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In this baper we will discuss some problems of degree-theoretic
nature in connection with recursion in normal objects of higher types.

Harrington [2] and Loewenthal [6] have proved some results con-
cerning Post's prdbiem and the Minimal Pair Problem, using recursion
modulo subindividuals. Our degrees will be those obtained from
Kleene-recursion modulo individuals. To solve our problems we then
- have to put some extra strength to ZFC. We will first assume V=1L,
and then we restrict ourselves to the situation of a recursive well-
ordering and Martin's axiom.

We assume familiarity with recursion theory in higher types as
presented in Kleene [3]. Further background is found in Harrington
(2], Moldestad [9] and Normann [11]. We will survey the parts of
these papers that we need.

In section 1 we give the general background for the arguments
used later. In section 2 we prove some lemmas assuming V = L.

In section 3, assuming V = L we solve Post's problem and another
problem using the finite injury method. We will thereby describe
some of the methods needed for the more complex priority argument
of section 4 where we give a solution to the minimal pair problem
for extended r.e. degrees of functionals.

In section 5 we will see that if Martin's Axiom holds and we
have a minimal well-ordering of +tp(1) recursive in 3E, we may

use the same sort of arguments as in parts 3% and 4.



1 Preliminaries

JA Notation. For some fixed k > 1, let I be the set of func-
tionals of type < k. We let S c I be the set of functionals of
type < k. The elements of S are called subindiviauvals, they are
denoted by i, j etc. n, m will be used for natural numbers, e
mostly for indices, The elements a,b,c of I are called indivi-
duals.

f:I-=w is called a function. We identity subsets of T
with their characteristic functions,

F: functions = w is called a functional. A functional F is
£ k+3E

called normal i is recursive in F, where

0 if 3a € I £(a)=0
| it 3a (a)
1 if Ya € I £(a) £0

‘We will always assume f +to be total.

By k+1-sc (F,a) we mean those subsets of I recursive in F

and a,.

By k+1-en (F,a) we mean those subsets of I semi-recursive in

F and a.

By extended recursion, we mean recursion modulo an arbitrary indi-

vidual.

1B Companion Theory

In Normenn {11] a companion theory for recursion in a normal
type k+2 object was developed and studied. The spectrum of a
functional F was defined as follows:

Let < be a partial ordering on I. ILet axb if a <b
and b <a, Let x be a set.

We say that < is a code for x if </, is isomorphic to
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(euU =) rTC{x} (TC is the transitive closure).
Iet x € Ma(F) if there is a code for x recursive in a and

F,
<Ma<F)>a€I is called the spectrum of F and is denoted Spec(F).

Theorem 1.1 (Normann {11]) (For F = k+2E also MacQueen [7])

When F is a normal functional, Spec(F) is the least family
<Ma>a€I satisfying:

i EBach M, is rudimentary closed in F.

ii If ¢ is a A,-formula, X parameters from M, , and if

vb € I dx € M<a’b>cp(x,x,F) then
3h €M, (h is a function and Vb € I o(h(b),x,F)).

This principle is called ZI*-collection.

Remark Since h € M(a,b) and Db € M(a,b) , h(b) € M(a,b)' '

Definition Following Sacks [13] we say:

Let AcCV be a set, A is locally of type k+1 if

WVx €V (x€A <« x has a code in A)

By the definition of the spectrum, it is clear that each Ma(F) is
locally of type k+1.
We will also have that each Ma(F) is uniformly projectable to w.

A subset A C I is I -definable if there is a A -formula ¢

with parameters from Ma . such that
P €A <= 3}{ € M<a’b>cp(x,b) .

It is essentially proved both in Harrington [2] and in Normann [11]

that
Z;(F) = k+1-en (F,k+2E,a).



MacQueen [7] proved a selection principle for subindividuals

and Harrington [2] used this to obtain the following:

Theorem 1.2 (Harrington [2], Simple and further reflection)

Let a € I, F a normal type k+2 functional.

Let <Ma>aEI = Spec(F) and let dwa = i%SM(a’i>.
a TC(M,) <g, TCEU)
b Let CCS S be complete Z; among E; Ms.

Identifying C with it's characteristic function we have C € I

and obtain

My <24 Ma,C

1C Another approach to recursion in normal functionals

The construction of Spec(F) is relevant when we investigate

k+1-en(F) and k+1-sc(F).

The definition of a ZI*-subset of I was simple, but if we'are in-
terested in other 'semi-recursive sets, the situation is more compli-
cated. The following definition may be viewed as a generalization
of recursion in a general E and a relation. In sections 2, % and
4 we will use it as a technical tool for making some notions pre-
cise and handy. In section 5 we use this theory to 'compare' theo-

ries on different domains.

Definition of E(R)

Let R < V be a relation. We define the functions recursive

relative to R with indices by the following schemes:

i f(xq,...,xh) = X e = {(1,n,i)
E f(X/l’oo.,xn) = xi"\Xj e = <2,n,i,j>
iii  £(Xqg0e0,%y) = {Xi,Xj} e = {(3,n,i,3>
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iv’ f(xq,...,xh) ~ g h(y,xz,,.;,xn) e=(4,n,e') where
T=Xq e' is an index for h.

v f(xqv"'"’xn) = h(gq(xqa-w'7xn)’°--,gm(xqa---oxn))

e =(5,n,m,8" 84,8, )

vi f(x,l,..,,,xn) =z x NR e ={6,n,i)

iy R ' '
Vii  PeqEqwans X710 Tg) = (e} (s e %)) e=l<’7,-n,m> .

The functions defined by these schemes are called E-recursive rela-

tive to R, and the functions are denoted {e}®.

Remark: All functions rudimentary in R will be E-recursive rela-
tive to R. Since for each n € w the constant function n is
rudimentary, these functions will be E-recursive, Combining schemes
i and v we may commute the arguments in the functions. E-recursion
is nothing but the rudimentary function schemes augmented with dia-

gonalization.
The schematic definition gives us canonical concepts of
i length of a computation | ||
ii  subcomputation
iidi computation tree
By standard proofs we will obtain the recursion theorems, giving
recursive fix-points and least recursive fix-points.

The connection between E-recursion and recursion in a normal
functional is given by the following lemma, which also justifies the

term E-recursion:

Lemma 1.3 In E-recursion theory there is an index e such that

for arbitrary R, x, eq,i
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0 if vy €x (e}, 0 =0
(e1f(x,6,%) = 21 if yy €x {e,}(y,%)| and
3y € x {8, %) #0

where & means 'has a value'

Proof: There is a rudimentary function ¢ such that o(0) =0

and ¢(x) =1 for all x # 0. So we may assume that {eq} ‘takes

values O = ¢ and 1 = {¢#} only.

1

Let {e) (x,eq,%) = U {e,}(7,%) .
yE€x

Corollary 1.4 (Stage comparison)

There is an E-recursive function p such that p(cq,oz) &

if o, or 0, is a computation and then

0 if “01“ = “02“
(O 'O ) = .
Pono) = lo4ll > llo,l

Proof: By Lemma 1.3 and the recursion theorem, the standard proof

in hiéher type function theory is valid,

Remark: Corollary 1.4 may uniformly be relativized to an arbitrary

R.

Corollary 1.5 1In ZE-recursion we may uniformly select an element

in a semirecursive nonempty subset of w (Gandy Selection).
Proof: By Grilliot [1] this is a consequence of 1.4.

Definition TLet R C V, ; € V. ILet ¢ Dbe a partial map from

V2 to V. We say that o is recursive in ; relative to R if
there is an index e 1in E-recursion such that

7% € T(o(®) = {e}B(ZE,5)).
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We then obtain the natural definitions of recursive in § relative
to R and semirecursive in § relative to R.

Remark: If P 1is E-recursive in R and ¢ is partially P-re-

cursive, then ¢ 1is R-recursive.

Definition ILet A cCcV, Rc V., TLet the E-recursive closure of

A relative to R Dbe
T(A;R) = {{e}R(x)- e €Ew, x € A", n € w}
9 9 k] 2

A is E-recursively closed relative to R if

AW(AR) = A,

If A is E-recursively closed relative to R, we may split

A up as follows

CRUxTR) ) e

This structure will satisfy the following version of X¥X*-collection:

If for some z,i in ‘R({x};R) and some A ,-formula o

vy € zir € R({y,x};R)e(i%%,5,R) then
If € ‘R({x}:R)(func(f) & dom(f) = z

& ye€ zp(£(y),%,5,R))

Also R({x};R) will be rudimentary closed in R.

On the other hand, if <Ax>x€A is any decomposition of A sa-
tisfying Z*(R)-collection and rudimentary closure relative to R,
- it follows by induction on the length of computations that each AX
will be E-recursively closed relative to R and that the computa-
tion tree of a computation in x will be in Ax‘ Combining tﬁese

two observations we see that when F is a normal functional,

Spec(F) = (R({a,I};F)d g



1D Senirecursion and relative recursion

Definition Let R €V be a relation. Let

Spec(R) = <(R.,( {a, T} ;R)>aEI

We will first pose three problems which we have not answered, but

believe to have negative solutions:

Problens

Let RCV, <Ma>aGI = Spec(R), M = léIMa. As proved in
a

Normann [11], each M, will be locally of type k+2.
1 If x € M, is there an a € I such that
M, = RUI,x}HR)?

2. If x€M, is R({I,x};R) 1locally of type k+17?

3, Is M E-semirecursive in I relative to R ?

We omit some of the difficulties induced by these problems by

restricting ourselves to qM :

Definition  When <Ma>a€I is a spectrum, let j_r_’[_ = {{a,y ;yeMa} .

1M is E-semirecursive in I relative to R and problems 1 and 2

are trivially correct for x € /lM.

From now on, let R be fixed, (Ma)aEI = Spec(R) , M= UM,
: . a€l
Let, for x € M, M, = R({x,I};R).

Definition Let Q c M, a€I,

i We say that Q is Z;(R)-definable if there is a Ao—formula

® with parameters from Mgy such that
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x €Q <> 3y €M, y0(x,7,R)

ii Q is weakly Z;(R)—definable (w-Z;(R)) if there is a A -

formula ¢ such that

X €Q «<syYb € I(XEM(a,b) = Ty € M<a’b>cp(x,y,R))

Remark: If Q 1is E;(R), Q will be w - Z;(R).

If Q¢ 1M, or if Problem 1 has a positive solution, the two

concepts coincide.

iii Q 1is A;(R) (w-A;(R)) if both Q@ and M~Q are
Z3(R) (w-E3(R)) . |

Definition Let Qc IXM A, = {{a,f); £ is the characteristic
— Q 9 9

function of a code for a set x and (a,x) € Q}.

