The Geometric Weight System for Transformation Groups on Cohomology Product of Spheres
by

Per Tomter Oslo

Introduction.
In this paper we describe the cohomological "orbit structure" of the action of a torus G on a space X whose rational cohomology ring is isomorphic to $H^{*}\left(S^{m} \times S^{n}, Q\right)$, (with m and n even integers) from the equivariant cohomology of X. The basic approach follows ideas of Wu-Yi Hsiang, in particular we interpret his notion of "geometric weight system" as a set of invariants from the equivariant cohomology simple enough to be effictively computable, on the other hand strong enough to determine the cohomological orbit structure of X. This means the following: The connected orbit types G / G_{X}^{O} of X are determined by the identity components G_{X}^{0} of the isotropy subgroups. If $x \in X$ the F°-variety of $x, F^{0}(x)$, is the connected component of x in the fixed point set of G_{X}^{0}. The structure of this network of F^{0}-varieties determines the orbit structure of X. Thus, in particular, the geometric weight system should determine all connected orbit types, the cohomological structure of the corresponding F°-varieties and their "relative positions".

For some cases when $H^{*}(X, \mathbb{Q})$ has one generator, this program has been quite successful; see Hsiang (9) and Hsiang and $\mathrm{Su}(11)$.

The case with two generators is already considerably more complicated and shows interesting new features. As is demonstrated by many examples, the general case is no longer modelled on "linear actions". However, we obtain a complete description in terms of suitably defined geometric weight systems, and there is good correspondence between the theory and the examples which can be constructed explicitly.

The basic tool for setting up the geometric weight system is a linearity theorem for certain ideals associated to the equivariant cohomology algebra. This idea goes back to the "topological Schur lemma" of Wu-Yi Hsiang. (Hsiang (8)). In an early version of this work, (Tomter (15)), special cases of annihilator ideals of submodules of $H_{G}^{*}\left(X, X^{G} ; \mathbb{Q}\right)$ were studied. (Here H_{G}^{*} is the equivariant cohomology functor and X^{G} is the fixed point set of X.) A general structure theory for annihilator ideals of such submodules has been developed by T. Chang and T. Skjelbred (see Chang and Skjelbred (7)) and has found interesting applications. In our situation, however, it is necessary to consider the more general case of the primary decomposition of a quotient of two submodules of $H_{G}^{*}\left(X, X^{G} ; \mathbb{Q}\right)$.

In section one, after a few remarks on the basic notions and theorems of equivariant cohomology, we prove the relevant theorem for such ideals. This is applied to set up geometric weight systems in the second part. A number of examples show that practically all the phenomena predicted by the theory can occur. Under additional assumptions, however, many of the more complicated cases may be ruled out, for example fixed point sets of the type $P^{2}(h)+\{p t$.$\} . (See section 2.4). On the other hand, consider$
the case $H^{*}\left(X^{G} ; \mathbb{Q}\right)=H^{*}\left(S^{p}+S^{q} ; \mathbb{Q}\right)$ of section 2.3. It was shown in Tomter (16) that if $G=S^{1}$ it is possible that $p \neq q$. (Examples of this were known for \mathbb{Z}_{p}-transformation groups.) This is improved here to show that there exist tori of arbitrarily large rank acting on spaces with integral cohomology isomorphic to some $H^{*}\left(S^{m} \times S^{n} ; \mathbb{Z}\right)$ with $H^{*}\left(X^{G} ; \mathbb{Z}\right) \simeq H^{*}\left(S^{p}+S^{q} ; \mathbb{Z}\right), \quad p \neq q$.

After the basic theory of the action of a torus is understood, it is possible to carry through systematic studies and computations for actions of simple, compact Iie groups by restricting to the maximal torus and using the Weyl group. Here we only include a simple example of such results, and leave a classification of principal isotropy subgroups, orbit types and dimension estimates for a later paper.

In this paper cohomology is taken with rational coefficients and is denoted by $H^{*}(X)$; hence we only get information on the connected orbit types. Cohomology with \mathbb{Z}_{p}-coefficients gives further information.

An early version of this work () was done with support from Sonderforschungsbereich Theoretische Mathematik at the University of Bonn.
§1. Structure Theorems in Equivariant Cohomology
Let G be a compact Lie group. All G-spaces X are assumed to be paracompact, of finite cohomological dimension and with a finite number of orbit types. $X \sim Y$ means that $H^{*}(X)$ is isomorphic to $H^{*}(Y)$ as a Q-algebra. For standard constructions we refer to Bredon (4) or Hsiang (9). Thus X_{G} is the total space of the fibre bundle associated to the universal G-bundle: $E_{G} \rightarrow B_{G}$ by the given G-action on X. The equivariant cohomology of X is defined by $H_{G}^{*}(X)=H^{*}\left(X_{G}\right)$. If Y is an H-space; $\rho: G \rightarrow H$ is a homomorphism of compact Lie groups, and $f: X \rightarrow Y$ is p-equivariant, there is an induced homomorphism from $H_{H}^{*}(Y)$ to $H_{G}^{*}(X)$. We need more information on this homomorphism if $Y=X$ and f is the identity. G acts freely on $E_{G} \times E_{H}$ by $\left(e_{1}, e_{2}\right) \cdot g=$ ($\left.e_{1} \cdot g, e_{2} \cdot \rho(g)\right)$; hence we may take $E_{G} \times E_{H}$ as the total space in a universal bundle for G. There is a well-defined map: $X_{G}=\left(E_{G} \times E_{H}\right) \times_{G} X \rightarrow E_{H} \chi_{p(G)} X \rightarrow E_{H} \times_{H} X=X_{H} \quad$ given by $\quad\left(e_{1}, e_{2}, x\right) \rightarrow$ $\left(e_{2}, x\right)$. The fibre of this map from X_{G} to X_{H} is easily seen to be H_{G}. When G is connected, the classifying space B_{G} is simply connected. The Eilenberg-Moore spectral sequence is a 2. quadrant spectral sequence $\left(E_{r}, d_{r}\right)$ where $E_{r} \Rightarrow E_{\infty}=H_{G}^{*}(X)$ and $E_{2}=\operatorname{Tor}_{R H}\left(\operatorname{RG}, H_{H}^{*}(X)\right)$. Here we denote $H^{*}\left(B_{G}\right)$ by $R G ; R G$ and $\mathrm{H}_{\mathrm{H}}^{*}(\mathrm{X})$ are RH -modules through cup-product and the homomorphisms induced in cohomology from the commutative diagram of fibrations:

If $R G$ or $H_{H}^{*}(X)$ is a flat RH-module, it is well known that $\operatorname{Tor}_{R H}^{n}\left(R G, H_{H}^{*}(X)\right)=0$ for $n \neq 0$ and
$E_{2}=\operatorname{Tor}_{R H}^{0}\left(\mathrm{RG}, \mathrm{H}_{\mathrm{H}}^{*}(\mathrm{X})\right)=\mathrm{RG} \otimes_{\mathrm{RH}} \mathrm{H}_{\mathrm{H}}^{*}(\mathrm{X})$. Hence we have the following result:

Theorem 1.
If $R G$ or $H_{H}^{*}(X)$ is a flat RH-module, the above Eilenberg-Moore spectral sequence collapses and $H_{G}^{*}(X)=H_{H}^{*}(X) \otimes_{R H} R G$; i.e. $H_{G}^{*}(X)$ is obtained from $H_{H}^{*}(X)$ by an extension of scalars corresponding to the canonical homomorphism $\rho^{*}: \mathrm{RH} \rightarrow \mathrm{RG}$.

The assumptions of the Theorem are satisfied in the following special cases:
a) G is a subgroup of H and X is totally non-homologous to zero in the fibration $X \rightarrow X_{H} \rightarrow B_{H}$. Then $H_{G}^{*}(X)=H_{H}^{*}(X) \otimes_{R H} R G$. If $G=(e)$ is the trivial subgroup, we get $H^{*}(X)=H_{H}^{*}(X) \cdot \otimes_{R H} \mathbb{Q}$. b) G is a torus, K is a subtorus, and ρ is the epimorphism $G \rightarrow H=G / K$. Then $H_{G}^{*}(X)=H_{G / K}^{*}(X) \otimes_{R(G / K)} R G$.
c) G is a maximal torus in the compact, connected Lie group H. Then $H_{G}^{*}(X)=H_{H}^{*}(X) \otimes_{R H} R G$, and $H_{H}^{*}(X)=H_{G}^{*}(X)^{W}$ where W is the Weyl group.

Proof. In case a) it is obvious from the Serre spectral sequence of $\mathrm{X} \rightarrow \mathrm{X}_{\mathrm{H}} \rightarrow \mathrm{B}_{\mathrm{H}}$ that $\mathrm{H}_{\mathrm{H}}^{*}(\mathrm{X})$ is a free RH -module; hence it is flat. In case b) it is easy to see that the fibre $H_{G}=E_{G} X_{G}(G / K) \simeq B_{K}$. We may identify $R G$ with the polynomial algebra $\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right]$ where the t_{i} 's are identified with linear functionals on G; i.e. elements of $H^{1}(G)$, via transgression in the universal bundle $G \rightarrow E_{G} \rightarrow B_{G}$. It is then obvious that $R G$ is a free $R(G / K)$-module. For c) we notice that in general, if G is a subgroup of H, then E_{H} is also an E_{G} and there is a
fibration from $H_{G}=E_{H} \times_{G} H$ to H_{H} with fibre H / G; since $H_{H} \simeq{ }^{B}(e)$ is acyclic, it follows from the Serre spectral sequence that $H_{H}^{*}\left(H_{G}\right) \simeq H^{*}(H / G)$. Let G be a maximal torus in H, let $N(G)$ be the normalizer of G in H and $W=N(G) / G$ the Weyl group. Then $H / N(G)$ is Q-acyclic and the Serre spectral sequence of the fibration $H / N(G) \rightarrow X_{N(G)} \rightarrow X_{H}$ shows that $H_{H}^{*}(X)=H_{G}^{*}(X)^{W}$, $R H=R G^{W}$. Clearly $R G=R H \otimes_{Q} H^{*}(H / G)$ is a free $R H-m o d u l e$, hence it is flat, and the proof of Theorem 1 is complete.

Now if $x \in X$, let r_{x} be the canonical projection from $R G$ to $R G_{x}$ induced by inclusion of G_{x} in G. If S is a multiplicative subset of $R G$, let $X^{S}=\left\{x \in X ; S \cap \operatorname{ker}\left(r_{x}\right)=\varnothing\right\}$. The basic localization theorem for equivariant cohomology is now well known.

Theorem 2.
The localized restriction homomorphism $S^{-1} H_{G}^{*}(X) \rightarrow S^{-1} H_{G}^{*}\left(X^{S}\right)$ is an isomorphism.

If S is the complement of a prime ideal P, we denote $S^{-1} H_{G}^{*}(X)$ by $H_{G}^{*}(X)_{P}$ and X^{S} by X^{P}. If $P=(0), X^{P}=X^{G}=F$ is the fixed point set, and $H_{G}^{*}(X)(0)=H_{G}^{*}(X) \otimes_{R G} R^{\prime} G=H_{G}^{*}(F) \otimes_{R G} R G$ ' $=\left(H^{*}(F) \otimes_{Q} R G\right) \otimes_{R G} R^{\prime} G=H^{*}(F) \otimes_{Q} R^{\prime} G$, where $R^{\prime} G$ is the quotient field of RG .

From now on we assume that $G=T$ is a torus. There are examples of Hsiang which show that only in this case is there a strong relationship between the algebraic structure of the equivariant cohomology and the orbit structure of X. Let $\left\{x_{i}\right\}$ and $\left\{\mathrm{v}_{j}\right\}$ be a set of even - and odd-dimensional generators of $\mathrm{H}_{\mathrm{T}}^{*}(\mathrm{X})(0)$, respectively. Then there is a presentation of $H_{T}^{*}(X)(0)$ given by
an epimorphism p from the free, anti-commutative RIT-algebra $A_{T}=R ' T\left[x_{1}, \ldots, x_{k k}\right] s_{R ' T} \wedge_{R \prime T}\left[v_{1}, \ldots, v_{I}\right]$ to $H_{T}^{*}(X)(0)$. Let $p_{j}:$ $H_{T}^{*}(F)(0) \rightarrow H_{T}^{*}\left(F^{j}\right)(0)$ be induced from the inclusion of the j-th component F^{j} into F, let $I=\operatorname{ker} p$ and $I_{j}=\operatorname{ker}\left(p_{j}{ }^{\circ} p\right)$.

Theorem 3. (Hsiang (10)).

