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demonstrate the following: If G € [FC] is separable and 

n € e is square-integrable then G is type I • Along the road 

we generalize to multiplier representations the well known result 

stating that for infinite discrete groups the left regular repres

entation fails to have irreducible subrepresentations. We shall 

therefore need some facts concerning multipliers on locally 

compact groups. ' 

Let w be a normalized multiplier on the locally compact uni

moduiar group G, i.e., w : G x G ~ s1 has the properties 

(i) 

(ii) 

(iii) 

all 

w(x,e) = w(e,x) = 1 

w(x,y)w(xy,z) = w(x,yz)w(y,z) 
-1 w(x,x ) = 1 , 

x,y,z € G , and 

(iv) w is a measurable function of GxG into s1 • 

Here s1 denotes the circle group. 

We let 

-1 -1 
f *wh(x) = JGw(x ,y)f(y)h(y x)dy , 

all f,h € C (G) ,xEG 
c 

, and 

-1 f*(x) = f(x ) 
' 

all f € C (G) , x E G • 
c 

The set C (G) 
c of all complex valued continuous functions on G 

with compact support becomes a Hilbert algebra with the multiplica

tion and involution defined above and the L2- inner product. We 

shall denote this ~lbert algebra by A(G,w) . 

Let n be a unitary continuous irreducible w-representation 

of G on the Hilbert space We say that is 

square-integrable if all the coordinate functions x ~ <n(x)v,v> 

(•) I.e. n(x)n(y) = w(x,y)n(xy) , all x,y E G • 
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are L2 - ructions of G , or what amounts to the same, if n is 

unitary equivalent to an (irreducible) direct summand of the left 

regular w-representation Lw of G on the Hilbert space L2 (G) , 

where 

w -1 -1 2 Lyf(x) = w(x ,y)f(y x) , all f € L (G),x,y € G • 

Given an w-representation p of G we may form a 

multiplicative*-representation (also denoted by p ) of the 

algebra A(G,w) in the usual way: 

p(h)v = fa h(x)p(x)vdx , all v € H , 
p 

h € A(G,w) . 

The algebra representation corresponding to Lw is given by left 

convo.lL. t ion, 

It is easy to verify that the irreducible w-representation 

n of G is square-integrale iff the linear map ht~ n(h) is 

continuous, i.e., there is a constant C such that 

lln(h)ll ~ Cllhll 2 ' 
all h € A(G,w) • 

In what follows we shall have the opportunity to apply the theory 

of square-integrable representations of Hilbert algebras as 

developed in [15] The following result is analogous to 

Corollary 5.12 in [15] where it is proved for ordinary unitary 

representations. 

(2.1) Lemma. Let G be an infinite discrete group. Then G 

has no irreducible square-integrable multiplier representations. 

Proof. Let w be a normalized multiplier on G . Since A(G,w) 

has an identity we see from [15] Corollary 5.11 that every 

square-integrable irreducible representation of A(G,w) has finite 

dimension. Hence the same holds for the irreducible square-inte-
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grable w-representations of G • Suppose ~ is such a finite 

dimensional w-representation of G , and consider the central 

group extension defined by w : (e) ~ s1 ~ G(w) ~ G ~ (e) . 

Let X : t i-+ t be the generating charaoter of the circle group 
0 

s1 
' 

and xo an extension of xo to an w-representation of 

G(w) (fo:r example, we may let 
t'V 

X 

Then the representation 
#'OJ 

T = X ®'Jr 
0 

0 
(s,x) = -s , all s e s1 

is an ordinary unitary 

representation of G(w) and ie of finite dimensjon. 

, X € G) 

If ~ were square-integrable, so were T (since S~ is compact). 

But A. Weil has proved that noncompact groups have no finite 

dimensional square-integrable representations, [17] p.70, and 

G(w) is noncornpact since G is infinite. 

Q. e. d. 

Let w be a multipler on the discrete group G . x E G is 

said to be cv-regular if w( x ,a) = w(a, x) whenever a commutes 

with x . If x E G is w-regular then all conjugates -1 yxy 

of y are w-regular ([71 Lemma 3) . In order to illustrate 

that the above result has applications in the theory of multiplier 

representations we prove the following. 

( 2. 2) Corollary. Let G be a discrete group, w a ·no•rmalized 

multiplier on G • Suppose the number of finite w-regular 

conjugacy classes is finite. Then the left regular w-represen

tation Lw is type I iff G is finite. 

Proof. By [7] Theorem 3 Lw is the direct sum of a finite 

number primary w-representations • If Lw is type I it follows 

that Lw is a direct sum of irreducible w-representations • 

Hence G is finite by Lemma (2.1). The converse is clear. 

Q.e.d. 

• 
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We turn next to the main result of this section. The structure 

theory of [FC] groups, [4], [11], and Mackey~s theory of induced 

representations, [1], are important ingredients of our proof. 

If H is a closed subgroup of G and p a unitary representation 

of H we denote by Ind~(p) the unitary representation of G 

induced from p . If T is a representation of a factor group 

of· G we let T ~ be the inflation of T back to G:T .,-(g) = T(g) 

where g ~ g denotes the quotient map. 

(2.3) Theorem. Let G E [FC] be separable. 

(i) Suppose there is an irreducible discrete summand of the 

regular representation of G on Then G is of type I, 

and G satisfies an exact sequence of topological groups 

(e) ~ K ~ G ~ Rn ~ (e) where K is compact. 

(ii) TI E ~ is square-integrable iff {n} is open in ~ . 

Proof. By the structure theorem for [FC] groups we may 

choose an open normal subgroup H of G on the form 

(e) ~ K ~ H ~ Rn ~ (e) where K is cofupact. · Such groups H are well 

known to be (and easily seen to be) type I, [11]. Assume there 

is a square-integrable representation TI in e Since H is 

open in G we may use the restriction of Haar measure on G to 

H as a Haar measure on H • Then it becomes clear that each 

vector v E HTI gives a square-integrable coordinate function 

h ~ <TI(h)v,v> for the restriction niH . Hence niH splits 

into a direct sum of irreducible square-integrable representa-

tions of H (Kunze [9], Corollary to Thm.2), and it may be seen 

that niH is concentrated on a single G-orbit in A : niH 

= m·®T , for some p E A • Now H is type I and therefore [17] 
TEG·p 
Theorem (2.4) implies {x·p} is open in ~ , all x E G • 
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Hence, by Lemma (1.4) the orbit G·p is finite, and the isotropy 

group G(p) = {x E G : x•p ~ 

We show next that G(p)/H 
~ ........ 

for some a in G(p)P , and 

p} has finite index in G . 
G is finite. Now TI = IndG(p)(a) 

,... ... 
a is on the form p®y where y 

is an irreducible multiplier representation of G(p)/H (say w-re-

presentation) and its inflation back to G( p) , and p 

denotes some extension of p to an w-representation of G(p) , 

[1]. Since TI is square-integrable y is so ([8] Corollary 11.1). 

Thus G(p)/H is finite by Lemma (2.1). 

Hence IG/HI < oo and H is type I so that G must be type I 

([5] Corollary 2.5). Hence {TI} is open in ~ by [17] 

Theorem (2.4). 

Since H is in the form (e) ~ K ~ H ~ Rn ~ (e) G must be on 

the form P . n (e) ~ K ~ G~ R x F ~ (e) where K is compact and F 

is finite. Replacing K with p-1(f) the theorem follows. 

Q. e. d. 
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