FQ is the characteristic function of AQ‘ By some effective iden-
tification of tp(k) x tp(k+1) with tp(k+1), FQ will be of type
k+2.

Lemma 1.6 Let Q c M.

o

Q, AQ NM and Fy AM are w-A*(R) in each other.

b If Q€ w-A;(R), FQ is weakly Kleene-recursive in FR,k+2E,a

(For definition, see Moldestad [9] or the proof.)

If Q € Z;(R) and Q < 1M, then AQ is Kleene-semirecursive

k+2
’ E,a.

o

in FR

Proof: a is trivial since each Mb is locally of type k+1.
To prove b we must find an index e such that in Kleene-recursion

k+2
9

FQ(xb{e'}(FR,k+2E,a,b,'c')) > {e}(Fy, *°E,a,3,6")
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for arbitary e' € aw, c € 1%,

2

Ao—formulas over IT x (P(I)m are computable in K+2p  ana

the unbounded quantifiers over Ma 3 needed in the w-A;—definition
k]

of FQ from R may be replaced by unbounded quantifiers over

k+1-sc(FR,k+2E,a,3) (see Normann [11] for details). We may then

perform the wanted computation using Gandy's selection operator.

We use similar arguments to prove c.

1F Some more notations

Let R Dbe a relation, Mx(R) = R({x,I};R)
Kg(R) = Sup(OnN M (R))

K, (R)

sup (L5 (R); 1 € tp(n)} Sup(onn, U Hey ()

A>(R) = Least ordinal not in IM _(R)
= Ordertype of {a; there is an E(R)- computation
with arguments x,I of length o]
x . .
xn(R) = Teast ordinal not in U M{x,i}(R)

i€tpQ
Ordertype of {a; there is an E(R)-computation with

arguments x,I and some i€ tp(n) of length «l}.

The equalities in the definition is fairly easy to show.

Definition Let o €0n, RCV,

MO(R) = {x; Je(fe}(a,I) = x & [e,a,I,x)||g<0l.

Mc - U MG 1

o o
Y Mg. M= Kayys yelt].

Now assume that we have a Godel-enumeration {mn}new of the
A,-formulas. Identify w xS with B, so that i €w, i, €8.

Our next problem will be to find recursive, monotone approxi-
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mations of the w-Z;!‘. a(R)-—subsets of M:
b
Let i =(i_,i,> and let
0’1 o,
o .
x € Ii,a(R) if for some b € I, 0, <0 x € Mi,a,b(R) and

/I

o}
yb &I (x€M;

(R) ﬁayemg,a,b:ﬂ.z eycPi (iq ,a,Z,X,R))
o

(o}
Let I; ,(R) = U I; ,(R).

Lemma 1. 7

oy o,
a If o, >0, then Ii,a(R) [ Ii,a(R)

(L ,(R); i€8) - [W—Eg,a(R);jGS}

Proof: The monotonity is immediate from the definition. To prove

b we first prove:

Claim: The following are equivalent:
i x € Ii,a

_::L_j_- Vb €I (XEMi,a,b(R) =>32YeM

i,a,b:" zZ€EY cpio(i,‘,a,z,x,R)) .

Proof: ii = i. DPick 0, s.t, for some b x € Mi,a,b' 5

We may then find a suitable ¢ by IZ*-collection over {b; XEMbq} .

i=>3ii. Let o, and o be as in the definition, and choose 0,

minimal, and then ¢ minimal, ILet b be such that x € Mi a.b®
Lk |

o
If x € Mi/la p ‘there is no problem. If not, let o, be minimal
L |
g
2 ,
such that x € Mi,a,b . Then also 04 € Mi,a,b and 0 € Mi,a,b

by definitions.

o
Choose y =M EMi,a,b .

: *
The claim proves that Ii,a € w-~ Zi,a .
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Obviously any w-Z%% _-set can be defined on the form of ii in
. ?

the claim, This proves b.

Definition ©Let a € I, i =<(ij,i,» € S.

By Jg a(R) we mean the partial set
9

c o
x € Ji,a(R) <» x € qu’a(R)

o o}
x € Ji,a(R) <> x € Ii2,a(R)
whenever this is consistent,

When J, _(R) is total and well defined, it will be a general
9
*
Ai,a(R)-subsets of M.

2 V=1L and the structure of the spectrum .

In this section we will develop some machinery. So, let
I, S be as in section 1 and let < Dbe a k+2E—recursive well-
ordering of I of length »}{i.

Each initial segment of < can be put in a 1-1 correspon-
dence with a subset of B .,

If a€ I, let ai(j) = a({i,j)) and

S, = {a;; 1€8]

{bs Sb=={o; c<al}l is uniformly recursive in a (andv k+2E
which we will always mean when nothing else is said), and by the
recursive well-ordering we may pick the least,

This gives us:

Lemma 2,1

If a <b, there is a subindividual i such that a is

recursive in b and i .
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Now, let <Ma>a€I = Spec(k+2E) .
Let M = UM . R
“ta T jeg (ar1)

Lemma 2.1 then gives

a <b ﬁ\j\{a.c.(/\{fb

By simple reflection; TC(Ma) < TC(uMa) , and using the recur-
1
sive well ordering:

M, <>:1 TC(Ma)

S0
Mg <Z16A1a ¢

This gives the following variant of Dependent Choice:

Lemma 2,2

Let a € I and let ¢ be a A -formula with parameters
X € M. . Assume YcVx € M Ay €M o(x,y,X) . Then there is
a cya c,a

a sequence <Xc>cEI in Ma such that

For the proof we use the reflection described above in combination

with Gandy's selection and E¥*-collection.

Definition

a a € I is called minimal if for no b <a, a Eoﬁlb .

b a' (read: a-jump) is the least b such that b gM_ .
Let I ' be the norm induced by <,

Lemma 2.7%

a Nat!! = x§_1 = least ordinal not in tha

}2 (/l/z,aEMal'
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Proof:
& By induction on the ordinals a < /*{g it follows that
Y o(a €My <>3Jc €M (llcll =a)) . The lemma follows trivially.

[=2

By a and the equivalent definitions of x§_1 we have

Vb <a' 30 €M (v]] = ordertype of

a,b,a!
- {a3 o is the length of a computation in a and

a subindividual i € 8})

Using T*-collection over {b; b <a'} we see that Ko | € M, .,
9

uniform in a .
Now (b <a';a'=b'}={b<a;Ve(bgc<a = ceM)} is
E;,-definable.

By Grillict-selection (MacQueen [7]) we pick a recursive subset

of {b<a'; a' = b'} and for each b in that set we find
K£_1 = Ki_1 uniform in b, a; « But then K§_1 €M, by I¥*-
collection, and . = U M%k"1 €M, .

b<a! d

Now, if ¢ is the characteristic function of a complete Eg—subset
of 8, then ¢ £ M, , so a' <c . On the other hand, c €M,
since a, M, € M,, . Thus M, =M _, and M <Z1‘Ma' by

further reflection.

Definition Let a be minimal. We say that a is bad if

b, a
k-1 k-1 °

Sup{K b <a} =K

We havée not been able to decide upon the existence of bad
points, but we are inclined to believe that they exist. By lemma
2,3 a jump is not bad, and it can for instance be proved that

when a is bad, the order type of the minimal b's <a is |all

itself.
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We will now define two well orderings that will be useful in

later proofs:

1. Prom standard definability theory we know that there is a well

ordering of M% -~ U MB  of order type 7%k , uniformly recursive in
B<o ”

o . ILet ao(x) be the least o such that x € M% ,
Now, let x <! y if a(x) < aly) or o(x) = aly) = o and

X 1is less than y in the orderirng on M* ~ u lVIB .
B<a

Let ! I be the associated norm.

Remark: To define <1 we do not need V =L , only a recursive
in k+2E well ordering of I .,

<! is recursive in the following sense:
Given y , we may uniformly pick x such that Uxﬂ1 = vy . Unfor-

tunately the converse, i.e. compute UxU1 from x may not be pos-

sible if we do not know for which a, X € M, . Thus

{(x,HxH1>} is w-A¥ but probably not aA¥* ,

Let v <,%( . We say that y is in row v 1if for some

89”37!‘1 =}\(k'B+V .
2. On each bAia there is a canonical well ordering <LMé of
length x§_1 defined by

X <y ¥ if x is computed from a, I and some i € S before
a

y is computed from a, I and some Jj € S , or if they are com-

puted by computations of the same length, but the index <(e,i)

of the computation of x 1is less that that of y .

x €y <> ua(x €M) < ub(y €My)

or (pa(x Edi{a) = ub(y Ec/"(b) =c & X <M T -
| c
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This well ordering has length }\{\k , but is in no sense recursive.
To be able to use it, we have to use recursive approximations:
. . e e 2 g
X <, ¥y if we restrict the definition of <~ 1o <<M-a>a€I .
Let || |12 and || HG be the associated norms,

(e}
Por x € M , let < Ix = < My; y <, %1 .

To justify the term approximation we prove:

Lemma 2,4

& For any x ; (< fx; o € On} has at most cardinality N, , .

=2

a
If x € C/Vla , then Vo > Ky _1 (<0[‘x = <Ka Mx)
k-1

¢ For any x , {IIxHO; o € On} is finite.
Remark: We will not use ¢ in this paper.

Proof:a Let o be the least ordinal such that x € M° and let a
be the least individual such that x € J‘{.g . If for some ordinal -

8 >0 < [x = 1lim <s Px, this is because we for some b < a
0

6 -6

6 0

0 o .

have J‘{,b E U< Gﬂb # @. This only happens when & € 'f{b [= ‘Ma .
= "0

Since ./"La =)’<\k__,] the lemma follows.

b Immediate from the definition and the considerations in the

proof of a.

¢ Since we do not need the result, we will not give the details

in the proof:

Let a be o-minimal if (M])_ 7 F & is minimal.

Claim Let a be o-minimal, If N%FUCMg” Zlall, a is not
b<a

o+1-minimal.
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Proof: If # is >, a will be definable from element no !lall
in < MPUMPl . If £ is <, UMy will be definable from
b<a b<a
o and the b<a such that |bl] = < [ UM .
b<a
Now, let x be given and let ag be the least a such that

X E(/%g . f{a;3 0¢ On} dis finite since o, >0 = a01 <a; .
In general we prove from the claim that if ''x!_ # lim Ixll  we

0, =0 1

1

have a; # 85,4 Or 0 is a successor and a__, £ a, .
O
Now we will prove a few results about order types of partial

orderings on I .