1. The radical of I is the intersection of s maximal ideals M_{j} whose varieties are rational points $a_{j}=\left(a_{j 1}, \ldots, a_{j k}\right)$ $\epsilon\left(R^{\prime} T\right)^{k} ; \quad i=1, \ldots, s$.
2. There is a natural bijection between the connected components F^{j} of F and the above points $\left\{a_{j}\right\}$, such that the restriction homomorphism of an arbitrary point $q_{j} \in F^{j} \subseteq X$ maps the even generator $x_{i} \in H_{T}^{*}(X)(0)$ to $a_{j i} \in H_{T}^{*}\left(\left\{q_{j}\right\}\right)(0) \simeq R ' T$.
3. $H^{*}\left(F^{j}\right) \otimes_{\mathbb{Q}} R^{\prime} T \simeq A_{T} / I_{j}$, where $I_{j}=I_{M_{j}} \cap \cdot A_{T}$. Moreover $I=I_{1} \cap \ldots \cap I_{s}=I_{1} \ldots I_{s}$.
Let X be a cohomology manifold over \mathbb{Q}; then any component F^{j} of F is also a cohomology manifold over \mathbb{Q}. Let $w_{i} \in H^{2}\left(B_{T}\right)$ and let $H_{i}=\left(w_{i}{ }^{\dagger}\right)$ be the corank one subtorus whose Lie algebra is the kernel of w_{i} interpreted as a linear functional. Let $X^{H_{i}}=G_{i}^{1}+\ldots+G_{i}^{I}$ with the $G_{i}^{K} ' s$, connected; then each F^{j} is included in a unique $G_{i}^{i(j)}$. w_{i} is a local geometric weight at F^{j} if $\operatorname{dim} G_{i}^{i}(j)-\operatorname{dim} F^{j}>0$, and the multiplicity is defined to be $\frac{1}{2}\left(\operatorname{dim} G_{i}^{i(j)}-\operatorname{dim} F^{j}\right)$. The local Borel formula asserts that the $G_{i}^{K}{ }_{i}$ s are transversal in the sense that $\operatorname{dim} X-\operatorname{dim} F^{j}$ $=\sum_{i}\left(\operatorname{dim} G_{i}^{i(j)}-\operatorname{dim} F^{j}\right)$. Let $x \in X$ and $F^{j} \subseteq F^{0}(x)$; let $\left\{w_{k}, m_{k}\right\}$ be the local geometric weight system at F^{j}. Then G_{X}^{O} $=\left(\cap H_{k} ; H_{k}=\left(w_{k}^{\perp}\right) \supseteq G_{X}^{0}\right)^{\circ}$, and $\operatorname{dim} F^{0}(x)-\operatorname{dim} F^{j}=2 \sum m_{k} \quad$ (sum over the k 's such that $H_{k} \supseteq\left(G_{x}^{0}\right)$. This reveals the signigicance of the local geometric weight system.

After the proof of the Su conjecture this can be generalized to Poincare duality spaces over \mathbb{Q} (see Chang and Skjelbred (b)). A torus $L \subseteq T$ is said to be cohomology ineffective on X if $H^{*}\left(X, X^{I}\right)=0 . T$ acts cohomology effectively if the only cohomology ineffective subtorus is the trivial subgroup. An F°-variety in X with generic isotropy subgroup $K=K^{\circ}$ is then a component V of X^{K} such that the action of T / K on V is cohomology effective: Then the above statements hold in the more general setting of Poincare duality spaces over Q when dimension is now interpreted as formal dimension. If X is a compact, orientable cohomology manifold, the two notions of local geometric weights coincide.

We will use the following observation: Let K be a subtorus of T and let P_{K} be the kernel of the homomorphism $r_{K}: R T \rightarrow R K$. The variety of the ideal P_{K} is the Lie algebra of K; this determines a bijective correspondence between subtori of T and linear subspaces of the Lie algebra of T which are rational with respect to the Q-structure determined by the defining lattice of the torus T. It follows that to a given prime ideal P in $R T$ there exists a unique minimal subtorus K in T such that $P_{K} \subseteq P$, hence $X^{P}=X^{P_{K}}=X^{K}$.

Let X be a T-space with $F=X^{T} \neq \varnothing$ and K a subtorus of T. Let M be a submodule of $H^{*}(F)$ and define $M_{T, K}=\partial(\mathbb{M} \otimes R T) \subseteq H_{T}^{*}\left(X^{K}, F\right)$, where ∂ is the boundary operator in the exact sequence in the equivariant cohomology for the pair $\left(X^{K}, F\right)$. If K is the trivial subgroup (e), we denote $\mathbb{N}_{T, K}$ by M_{T} simply. Let ρ be the projection from T to $K^{\prime}=T / K$. It follows from Theorem 1 that $H_{T}^{*}(X) \simeq H_{K}^{*},(X) \otimes_{R K}, R T$, similarly for
F, so $H_{T}^{*}(X ; F) \simeq H_{K}^{*},(X, F) \otimes_{R K}, R T$.

Theorem 4.
Let X be a T-space with $F=X^{T} \neq \varnothing$. Let M and N be submodules of $H^{*}(F)$ with $N \subset M$. Then the prime ideals corresponding to a reduced primary decomposition of $\operatorname{Ann}\left(M_{T} / N_{T}\right)$
$=\left\{a \in R T ; a \cdot M_{T} \subseteq \mathbb{N}_{T}\right\}$ are linear ideals. The isolated primes P_{1}, \ldots, P_{1} are characterized as follows: A prime ideal P of $R T$ is equal to one of the P_{i}, $i=1, \ldots, I$ if and only if $P=P_{K}$, where K is a maximal subtorus of T with respect to the property $M_{T, K} \neq N_{T, K}$.

We need a lemma for the proof.

Iemma 1.
Let K be a subtorus of T. Then all primary ideals associated with a reduced primary decomposition of $\operatorname{Ann}\left(\mathbb{M}_{T, K} / \mathbb{N}_{T, K}\right)$ are contained in P_{K}.

Proof. RT is a flat RK'-module. ($\mathrm{K}^{\prime}=\mathbb{T} / \mathrm{K}$); hence it is easily seen that $M_{T, K}=M_{K^{\prime}, K} \otimes_{R K}, R T$ and $M_{T, K} / N_{T, K} \simeq\left(M_{K^{\prime}, K^{\prime}} / N_{K^{\prime}, K}\right) \otimes_{R K}, R T$. It is well known that in the flat case we must then have
$\operatorname{Ann}\left(M_{T, K} / N_{T, K}\right)=\operatorname{Ann}\left(M_{K^{\prime}, K} / N_{K^{\prime}, K}\right) \otimes_{R K}, R T$. The generators in $H^{2}\left(B_{K}\right.$, represent linear functionals on T which vanish on K; hence $\rho^{*}\left(R^{\prime}\right) \subseteq P_{K}$ and $\operatorname{Ann}\left(M_{T, K} / N_{T, K}\right) \subseteq P_{K}$. Let
$\operatorname{Ann}\left(M_{K!, K} / N_{K^{\prime}, K}\right)=\cap q_{i}$ be a reduced primary decomposition in $R K^{\prime}$ with associated prime ideals P_{i}. Again, since $R T$ is flat as an RK'-module, it follows from Proposition 11 in Ch.IV, §2.6 in Bourbaki (2) that in order to prove that $\cap q_{i} \otimes_{R K}, R T$ is a reduced primary decomposition of $\operatorname{Ann}\left(M_{T, K} / \mathbb{N}_{T, K}\right)$, it is sufficient to show that all the ideals $P_{i} \otimes_{R K}, R T$ are prime. Let
$R K=\mathbb{Q}\left[t_{1}, \ldots, t_{I}\right]$, then it is clear that $R T \simeq R K^{\prime}\left[t_{1}, \ldots, t_{I}\right]$. Here $\operatorname{RK}^{\prime}\left[t_{1}\right] / P_{i}\left[t_{1}\right] \simeq\left(R^{\prime} / P_{i}\right)\left[t_{1}\right] ; R K^{\prime} / P_{i}$ and hence ($\left.R K / / P_{i}\right)\left[t_{1}\right]$ is an integral domain, so $P_{i}\left[t_{1}\right]$ must be a prime ideal. By repetition we see that $P_{i} \otimes_{R K} R T$ is prime in $R T$. Hence $P_{i} \otimes_{R K} R T$ are the primes associated to a reduced primary decomposition of $\operatorname{Ann}\left(M_{T, K} / \mathbb{N}_{T, K}\right)$; since $P_{i} \subseteq R K$ it follows that these are in P_{K}. q.e.d.

Proof of Theorem 4: Let $\operatorname{Ann}\left(M_{T} / N_{T}\right)=\cap q_{i}$ be a reduced primary decomposition and let $P_{i}=/ q_{i}$. If P is a prime ideal in $R T$, $\operatorname{Ann}\left(M_{T} / N_{T}\right)_{P} \cap R T=\cap\left\{q_{i} ; P_{i} \subseteq P\right\}$. Hence $P=P_{i}$ for one of the i's if and only if $\operatorname{Ann}\left(M_{T} / N_{T}\right)_{P} \cap \operatorname{RT} \underset{F}{\mathcal{L}} \cap \operatorname{Ann}\left(M_{T} / N_{T}\right)_{P}, \cap R T$, the last intersection taken over those prime ideals P^{\prime} with $P^{\prime} \underset{f}{c} P$. (Observed in Chang and Skjelbred (7)). Choose one of the $P_{i}^{\prime \prime s}$ and let K be the minimal subtorus with $P_{K} \subseteq P_{i}$. Let Q be any prime ideal such that the minimal subtorus I with $P_{I} \subseteq Q$ is equal to K. We have: $\operatorname{Ann}\left(\mathbb{M}_{T} / N_{T}\right)_{Q} \cap \operatorname{RT}=\operatorname{Ann}\left(\left(M_{T} / N_{T}\right)_{Q} \cap \operatorname{RT}\right.$ $\left.=\operatorname{Ann}\left[\left(M_{T}\right)_{Q} /\left(N_{T}\right)_{Q}\right] \cap \operatorname{RT}=\operatorname{Ann}\left[\left(M_{T}, K\right)_{Q} / N_{T, K}\right)_{Q}\right] \cap R T$ $=\operatorname{Ann}\left[\left(M_{T, K} / N_{T, K}\right)_{Q}\right] \cap R T=\operatorname{Ann}\left[M_{T, K} / N_{T, K}\right]_{Q} \cap R T$. The first and the last equalities follow since we are dealing with finitely generated RT-modules. By the localization theorem $H_{T}^{*}(X, F)_{Q} \simeq H_{T}^{*}\left(X^{K}, F\right)_{Q}$; hence $\left(M_{T}\right)_{Q} \simeq\left(M_{T}, K\right)_{Q}$ and the third equality follows. For the main step in the proof we apply Lemma 1. Since $P_{K} \subseteq Q$ it follows from Lemma 1 that $\operatorname{Ann}\left(M_{T, K} N_{T, K}\right)_{Q} \cap R T$ $=\operatorname{Ann}\left(M_{T, K} / \mathbb{N}_{T, K}\right)$. But if $P_{K} \neq P_{i}$, this contradicts the fact that (Ann $\left.M_{T, K} / N_{T, K}\right)_{P_{i}} \cap R T \underset{\neq}{\subset} \cap\left(\operatorname{Ann} M_{T} / N_{T}\right)_{P}, \cap R T ; P^{\prime} \subset P_{i}$. Hence $P_{i}=P_{K}$; i.e. all the associated primes are linear. The isolated primes P_{i} are the minimal prime ideals P containing Ann $\left(M_{T} / N_{T}\right)$, i.e. they are minimal with respect to the condition
that $\operatorname{Ann}\left(M_{T} / N_{T}\right)_{P} \cap R T \neq R T$. Again, letting K be the subtorus determined by P, we have $\operatorname{Ann}\left(M_{T} / N_{T}\right)_{P} \cap R T=\operatorname{Ann}\left(M_{T, K} / N_{T, K}\right)$. Hence K is a maximal subtorus with respect to the condition that $\mathrm{M}_{\mathrm{T}, \mathrm{K}} \neq \mathrm{N}_{\mathrm{T}, \mathrm{K}}$; and this concludes the proof of Theorem 4.

Remark.

If $N=(0)$, we get the result of Chang and Skjelbred (y) for the submodule M_{T} of $H_{T}^{*}(X, F)$. In this case it follows directly that (Ann $\left.M_{T, K}\right)_{Q} \cap R T=\operatorname{Ann} M_{T, K}$, since it is easily shown (Theorem 1) that the map $H_{T}^{*}\left(X^{K}, F\right) \rightarrow H_{T}^{*}\left(X^{K}, F\right)_{Q}$ is injective. This is not sufficient to conclude that $M_{T, K} / \mathbb{N}_{T, K} \rightarrow\left(M_{T, K} / N_{T, K}\right)_{Q}$ is injective, and we need Lemma 1 to see that $\operatorname{Ann}\left(M_{T, K} / N_{T, K}\right)_{Q} \cap R T$ $=\operatorname{Ann} M_{\mathrm{T}_{\mathrm{g}} \mathrm{K}} / \mathrm{N}_{\mathrm{T}, \mathrm{K}}$.

If X is totally non-homologous to zero in X_{T}, we have $H_{T}^{*}(X) \otimes_{R T} R^{\prime} T \simeq H^{*}(F) \otimes R^{\prime} T$. If M is a submodule of $H^{*}(F)$, Ann \mathbb{M}_{T} is always a principal ideal (generated by the least common multiple of the denominators when a set of generators of M are expressed as reduced RT-rational linear combinations of elements of $H_{T}^{*}(X)$). If $(0) \neq \mathbb{N} \subseteq \mathbb{M}$, however, there are several examples in section 2 showing that $\operatorname{Ann}\left(M_{T} / N_{T}\right)$ is not in general a principal ideal, and the general primary decomposition is needed.

The following corollary is known (Allday and Skjelbred (1)). Proposition 1.

Let X be a Poincaré duality space over \mathbb{Q} and let T act on X. Let F_{1}, \ldots, F_{S} be the connected components of $F=X^{T}$, let f_{j} be the fundamental cohomology class of F_{j} and 1_{j} the generator of $H^{\circ}(F)$. Let $M_{1}=\left(f_{j}\right), M_{2}=\left(1_{j}\right)$. Then Ann M_{1} is a principal ideal whose generator is the product of the local geometric
weights at F_{j} with multiplicities, and the isolated prime ideals of Ann M_{2} correspond to the generic isotropy subgroups of the minimal F°-varieties connecting F_{1} with other components of F.
§2. Geometric Weight Systems for Cohomology Product of Spheres We use the theory developed in the last section to study the orbit structure of a cohomology effective action of a torus T on a space $X \sim S^{m} \times S^{n}$, where m and n are positive, even integers. From the Serre spectral sequence it is clear that all differentials are zero in this case; hence X is totally non-homologous to zero in the fibre bundle $X_{T} \rightarrow B_{T}$. We use j^{*} for the homomorphism in equivariant cohomology: $H_{T}^{*}(X) \rightarrow H_{T}^{*}(F)$ induced from the inclusion of $F=X^{T}$ in X, and i^{*} for the homomorphism: $H_{T}^{*}(X) \rightarrow H^{*}(X)$ induced from the inclusion of the fibre X in X_{T}; some times we use this notation also for the corresponding maps for invariant subspaces of X. Let X and y be generators in $H^{m}(X)$ and $H^{n}(X)$ respectively; it is easy to find $\hat{x} \in H_{T}^{m}(X)$ and $\hat{y} \in H_{T}^{n}(X)$ such that $i^{*}(\hat{x})=x, i^{*}(\hat{y})=y$ and $H_{T}^{*}(X) \simeq \operatorname{RT}[\hat{x}, \hat{y}] / I$, where I is the ideal generated by $\hat{\mathrm{x}}^{2}-\mathrm{c}_{1} \hat{\mathrm{y}}-\mathrm{d}_{1}$ and $\hat{\mathrm{y}}^{2}-\mathrm{c}_{2} \hat{\mathrm{x}}-\mathrm{d}_{2} ; c_{j}, \mathrm{~d}_{j} \in R T, \quad j=1,2$. The variety of I consists of the intersection points of the parabolas $\hat{x}^{2}=c_{1} \hat{y}+d_{1}$ and $\hat{y}^{2}=c_{2} \hat{x}+d_{2}$, each intersection point corresponding to a component of the fixed point set with the intersection number of a point equal to the Euler characteristic of the corresponding component. (Tomter (16)).

Theorem 5.
Let $X \sim S^{m} \times S^{n}$ with m and n even, positive integers, and let T act on X. There are the following possibilities:

1. Both parabolas degenerate to double lines which intersect at the origin. $F \sim S^{p} \times S^{q}$ with p and q even, positive integers. 2. One parabola degenerates to a double line, the other is tangent to this at the origin. $F \sim P^{3}(h)$ with h an even, positive integer.
2. One parabola degenerates to a double line, the other intersects this in two distinct points. $F \sim S^{p}+S^{q}$ with p and q even, positive integers.
3. The parabolas have one transversal intersection point and a point of tangency with intersection number three. $F \sim P^{2}(h)+\{p t\}$ with h an even, positive integer.
4. The parabolas intersect at two simpie points and are tangent at a third point. Then $F \sim S^{p}+\{p t\}+\{p t\}$ with p an even, positive integer.
5. The parabolas intersect transversally at four distinct points and F has four acyclic components.

Here $X \sim P^{r}(h)$ means that $H^{*}(X)$ has one generator u of dimension h which satisfies the relation $u^{r+1}=0$.

Case 1.
Here $c_{i}=d_{i}=0$, $i=1,2$. Let u and v be generators of $H^{p}(F)$ and $H^{q}(F)$ respectively. Let U, V, and W be the submodules of $H^{*}(F)$ generated by $\{u, u v\},\{v, u v\}$ and $\{u v\}$ respectively.

Theorem 6.
The ideals $\operatorname{Ann}\left(U_{T} / W_{T}\right)$ and $A n n\left(V_{T} / W_{T}\right)$ are principal ideals.

The geometric weight system is defined by two generators $a=w_{1}^{k_{1}} \ldots w_{s}^{k_{s}}$ and $b=w_{1}^{l_{1}} \ldots w_{s}^{l_{s}}$ for these respective ideals, $w_{i} \in H^{2}\left(B_{T}\right)$. The connected components of the corank one isotropy subgroups are given by $H_{i}=w_{i}^{\perp}$; the structure of the corresponding corank one F°-varieties are given by $X^{H_{i}}=F\left(H_{i}\right)$ $\sim S^{p+2 k_{i}} \times S^{q+21_{i}}, i=1, \ldots, s$.

Proof: Let $j^{*}(\hat{x})=a_{1}+u \otimes a_{2}+v \otimes a_{3}+u v \otimes a_{4}, a_{i} \in R T$. From $\hat{x}^{2}=0$ we have $a_{1}=a_{2} a_{3}=0$, by renaming we may assume that $a_{3}=0$. Hence $j^{*}(\hat{x})=u \otimes a_{2}+u v \otimes a_{4}$, and it follows easily that $j^{*}(\hat{y})$ $=\mathrm{v} \otimes \mathrm{b}_{3}+\mathrm{uv} \otimes \mathrm{b}_{4}$. Hence $\operatorname{Ann}\left(\mathrm{U}_{\mathrm{T}} / \mathrm{W}_{\mathrm{T}}\right)=\left(\mathrm{a}_{2}\right)$ and $\operatorname{Ann}\left(\mathrm{V}_{\mathrm{T}} / \mathrm{W}_{\mathrm{T}}\right)=\left(\mathrm{b}_{3}\right)$ are principal ideals. In this simple case, Theorem 4 implies that the factors of a_{2} and b_{3} are linear; i.e. we have generators a and b ehich are rationals multiples of a_{2} and b_{3} and which split as above. From the proof of theorem 4 it follows that the localization $\operatorname{Ann}\left(U_{T P} / W_{T P}\right)\left(w_{i}\right) \cap R T=\operatorname{Ann}\left(U_{T, H_{i}} / W_{T, H_{i}}\right)=\left(w_{i}{ }_{i}\right)$, similarly $\operatorname{Ann}\left(V_{T, H_{i}} / W_{T, H_{i}}\right)=\left(w_{i}\right)$. Obviously this implies that $X^{H_{i}} \sim S^{p+2 k_{i}} \times S^{q+2 l_{i}}$. q.e.d.

Remark 1. Ann $W=(a \cdot b)$; by Proposition $1 a b$ determines the local geometric weight system, i.e. it determines the local geometric weights w_{i} and the total dimension of $X^{H_{i}} \sim S^{m_{i}} \times S^{n_{i}}$, but to determine the individual sphere dimensions m_{i} and n_{i} we need the above refinement.

Remark 2. To compute $H^{*}\left(F\left(\left(H_{i} \cap H_{j}\right)^{\circ}\right)\right)$ one simply determines the weights which are in the two-dimensional subspace spanned by w_{i} and w_{j}, say w_{1}, \ldots, w_{r}. Then
$F\left(H_{i} \cap H_{j}\right) \sim S^{p+2 k_{1}+\cdots+2 k_{r}} \times S^{q+2 I_{1}+\cdots+2 I_{r}}$. Similarly one can
compute the cohomology of all the higher corank F°-varieties $\mathrm{F}\left(\mathrm{H}_{\mathrm{i}_{1}} \cap \ldots \mathrm{H}_{\mathrm{i}_{k}}\right)$. The result shows that in case 1 a general torus action on X has the same cohomological orbit structure as the diagonal of two linear actions on S^{m} and S^{n} with weight systems a and b respectively.

We digress briefly in this case to consider a typical application to actions of classical groups.

Theorem 7.
Let $G=S U(1), 1 \geq 4$ act on $S^{m} \times S^{n}$, let T be a maximal torus with $F(T) \sim S^{p} \times S^{q}$ and assume that $I(1-1)>m-2, n-2$. Then all orbits are finitely covered by complex stiefel manifolds SU(I)/SU(1-k) •

Proof: Let $W_{G}=N(T) / T$, then $F(T)$ is easily seen to be W_{G} invariant; hence there is a linear representation of W_{G} on each $H^{k}(F)$. Let $\theta_{1}, \ldots, \theta_{1}$ with $\theta_{1}+\ldots+\theta_{1}=0$ be the usual coordinates on T, then W_{G} is the symmetry group on $\left\{\theta_{1}, \ldots, \theta_{1}\right\}$. Any representation of W_{G} of degree less that $l-1$ is trivial on the subgroup A_{I} of even permutations, so in our case A_{1} acts trivially on each $H^{k}(F)$. Since $j^{*}: H_{T}(X) \rightarrow H_{T}(F)$ is a. $W_{G}-$ morphism, it is clear that $\operatorname{Ann}\left(U_{T} / W_{T}\right)$ and $\operatorname{Ann}\left(V_{T} / W_{T}\right)$ are $A_{1}-$ invariant; i.e. the weight systems $\left\{\left(\pm w_{1} ; k_{1}\right), \ldots,\left(\pm w_{s} ; k_{s}\right)\right\}$ and $\left\{\left(\pm w_{1} ; I_{1}\right), \ldots,\left(\pm w_{s} ; I_{s}\right)\right\}$ are invariant under even permutations of $\left\{\theta_{1}, \ldots, \theta_{1}\right\}$. Let $w=n_{1} \theta_{1}+\ldots+n_{1} \theta_{1}, n_{i} \in \mathbb{Z}$. It is easily seen that the shortest A_{1}-orbit occurs if $w=\theta_{i}$ for some i, and the second shortest occurs if $w=\theta_{i}+\theta_{j}$, the latter has length $\frac{1}{2} 1(1-1)$. From the dimension estimates $I(I-1)>m-2$ and n-2, it follows that only the shortest orbit can occur;
$a=\theta_{1}^{k_{1}} \ldots \theta_{1}^{k_{1}}$ and $b=\theta_{1}^{l_{1}} \ldots \theta_{1}^{l_{1}}$, i.e. the weight systems of $k_{1}\left(I_{1}\right)$ copies of the standard representation of $\mathrm{SU}(\mathrm{l})$ on C^{l}. Now we can use the technique in Hsiang () to reach the conclusion. By choosing a suitable point x on an arbitrary G-orbit of X , one may assume that the maximal torus T_{1} of G_{X}^{O} is contained in T, i.e. there exist weights $w_{i_{1}}, \ldots, w_{1_{k}}$ such that $T_{1}=T_{x}^{0}=$ $w_{i_{1}}^{\perp} \cap \ldots \cap w_{i_{k}}^{\perp}$; one may as well assume $T_{x}^{0}=w_{1}^{\perp} \cap \ldots n_{k}^{\perp}$. Let $\Delta(G)$ be the weight system of the adjoint representation, and $\Delta(G) \mid T_{1}$ the restriction of this to T_{1}. The action of G along the orbit G / G_{x} has weight system $\Delta(G) \mid T_{1}-\Delta\left(G_{x}^{O}\right)$, hence, if $\Omega=\left\{\left(\theta_{1} ; k_{1}+l_{1}\right), \ldots,\left(\theta_{1} ; k_{1}+l_{1}\right)\right\}$, then $\Delta\left(G_{x}^{0}\right) \supseteq \Delta(G)\left|T_{1}-\Omega\right| T_{1}$. From this equation it is a Lie algebra computation to show that $G_{X}^{0}=\operatorname{SU}(1-k)$. q.e.d.

Remark. By considering cohomology with \mathbb{Z}_{2}-coefficients and 2weights, one can show that the orbits must actually be complex Stiefel manifolds. Obviously there are similar theorems for SO(n) and $S p(n)$.