Let < be a partial ordering on I . Let A, B, C be sub-
sets of field (<) . ILet
o(A,B,C) <=>Va,b,c(a €A & DEB & ¢c € ¢ =
a<bal(ca)r (b)) .

< satisfies * if for all A,B,C ¢ field (<) of cardinality

<71,
©(A,B,C) = there is a d € field (<) such that A<{d=<B

and for all ¢ € C, ¢ and d are <{ =-incomparable,

Lemma 2,5 TLet £, and <, Dbe two partial orderings on I

satisfying * , Then <, and <, are isomorphic,

For proof, see e,g. Sacks [12], Theorem 16.%. This is almost the

game as proving that countable dense linear orderings are isomor-
phic.

Remark: V =1 is not required in Lemma 2.5,

Lemma 2,6 & If GCH holds, all partial orderings — @ on I
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can be imbedded in a partial ordering «(2 on I satisfying *.

b If V =1 holds, there is a partial ordering on I , recursive

in K+ , satisfying * .

Remark: Both GCH and V = I are too strong assumptions for the

respective statements,

Proof: To prove a it is sufficient to find one partial ordering
satisfying * , by the proof of Lemma 2,5 we may imbed any partial
ordering in one satisfying * . We prove b, which will just be an

effective version of 8.

k+2

Let < ©Ye the minimal well-ordering of I recursive in E .

For v < %fk , let a, be element no v in <.
Let (,): 12 - I be onto and recursive such that

va,b, ii<a,b) > max{jall,|bjl} .

We will define {<v; v < }(k} to be an increasing sequence of
partial orderings, uniformly recursive in a, » such that cardi-

nality (field (<v)) < f{£_1 . We may then for each v find a

b uniformly recursive in a  such that field (<v) = 8, . Since
(82)3 may be regarded as a subset of I , there is a well-ordering
of this set recursive in b . This is used for the following:

The tripples A, B, C of subsets of field (<v) may be in-

dexed uniformly recursive in a,, in the following way:

<A<av,0)’ B(av,o>’ C(av,c>>c€I

When <y is constructed, we automatically perform the indexing

described above.

We now describe the construction:



If )\ is a limit, let = U<, .

Assume <, 1s constructed. Pick tripple (4  ,B, ,C, > of
v v Ty

subsets of field (<V) .

Let ¢ %bve as in the definition of * , If cp(Aa B, 50y ), add
VRV ERY

a, to field (<v) , and let-

A and for each c¢ € C ,

< a < B
a v+1 1 Ta
y vt (VIR VIS v

let a,, and ¢ be incomparable, and extend < to a transi-

v+1
tive relation. (We will not add new relations between elements

of field (<V).)

w41 v

If -1m(Aa B, 4Gy ), let <
v Ty Ty

Since ¢ 1is first order over I , this construction is recursive.

Tet <*¥ = U < ,
v<pﬁcv

By construction <* satisfies * , and <* is recursive in
k+2
g

3 V =1 and the finite priority method

In this section we will give a solution to Post's problem
and a problem requiring a similar proof for extended recursion in
functionals, We will assume V =1 ,

In the proof we also give terminology and methods required
for the more complex priority argument in section 4. |

Recall the notions in section 2. Tet I = tp(k) . Let
(Ma)aGI = Spec(k+2E) , = {(a,x); x € Ma} . By reasons of con~

venience, let 'card( X ,)' mean 'finite'.
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Theorem 3.1 (V=1L)
' 1

There is Y*~definable subset Q C MxI such that when

<Na>a€I = Spec(Q) we have
a is minimal and not bad =>CA/a =OA(a .

ii a is minimal but bad = N, =M, -

Let Q) = {x; {x,b) € Q}
Qy = {&,ar; (x,@) €Q & D £ a}l
iii  {a,b Q 4 2¥(Q_,) over Spec(Q_,) . 0
Remark: Since Q. C " ;, AF and w - A¥ will be the same.

Using results in section 1 we obtain

Corollary 3.2 (V=1L)

There is a subset A of +tp(k+1) ¥ I semirecursive in

k+2E

such that

i If a 4is minimal and not bad:

k+2 (k+2

k+1 -sc(A,""“E,a) = k+1 - sc E,a)

ii If a is minimal but bad:

k+1 -sc(A,k+2E,a) [ k+1-sc(k+2E,a')

iii Va,b A, 1is not weakly recursive in A_b,k+2E,a i

W

To obtain a solution to Post's problem, let a # b be two

recursive elements of I . Then for all c¢ € I 3

A_ is not weakly recursive in Ab,c,b,k+2E , since A, is

a
k+2p | 8o A, Ay Ab,k+2E,c where <, means

recursive in A_a,b, -

'weakly recursive in! The opposite will hold by symmetry,
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By lemmas 2.5, 2,6 and corollary 3.2 we may obtain

Corollary 3.3 (V=1)

Let < be a partial ordering on I . Then there are subsets

(Bala crieta(<) ©f te(k+1) x I such that

i Each Ba is semirecursive in k+2E and some individual,
ii a-< b = B, is recursive in Bb,k+2E and some individual.
iii 7 (a<b) = B, is not weakly recursive in Bb,k+2E and

any individual.

Proof: By lemmas 2.5 and 2.6 we may assume that —< is recursive

in k+2E . Let A Dbe.as in corollary 3.2. Let for a € field(<):
Ba = {(f,b); (£,b) €A & b<La}l .

Then, if a<b , Ba is recursive in Bb and a , while if

7(a:§b), Ba is recursive in A-b’ a and Ab is recursive in Bb

k+2

and b, So, if Bb < Ba’c’ E we would have

k+2g , 1mpossible by corollary 3.2.
!

The rest of this section is devoted to the proof of theorem

Ab <w A_,s2,b,0,

3‘10
If b is recursive in a via subindividual i and natural
number e , we write b = [e,i]a . We code <(e,i) to one j € S

and write b = [j]a .

There are two kinde of conditions we want to meedt;

1.1.,]._@ H M\Q[i]a }é Ia’a(Q_[l]a)

Protect the statement

dx € M (Q) s (x,2,Q)

where i=(e,j) and in some G8del-enumeration
cPi(XsaaQ) = Cpe(xsasst) .

2.i.8
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Each condition is coded as a pair <{(i,a) € SxI , and by the re-
cursive well-orderings on S and I , we order the condifions in
the antilexicographical ordering. The order type will be ﬁ(k .

We will let v denote both a condition and its place in the order-
ing.

If v ={i,a) we call v an a-condition

If v 1,i.j.a we call v a Jl-condition

If v 2,i,a we call v a 2-condition

|

We construct Qg by induction on & = (v,0) in the antilexico-
graphical ordering, where v 1is a condition, 0 € M is called the
stage and & the position. During the construction we will create
requirements for a condition v , and if we are able to keep the
requirement disjoint from Q , v will be met, If we at some po-
Qg"'1 s We injure the

requirement., A requirement 2z is active at position € if

pition & add something in a requirement to

zNQ> = g . Otherwise it is inactive.
To meet the 1-condition v = 1.i.j.a we will appoint

candidates (r,[i]a> for v , where r = (b,r1> for some T in

row(v) , b € I such that r €My .

We will reject the candidate if we create a requirement for a con-
dition Ve <V, A candidate will always be a new element on the

construction. Since we only add unrejected candidates to Q , the
priority problem is taken care of this way. When we put a candi-

date into Q , we realize it,

We will try to meet the a-conditions inside M _. . To keep

a
control over the construction it is essential that no injury of an
a~condition takes place outside UM,a .  Thus we will refuse to do

anything with a 1.a-condition outside M . .
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We will now describe the construction:

Let Q,o=¢

If & is a limit-position, let Q> = U Q
€1<§

Let 'Qg and QEb be as defined in Theorem 3.1.

Let E = (v,0)

Case 1 Vv =14i,j.a Do nothing unless there is an E-computation

in I, a and some subindividual of length o . (Proceed to

the next position)

Is there an active requirement for v at position §°?

>
wn

If yes, let Q%' = Q5 and proceed to the next position. If
no, let r, be element no. (v,0+1) in J.ooIe UM.Z e (112
is defined (=b), let c¢ Dbe the least individual > a such that

r, €M, apd let ({c,4?,b) be a candidate for v.

Ask:dr Ecﬁ[g[(.r is a candidate for v that is not rejected)
&M o F (11 is defined (=b) & r= (r,,b
& r, €13 (@517
If yes, choose the first appointed such r and lét
(M°><I)_b**Q§b be a requirement for V.
Reject all unrealized candidates for conditions v, > V.
For v, > v, let Q<v1’°> = Q%U {r} and proceed to the
vnext stage. -
If no, let Q,g‘"k/I = Q,g and proceed to the next position.

Case 2 v = 2,i.a
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Ask: Is there an active requirement for v ? If yes, proceed to

the next position. If no

Ask: x € M2(Q%) [ o, (x,2,%)12
If no, proceed to the next position. If yes

Ask: Is this verifiable from negative information about Q con-
tained in some active requirement of higher priority? If yes,
let the active requirement of highest priority containing such
information be a requirement for v and proceed to the next
position (we do not reject candidates unnecessarily). If no,
let MG*-Qg be a requirement for v and reject all unrealized
candidates for conditions Vg > V. Then proceed to the next

position.

This ends the construction, now it Jjust remains to prove that

it works.

First note that we sometimes proceed to the next stage, some-
times proceed to the next position. There are technical reasons for
not wanting to add more than one element to Q at each stage while
we do not hesitate too much in dealing with the 2 -conditions.

If we at stage o0 ask the questions about v given above, we

say that we pay attention to v at stage o.

By construction, Q,g is uniformly recursive in §. Moreover,
Qg is a subset of 4M x I. To prove that Q is I*, we must
prove that when r = ((c,rq),b) is put into Qg, E GCALP‘ If r,
is in row v, v will be recursive in ¢ and some subindividual,
by choice of c¢. But the stage o at which we realize r is re-

cursive in v and some subindividual, so & = (v,0) € M _ <M ..
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We make a change on a condition v at position §1 if we realize

or reject a candidate for v, create or injure a requirement for Vv

at position '§1.

Claim 1 Let v bhe . a condition

{€,; we make a change on v at §,} has at most cardinality N, _, .

Proof: We cannot make a change on a condition v more that once
without making a change on a condifion < v. Then the proof is by

standard induvction on V.
Corollary ¥ vdE (After & we do not make a change on Vv )

Proof: This follows by claim 1, since the cofinality of our con-
struction is N, .

Remark: The argument used in claim 1 will be refered to as 'the

priority argument’'.