Case 2.
Here $c_{2}=d_{2}=d_{1}=0$. Let u be a generator in $H^{h}(F)$. From the relations $\hat{x}^{2}=c_{1} \hat{y}, \hat{y}^{2}=0$ we get: $j^{*}(\hat{x})=$ $u \otimes a_{2}+u^{2} \dot{\Delta} a_{3}+u^{3} \otimes a_{4}, j^{*}(\hat{y})=u^{2} \otimes b_{3}+u^{3} \otimes b_{4}$ with $a_{i}, b_{i} \in \operatorname{Rr}$ satisfying the relations: $a_{2}^{2}=c_{1} b_{3}, 2 a_{2} a_{3}=c_{1} b_{4}, j^{*}(\hat{x} \hat{y})=u^{3} \otimes a_{2} b_{3}$. Let U, V and W be the submodules of $H^{*}(F)$ generated by $\left\{u, u^{2}, u^{3}\right\}$, $\left\{u^{2}, u^{3}\right\}$ and $\left\{u^{3}\right\}$ respectively. Then it follows from the above that $\operatorname{Ann}\left(W_{T}\right)=\left(a_{2} b_{3}\right), \quad \operatorname{Ann}\left(U_{T} / V_{T}\right)=\left(a_{2}\right)$.

Theorem 8.
The geometric weight system is defined by two splitting elements $a=w_{1}^{k_{1}} \ldots w_{s}^{k_{s}}$ and $b=w_{1}^{l_{1}} \ldots w_{s}^{l_{S}}$, with $w_{i} \in H^{2}\left(B_{T}\right), 0<2 k_{i} \geq l_{i}$ for $i=1, \ldots . s$. The connected components of the corank one isotropy subgroups are given by $H_{i}=w_{i}^{\perp}, i=1, \ldots, s$. The structure of the corank one F°-varieties are given by:
a) $1_{i}<2 k_{i}: F\left(H_{i}\right) \sim S^{h+2 k_{i}} \times S^{2 h+2 l_{i}}$
b) $l_{i}=2 k_{i}: F\left(H_{i}\right) \sim P^{3}\left(h+2 k_{i}\right)$.

Proof: Since $\operatorname{Ann}\left(W_{T}\right)$ is a principal ideal, it follows from Theorem 4 that the generator $a_{2} b_{3}$ must split as the product of weights in $H^{2}\left(B_{T}\right)$, hence $a_{2}=q_{2} w_{1} k_{1} \ldots w_{s}$ and $b_{3}=q_{3} w_{1}{ }_{1} \ldots w_{s}$ with $q_{2}, q_{3} \in Q, w_{i} \in H^{2}\left(B_{T}\right)$. Since u^{3} is the fundamental cohomology class of F, it is actually clear from Proposition 1 that w_{1}, \ldots, w_{s} are the geometric weights. From $a_{2}^{2}=c_{1} b_{3}$ it follows that $2 k_{i} \geq l_{i}$. Also $\operatorname{dim} F\left(H_{i}\right)=3 h+2 k_{i}+21_{i}$. We have the exact sequence $0 \rightarrow I \rightarrow R_{T}[\hat{x}, \hat{y}] \rightarrow H_{T}^{*}(X) \rightarrow 0 ;$ since $H_{T}^{*}(X)$ is a flat R_{T}-module it follows from Theorem 1 a) that $0 \rightarrow I \otimes_{R T} R H_{i} \rightarrow \mathrm{RH}_{i}[\hat{x}, \hat{y}] \rightarrow H_{H_{i}}^{*}(X) \rightarrow 0$ is exact. Here $o_{1}^{*}\left(c_{1}\right) \neq 0$ in $R H_{i}$ iff $I_{i}=2 k_{i}$; i.e. in this case the H_{i}-action on X belongs to case 2, else it belongs to case 1. Thus, if $l_{i}<2 k_{i}, F\left(H_{i}\right) \sim S^{p_{i}} \times S^{q_{i}}$ with $p_{i}+q_{i}=$ $3 h+2 l_{i}+2 k_{i}$. From Theorem 4 it follows that the localization $\left(a_{2}\right)\left(w_{i}\right) \cap R_{G}=\left(w_{i}\right)=\operatorname{Ann}\left(U_{T, H_{i}} / V_{T, H_{i}}\right)$. Applying the above discussion to the T-action on $F\left(H_{i}\right)$, it is then clear that one of the sphere dimensions p_{i}, q_{i} must equal $h+2 k_{i}$. Hence $F\left(H_{i}\right) \sim S^{h+2 k_{i}} \times S^{2 h+2 l_{i}}$. If $l_{i}=2 k_{i}$ the multiplicity of w_{i} is $3 k_{i}$, from the above remarks it follows that $F\left(H_{i}\right) \sim P^{3}\left(h+2 k_{i}\right)$.
q.e.d.

We can construct examples of Case 2 with the torus T of arbitrarily high rank. Let Q be the quaternions and S^{7} the unit sphere in $Q^{2} \simeq C^{4}$. We have the Hopf-bundle $S^{3} \rightarrow S^{7} \rightarrow Q P(1)=S^{4}$, by taking the quotient by S^{1} we get the bundle $S^{2} \rightarrow \mathbb{C P}(3) \xrightarrow{\pi} S^{4}$ and the correspondin\& \mathbb{R}^{3}-bundle ξ over S^{4}. Let η be a C^{d}-bundle such that $\xi \oplus \eta$ is trivial, let S^{1} act on η by complex multiplication and trivially on ξ. (This is the" $\mathrm{Su}^{\prime \prime}$ construction, see Bredon (4), p.420) Let R be a representation of the r-dimensional torus \mathbb{T}^{r} on \mathbb{C}^{e} with weight system $\left\{\left(w_{1} ; r_{1}\right), \ldots,\left(w_{s} ; r_{s}\right)\right\}$, such that $\left\{w_{1}, \ldots, w_{s}\right\}$ are pairwise linearly independent. We may choose a weight w which is linearly independent of each w_{i}, $i=1, \ldots, s ;$ let p be the corresponding homomorphism from T^{r} to S^{1}. Then T^{r} acts on the trivial bundle $\epsilon(e)$ over S^{4} by R, and on $\xi \oplus \eta$ by p; hence $\xi \oplus \eta \oplus \varepsilon(e)$ is a T^{r}-bundle over S^{4} with unit sphere bundle $X=S^{4} \times S^{2 d+2 e+2}$ and fixed point set $F=\mathbb{C P}(3)$. From the Serre spectral sequence it follows that the corank one F^{O} varieties are given by $F\left(w_{i}^{1}\right) \sim S^{4} \times S^{2 r_{i}+2}$ for $i=1, \ldots, s$ and $F\left(w^{*}\right)=s^{4} \times s^{2 d+2}$.

Case 3.
Here $F=F_{1}+F_{2} \sim S^{p}+S^{q}$. Let u and v be generators in $H^{p}(F)$ and $H^{q}(F)$ respectively, and let 1_{i} be the generator of $H^{0}\left(F_{i}\right)$, $i=1,2$. From the relations $\hat{x}^{2}=c_{1} \hat{y}+\alpha_{1}$ and $\hat{y}^{2}=0$ it follows easily they $j^{*}(\hat{y})=\ddot{u} \otimes a+v \otimes b, \quad j^{*}(\hat{x})=u \otimes c+1_{1} \otimes d+v \otimes e-1_{2} \otimes d$, where we have the relations (i) $d_{1}=d^{2} \neq 0$. (ii) $a c_{1}=2 c d$. (iii) $b c_{1}=-2 e d . \quad$ (iv) $b c+a e=0$.

Let U, V and W be the submodules of $H^{*}(F)$ generated by $\{u\}$, $\{v\}$ and $\{u, v\}$ respectively. Then $\operatorname{Ann}\left(W_{T} / V_{T}\right)=(a)$,
$\operatorname{Ann}\left(W_{T} / U_{T}\right)=(b)$. Let $M=H^{*}(F)$, then $\operatorname{Ann}\left(M_{T} / W_{T}\right)=(d)$. Since $j^{*}(\hat{x} \hat{y}+d \hat{y})=u \otimes 2 a d$ and $j^{*}(\hat{x} \hat{y}+d \hat{y})=-v \otimes 2 b d$, we have $\operatorname{Ann}\left(U_{T}\right)=(a d), \operatorname{Ann}\left(V_{T}\right)=(b d)$, hence $a d$ and $b d$ determine the local geometric weight systems around F_{1} and F_{2} respectively. The complexity of the orbit structure depends on whether the first parabola $\hat{x}^{2}=c_{1} \hat{y}+d_{1}$ degenerates to two parallell lines or not. We treat the simpler case first.
a) $c_{1}=0$.

Theorem 9.
Let the equivariant cohomology of X be given by the ideal I of relations generated by $\hat{x}^{2}=d_{1} \neq 0$ and $\hat{\mathrm{y}}^{2}=0$. The geome tric weight system is then given by the generators of the above three annihilator ideals: $\quad a=q_{1} w_{1} k_{1} \ldots w_{s}{ }^{k_{S}}, \quad b=q_{2} w_{1} l_{1} \ldots w_{s} l_{s}$, and $d=q_{3} w_{1} p_{1} \ldots w_{s}$, where $q_{i} \in \mathbb{Q}$ and $w_{i} \in H^{2}\left(B_{T}\right)$. The structure of the corank one F°-varieties are given as follows:
Let $H_{i}=w_{i}^{\perp}$. Then $F\left(H_{i}\right) \sim S^{p+2 k_{i}}+S^{q+21_{i}}$ if $p_{i}=0$.

$$
\text { and } F\left(H_{i}\right) \sim S^{2 p_{i}} \times S^{p+2 k_{i}} \text { if } p_{i}>0 .
$$

Proof: By Theorem 4 the generators of annihilator ideals which are principal ideals must split into linear factors as above.

If $p_{i}=0$, we know from Theorem 4 that the localization (d) $\left(w_{i}\right) \cap R T=R T=\operatorname{Ann}\left(\mathbb{M}_{T}, H_{i} / W_{T, H_{i}}\right)$, i.e. $1_{1}-1_{2}$ is in the image of $j^{*}: H_{T}^{*}\left(F\left(H_{i}\right)\right) \rightarrow H_{T}^{*}(F)$; hence $F\left(H_{i}\right)$ has two components. From the multiplicities of w_{i} in the local geometric weight systems ad and bd it then follows that $F\left(H_{i}\right) \sim S^{p+2 k_{i}}+S^{q+21_{i}}$. On the other hand, if $p_{i}>0, I \otimes_{R T} R H_{i}$ is generated by \hat{x}^{2} and \hat{y}^{2}; from the exact sequence $0 \rightarrow I \otimes_{R T} R_{i} \rightarrow R_{i}[\hat{x}, \hat{y}] \rightarrow H_{H_{i}}^{*}(X) \rightarrow 0$ it follows that $F\left(H_{i}\right) \sim S^{m_{i}} \times S^{n_{i}}$. Here $(\alpha)\left(w_{i}\right) \cap R T=\left(w_{i}\right)$;
it is then an easy corollary of Theorem 4 that one of the individual sphere dimensions must be $2 p_{i}$. By counting dimensions in the local geometric weight systems, it follows that the other is $p+2 k_{i}=q+2 l_{i} . \quad$ q.e. d.
b) $\quad c_{1} \neq 0$.

Theorem 10.
Let the equivariant cohomology of X be given by the ideal I of relations defined by $\hat{x}^{2}=c_{1} \hat{y}+d_{1}, \hat{y}^{2}=0$, where $c_{1}, d_{1} \neq 0$. Let N be the submodule of $H^{*}(F)$ generated by $1_{1}-1_{2}$. Then the geometric weight system is given by the above three annihilator
 together with $\operatorname{Ann}\left(N_{T}\right)=\left(w_{1} r_{1} \ldots w_{S}\right)$. The structure of the corank one F^{0}-varieties are given as follows: Let $H_{i}=\left(w_{i}^{1}\right)$. Then: $F\left(H_{i}\right) \sim S^{p+2 k_{i}}+S^{q+2 l_{i}}$ if $p_{i}=0$.
$F\left(H_{i}\right) \sim P^{3}\left(2 p_{i}\right)$ if $p_{i}>0, r_{i}=3 p_{i}$.
$F\left(H_{i}\right) \sim S^{2 p_{i}} \times S^{p+2 k_{i}}$ if $p_{i}>0, r_{i}<3 p_{i}$.
There is at least one corank one F°-variety of type $S^{2 p_{i}} \times S^{p+2 k_{i}}$.
Proof: The same proof as in a) gives the splitting of a, b and d and the structure of $F\left(H_{i}\right)$ when $p_{i}=0$. We compute Ann $\left(\mathbb{N}_{T}\right)$. We may consider $\partial\left(1_{1}-1_{2}\right)$ as the generator of $H^{1}(X ; F)$ and x, y, xy as elements of $H^{*}(X ; F)$. From Theorem 2 we know that $H_{T}^{*}(X ; F)$ is a torsion RT-module; hence, in the Serre spectral sequence for the pair of fibrations $X_{T} \rightarrow B_{T}, F_{T} \rightarrow B_{T}$; one of the E_{2}-elements $x, y, x y$ must transgress to $\partial\left(1_{1}-1_{2}\right) \otimes g$. Since we are in the lowest filtration degree, this expression becomes zero in $H^{*}\left(X_{T} ; F_{T}\right)$, and it follows that $\operatorname{Ann}\left(N_{T}\right)=(g)$. From the cohomology exact sequence of the pair $\left(X_{T}, F_{T}\right)$. this means that
$\left(1_{1}-1_{2} \otimes g\right.$ is in the image of $j^{*}: H_{T}^{*}(X) \rightarrow H_{T}^{*}(F)$. We claim that it is $x y$ which transgresses to $a\left(1_{1}-1_{2}\right) \otimes g$. For otherwise $j^{*}\left(a_{1} \hat{x}+a_{2} \hat{y}\right)=\left(1_{1}-1_{2}\right) \otimes g$, with a_{1} or a_{2} equal to 1 . This gives $a_{1} c+a_{2} a=a_{1} e+a_{2} b=0$. Substituting the relation (iv), we get $2 a_{2} b=0$, i.e. $a_{2}=0, a_{1}=0$ which is a contradiction. We have $j^{*}\left(\hat{x} \hat{y}+b d e^{-1} \hat{x}\right)=\left(1_{1}-1_{2}\right) \otimes b d^{2} e^{-1}$; it follows that e must divide $b d$ and g is a rational multiple of $b d^{2} e^{-1}$. Now if $p_{i}>0$, it follows as before that $F\left(H_{i}\right)$ is connected. From relation (iii) we see that the multiplicity of w_{i} in c_{1} is $I_{i}+2 p_{i}-r_{i}+p_{i}-l_{i}=3 p_{i}-r_{i}$. Hence $p_{i}^{*}\left(c_{1}\right)=0$ if and only if $r_{i}<3 p_{i}$, where ρ_{i}^{*} is the canonical homomorphism $R T \rightarrow R H_{i}$. If $r_{i}=3 p_{i}$, we have $I \otimes_{R T} R H_{i}=\left(\hat{y}^{2}, \hat{x}_{-p_{i}^{*}}^{2}\left(c_{1}\right) \hat{y}\right)$; if $r_{i}<3 p_{i}$, we have $I \otimes_{R T} R H_{i}=\left(\hat{y}^{2}, \hat{x}^{2}\right)$. Hence from the exact sequence $0 \rightarrow I \otimes_{R T} R H_{i} \rightarrow \mathrm{RH}_{i}[\hat{x}, \hat{y}] \rightarrow H_{H_{i}}^{*}(X) \rightarrow 0$ it again follows that these correspond to Case 2 and Case 1 for the H_{i}-action on X, respectively. The dimensions in these cases are computed by the multiplicities of w_{i} in the local geometric weight systems and by localizing the ideal (d) as in Theorem 9. If all connected corank one F_{o}-varieties were of type $P^{3}\left(2 p_{i}\right)$, we would have $m+n=\operatorname{dim} g=3 \operatorname{dim} d=3 m$, i.e. $\hat{x}^{2}=c_{1} \hat{y}+d_{1}, c_{1} \in \mathbb{Q}$ hence $x^{2}=c_{1} y$, which would mean that X was a cohomology projective space. q.e.d.

If T acts linearly on S^{m} and S^{n} with fixed point sets $S^{p} \quad(p>0)$ and S° respectively, then the diagonal action of T on $S^{m} \times S^{n}$ gives an example of a) with $p=q$,
("linear examples"). We now construct an example with equivariant cohomology as in b) (non-degenerate parabola); it is sufficient to show that corank one F^{O}-varieties can occur as cohomology projec;
tive spaces. Let $S^{7} \subseteq Q^{2}=\mathbb{C}^{4}$, let $S^{2} \rightarrow \mathbb{C P}(3) \xrightarrow{G} Q P(1)=S^{4}$ be the "Su bundle" considered in Case 2, and let 5 be the associated \mathbb{R}^{3}-bundle. Consider a linear action of a torus T on Q^{2} with weight system $\{(w ; 2)\}$, i.e. $g \cdot\left(x_{1}, x_{2}\right)=$ $\left(\exp \left(2 \pi i\langle w, g\rangle x_{1}, \exp (2 \pi i\langle w, g\rangle) x_{2}\right)\right.$, this projects to a linear action on $Q P(1)=S^{4}$ with $F=S^{2}$ and the local representation of T around F given by the weight system $\{(0 ; 1),(-2 w ; 1)\}$. On the other hand, viewing Q^{2} as a^{4}, this also induces a linear action on $\mathbb{C P}(3)$ with complex weitht system ($\pm \mathrm{w} ; 2$) and fixed point set $F_{1}+F_{2}=S^{2}+S^{2}$. The local representations around fixed points now have weight systems $\{(0 ; 1),(2 w ; 2)\}$ (see Tomter (16)). Let R be a representation of T on \mathbb{C}^{n} with weight system $\left.\left\{\left(w_{1} ; r_{1}\right), \ldots, w_{s} ; r_{s}\right)\right\}$ and let ε be the corresponding trivial $T-$ bundle on S^{4} (for the given T-action on the base space). This defines a T-structure on the unit sphere bundle X of the Whitney sum of ξ and ε. From the Serre spectral sequence of this bundle it is clear that $X \sim S^{4} \times S^{2 n+2}$. We may assume that the weight vectors $\left\{\mathrm{w}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{s}}\right\}$ are pairwise linearly independent. Then $F=X^{T}=S^{2}+S^{2}$, and the corank one F^{0}-varieties are $F\left(w^{\perp}\right)=\mathbb{C P}(3), F\left(w_{i}^{\perp}\right) \sim S^{2} \times S^{2 r_{i}}, i=1, \ldots, s$.

From this it is clear that Case 3 b) can occur with tori T of arbitrarily large rank. By a variation of this construction we can obtain the following improvement of Theorem 2 in Tomter (16) for circle actions, also see Chang and Comenetz (5), Theorem 3.

Theorem 11.
For any torus T it is possible to find a space X whose integral cohomology is isomorphic to $H^{*}\left(S^{4} \times S^{n} ; \mathbb{Z}\right)$ for some even integer n and an effective action of T on X such that the fixed point
set $F=S^{p}+S^{q}$ with $p \neq q$.
Proof: Consider the Su bundle $\mathbb{C P}(3) \mathbb{I} Q P(1)=S^{4}$ and 5 as in the last example. Now take a linear T-action on Q^{2} with weight system $\{(w ; 1),(0 ; 1)\}$, this defines a linear action on QP(1) with fixed points P_{1} and P_{2} and local weight systems $\{(\pm w ; 1)\}$ and $\{(-w ; 2)\}$ respectively. On $\mathbb{C P}(3)$ the induced action has complex weight system $\{(\pm w ; 1),(0 ; 2)\}$ and fixed point set $F_{1}+F_{2}+F_{3}$, where F_{1} and F_{2} are points and $F_{3}=S^{2}$. The corresponding local representations have weight systems $\{(2 w ; 1),(w ; 2)\},\{(-2 w ; 1),(-w ; 2)\}$ and $\{(0 ; 1),(\pm w ; 1)\}$ respectively. Here the local representation around F_{1} has weight $2 w$ along the fibre of the Su bundle and $\{(\mathrm{w} ; 2)\}$ transversally to the fibre, similarly for F_{2} and F_{3}. We have $\pi\left(F_{1}\right)=\pi\left(F_{2}\right)=P_{1}$, $\pi\left(F_{3}\right)=P_{2}$. Let R be a faithful representation of T on \mathbb{C}^{n} with weight system $\left\{\left(0 ; r_{0}\right),\left(w_{1} ; r_{1}\right), \ldots,\left(w_{s} ; r_{s}\right)\right\}$ such that the weight vectors w, w_{1}, \ldots, w_{s} are peirwise linearly independent. Let ε be the corresponding trivial T-bundle on S^{4}, and proceed to construct X as in the previous example. Then the Serre spectral sequence actually shows that $X \sim S^{4} \times S^{2 n+2}$ with \mathbb{Z}-coefficients. Furthermore $F=X^{T}=S^{2 r_{0}}+S^{2 r_{o}+2}$, and the corank one F^{0}-varieties are given by $F\left(w^{L}\right) \sim S^{4} \times S^{2 r_{0}+2}$ and $F\left(w_{i}^{1}\right) \sim S^{2 r_{0}+2 r_{i}}+S^{2 r_{o}+2 r_{i}+2}$ for $i=1, \ldots, s$. q.e.d.

Case 4.
The equivariant cohomology is defined by the ideal
$I=\left(\hat{x}^{2}-c_{1} \hat{y}-d_{1}, \hat{y}^{2}-c_{2} \hat{x}-d_{2}\right)$ with c_{1}, c_{2}, d_{1} and α_{2} non-zero elements of RT ; the variety of I consits of the two intersection points $\left(a,-2 a^{2} c_{1}^{-1}\right)$ and $\left(-3 a, 6 a^{2} c_{1}^{-1}\right)$ corresponding to the
fixed point components $F_{1} \sim P^{2}(h)$ and $F_{2} \sim\{p t\}$ respectively. An easy computation gives the relations (i) $8 a^{3}=c_{1}^{2} c_{2}, d_{1}=3 a^{2}$ and $a_{2} c_{1}^{2}=12 a^{4}$.
Let $u, 1_{1}$ and 1_{2} be generators in $H^{h}\left(F_{1}\right), H^{0}\left(F_{1}\right)$ and $H^{0}\left(F_{2}\right)$ respectively. Let $x^{\prime}=\hat{x}-a, y^{\prime}=\hat{y}+2 a^{2} c_{1}^{-1}$. Then $j^{*}\left(x^{\prime}\right)=$ $u^{2} \otimes \alpha+u \otimes \beta-1_{2} \otimes 4 a, \quad j^{*}\left(y^{\prime}\right)=u^{2} \otimes \gamma+u \otimes \delta+1_{2} \otimes 8 a^{2} c_{1}^{-1}$, with $\alpha, \beta, \gamma, \delta \in R T$. Straightforward computations give $\gamma=\left(2 \alpha a+\beta^{2}\right) c_{1}^{-1}$, $\delta=2 \mathrm{Bac}_{1}^{-1}$. Let M and N be the submodules of $H^{*}(F)$ generated by u^{2} and 1_{2} respectively. Then $\operatorname{Ann}\left(M_{T}\right)=\left(\beta^{2} a c_{1}^{-1}\right)$ and $\operatorname{Ann}\left(\mathbb{N}_{\mathrm{T}}\right)=\left(\mathrm{a}^{3} c_{1}^{-1}\right)=\left(c_{1} c_{2}\right)$. By Proposition 1 these define the local geometric weight systems around F_{1} and F_{2}, and the alements a, c_{1}, c_{2}, β must all split as the product of weights in $H^{2}\left(B_{T}\right)$.

In this case we can describe the orbit structure from the equivariant cohomology as follows:

Theorem 12.
The geometric weight system is given by the splitting elements
 $c_{1}=q_{3} w_{1} p_{1} \ldots w_{1}$, where $k_{i}=h_{i}+\frac{1}{2} h$ for $i=1, \ldots, 1$ and $\sum_{j=1+1}^{l+s} 2 h_{j}=(1-1) h$. Let $H_{i}=\left(w_{i}^{1}\right), i=1, \ldots, s$. The corank one F°-varieties are given as follows:
a) Let $1 \leq i \leq 1$. Then $0 \leq p_{i} \leq \frac{3}{2} k_{i}$.

$$
\begin{aligned}
& \text { If } \quad 0<p_{i}<\frac{3}{2} k_{i}: F\left(H_{i}\right) \sim S^{2 k_{i}} \times S^{4 k_{i}-p_{i}} . \\
& \text { If } \quad p_{i}=0: \quad F\left(H_{i}\right) \sim P^{3}\left(h+2 k_{i}\right) \text {. If } \quad p_{i}=\frac{3}{2} k_{i}: F\left(H_{i}\right) \sim P^{3}\left(h+k_{i}\right) .
\end{aligned}
$$

b) Let $i>1$. Then $F\left(H_{i}\right) \sim P^{2}\left(h+2 k_{i}\right)+F_{2}$.