Claim 2 Let a Dbe minimal and not bad. Let Vv be an a-condi-
tion. There is a stage o Eﬂﬁta after which we will always pay
attention to v. In particular, after stage o, no injury of a

v-requirement will take place.

Proof: After o = Sup{KE_,l;bf_a} we will only realize candidates
for c-conditions where ¢ > a., There are at most »(k_z such
conditions of higher priority that v, and for each such conditions
‘there will by the priority argument be realized at most )(“k_E can—
didates after Og o Since the only reason not to pay attention to a
condition is that we at the same stage realize a candidate for a con-
dition of higher priority, and since K§_1 has cofinality }%hk_q,
the claim follows by the standard argument.
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Claim 3 _M,, is rudimentary closed relative to Q.

Proof: Let x € J’La . Let b be the least individual such that
X € TC (M), and let y eﬁﬂib be transitive such that x € y,
X Cy. Bydefinition, b is minimal and not bad. In ZE-recursion
there is an index e such that vy = {e}(v,1,i) for some subindi-

viduval i, so the formula

Yu€y (u€EQVugQ)

is protected by some 2.b-condition wv.

By claim 2 there wjl.l'l be a o ed‘ib after which we always pay at-
tention to v. Thus, at the first o, > 0 such that
<e,a,I,i,y>|| <0, (as a E-computation) there will either be a
requirement for Vv or we will create one. This requirement will
never be injured. Thus, for some ¢§ E(/Vib , yN Qg =yNQ Erﬂtb .
Since b<a, Q° €M, , anda xnQ5-xnqeM .

Definition. Let x € M. We say that 'x € J‘/{a(Q)' is finally

protected at stage o if for some e €w, i € S, the statement
{e}Q (i,a,I) = x is protected by a requirement active at stage o

~that is never injured.

Claim 4 Let a,c € I. Let & evkta,c be an ordinal and let
X € J/ta(Q)' be finally protected at stage & . Assume that in E-
recursion {e}Q(}?) ~x, Then there is a o > 58, o E”Ma,c such
that '

X euﬂtg(q<°’°>><x:={e}Q<°’°><§))

Remark: In the application, X will come from I U {I}, in which
case the assumption is trivially true. The aésumption on X seems

essential to make the inductive proof work.
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Proof: We prove this by induction on the length of the computation
{e}Q(i).: X. We give the cases where schemes v or iv is used.
The methods used here cover vii as well. i,3ii, iii are trivial

and vi is covered by claim 3.

Case v Composition

{e}(}) = (e }(fg}(X),...,{e, }(¥),%)

Let &, = Ki;f’] . By the induction hypothesis there will be stages
84900050, in “Nt(a,cy such that for 1 <m <n
0,%

3 v, emzm<q<°’5m>><ym o {em1Q< ’ m><3‘c> ) .
The associated conditions will be a-~conditions, so they will be
paid attention to and never injured after 6n+’l = Max{bm;’lfmSn}ZKla(:_?!.
Thus at stage & .., all 'y, Ecﬁla(Q)' is finally protected. By
the induction hypothesis again, there is a 6n+2 Z-6n+1 inc[i(a’c>{

such that ]
) 0,6_ .7 0,8,,27 -
Ix e M@ TP D@2 e )Y (Tgheeeny D)

Since “ﬁi<a,c) <21‘f4(a,c)' , we find a o in Lﬂl(a,c) having the
same property as 6n+2 above.
Case iv {e}(xq,...,xn) =~ U {eql(y,xg,..,,xn)

yEx,]
where X, E‘Jwa(Q),...,xn Ecﬂ{a(Q) are all finally protected at

stage & .

First note that when X, 1s computed from a and I, there will
bea 1~-1map f from an initial segment of <(I,<) onto X, uni-
formly recursive in the computation of X, . We regard the case
when f is defined on the whole of I. The other case is simpler.

For each y = £(b)€x,, 'y e(/\/lal p(Q) will be finally protected
9
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at stage ©o&.
We want to find a stage where all computations
{e,I}Q(f(b),xz,...,xn) for b € T are convergent, and first we do

this for all initial segments of 1I.

Subclaim

yeyy e‘j‘/La,cvb € Ido, Edw‘(c,a,b)(ob>Y &

o (0,0,) (0,9
Faspang €M @ e (@) ) =)

Proof: After Kf{f,"a’b> none of the associated conditions will be
injured for 4 < b. By the induction hypothesis there will for all
d <b be an ordinal after I£]<{S,’la"b> at which the computation

(e,1(£(a),%pen e s%,)

is protected, and the associated requirement is never injured.
Thus, using I*-collection we find a candidate for o, in M .
b (C,&,b),
and by reflection we find it in rJVL<c a,b) ° This proves the sub-
1 :

claim,

Now we use the DC described in section 2.
Let 6 = Kf{f)‘@ . By the subclaim, find a sequence (5b>bEI €
c/1/[<a,c>. such that b, <b, => 6b1 < 6b2 and
_ 6b <O’6b> . Q<O,6b>
vbYa < p3xg €M° (Q ({eq) (£0d) %5y 0 ee X)) = Xg)
Let o = Sup{d,;b€ I}.

-

Since the cofinality of 9% is x? We may use the priority argu-

ment on the construction below S i.e. for each condition Vv

there is some stage o0,, < % such that between Oy and o, we do
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not\change on v. The sequence {6b}bEI is constructed so that
for each 4 € I, the statement {e43%°(£(a) 55,00 ,x)) ¥ will
be protected cofinally many times below Oy e Thus for all 4, this
computation converges at stage (o,oo).

(o,

(0,07

>
But then 7 x Ecﬁizg’c>(Q ‘°o )(x==ng{ei}Q (f(d),xz,...,xn))°

Using reflection we find o in(/M (a.c) gaving the same property.
9
0
Claim 5

If a is minimal and not bad

~

M) =M, |
If a is minimal and bad

MG(Q) €M,y -

Proof: Let a be minimal but not bad.

If x € g%a(Q) there is an index e and subindividual i such
that x = {e}(a,i,I).

a,I and 1 are all finally protected as elements of<JWLa from
the very beginning. There will be an a-condition v associated

with the statement
-x €M ,(Q) {e}Q(a,i,I) ~ x

By claim 2 +there is a o EL/{a such that after o we always pay
attention to v. By claim 4 there is a o, >0 in(y%,a such
that 5 <0,0,«|>
- 1 Q .

Jx €M, (] (2,i,I) = x

(0,0,1 (V,C,])
Since we pay attention to v at stage Tqs Q = Q .

If there is no active requierment for v at stage 0, We

will create one, and this requirement will never be injured.
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(V,G,‘> ’
Then x = {e}Q (a,i,I) = [e}Q(a,i,I) by the same compu-
tation. Since o, Gc;Ma and v E(_/{’[a,
(v,y0)
{e}Q' (a,i,I) EJ/La . This was what we wanted to prove.

If a is bad, we use claim 4 again, noting that after Ki_,‘ ’

v will always be paid attention to. 0

Remarks

1. We have now verified parts i and ii in the theorem.

2. If a is bad and CMa ;éd/[a(Q) , then Kli—’l will be in
M@, 2t €M (Q) so M Q) =M, .

3. By Gandy's selection operator, the general statement

'3x €M (Vey;(x,a2,I)' is equivalent to the convergence of

a certain computation. Thus we have 'met' all 2-conditions

by claim 5.
Claim 6 If a is minimal, not bad and not the jump of a bad,

and if v is a 1.a-condition, there is a o EJ“La after which
i We will always pay attention to v

ii No candidate for v is rejected.

Proof: i is known from claim 2.

To prove ii we prove the following:

Subclaim Let 2 be another condition. We reject a candidate
for v due to v, if we create a requirement for v, while we re-
ject the candidate.

If we at a stage after K = Sup{KE_,];b <a} reject a candidate

for v due to a condition v,, Vaq is an a-condition.
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Proof of subclaim:

Assume that the subclaim is false, let o > K,v, constitute
a counterexample. Since we are not dealing with 1.,b-conditions

for b <a after K, v, is a 2.b-condition for some b < a.
(V4,0
Assume that Jx €M 2(Q

Let b, be minimal such that b Ecﬁib . Then there is an i € S
. o

),
)wj(x,b,I) where v, = 2.3,b.

such that
4 X[ij(x,b,:[) = cpi(x,bo,I)]

Let Vo be the condition protecting

E' X e(}'(. b (Q)cPi(x’bo’I) -
o

By claim 5, this will be met in(jA_b if bo is not bad, and in
0
Moy if b is bad,
LMbo 0
In any case, since a 1is neither bad nor the jump of a bad,
there is some g, < K such that at stage o0, , v, is finally met

with a requirement.

o
Moreover, for some 04 <K, b Eoﬁ{bq .
o

Thus after Max(co,cq), if we pay attention to v, , all informa-
tion we need is contained in the still active requierment for Vo .

But then we would not reject anything. This proves the subclaim.

To end the proof of the claim, note that between K and K;_q
the set of conditions due to which we reject a candidate for v has

cardinality -5’}(k-2’ and we may apply the priority argument.
0

We are now ready to end the proof of the theorem, i.e. prove

iii. To obtain a contradiction, assume that for some a,b, jé,

M“Q,b = I, a(Q-b)°

Jo’



Let c¢ be minimal, not bad and not the jump of a bad such that
a,b €M, . Then for some i,j €5, b =[il® and I, a(9y) =
. '\ o’ -

Ij,a(Q-[i]C)'

Let v be {1,i,j,e). By claim 6, let o €M _ be such that
after o, no requirement for v will be injured, we will always
pay attention to v and no candidate for v will be rejected.

If we at some stage 0, > ¢ realize a candidate r = {r,,b)
for v, r, will be a counterexample to M>Q = Ijo,a(Q;b)’ since
Ty €@y T ET; (A).

So let r = (r,,b) Dbe a candidate that is neither rejected nor
realized. Then 1, 4 Qb, so 1, € Ij,c(Q;b)' Using claim 5 we
find o0, > 0 such that '

(V,01>
) and we pay attention to v at stage 0,. But

%
r, € Ij,C(Q
then we would add something to Qb at stage o, , or there would
exist an active requierment for v at stage 0, e In both cases
-we obtain a contradiction.

This ends the proof of theorem 3.1.

4, V =1 and the minimal pair problem for extended degrees

of functionals

Let <Ma>a€I = Spec(k+2E). Recall from section 1 the defini-

' . 1 c . 9) PR
tion of M, Ii,a and the partial set J(i,j),a’ and the defini-

tions of row, <1, <y etc. from section 2.
Our aim in this section will be to give a solution to the mini- .
mal pair problem, in the style of section 3. The main theorem will

be the following:
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Theorem 4.1 (V=T)

There exist two disjoint subsets A and B of 1M (both re-

cursive in AUB) both I*-definable such that
i Ya€I, neither A nor B are A* ~definable.

ii If a is a jump, then i (AUB) =M.