Proof: For $1 \leq i \leq 1$ the two intersection points of the parabolas are joined to zero by restricting the action to H_{i}, hence $F\left(H_{i}\right)$ is connected. Comparing multiplicities of w_{i} in Ann $\left(M_{T}\right)$ and $\operatorname{Ann}\left(N_{T}\right)$ we get $k_{i}=h_{i}+\frac{1}{2} h$. From (i) it follows that $2 p_{i} \leq 3 k_{i}$. If $0<p_{i}<\frac{3}{2} k_{i}$ it follows that $\rho_{i}^{*}\left(c_{2}\right)=0$ in $R H_{i}$, hence $F\left(H_{i}\right) \sim S^{m_{i}} \times S^{n_{i}}$. Let U and V be the submodules of $H^{*}(F)$ generated by $\left(u^{2}, u, 1\right)$ and $\left(u^{2}, u\right)$ respectively. Then $\operatorname{Ann}\left(U_{T} / V_{T}\right)=\left(a, a^{2} c_{i}^{-1}\right)$ and $\operatorname{Ann}\left(U_{T}, V_{T}\right)\left(w_{i}\right) \cap R_{T}=\left(w_{i}^{1}\right)$ with $I_{i}=\min \left(k_{i}, 2 k_{i}-p_{i}\right)$. From Theorem 4 it follows that $2 l_{i}=$ $\min \left(m_{i}, n_{i}\right)$, from the local geometric weitht systems $m_{i}+n_{i}=6 k_{i}-2 p_{i}$; hence $F\left(H_{i}\right) \sim S^{2 k_{i}} \times S^{4 k_{i}-2 p_{i}}$.
If $p_{i}=0, \rho_{i}^{*}\left(c_{1}\right) \neq 0$ in $R H_{i}$, hence the H_{i}-action on X is Case 2 and $F\left(H_{i}\right) \sim P^{3}\left(h+2 k_{i}\right)$. If $p_{i}=\frac{3}{2} k_{i}, \rho_{i}^{*}\left(c_{2}\right) \neq 0$ and $F\left(H_{i}\right) \sim P^{3}\left(h+k_{i}\right)$ as is easily seen by checking dimensions. If $i>1$, the intersection points of the parabolas remain separated when restricting to H_{i}, by a dimension check $F\left(H_{i}\right) \sim P^{2}\left(h+2 k_{i}\right)+\{p t\}$. q.e.d.

Case 4 can occur only under rather special circumstances. It is possible only in the dimension range $n<2 m<4 n$. In Tomter (16) an example was constructed for a circle action on $X \sim S^{4} \times S^{4}$, the construction has been extended to circle actions with other dimensions in Chang and Comenetz (5). In a recent paper of Skjelbred (11), he applies a theorem by Sylvester and Grunwald on affine dependence relations of points in the plane to prove that if $F=F_{1}+F_{2}$ with F_{2} acyclic, then $r k \leq 3$ (for an arbitrary Poincaré duality space X with $\operatorname{dim} H^{*}(X)=\operatorname{dim} H^{*}(F)$ and $\operatorname{dim} F_{1}>\operatorname{dim} F_{2}$). Hence Case 4 cannot occur for tori of large rank; we do not know of examples with $r k T=2$ or $r k T=3$.

Case 5.
Let $\left(a_{i}, b_{i}\right), i=1,2,3$ be the intersection points of the parabolas $\hat{x}^{2}=c_{1} \hat{y}+d_{1}$ and $\hat{y}^{2}=c_{2} \hat{x}=d_{2}$ with $\left(a_{1}, b_{1}\right)$ the point of tangency. We may assume that c_{1}, d_{1}, d_{2} are non-zero. Let $F=F_{1}+F_{2}+F_{3} \sim S^{p}+\{p t\}+\{p t\}$, let u and 1_{i} be generators of $H^{p}\left(F_{1}\right)$ and $H^{0}\left(F_{i}\right)$ respectively, $i=1,2,3$. Then $j *(\hat{x})=$ $u \otimes c+1_{1} \otimes a_{1}+1_{2} \otimes a_{2}+1_{3} \otimes a_{3}, \quad j^{*}(\hat{y})=u \otimes d+1_{1} \otimes b_{1}+1_{2} \otimes b_{2}+1_{3} \otimes b_{3}$. Straightforward computation gives the relations:
(i) $\left(a_{i}-a_{j}\right)\left(a_{i}+a_{j}\right)=c_{1}\left(b_{i}-b_{j}\right),\left(b_{i}-b_{j}\right)\left(b_{i}+b_{j}\right)=c_{2}\left(a_{i}-a_{j}\right)$.
(ii) $2 a_{1} c=c_{1} d . \quad 2 b_{1} d=c_{2} c . \quad 4 a_{1} b_{1}=c_{1} c_{2}$.
$\left(a_{i}+a_{j}\right)\left(b_{i}+b_{j}\right)=c_{1} c_{2}$.
Again, the simplest orbit structure occurs when the second parabola degenerates to two parallell lines.
a) $c_{2}=0$.

This implies $a_{1}=0, a_{2}=-a_{3}, b_{1}=-b_{2}=-b_{3}$. Let $a=a_{2}$ and $b=b_{1}$. Then $j^{*}(\hat{x})=u \otimes c+1_{2} \otimes a-1_{3} \otimes a$. From $j^{*}\left(\hat{y}^{2}\right)=$ $j^{*}\left(d_{2}\right)=d_{2} \otimes\left(1_{1}+1_{2}+1_{3}\right)$ it then follows that $j^{*}(\hat{y})=11^{\otimes b-1} 2^{\otimes b-1} 3^{\otimes b}$.

Proposition 3. Let M and M_{i} be the submodules of $H^{*}(F)$ generated by u and 1_{i} respectively. Then $\operatorname{Ann}\left(M_{T}\right)=(b c)$, $\operatorname{Ann}\left(M_{1 T}\right)=(b)$ and $\operatorname{Ann}\left(M_{2 T}\right)=\operatorname{Ann}\left(M_{3 T}\right)=(a b)$.

Proof: $j^{*}(\hat{x} \hat{y}+b \hat{x})=u \otimes 2 b c, \quad j^{*}(\hat{x} \hat{y}-b \hat{x}+a \hat{y}-a b)=1_{2} \otimes(-4 a b)$, $j^{*}(\hat{x} \hat{y}-b \hat{x}-a \hat{y}+a b)=1_{3} \otimes 4 a b, j^{*}(\hat{y}+b)=1_{1} \otimes 2 b$.

Theorem 13.
The geometric weight system in Case 5 a) is given by the three splitting elements $a=q_{1} w_{1} \ldots w_{s}, \quad b=q_{2} w_{1} \ldots w_{s} \quad$ and
$c=q_{3} w_{1}^{p_{1}} \ldots w_{s} p_{s}, q_{i} \in Q$. The structure of the corank one $F^{0}-$ varieties are given as follows: Let $H_{i}=w_{i}^{\perp}$.
(a) $2 k_{i}>I_{i}>0: F\left(H_{i}\right) \sim S^{2 k_{i}} \times S^{2 l_{i}}$.
(b) $2 k_{i}=I_{i}>0: F\left(H_{i}\right) \sim p^{3}\left(2 k_{i}\right)$.
(c) $2 k_{i}>I_{i}=0: \quad F\left(H_{i}\right) \sim S^{p+2 p_{i}}+S^{2 k_{i}}$.
(d) $k_{i}=1_{i}=0: F\left(H_{i}\right) \sim S^{p+2 p_{i}}+\{p t\}+\{p t\}$.

Proof: From (i) we get $a^{2}=-2 c_{1} b, d_{1}=-c_{1} b$.
(a) $\rho_{i}^{*}\left(c_{1}\right)=\rho_{i}^{*}\left(\alpha_{1}\right)=\rho_{i}^{*}\left(d_{2}\right)=0$ in $R H_{i}$, hence $I \otimes_{R T} R H_{i}$ $=\left(\hat{x}^{2}, \hat{y}^{2}\right)$, from the exact sequence $0 \rightarrow I \otimes_{R T} R H_{i} \rightarrow R H_{i}[\hat{x}, \hat{y}]$
$\rightarrow H_{H_{i}}^{*}(X) \rightarrow 0$ it follows that the restriction to the H_{i}-action on X is Case 1 and $F\left(H_{i}\right) \sim S^{m_{i}} \times S^{n_{i}}$. By Proposition 3 the local geometric weight systems around F_{2} and F_{3} are given by $a b$, hence $m_{i}+n_{i}=2 k_{i}+2 l_{i}$. By Theorem 4 $\operatorname{Ann}\left(\mathbb{M}_{1 T}\right)\left(w_{i}\right) \cap R T=\left(w_{i}\right)=\operatorname{Ann}\left(\mathbb{M}_{1 T, H_{i}}\right)$, hence one of the individual sphere dimensions is $2 l_{i}$ and $F\left(H_{i}\right) \sim S^{2 k_{i}} \times S^{2 l_{i}}$.
(b) $\rho_{i}^{*}\left(d_{1}\right)=\rho_{i}^{*}\left(d_{2}\right)=0, \rho_{i}^{*}\left(c_{1}\right) \neq 0$; hence the H_{i}-action on X is Case 2, and from the local geometric weight system $F\left(H_{i}\right) \sim P^{3}\left(2 k_{i}\right)$.
(c) $\rho_{i}^{*}\left(c_{1}\right)=\rho_{i}^{*}\left(d_{1}\right)=0, \rho_{i}^{*}\left(d_{2}\right) \neq 0$ and the H_{i}-action on X is Case 3 a).
(d) $\rho_{i}^{*}\left(c_{1}\right), \rho_{i}^{*}\left(d_{1}\right)$ and $\rho_{i}^{*}\left(d_{2}\right)$ are all non-zero, and the $H_{i}-$ action on X is Case 5 a).

The dimension in (c) and (d) follow from the local geometric weight systems.
b) $c_{2} \neq 0$.

Proposition 4.
$I_{1}=\operatorname{Ann}\left(M_{T}\right)=\left(c\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) c_{1}^{-1}\right)=\left(a\left(b_{1}-b_{2}\right)\left(b_{1}-b_{3}\right) c_{2}^{-1}\right)$.
$I_{2}=\operatorname{Ann}\left(M_{2 T}\right)=\left(\left(a_{2}-a_{3}\right)\left(a_{2}-a_{1}\right)^{2} c_{1}^{-1}\right)=\left(\left(b_{2}-b_{3}\right)\left(b_{2}-b_{1}\right)^{2} c_{2}^{-1}\right)$.
$I_{3}=\operatorname{Ann}\left(M_{3 T}\right)=\left(\left(a_{2}-a_{3}\right)\left(a_{3}-a_{1}\right)^{2} c_{1}^{-1}\right)=\left(\left(b_{2}-b_{3}\right)\left(b_{3}-b_{1}\right)^{2} c_{2}^{-1}\right)$.
These determine the local geometric weight systems around F_{1}, F_{2} and F_{3} respectively.

Proof: We compute I_{1}. Let $x^{\prime}=\hat{x}-a_{3}, y^{\prime}=\hat{y}-b_{3}$. Since $j^{*}\left(x^{\prime} y^{\prime}+A x^{\prime}+B y^{\prime}\right)=u \otimes D$ for $A, B, C, D \in R T$ we get:
(1) $A\left(a_{i}-a_{3}\right)+B\left(b_{i}-b_{3}\right)+\left(a_{i}-a_{3}\right)\left(b_{i}-b_{3}\right)=0, i=1.2$. From (i) we get $A\left(a_{i}-a_{3}\right)+B c_{1}^{-1}\left(a_{i}^{2}-a_{3}^{2}\right)+c_{1}^{-1}\left(a_{i}-a_{3}\right)^{2}\left(a_{i}+a_{3}\right)=0$. For the intersection points $a_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$ in case 5 b) if ifj. Hence $\quad c_{1} A=-\left(a_{i}+a_{3}\right) B-a_{i}^{2}+a_{3}^{2}$ for $i=1,2$; by subtraction we get $B=-\left(a_{1}+a_{2}\right)$. Similarly $A=-\left(b_{1}+b_{2}\right)$. Substitution of A in (1) gives $-\left(b_{2}+b_{3}\right)\left(a_{1}-a_{3}\right)+B\left(b_{1}-b_{3}\right)=0$, using (i) we obtain $B=c_{2}^{-1}\left(b_{1}+b_{3}\right)\left(b_{2}+b_{3}\right)=-\left(a_{1}+a_{2}\right)=-c_{1} c_{2}\left(b_{1}+b_{2}\right)^{-1}$, hence $\left(b_{1}+b_{2}\right)\left(b_{1}+b_{3}\right)\left(b_{2}+b_{3}\right)=-c_{1} c_{2}^{2}$, similarly $\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(a_{2}+a_{3}\right)$ $=-c_{1}^{2} c_{2}$. Now $D=c\left(b_{1}-b_{2}\right)+d\left(a_{1}-a_{3}\right)-c\left(b_{1}+b_{2}\right)-d\left(a_{1}+a_{2}\right)$ $=-c\left(b_{2}+b_{3}\right)-d\left(a_{2}+a_{3}\right)=-c c_{1} c_{2}\left(a_{2}+a_{3}\right)^{-1}-2 a_{1} c c_{1}^{-1}\left(a_{2}+a_{3}\right)$ $=c c_{1}^{-1}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)-2 a_{1} c c_{1}^{-1}\left(a_{2}+a_{3}\right)=c c_{1}^{-1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)$, and this gives the formula for I_{1}. By similar computations we obtain the others. q.e.d.

The description of the orbit structure is more complicated in this case. However since there are examples of such torus actions, we state the result with a short proof.

Theorem 14.
The geometric weight system in Case 5 b is determined by the fol-
lowing annihilator ideals: $I_{1}=A n n M_{T}=\left(w_{1}^{g_{1}} \ldots w_{S}^{g_{S}}\right), I_{2}=A n n M_{2 T}$ $=\left(w_{1}^{h_{1}} \ldots w_{S}^{h_{S}}\right), I_{3}=\operatorname{Ann} M_{3 T}=\left(w_{1}^{j_{1}} \ldots w_{S}^{j_{S}}\right), I_{4}=A n n\left(\left(M+M_{2}+M_{3}\right)_{T}\left(M_{2}+M_{3}\right)_{T}\right)$ $=(c, d)=\left(w_{1} \ldots w_{s}\right)$. There are the following possibilities for corank one F°-varieties $\left(\mathrm{H}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}^{\perp}\right)$:
(a) $g_{i}>0, h_{i}=j_{i}=0$.

$$
F\left(H_{i}\right) \sim S^{p+2 g_{i}}+\{p t\}+\{p t\}
$$

(b) $h_{i}>0, j_{i}=0, g_{i}=h_{i}-\frac{p}{2} \cdot F\left(H_{i}\right)=F^{\prime}+F_{3} \sim P^{2}\left(h_{i}\right)+\{p t\}$. $j_{i}>0, h_{i}=0, g_{i}=j_{i}-\frac{p}{2} . F\left(H_{i}\right)=F^{\prime}+F_{2} \sim P^{2}\left(j_{i}\right)+\{p t\}$.
(c) $h_{i}=j_{i}>0, k_{i}=g_{i}$.

$$
F\left(H_{i}\right) \sim S^{p+2 g_{i}}+S^{2 h_{i}}
$$

(d) $h_{i}=j_{i}=g_{i}+\frac{p}{2}>0 \cdot k_{i}<g_{i} \cdot F\left(H_{i}\right) \sim S^{p+2 k_{i}} \times S^{2\left(h_{i}-k_{i}\right)-p}$ for $3 p+6 k_{i} \neq 2 h_{i}$ and $F\left(H_{i}\right) \sim P^{3}\left(p+2 k_{i}\right)$ for $3 p+6 k_{i}=2 h_{i}$.

Proof. (a) and (b) follow by inspecting the local geometric weight systems I_{1}, I_{2}, I_{3}. Now $\left(I_{4}\right)\left(w_{i}\right) \cap R T=\left(w_{i}\right),\left(I_{1}\right)\left(w_{i}\right) \cap R T=$ $\left(w_{i} g_{i}\right)$. Hence one of the generators of $H^{*}\left(F\left(H_{i}\right)\right)$ has dimension $p+2 k_{i}$ and the dimension of $F\left(H_{i}\right)$ around F_{1} is $p+2 g_{i}$. If these are equal, $F\left(H_{i}\right)$ is disconnected, and in (c) we get $F\left(H_{i}\right) \sim S^{p+2 g_{i}}+S^{2 h_{i}}$ from I_{1}, I_{2}, I_{3}. Conversely, in (d) $F\left(H_{i}\right)$ must be connected. If $F\left(H_{i}\right) \sim P^{3}\left(p+2 p_{i}\right)$, we would have $\operatorname{Ann}\left(\left(M+M_{2}+\mathbb{M}_{3}\right)_{T, H_{i}} /\left(M_{2}+M_{3}\right)_{T_{,} H_{i}}\right)=\left(w_{i}^{p_{i}}\right)=\left(w_{i}^{k_{i}}\right)$, hence $p_{i}=k_{i}$ and $3 p+6 k_{i}=2 h_{i}$. Thus, if $3 p+6 k_{i} \neq 2 h_{i}, F\left(H_{i}\right) \sim S^{m_{i}} \times S^{n_{i}}$, by the localization of I_{4} again one of the sphere dimensions must be $p+2 k_{i}$; i.e. $F\left(H_{i}\right) \sim S^{p+2 k_{i}} \times S^{2\left(h_{i}-k_{i}\right)-p}$. It remains only to prove that if $3 p+6 k_{i}=2 h_{i}, F\left(H_{i}\right) \sim S^{p+2 k_{i}} \times S^{2 p+4 k_{i}}$ is impossible. From the dimensions it is clear that in this case the T-action on $F\left(H_{i}\right)$ must be Case 5 a). Let $x_{i} \in H_{T}^{p+2 k_{i}}\left(F\left(H_{i}\right)\right)$ and $y_{i} \in H_{T}^{2 p+4 k_{i}}\left(F\left(H_{i}\right)\right)$ be generators, then $x_{i}^{2} \in R T$ and from
 which is a contradiction.
q.e.d.

Again, 5 b) can occur only inrather special cases. It is possible only in the dimension range $n<2 m<4 n$. If $r k T>4$, then rk $H_{i}>3$ and (b) in Theorem 14 cannot occur. The local geometric weight systems around F_{2} and F_{3} must then be the same, hence $a_{2}-a_{1}=q_{1}\left(a_{3}-a_{1}\right), b_{2}-b_{1}=q_{2}\left(b_{3}-b_{1}\right)$ with $q_{1}, q_{2} \in \mathbb{Q}$, from (i) we get $a_{3}=q_{3} a_{1}$, similarly for a_{2}, b_{2}, etc. $I_{1}=\left(c a_{1}^{2} c_{1}^{-1}\right)=\left(c b_{1}\right), I_{2}=I_{3}=\left(a_{1}^{3} c_{1}^{-1}\right)=\left(a_{1} b_{1}\right)$, just as in 5 a). Hence it is only for $r k T \leq 4$ and $n<2 m<4 n$ that the more complicated description of Theorem 14 is necessary. We give examples which shows that it can occur for tori of rank two.

First we obtain an example of 5 a). Let ξ be the Su bundle over S^{4} and let T act on $Q^{2}=\mathbb{C}^{4}$ with weight system $\{(0 ; 1),(w ; 1)\}$. Let ε be the trivial \boldsymbol{c}^{n} bundle over the T-space $S^{4}=Q P(1)$ corresponding to a representation of T with weight system $\left\{\left(w_{1} ; r_{1}\right), \ldots,\left(w_{s}, r_{s}\right)\right\}$ with $\left\{w, w_{1}, \ldots, w_{s}\right\}$ pairwise linearly independent. (See Case 3) Let X be the unit sphere bundle of $5 \oplus \in$, then $X \sim S^{4} \times S^{2+2 n}$ and $F=X^{T}=S^{2}+\{p t\}+\{p t\}$. Instead of computing the equivariant cohomology, we just observe that if $n>8$, we must be in Case 5 a. The corank one F°-varieties: $F\left(w^{\perp}\right)=\mathbb{C P}(3), F\left(w_{i}^{\perp}\right) \sim S^{2+2 r_{i}}+S^{2 r_{i}}$. This shows that case (b) of Theorem 13 can occur for tori of large rank.

Next we give exapmples which shows that both parabolas may be nondegenerate. Let T have rank two, and let a_{1} and a_{2} be linearly independent weights on T. Let T act on $X_{1}=Q P(2)$ and $X_{2}=\operatorname{QP}(2)$ with weight systems $\left\{(0 ; 1),\left(a_{2}-a_{1} ; 1\right),\left(-a_{2}-a_{1} ; 1\right)\right\}$ and
$\left\{\left(a_{2} ; 2\right),\left(a_{1} ; 1\right)\right\}$ respectively. Then $X_{1}^{T}=F^{1}+F^{2}+F^{3}=\{p t\}+\{p t\}$ $+\{p t\}$ and $X_{2}^{T}=F^{4}+F^{5}=S^{2}+\{p t\}$. The local representations of T around F^{1} and F^{5} have complex weight systems
$\left\{ \pm\left(a_{2}-a_{1}\right), \pm\left(a_{2}+a_{1}\right)\right\}$ and $\left\{\left(\pm a_{2}-a_{1} ; 2\right)\right\}$ respectively; hence there are disc neighbourhoods around F^{1} and F^{5} which are equivariantly diffeomorphic under an orientation-preserving diffeomorphism. Let x be the equivariant connected sum $X_{1} \# x_{2}$ as in Tomter (16), then $X \sim S^{4} \times S^{4}$ and $X^{T}=X_{1}^{T} \# X_{2}^{T}=F^{4}+F^{2}+F^{3}=S^{2}+\{p t\}+\{p t\}$. The local representations around fixed points have weight systems: $\mathrm{F}^{4}:\left\{0,-2 \mathrm{a}_{2}, \pm \mathrm{a}_{1}-\mathrm{a}_{2}\right\} . \mathrm{F}^{2}:\left\{\left(\mathrm{a}_{1}-\mathrm{a}_{2} ; 2\right), 2 \mathrm{a}_{1},-2 \mathrm{a}_{2}\right\}$.
$F^{3}:\left\{\left(a_{1}+a_{2} ; 2\right), 2 a_{1}, 2 a_{2}\right\}$. Then the corank one F^{0}-varieties of X are the following: $\mathbb{F}\left(\left(a_{1}-a_{2}\right)^{\perp}\right)=\left(S^{4}+\mathbb{F}^{3}\right) \# \mathbb{C P}(2)=\mathbb{C P}(2)+\mathbb{F}^{3}$. $F\left(\left(a_{1}+a_{2}\right)^{\perp}\right)=\left(S^{4}+F^{2}\right) \# \mathbb{C P}(2)=\mathbb{C P}(2)+F^{2} . \quad F\left(a_{1}^{1}\right)=$ $\left(F^{1}+S^{2}\right) \#\left(S^{2}+F^{5}\right)=S^{2}+S^{2} . F\left(a_{2}^{1}\right)=\left(F^{1}+S^{2}\right) \#\left(S^{4}+F^{5}\right)=S^{4}+S^{2}$. The equivariant cohomology can be computed explicitly.... . ; '. Since there are corank one F^{O}-varieties as in Theorem 14 (b), it is clear that this is Case 5 b). The weithts a_{1} and a_{2} correspond to (c) of Theorem 14. By other choices of weight vectors other cases of the theorem can be illustrated. For example, consider the quaternionic weight system $\left\{\left(2 a_{1} ; 2\right),\left(2 a_{2} ; 1\right)\right\}$ for X_{1} and $\left\{\left(a_{1}-a_{2} ; 2\right),\left(3 a_{1}+a_{2} ; 1\right)\right\}$ for X_{2}, with $X_{1}^{T}=F^{1}+F^{2}=S^{2}+\{p t\}$ and $X_{2}^{T}=F^{3}+F^{4}=S^{2}+\{p t\}$. The local representation around F^{1} has weight system $\left\{0,-4 a, 2\left(a_{3}-a_{1}\right),-2\left(a_{3}+a_{1}\right)\right\}$ and around F^{3} it is $\left\{0,2 a_{1}-2 a_{3}, 2 a_{1}+a_{3},-4 a_{1}\right\}$. Hence we can take the equivariant connected sum; this time with respect to points on the two spheres F^{1} and F^{3} such that the torus T acts on $X \sim S^{4} \times S^{4}$ with $X^{T}=S^{2}+\{p t\}+\{p t\}$. The corank one F^{0}-varieties are now $F\left(\left(a_{1}-a_{2}\right)^{\perp}\right)=\mathbb{C P}(2)+\{p t\}, F\left(\left(a_{1}+a_{2}\right)^{\perp}\right)=\mathbb{C P}(2) \not \mathbb{C P}(2) \sim S^{2} \times S^{2}$, and $F\left(a_{1}^{1}\right)=\mathbb{C}(2)+\{p t\}$, corresponding to b) and $\left.d\right)$ of Theorem 14 .

Case 6.
The two defining parabolas have four simple intersection points $\left(a_{i}, b_{i}\right), i=1, \ldots, 4$ corresponding to four acyclic compnents of $F=F_{1}+F_{2}+F_{3}+F_{4}$. Let 1_{i} be the generator of $H^{0}\left(F_{i}\right)$, then $j^{*}(\hat{x})=1_{1} \otimes a_{1}+1_{2} \otimes a_{2}+1_{3} \otimes a_{3}+1_{4} \otimes a_{4}$ and $j^{*}(\hat{y})=1_{1} \otimes b_{1}+1_{2} \otimes b_{2}+$ $1_{3} \otimes \mathrm{~b}_{3}+1_{4} \otimes \mathrm{~b} 4$, and substitution of the defining equations of the parabolas gives the relations (i) $\left(a_{i}-a_{j}\right)\left(a_{i}+a_{j}\right)=c_{j}\left(b_{i}-b_{j}\right)$, $\left(b_{i}-b_{j}\right)\left(b_{i}+b_{j}\right)=c_{2}\left(a_{i}-a_{j}\right), i, j=1,2,3,4$. Again the complexity of the orbit structure depends on the shape of the parabolas, and there are three possibilities.
a) both parabolas degenerate, $c_{1}=c_{2}=0$. The intersection points are of the form ($\pm \mathrm{a}, \pm \mathrm{b}$), and, after renumbering, we may write $j^{*}(\hat{x})=1_{1} \otimes a+1_{2}^{\otimes a-1} 3^{\otimes a-1} 4^{\otimes a} \cdot j^{*}(\hat{y})=1_{1} \otimes b-1_{2} \otimes b+3_{3}^{\otimes b-1} 4^{\otimes b}$.