If a is a limit of jumps,gjﬂa(AtJB) E(}ta"

iii If C is w-A;(A)—definable over Spec(4) and w-—A;(B)-
definable over ©Spec(B) for some a,b € I, there is a

c € I such that C is w- A’-definsble over Spec(¥*°E).

Corollary 4.2 (V=1)

There exist two subsets A, and B, of tp(k+1) , both semi-

k+2

recursive in E such that neither A1 nor Bq is recursive in

k+2E and any individual, and whenever a type k+2 functional T
is weakly recursive both in Aq and an individual and in B,I and

" k+2

an individual, then F is weakly recursive in E and an indi-

vidual.

The rest of this section will be devoted to the proof of theo-
rem 4.1. The proof is based on the w-case (Lachlan [4], Yates[5))
as presented in Shoenfield [14], with inspiration from Lerman-Sacks
{5]. It will be an advantage to have the proof in Shoenfield [14]
in mind.

We are led to the following conditions

a 1.B.i.a B # Ji,a

1oA.i.a A £ Ji,

.?.i.a" Protection of the statement

Jx € J"(a(AU B)o, (x,a,AU B)
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. A) = 7. B and both are total

1ya, ) = 35 o (®) :
. . * .

then -this set is weakly A -definable over <M5>bEI

3.1q,1p,(ay,85): If J

for some a.

As in section 3. we use the notions a-conditions, 1-conditions,
2-conditions, 3-conditions and in addition A-conditions and B-con-
ditions. The meaning of these notions should be clear.

Throughout the coﬁstruction we will concentrate on the A-cases,

If nothing else is mentioned, there will be an analogue B-case.

As in section 3 we index the conditions by pairs <(i,a)
ordered in the antilexicographical ordering. We identify a condition
with its place v in this ordering. Define position and stage és
in section 3.

To satisfy the 3-conditions we need infinitely many require-
ments, and the problem of priority will be more difficult than in
section 3. Before We begin on the formal construction we yill give
a brief idea of what will happen:

For each position & = (v,0) we define subsets A% ana B®

of 1M, uniformly recursive in v,0, We let A = U AS and

5 T E€Pos.
_€€Pos. )

It will follow from the construckfon that if r € A there is
a §€M, suchthat r € A5, Thus A will be S*-definable.
The same will hold for B,
We only put elements into A +to meet the 1.A-conditions, and for
each condition, we put at most one element into A. | At certain
points in the construction we will appoint candidates <{(a,r) for a
1-condition v, where r will be in row v. Thése may be realized
or rejected. For reasons of convenience, we say that a candidate

(a,r? is from row v if r is in row v.
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To meet the 2-conditions we act like we did in section 3.

To meet a 3-condition we need M-infinitely many requirements.
Given y € M, we may want to protect y € Ji,a(A) or y € Ji,a(A)
by a requirement 2z for A with argument y and value 'yes' or
"No' according to which statement we protect.

We use active and inactive as in section 3. If VvV is a 3-con-
dition and if 2z 1is a v-requirement for A active at position &,
we call 2z effective if there is no v-requirement Z4 for B ac-

tive at position & with the same argument and value as 2z . Other-

wise 2z 1is called ineffective. A requirement is called essential

if it is effective at position & for all sufficiently large E.

Otherwise it is called inessential.

We use realize and reject for candidates as in section 3.
Throﬁgh the rejecting of candidates we take care of the priority
problem and some other technical problems.

We will now state some important properties about candidates and

requirements, and thereby provea claim:

{

1. A candidate r for A can only be realized if it is not re-

jected, and we realize at most one candidate from each row.

2. When we appoint r at some position £, r will not be in any

requirement created at some position 81 2 B

5. Whén a requirement for a 2-condition Vv is created, all un-
realized candidates from rows > v will be rejected (we will
also reject some candidates when we create a 3-requirement,

see the construction).

4. If we realize a candidate from row v, we reject all unrealized

candidates from rows 2> v.
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From 1, 2 and 3 it follows that an unrealized candidate for v

will never be in a 2—requirement for a condition < v. Adding &4

we obtain

Claim 1 Let z, and Z5 be two requirements active at position
€, and assume that they are injured at stages 0, and P by T4
and T, Tesp. Assume 0, < On,y T4 is from v,; and r, is from

Vs . Then Vo < Vg e

Proof: Both r, and r, are appointed before position § by 2.
If V, < Vo, Tp would have been rejected when r, was realized,
by 4, and by 1 would not have been realized itself. By the other

part of 1, v, # v, and the claim follows.

Definition of P and Q

For each condition v, and set y € M, we define sets

Pé(vo,y) and Qé(vo) by induction on £ = {v,0) as follows:

r € Pé(vo,y) if r € Qéq(vo) for all §, = (vq,cq>

such that ||y||,l <8 <& and r is from wv,.

T € Qé(vo) if there is a v, < V, such that for some ¥
there is a vq—requirement z for A with argument y effective

at position &, and r ¢ Pé(vq,Y) and T € z,

Remarks

1. We have the following monotonity properties:

a vy <vy = Qv € Qv

b § <& = P%q(v,y) 2 ng(v,y)

2. When E < Hy“q, Pé is the entire universe. However, we will
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only deal with P%(V,y) in the case when it is an element
of M,

Now recall from section 2 +the definition of < and <5 -

If z is a requirement for a 3%-condition VvV with argument Yy,

r € z is called a key-element of 2z at stage o if 1 € qM is

from row v, and v, > v+lyl, -

If 2z is created at stage d, we will reject all unrealized
candidates from rows > v,+|yll;. This takes care of some of the
priority problems for 3-conditions. In addition elements from row
v in Qé(v) will not be put into A at position E£.

We are now ready to describe the construction:

Case 1.A,i,a = v E = {(v,0)

Ask Is there an element in Ag from row v ?

It yes, let AS*" - A% B5*1 _ 8% and proceed to the next

position. If no, let r be element no. (V,0+1) in <.

Let b be the least individual > a such
that r € Mg+1, and let r, = {(b,r) be a candidate for v.
Reject all candidates T from row v not satisfying
Vc (if for some i € 8 o0 is the length of a computation
in ¢,i,I then r, Ecﬁtg ) .

(We reject candidates not being recursive in the stage.) Then

Ask Is there an unrejected candidate r = (b,rq> for v such

that = ¢ J° r & Qé(v), but E € Mg. If there is such

i,a?
candidate from row v, let r be the first appointed one.

E+v E+v

Tet A © =a5U{r}, B  ©=38% for all v, such that
1< Vo </ka. Reject all unrealized candidates for condi-

tions > v, and proceed to the next stage.



If there is no such candidate, let AT Ag, B§+/I = Bg

and proceed to the next position.

Case 1.B.,i,a = v E = (v,0)

This is like the case above, with A and B interchanged.

Remark If we in one of these cases put something into A from

row v, it is clear that we meet condition v.

Case 2,i.a = Vv g = (v,0)

Let AS*1 - a5  B5+1 _ g%,

Agk: Is there a v-requirement active at position §?

If yes, proceed to the next position. If no

Ask: Ix € MI(APUBS (g, (x,a,a5UB%)] 2
If no, proceed to the next position., If yes, create a require-
ment for Vv consisting of Mc—~Ag and reject all unrealized

candidates for conditions > v . Then proceed to the next

position.
Remark If we at stage o appoint a candidate r, r € MG+1\ Mo,

and will thus be outside the requirement created here.

This case is divided in an A-part and a B-part. We describe

the A-part. The B-part is symmetric to the A-part. Let A5 - aS

B€+1 _ B§°

b

Let y € U M6 be the <0—least element such that there is no
6<o
active v-requirement for A with argument y, if such y exist.

If not, proceed to the next position. Do nothing unless no I <0y'
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is the argument of an effective v-requirement for A and

b g ) 3
y € UJ; (A®) or y & UJ; (A>)
5<g 11134 s<o L1139

(recall that Jg (Ag) is a partial set).

198

Let & be the least ordinal such that y € Jiq,aq(Ag) or
y £ Jg a (Ag). Then create a v-requirement 2z for A with ar-
gument y and value i, i being the answer to the question
y € qu’aq(Ag)Z Let 2z consist of (M°(A%)~a5n"M°. Reject
all unrealized candidates that are from rows > v+|yll;. Then
proceed to the next position.

When £ is a limit, we let A - v qu and B> = U ng.

51<5 81<8

This ends the construction of A and B.
Claim 2 Both A and B are *-definable.

Proof: r € A <> 3¢ €<;{r (r€EAg) and A% is uniformly recursive

in €, The same will hold for B. (]

In the M-finite injury method in section 3, we satisfied all
2-conditions v by paying attention to them at all stages in
CAqv"oﬂiv' In the present situation we do not stop realizing can-
didates for Vv at K;_q , S0 we have to prove that the methods from

section 3 can be used.

Claim 3 Let a be minimal, ¢ = a',
a We will pay attention to all a-conditions at all stages between

a c
Kk_,I and Kk—4°

If v is an a-condition and 2z is a v-requirement active at

[=2

some position between Ki—ﬂ and K;_q, then 2z is never injured.



Proof: ILet b < a and assume that we at some stage 0, Ki—ﬂ <

g < Kﬁ_q realize a candidate r for some b-condition Vo' Then

M, E Jegdr € A5 (r is from row vo)
Since v E(y%a we may use reflection, which gives
tha = A Edr € AS (r is from row vo)

But if that is the case we would do nothing with Vo at stage o .
This proves 8.

To prove b, let =z €M  be the requirement. If r € z is
put into A, r would have been appointed as a candidate before the
creation of z. Since r was not rejected when 2 was created,

r is from a row Vi< Ve vy will be recursive in a and a sub-
individual. Assume such r exist for a condition Vg < V. There
are two possibilities:

51

gﬂ c
1. r €A "UB for a §, = <v1,01) <K _4-

52

g
2yBe2,

By a, there is a E5 < Kli_,l such that r € A

But this contradicts the assumption on r and z.

2, T 1is put into A U B at some position E, = <V1a°1>.2 Kﬁ_q.
Since Eq shall be recursive in r, we cannot have r E(/%c.
But since r was appointed when 2z was created, there will be
some ordinal o 61/%0 such that r is appointed at stage o
and such that there for some i € S is a computation in i,c,I
of length o, But then we would reject =r at this stage,

which leads to a contradiction.

Claim 4 If a =%9b' and v is a 2.a-condition, then v is in-
jured at most Jh?k_g times between stage Kg_q and K;-ﬂ’ and

: a a'
from claim 5, not between K, and X ..
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Proof: By claim 3, if a “1-condition recursive in b and some
i € S is met below Kﬁ_q, it is met below Ki_q. In addition to
such conditions there are at most }w?k_g conditions which are al-

lowed to injure v, and each will do it at most once.
0

Combining claims % and 4 with the methods from the proof of theorem

3.1, we see that ii in the theorem must hold.

Remark We will obtain that nﬂia(AJJB) =Cﬁ4a whenever a is mi-

nimal and

UM, < .
b to zqoﬁta

This is known not to hold for certain a, but definitely for more

than Jjust the jumps.

Claim 5 TLet y,v be given, v a J-condition.

Then the set of wv-requirements with argument y has cardinality

at most }%Ak_q.

Proof: We can injure a requirement 2z with argument Yy only if we
put into 2z an r not being a key-element of 2z at the stage when
z was created, i.e. for some o, r is from a row < v+|lyll,.

By lemma 2.4.a there is an ordinal vy < }(k such that
VGHYHG <Y. Thus r will be from a row < v+YyY ., Since we never

add more than one element from each row to A UB ; the claim follows.

Claim 6 If =z is an inessential requirement with argument Yy,

then for some §_ , ¥§ > & , z is ineffective at position §.

Proof: Let 2z be an inessential A-requirement for v with argu-
ment y. Then by claim 5, the set of B-requirements for v with

argument y has cardinality at most )%?k—1° Assume that 2z is
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never injured. If all B-requirements for v with argument y are
injured, 2z is essential, so let Z4 be a B-requierment for v
with argument y that is never injured. Thus, when both 2z and 24
are created, they must either both be effective or both ineffective.
The latter must hold since 2z is inessential.

If 2z is inJured, it is ineffective after that stage.

Claim 7 Let v be a chondition. The set of essential v-require-

ments is M-finite, i.e. an element of M.

Proof: Let z be essential with argument y. (If no such 2z exist

the claim is trivial.) Let o, be such that after stage o,, =z

is effective. By lemma 2.4.a there is a 0, > 0, such that for

all o0 >o0,, < |y = <02[‘y,

By claim 5 there will throughout the entire construction be created

at most }NQk_q A - or B-requierments for v with arguments ~<025r.
Let these be created at a stage 03|3 05 Then, after stage 05

no new v-requirements will be created (see the construction, part 3).

Let X Dbe the set of wv-requirements active at stage 03.

Subclaim There is a stage o, > 0z such that for all 2z € X, if

z 1is ever injured, 2z will be injured before stage Oy o

Proof of subclaim: It is sufficient to prove that we only ingjure

elements of X at a finite number of stages after stage Oz - Let -
Zq12p € X. Assume that at stages 0,4 <0,,, 2, and z, are
injured by T, and rs from rows V4 and V5> Tesp. By claim 1
Vo <v,. Thus an infinite sequence of injuries gives an infinite
descending sequence of rows. This proves the subclaim.

Then all v-requirements active at stage Oy will be active for

ever, and a requirement is essential if and only it is effective at
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stage o0, . This proves the claim.

O

Claim 8 ILet v = 14,12,(a1,a2). Assume that Jiq, (4) = J12, éB)
and that both are total. Choose b such that

(aq,85) €M and let y,§ €M, . Then for some §; €M, (5;>E
and there are ineffective requirements for A and B with argument

¥y, active at position E,.

Proof: We find such §, in u&[b, , and then use reflection.
Let &, = 0, = K2, (§,=C0,0,)). By claim 2.4.b ,
Py . Moreover there will be some 2.b'-con-

T >0, => <¢'ry - <02

dition Vo protecting the following Eq-statement:
<

and since ii of the theorem holds, there will at some stage

03 > Q2, 05 Er'Ub. be a permanent requirement protecting this fact
(i.e. the requirement is never inured). By claim 3.a we will pay
attention to v at all stages between 3 and Kilq. Thus it fol-

lows by induction on |ly,ll,  for y, <, ¥y that at position
2 2

}Ck-ca + }(]K‘“Yqﬂc + v, there will be ineffective v-require-
' 2

ments for A and B with argument T

(See the relevant part of case 3 in the construction.)

Let &, = )@ko (034-HyH0)4-v. g Egﬁtb, and has the wanted pro-

perty.
0

Definition 1 € QA(v) if r € LY and for all sufficiently large

gq = <an°1>’ if r» is from row 2K then r € Qéq(v)-

Remark From the definition of Qg (v) and the construction of re-

quirements in case 3 of the constructlon it follows ahat Qg(v)<21M.



In particular all requirements for 3?-conditions are subsets of 1Ml.

Claim 9 Let 2z be an essential v-requirement with argument y.

Then 1z C vy .

Proof: Let o0, Dbe such that after stage oJ,, z is effective and
Hqu <(0,0,>. ILet r € z be from row n. Assume that for co-
finally many © > 0,, T £ Q?n,o>(v)' We will obtain a contradic-
tion:
Let 0, > 0, be arbitrary and let c5 > 0, be such that

r gt (n.o >(v) Using the definition of Q%n,05>(v) and the fact
that 2z w1th argument y is effective at position (n,GB), we see
that r € PAn s >(v,y) But then 1r € Qg (v) for all

gy = (M0, < (n 05) such that Hy” < §4, by definition of
P?n,03>(v,y). This is satisfied by §, = (n,o2) , So rGEQ(n,c2%V)‘

0, was arbitrary chosen. This contradicts the assumption and

r € Q*v). Cl

Claim 10 Let r € QA(v). Then there is & v, < v such that r

is the element of an essential vq—requirement.

Proof: The 3-conditions will be of two types:
Let v, = (i, ,i5,{a ,85)) .

Type_ 1 There is an essential vq-requirement, or for some y, ¥

is not the argument of any permanent vq-requirement for A or B.

(In this last case, either J, (A) or J. (B) is not total.)
11,89 1298p
Type 2 There are permanent ineffective vq—requirements for A and
B with argument y for all y € M. (In this case Js (A) =
1184

J. (B) and both are total.)
10:8p
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For conditions v, of type 1, there will be a stage after
which we neither create nor injure vq-requirements (see proof of
claim 7). Since there are at most ;th—ﬂ conditions v, < v we

find a o, 8o large that
A .
> -
1. For o > g , T € Q(n,o)(v) where r is from row 1.

2. For ve 2 v of type 1, no V,-requirements are created or

injured after stage g e

Now, let o > o . Let Vi < v be a 5—condifion of type 2. Then

o)
there is a 2-condition protecting the following statement:

e M° €J. L) <> vEJ. B
vy (v 14,a1< ) y J12,a2( ))

and since Vq is of type 2, this will be met at some stage 5,2 0.
(Since ii in the theorem holds.) Let b be such that M° €M,

and 6, €M, . Now, if y €M, there will, by claim 8, be a po-
sition (vqy85) in CALb,c such that &, > 8, and y is the argu-
ment of ineffective V,-requirements for A and B at position

Vaa8o0
5 (VA,8,5) 6 0,8,+1)
oy 25 @
1484 113
. . 6/‘] (\)- ,62)
will hold for B. Also 'y € J. (A L
1484

By choice of 6,, J ) and the same

)' has a value. Then
by the construction, part 3, the vq-requirements mentioned above

6
will be subsets of M 1 (AgLJBg)4 When we at stage 6, created a

permanent requirement for the 2-condition, we prevented new =r's
8
from WM 1 to be added to A U B. Thus the vq—requirements will

be permanent.

Using £*-collection over M’ we find 65 Gc/%b such that

Yy € M° (y is the argument of permanent vq-requirements for

A and B, ineffective at stage 62.
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Since there are at most ){Rk_q conditions v1;§ vV, we may

find a 64 > ¢ such that

* V\W <v (\),| of type 2 => y € M (y is the argument of
permanent vq—requirements for A and B, ineffective

at stage 64-))

Let {cn}néw be an increasing sequence starting with the given %
such that the relation between S and % is as * between 64
and 0.

This is not constructive, so we use full ordinary DC.

Let o0 = Sup{on},

By choice of o_, T € Q"znm(v) , and by definition of Q‘én,c,)
there is a Va2V such that r is the element of an effective Va-

requirement with some argument y at position <{(n,0).

If Vi is of type 1, we are safe since then after stage Og 9 ef-

fective and essential vq—requirements are the same.

We will prove that Va is not of type 2.

Assume it is. Then Yy € 62 M6 since these are the‘only arguments
o

o
considered up to and at stage o¢. But then for some Ony ¥ € M n1

and after stage o 'y is argument of permanent, ineffective V4=

n+1°?
requirements. This contradicts that y is the argument of an ef-

fective v,-requirement at position {n,0).
!

Remark In the proof of this lemma we did not use the properties
of P and several of the properties of Q. The construction of
the sequence o is, however, not valid in the w-case, so the

analogous point in that proof is, in idea, more complicated.

From claims 7, 9 and 10 we obtain
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Claim 11 For each v, Q(v) € M.

Proof: Q,A(\)) = {r;f\_zﬂv,lgv (r€z and z is an essential

Vv, -requirement)} ,

by claims 9 and 10. By claim 7, for each Vi<V

{r;4z (r€z and z is an essential v,]—requirement)}

isin M, and M is closed under subsets of cardinality at most

')\(\k-’l ° 0

Observation

4.

A candidate from row v can be rejected for four reasons:

We realize a candidate for a condition < wv. Since we realigze
at most one candidate for each condition, this way of rejecting

candidates takes an end.

We create a vq-requirement for a 2-condition v, <v. By
the priority argument this happens at most >*?k-1 times, and

takes an end.

We create a vq—requirement with argument 7y, where v, is a
5-condition, and v > Vq'*”ync- For each Vi there are at
most )V?k_q arguments y that will satisfy the inequality, by
lemma 2.4,a, and for each y there is by claim 5 at most
%Ck_q such requirements. Thus this rejecting also comes to

an end.

r is rejected when we appoint a candidate less complex than .

Claim 12 Let r,y,V Ecﬂlb and assume that r £ QA(v).
There is a § Eoﬂib such that r & Pé(v,y).

For any & €cM, there is a €, €M, , &, > £, such that
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r & Qé (v), where g, = <V1a°1> and r 1is from row v, (if
1
r £ 1M, r £ Qé (v) for all E sV ).
I]

Proof: a follows from b by chosing & = Hy”qz If for &, = (V4,047
we have that r £ Q% (v), we have that r £ Pg +1(v,y) by defini-
1 1

tion of P§q+1(v,y).

Proof of b We seek &, in‘wNLb. , and then use reflection,

Subclaim There is an increasing sequence <6a>a€I in M pt Ssuch
b
Fhat 60 = Kk_1 and
Yavv, <v (v, is a 3-condition => ¥ z,,y, (If 2z, is an effec-
tive v2-requirement for A with argument ¥q at stage éa, and

r €2 then z4 will be ineffective at some stage between 6

10 a

and 6a+1)) °

Proof: We will use DC over I, so let &, e<ﬁ4a,b' be given,
and assume & > KE-W‘

For some Vo 2V, let Z, be a v2—requirement with argument Iq
arbitrarily chosen such that y, € ME’a and r € z,. Let c be
such that iy, €;A{za. Since r € z, and T [ QA(v), z, will not
be essential by claim 9. Thus Z will either be injured or there
will be some permanent v2-requirement for B with argument ¥4 and
the same value as Z, . In the first case the injury will, by
claim 3 take place before stage Kilg"c; In the second case,
when we have a permanent v2-réquirement for B, this will be cre-
ated before stage Kﬁf%b"c>' , and by reflection there will be a
vg—requirement for B with the same value and answer as Zg s active

at some position inc/%, In both cases there is a position

a,b',c*
§2 eC}{a,b',c such that €2 > (o,&a) and z, is ineffective at

position §&,.
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6
Now we may use XL*-collection on M & and find 6a+1\ as re-

quired. This ends the proof of the subclaim,

Now, let 05 = Sup{s,; a€ I}

Assume r € 5 >(v). From this we will prove a contradiction:
3

Va5
By assumption r will at position (v1,05> be the element of some

effective ve-requirement Z4 with argument Y4 for some Vo SV

and I € U Ma.
6<05

There are three possibilities:

[

z, 1s effective at position (0,05>
b z, is active but ineffective at position (o,05>

¢ 2z, 1is created between position <O’05> and <v1,03)

Impossibility of a: If =z, is effective at position (0,05), z
would be effective at all stages below 03 except on a proper ini-

tial segment. This is impossible by choice of 05.

Impossibility of b: If Db holds, there will be an injury of a v -
requirement for B with value Yy, somewhere between positibns

(0,05) and (vq,05>. Assume that some T from some row Vg is
put into B before position (v4,03> at stage Tze Vz <V, so

by reflection this would have been done before KE—W < Oz .

Impossibility of c: Let 1z, be a v,-requirement, v, = iq,ig(aqﬁgg.

Since we at gtage 05 create Z with argument I there will for
all y, <.y, in U M6 be ineffective v,-requirements for A

2 o Y1 > 2
and B with argument I at stage 05. These will all be created
at some stage 0, < Tz s since 05 has cofinality }“fk. We may
also assume that for oy, 20 < 05, <5 FY4 =.<04 qu.

Since we create 2., with argument T4 at stage 05, by case 3
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in the construction (recall that J is partial):

ye u gd (A<V2’05>) vy g u a° (A<v2’05>

6<g L1113 §<a 1113

(v2,05> i A<0,05>

Now A by the proof of the impossibility of b .

Then for some 95 < 9z
y € J?S (A< .
14,89 iqs
Since 93 has cofinality )Qﬁk we may use the priority argument
and some 2-condition to find a gg > max{o5,c4} and 0g < 05 such

that for 06-5 g < 03

o {0,05) o (0,07

32 @ T3y g2 @
19284 142589

But then a v2-requirement with argument ¥y, would have been created

first time we paid attention to v, after stage og. Since we are

above K;_q, this requirement cannot be injured, so we cannot have

C .
These arguments show that r £ Q% >(v).

V)03
Let &, = <v1’°5>' €4 Ecﬁib. , but by reflection we find a similar

one in (M, .

We are now ready to prove i of the theorem:

Assume that A = Ji a° We want to obtain a contradiction.
b ]

Let v = 1,A.i.a. If we ever put an r from row v into A, we

know that A # Ji must hold, so there is no element in A from
92

a
TOW V.
There will be a stage o0 in the construction such that
i After o we do not reject candidates from row v due to

reasons 1 -3% in the observation,
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ii After ¢ we will always pay attention to v

iii All elements in QA(v) that are in A will be in A<°’°>,
and Q*(v) € M°.

We may assume that o = Ki-ﬂ for some b. Then we will appoint

a candidate r for v at stage o. Since r €A, r goJi,a and
there will be a o, Ecﬁtb. such that o0, >0 and r £ Jija‘

By claim 12,b there will be a position § Gcﬂlb. such that

E = (v,oz) for some 0,, and T 4 Q%(v). (Recall that I'ﬂG%(v).)

But & will be recursive in r, so at stage o, we will put some-
thing into A from row v (see case 1 of the construction). This

gives the contradiction, since by choice of 0 = Ki-ﬂ we will not

reject r due to reason 4. o

We will now end this proof by proving iii in the theorem.

Let v = iq,ie,(aq,a2> and assume that Jiqaq(A) =J (B)

12,a2
and that both are total.

By claim 11, QA(v) and QB(v) are both elements of M.

(0,04 ~
Let o4 be so large that A 1 rwqﬁ(v) = Ar1QA(v) and

(0,0
57 A By = BB .

Let o0, > 0, Dbe so large that all r's form rows < V that ever
go into A U B will be there at stage o, . Let b be such that
v,oz,QA(v),QB(v) are all elements of ﬁﬂib . We will prove that
Jiq,aq(A> is wu-A;.

Let y E(/%b,c be given. For some o E‘J%b,c’
Bly oy €My o (orge IlT < <oy0))
By claim 12a :

Vave € [P, ()~ PWDINM, | 438 €My T £ Bp(v,y)
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Since Pg(v,Y) is monotonously shrinkging there will by ZI*- collec-
. A

tion be a Oz Ggﬂtb,c such that P%O,d>(v,y) < Q (v) and

o, (V7)€ @) .

By claim 8 there will be a stage Oy Ecﬂ{c,b such that
Oy 2 05 and at position (v,c4> there are ineffective v-require-
ments with argument y. We will prove that the values of these
requirements will be the values of

v € J, (A)? and y € J, (B) ?
14084

If that is correct, we may give the following w-Ag—description of

J (4) ;.

iq,aq

For y € Mb o

y € Jiqvaq(A) > Jo E(fﬂb,c (P?o,c;,(v,y) c QA(\))
and P?

are ineffective v-requirements for A and B with

° d}(v,y)‘g QB(v) and at stage o there
9

argument y and value 'yes')

T ET o (W) e To €My (o () = @)

ig,a
po B
and (o 0\/(v,y) c Q(v) and at stage o there
9
are ineffective v-requirements for A and B with

argument y and value 'no' )

Proof of the claim: We know that there will be permanent v-require-

ments for A and B with argument y giving the right value. That
the requierments at stage Oy above have the right value will then

follow from
Subclaim Let 0y, be as above, 1 the value for the v-require-

ments for A and B with argument y. At all positions after

(0,04) there will be at least one active v-requirement with argu-
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ment y and value 1i.

Proof of subclaim: The proof is by induction on § Z.(o,04}.

The successor step is like the proof in Shoenfield [14], while we

use a trick borrowed from Lerman-Sacks [5] to pass the limits.

1. Successor case E+ 1

a8 If there are active v-requirements with argument Yy and value
i for both A and B at position &, we cannot injure more
than one of them, since we do not put elements into both A and

B at the same position.

Assume that there is a v-requierment 2z for A with argument

o’

y and value i, but not for B. 2z is then effective. We
will obtain a contradiction from the assumption that some T €z
is put into A at position E+1, Let T above be from row 1.
By case 1 of the construction, r £ Qé+4(v), and by choice of
Op,y V <T. ‘Since r is in 2z and 2z 1is effective, we have
r € P§+1(v,y), using the definition of r € Q%+1(v). By choice
of Oz, T € QA(v). But this is impossible by choice of o,,

and we obtain a contradiction.

2. Limit case To go through a limit position it is sufficient to

prove that we will not injure v-requirements with argument y for
A and B alternately more than a finite number of times. This
follows from the following considerations:

Assume that we between (0,64) and £ alternately have in-
Jjured v-requirements with argument y for A and B in an w-
sequence. By the successor case thére will at all positions below
£ be at least one active v-requirement with value y and argument

i. ZLet zZ, be the requirement for A and Zn the requirement
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for B active at Py = (o,o4>. By symmetry we may assume that we
first injure z, by putting T, from row Vi into Z4 at position
Py > Py When we then injure Zs with Ty from row Vo at posi-
tion Po > Pqo there will be a 'v-requirement 23 for A with ar-
gument y active at position Po e When we injure Zz with T3
from row v5 at position Pz > Py there will be some v-require-
ment 2, for - B with argument y active at position Pz etc.

We find a sequence of requirements injured by T, from row o at
position Py *

are created at position »p it

Since both zn and 2z o

n+1
follows from claim 1 that vn+1 < vn. | This is indeed a contra-

diction.

This proves the subclaim, the claim, and the proof of theorem

4.1 is completed.

5. Martins axiom and recursion in a normal type - 3 - object

In sections % and 4 we used V =L +to perform certain prio-
rity arguments. The only properties we actually used was the
Generalized Continuum Hypothesis ( GCH ) and the existence of a
recursive well-ordering of minimal length! A natural problem is
then: How can these assumptoins be weakened ?

In this section we will restrict ourselves to recursion in a
normal type- 3-object F. We will assume that there is a minimal
well-ordering of I = tp(1) recursive in F. Inétead of CH we
will use Martins Axiom or the axionm A‘P, for 1Y< 2PQ as des-
cribed in Martin-Solovay (8].

The different lemmas and theorems will be marked with MA, A »»
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resp. < when we assume Martins Axiom, .A>< resp. existence of
minimal recursive well-ordering. We will let F Dbe a fixed normal
functional of type-3. |

Our aim is to establish sufficient machinery to use the proofs
in section % and 4, This is done by proving that a recursive set
of cardinality < 2}€’ share important properties with the subindi-
viduals in the general theory. To do this we refer to a paper by
Moldestad [9] on general recursion on two types, where he proves
e.g. the reflection principles for recursion in functionals over the
more general domains.

In Martin-Solovay [8] it is proved that if NCI 2>Q , if

A holds and if there is a gq-set of cardinality %@1 , then

I
/‘ .
all sets of cardinality ', are gq. In the following we are

using methods from that proof only.

For xcw, n,m € w define f, to be the characteristic
function of x, f (m) = (fx(o),...,fx(m)) and Sx,n = {f (m); m
is a power of the n+1'st prime number}

For B c Plw), cw let

B*t = {a;db €B (n€a etnsb L is finite)]
9

Theorem 5.1 (4 »p, Martin-Solovay [8])
Let B < (P(w) be of cardinality N and let A < (P(w) be of

cardinality at most )ﬁ“.
Then there is a set t Cw such that A =Bx*+t,

Remark A will be 21(B,t) uniformly in B and t, and thus

recursive in B,t and §E. |
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Corollary 5.2 (A /\‘/\)

By Ext-2-sc (F) we mean U 2-sc(F,a)
a€l

The following are equivalent

XA B€ Ext-2-sc (F))

i AB< I (B

ii yB<I B =~» B€ Ext-2-sc (F))

Proof: Since {Q(w) and Yy are essentially the same modulo F,

this follows directly from theorem 5.1.

Corollary 5.2 (4 ) ‘
Assume there is a B € Ext-2-sc (F) such that B = N

Let (M) ,er = Spec(F), M= U M Then

a€l a’

a M is closed under subsets of cardinality N .

b of(®) > N .

Proof: b follows from a. To prove a, let x c M be of cardi-
ﬂality ;X" . For each y € x pick dne pair ey,ay such that in
E-recursion {ey}(ay,I) =y. Let A = {(ey,a Yy 37€x}. Then
A €M by corollary 5.2. Using X*-collection over A we see
that x € M. I

By MA we may prove that 2/\{o is regular., We will for in-
stance obtain this fxom Theorem 5.1. Also Theorem 5.1 gives
,\{; < XN'< 2>\/:’ = 2 '\"'K= 2'\,‘; . This is sufficient to find a par-
tial ordering -< on I satisfying * from section 2. Adding the

well-ordering we obtain:

Lemma 5.4 (MA, <)

There exists a partial ordering < on I recursive in F



- 57 -

such that - satisfies x of section 2.

Proof: The only part of the proof of lemma 2.6 which we cannot do
immediately here, is the effective indexing of triples of subsets

of field (<\)) =D, But for t = (t1’t2’t5> let

AL,BL,Cp = (Dxt,, Dxt,, D*t5> . We order these triples by the given

ordering on the +t's, and the effective indexing is given.

To simplify arguments we will unow assume that functionalé act
upon subsets of the domain instead of on functions on the domain.
What normal functionals concerns, this is no restriction or addition
to the theory. In particular, F acts on subsets of w.

Let A c I be recursive in F,a. Let A be the closure of
A under primitive recursive operations. When A is infinite, A
and A will have the same cardinality, and A is recursive in F,a.
We assume A = A sy €.8. WS A and A is closed under pairing.

Now, let I_ = (w), B =0(PQ). I, and I are essentially
the same, and so are B and Aw . TFollowing Moldestad [9] we let
B(2A) be a comain for recursion on two types. When

B O when X =4¢
E(X) = { for Xc B,
1 when X £ ¢

BE.

we will have [P(w) € B as a set recursive in
Let F,(X) = F(XN P(w)) . We will prove that the theory e, in

F, over B 1is'equivalent to the theory 92 in F over Io.

/I

Definition TLet X c A, We say that t codes X if Axt =X,

Lemnma 5, The set of codes is recursive in F and A.

Proof: 'a € Axt' is a recursive relation, and

t is a code = VYa(a€Axt = a€l)
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Lemma 5.6 (A;?)

Let A = A be recursive in F,a, and assume A= e
a In E-recursion there is an index e such that B = [e}F(a,I)

b F, is E-recursive in a,I relative to F

jc

F is E-recursive in a,I relative to F,.

Proof:

a B = {A*t;t is a code}. We use ZI*-collection over the set
of codes,

b and ¢ are even more trivial,

This lemma leads to the following result.

Theorem 5.7 (A$¢)
Tet A € 2-sc (F,a) and assume A = A and A= .
Let B = (P(A). For arbitrary x € v,

R({x,2,I};F) = R({x,a,B};F,)

Corollary 5.8 (A}¢)
Let A,a be as in theorem 5.7. Then
TC(M,.) <« TC( U M
() Z, (bEA (a,b>)

Proof: By theorem 5.7 this is nothing more than simple reflection

in Moldestad's theory on two types for Fao

Corollary 5.9 (A;%Q

Let A,a be as in theorem 5.7.
Define M_ = R({x,1};F). |
If xc & is complete 27-definable, then M, <, N .
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Proof: By theorem 5.7 this reduces to further reflection in the
theory on two types, verified by Moldestad in [9].

The program is now to fix notation such that the proofs of
theorems 3.1 and 4.1 can be repeated with as few modifiactions as

possible,

Definition (<)

a For a €I, let M_ = UV
= a
b<a

%8

b a is minimal if a =ub(a€J’Lb)

c a' = ub(d gu’%a)
a
g K<a = Sup(onnjta)
e )‘ia = Least ordinal not in M, = ordertype of

{@; ais the length of a computation relative to F in I,a
and some b < a},
It is clear that b < a =>4JMb 9_(/.{& , and by corollary 5.8,
TC(11,) <21 TC(M,) -
By the recursive wellordering we then obtain

M, <p, T0(My)

Lemma 5,410 (MA,<})
Va(M, €M)

Proof: We may use the proof of lemma 2.3,

Lemma 5.11 (MA, <)
(/%a <2,]<7"('a'

Proof: By corollary 5.9 we must prove that a' is E-recursively

equivalent to a complete 25*1" subset of A modulo a , Where |
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Since (jM,a € M,

of A is clearly definable from a'. Now let x € A be the set

and a < a' , a complete Z;—definable subset

of pairs {{e,c);c €A & [e}F(c,I)\H . Then by &*-collection
CM'a € M . But then {b;bﬂCMa} € M, and ub (b ﬂc/%a) € M, . But

this b is a', so a' GMX.

0
Definition (MA, <)
Let a € I. Card(a) = ub(Ft ({c;c<al = {c;c<blx*t)).
Card(a) will be the least b such that the initial segments has

the same cardinality.

a 1is called a cardinal if Card(a) = a. Then |a|. will be a

cardinal in the ordinary sense.

Lemma 5.12 (MA, <)

There is a recursive minimal well-ordering <® such that if a is

an infinite cardinal in <° , then {c;c < a} is closed under pri-

7

mitive recursion.

X
N
Proof: By induction on the cardinals N < 2 we define <0{Y~
uniformly recursive in the a s such that |la . || = /Y, and if
/ e
necessary extend <° to I.
On limit cardinals N, <®xn = U <O, )} is treated like OF.
, ¢

N 57 /\""4/'\/‘
If X <277 and -<ON is constructed let

. o
A = {c; c<a}‘(\*} field (<\p)
A= Nt and there is a t recursive in a > such that
. 4
A = {c;c<a;\,\,]*t.

We order A by c, <, 4, if 1}_1(:<aL\)(+V'd<a.)\€\+
LA

{cqd =feht & ({a4)}={alst = c<ad)
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We extend <°M to <9\¢+- by adding A with this ordering at the
end.
.t Mo ‘ . o) .
If = =2 , we let A=I\f1eld(<;\(~) and . <A=<[‘A.
We then proceed as above.

The construction is effective and the result as required. 1

0]

From now on assume that < has the properties < has by

construction.

Lemma 5,13 (MA, <)
For each a € I (/%a =

Proof: Clearly U M. c M. .
i<card(a) 22+ —Y 8

To prove the converse, pick the least t such that
{c;c<al = {i;ji< card(a)}*t. Then each ¢ < a is recursive in.

t,a and some i < card(a). 0

We will define < ’ <2 and <, as in section 2. Lemma 2.4

then reads:

Lemma 5.14 (MA, <)
v
a For any x € M, {< |xj0€0n} has cardinality < 2\0 .

b If x EJ/La then Yo zKia (<0rx = <Ka Px)

<a

¢ For any x, f{||xl;;0€0n} is finite. .

We may now state and prove the main result of this section:

Theorem 5.15 ' (MA, <)
Let <Ma>a€I = Spec(F) and use the terminology from this section.

Replace V = L in assumptions by (MA,<) . Then

Theorem 3.1 relativized to F will hold.
Theorem 4,1 relativized to F will hold.

N S
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We may obtain the same corollaries as in sections 3.1 and 4.1.

Proof: With few modifications we may use the proofs given in the

V = L -case:

1. Coding of the a-conditions: We let i,j vary over {cjc<card@}
instead of over the subindividuals, and then define a-condi-
tions as before. We use the ordering on {c;c < card(a)} to

order the a-conditions. (Her¢ we use lemma 5.12)

2. Changes in notation: At all places in the proof, replace )wﬁk
L(“) . 1\(‘ .
by 2 , "At most X, ,' with <2 ° Ki_q with Kia.
3. New proofs: At some points in the proof we used that fk?k-ﬂ is
regular and that the cofinality of Ky , = () 4. At these
points we must give a new proof. A typical example is claim 2

of theorem 3.1 of which we give a new proof.

New proof of Claim 2, Th., 3.1.

After Sup(KEb;b-<a) we will only realize candidates for c~-condi-
tions where c¢ > a., There are <|/card(a)|| such conditions of
higher priority than v. So, let v = {i,a), i < card(a). Then
X = {8; we make a change on a condition < v at position &, and
Sup (K2 ;b <al < § < K2}
has cardinality < llcard(a)||, and for some j < a, ||jl| is the
ordertype of X, j €M,, and X will be definable from i, j, a
by Z*-collection. Then X Eoﬂﬂa and cannot be cofinal in (M .

The claim is proved.

This method can be used whenever we in the original proofs

used that }(‘k_q was regular.,

With the modifications given above, the proofs of Theorems 3.1

and 4.1 are proofs of Theorem 5.15 a and b. —
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Remark
Also higher order versions of Martin's axiom has been studied

(Baumgartner, Laver) and the following will be consistent with ZFC,

Assumption
/\/\j
There is a formula ¢ 1. order over I such that when A,B are

= = Mg |
subsets of I and A <B <2 , then there is a t € I such
that

Va €I (a€h «> o(a,t,B))

From this assumption we may give the same proofs as we did in this

section for k = 1.

This consistency result was told me by Keith Devlin.

Remark

From a model for ZF+DC+AD we may construct a model for
ZFC + CH +

If Actp (2) is r.e. in °E and some individual, and B € I
is complete r.e. (BE), then either is A weakly recursive in 3E
and some individual or B 1is recursive in A, 5 and some indi-

vidual.
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