Theorem 15.
If the equivariant cohomology of X is defined by the ideal $I=\left(\hat{x}^{2}-d_{1}, \hat{y}^{2}-d_{2}\right)$ with d_{1} and d_{2} non-zero in $R T$, the geometric weight system is given by $a=q_{1} w_{1} k_{1} \ldots w_{s} k_{s}$ and $b=q_{2} w_{1}^{1} \ldots w_{s}^{l_{s}} ; q_{i} \in \mathbb{Q}, w_{i} \in H^{2}\left(B_{T}\right)$, with $d_{1}=a^{2}$ and $d_{2}=b^{2}$. Let $H_{i}=w_{i}^{\perp} ; i=1, \ldots, s$. The corank one F^{0}-varieties are given by:
(a) $k_{i}>0, l_{i}>0: F\left(H_{i}\right) \sim S^{2 k_{i}} \times S^{21_{i}}$.
(b) $k_{i}>0, I_{i}=0: F\left(H_{i}\right)=X_{1}+X_{2} \sim S^{2 k_{i}}+S^{2 k_{i}}$ with $X_{1} \supset F_{1}+F_{3}$, $\mathrm{X}_{2} \supset \mathrm{~F}_{2}+\mathrm{F}_{4}$.
(c) $k_{i}=0, l_{i}>0: F\left(H_{i}\right)=X_{1}+X_{2} \sim S^{21_{i}}+S^{2 I_{i}}$ with $X_{1} \supset F_{1}+F_{2}$, $\mathrm{X}_{2} \supseteq \mathrm{~F}_{3}+\mathrm{F}_{4}$.

Remark. The geometric weight system then determines the relative position of F in the F°-varieties. Notice that the components
F_{i} do not enter symmetrically here, e.g. a geometric weight w_{i} can join F_{1} to either F_{2} or F_{3} into a cohomology sphere (2 and 3), but not to F_{4}.

Proof: For (a) $\rho_{i}^{*}\left(d_{1}\right)=\rho_{i}^{*}\left(d_{2}\right)=0$ in $R H_{i}, I \otimes_{R T} R H_{i}=\left(\hat{x}^{2}, \hat{y}^{2}\right)$, and the restriction to the H_{i}-action on X must be Case 1, with $F\left(H_{i}\right) \sim S^{m_{i}} \times S^{n_{i}}$. Let M be the submodule of $H^{*}(F)$ spanned by $\left(1_{1}+1_{2}\right)$, then $\operatorname{Ann}\left(M_{T}\right)=(a)$, and $\operatorname{Ann}\left(M_{T, H_{i}}\right)=(a)\left(w_{i}\right) \cap R T$ $=\left(w_{i}\right)$. It follows that one of the sphere dimensions must be $2 k_{i}$. We have $j^{*}(\hat{x} \hat{y}+b \hat{x}+a \hat{y}+a b)=1, \otimes 4 a b$, and it is easily seen that the local geometric weight systems around all components F_{i} are given by (ab). Hence $m_{i}+n_{i}=2 k_{i}+21_{i}$, and the conclusion of (a) follows. In (b) $\rho_{i}^{*}\left(d_{1}\right)=0, \rho_{i}^{*}\left(d_{2}\right) \neq 0, I \otimes_{R T} R H_{i}=$ $\left(\hat{x}^{2}, \hat{y}^{2}-\rho_{i}^{*}\left(d_{2}\right)\right)$ and the H_{i}-action is Case 3. The dimensions follow from the local geometric weight system, the same argument applies to (c).
q.e.d.

Let T act on S^{m} and S^{n} with weight systems a and b respectively and assume that there are no zero weights. Then the diagonal action of T on $S^{m} \times S^{n}$ belongs to 6 a), and Theorem 15 shows that the general case 6 a) is modelled after this "linear" example.
b) One parabola is degenerate: $c_{1} \neq 0, c_{2}=0$. Now $a_{1}=-a_{2}$, $a_{3}=-a_{4}, b_{1}^{2}=b_{2}^{2}=b_{3}^{2}=b_{4}^{2}=d_{2}$, and we can write: $j^{*}\left(\hat{x}_{1}\right)$ $=1_{1} \otimes a_{1}-1_{2} \otimes a_{1}+1_{3} \otimes a_{3}-1_{4} \otimes a_{3}, j^{*}(\hat{y})=1_{1} \otimes b+1_{2} \otimes b-1_{3} \otimes b-1_{4} \otimes b$. The relations (i) reduce to (ii) $\left(a_{1}-a_{3}\right)\left(a_{1}+a_{3}\right)=2 c_{1} b$.
Denote the submodule generated by elements z_{1}, \ldots, z_{r} of $H^{*}(F)$ by $\left[z_{1}, \ldots, z_{r}\right]$. Define $M_{i}=\left[1_{i}\right], M=\left[1_{2}, 1_{3}, 1_{4}\right], U=\left[1_{2}, 1_{3}\right]$ and $V=\left[1_{2}, 1_{4}\right]$.

Proposition 5.
$I_{1}=A n n M_{1 T}=\operatorname{Ann} M_{2 T}=(a, b) \cdot I_{2}=A n n M_{3 T}=A n n M_{4 T}=\left(a_{3} b\right)$.
$I_{3}=\operatorname{Ann}\left(M_{1}+M_{2}\right)_{T}=(b) \cdot I_{4}=\operatorname{Ann}\left(M_{T} / U_{T}\right)=\left(a_{3}+a_{1}, b\right)$.
$I_{5}=\operatorname{Ann}\left(M_{T} / V_{T}\right)=\left(a_{3}-a_{1}, b\right)$.
This is proved by straightforward computations.
I_{1} and I_{2} determine the local geometric weight systems. The next theorem shows that I_{1}, \ldots, I_{5} determine the whole cohomological orbit structure.

Theorem 16.
Let the equivariant cohomology of X be given by the ideal $I=\left(\hat{x}^{2}-c_{1} \hat{y}-\alpha_{1}, \hat{y}^{2}-d_{2}\right)$ with c_{1}, α_{1} and d_{2} non-zero in $R T$. Then the cohomological orbit structure of X is determined by the above five ideals I_{1}, \ldots, I_{5}. Let $w_{i} \in H^{2}\left(B_{T}\right)$ and $H_{i}=w_{i}$. Define the indices $r_{i j}$ by the localization $\left(I_{j}\right)\left(w_{i}\right) \cap R T=\left(w_{i}\right)$. Then the corank one F°-varieties are given as follows:
(a) $r_{i 3}=0 . \quad F\left(H_{i}\right)=X_{1}+X_{2} \sim S^{2 r_{i 1}}+S^{2 r_{i 2}}$ with $F_{1}+F_{2} \subseteq X_{1}$,

$$
\left(\text { if } r_{i 2}=0, F\left(H_{i}\right) \sim S^{2 r_{i 1}}+\{p t\}+\{p t\}, \text { etc. }\right)
$$

(b) $0<r_{i 1}=r_{i 2}=r_{i 3} \cdot F\left(H_{i}\right)=X_{1}+X_{2} \sim S^{2 r_{i 1}}+S^{2 r_{i 1}}$. Here either $r_{i 5}=r_{i 1}, r_{i 4}=0$ and $F_{1}+F_{3} \subseteq X_{1}, F_{2}+F_{4} \subseteq X_{2}$ or $\quad r_{i 4}=r_{i 1}, r_{i 5}=0$ and $F_{1}+F_{4} \subseteq X_{1}, F_{2}+F_{3} \subseteq X_{2}$.
(c) $r_{i 1}=r_{i 2}>r_{i 3}>0$. Either $3 r_{i 3} \neq 2 r_{i 1}$ and $F\left(H_{i}\right) \sim S^{2 r_{i 3}} \times S^{2\left(r_{i 1}-r_{i 3}\right)}$ or $3 r_{i 3}=2 r_{i 1}=6 r_{i 4}=6 r_{i 5}$ and $F\left(H_{i}\right) \sim P^{3}\left(r_{i 3}\right)$ or $3 r_{i 3}=2 r_{i 1}<3 r_{i 4}+3 r_{i 5}$ and $F\left(H_{i}\right) \sim S^{r_{i 3} \times S}{ }^{2 r_{i 3}}$.

Proof: (a) $\rho_{i}^{*}\left(\alpha_{2}\right)=\rho_{i}^{*}\left(b^{2}\right) \neq 0$ in $R H_{i}$. Hence $F\left(H_{i}\right)$ is not connected; since $\left.\left(I_{3}\right)_{\left(w_{i}\right)} \cap R T=R T=\operatorname{Ann}\left(M_{1}+M_{2}\right)_{T, H_{i}}\right)$ by Theorem 4,
it is clear that F_{1} and F_{2} is in the same component of $F\left(H_{i}\right)$. (b): $\rho_{i}^{*}\left(d_{2}\right)=0$, from $a_{1}^{2}=c_{1} b+d_{1}$ it follows that $\rho_{i}^{*}\left(d_{1}\right) \neq 0$, hence $F\left(H_{i}\right)$ has two components. From (ii) it follows that w_{i} divides exactly one of $a_{3}-a_{1}, a_{3}+a_{1}$ at least $r_{i 3}$ times. Now $\left.I_{4\left(w_{i}\right.}\right) \cap R T=\left(w_{i}\right)$, where m_{i} is the minimum of the multiplicities of w_{i} in b and $a_{3}+a_{1}$, hence $r_{i 5}=r_{i 1}, r_{i 4}=0$ or $r_{i 4}=r_{i 1}, r_{i 5}=0$. In the first case $\rho_{i}^{*}\left(a_{1}\right)=\rho_{i}^{*}\left(-a_{3}\right)$; hence the first and the fourth intersection points are joined in RH_{i}, also the second and the third; i.e. $F_{1}+F_{4} \subseteq X_{1}, F_{2}+F_{3} \subseteq X_{2}$. (c) $\rho_{i}^{*}\left(d_{1}\right)=\rho_{i}^{*}\left(d_{2}\right)=0$, hence $F\left(H_{i}\right)$ is connected. One of the generators of $H^{*}\left(F\left(H_{i}\right)\right.$) has dimension $2 r_{i 3}$ (from I_{3} 's localzation). If $r_{i 1}=3 r_{i 3}$, it follows from (ii) that $\rho_{i}^{*}\left(c_{1}\right)=0$,
 then also hold if $3 r_{i 3} \neq 2 r_{i 1}$. If $3 r_{i 3}=2 r_{i 1}$, we have $r_{i 4} \geq \min \left(r_{i 3}, r_{i 1}-r_{i 3}\right)=\frac{1}{2} r_{i 3}$, similarly for $r_{i 5}$. From (ii) it follows that $\rho_{i}^{*}\left(c_{1}\right) \neq 0$ precisely if $r_{i 4}=r_{i 5}=\frac{1}{2} r_{i 3}$, ide. in this case $F\left(H_{i}\right) \sim P^{3}\left(r_{i 3}\right)$.
q.e.d.

Consider again the Gu bundle 5 over S^{4}, and let T act on $Q^{2}=\mathbb{C}^{4}$ with quaternionic weight system $\left(\left(w_{1} ; 1\right),\left(w_{2}, 1\right)\right)$, where w_{1} and w_{2} are linearly independent. This defines a Taction on $\mathbb{C P}(3)$ with four isolated fixed points $F_{1}, F_{2}, F_{3}, F_{4}$ and two fixed points. $F^{1}=\pi\left(F_{1}\right)=\pi\left(F_{2}\right)$ and $F^{2}=\pi\left(F_{3}\right)=\pi\left(F_{4}\right)$ in the base space S^{4}. (See Case 3.) The complex weight systems for the local representations are: $\mathrm{F}_{1}: 2 \mathrm{w}_{1}, \mathrm{w}_{1}-\mathrm{w}_{2}, w_{1}+w_{2}$. $\mathrm{F}_{2}:-2 \mathrm{w}_{1},-\mathrm{w}_{1}-\mathrm{w}_{2},-\mathrm{w}_{1}+\mathrm{w}_{2}, \mathrm{~F}_{3}: \mathrm{w}_{2}-\mathrm{w}_{1}, \mathrm{w}_{2}+\mathrm{w}_{1}, 2 \mathrm{w}_{2} \cdot \mathrm{~F}_{4}:-\mathrm{w}_{2}-\mathrm{w}_{1}$, $-w_{2}+w_{1},-2 w_{2}$, and around $F^{1}: \pm w_{1}-w_{2}$, around $F^{2}: \pm w_{2}-w_{1}$. Add a trivial T bundle ε over the T-space S^{4} corresponding to a representation of T on \mathbb{C}^{n} with weight system
$\left\{\left(w_{3} ; k_{3}\right), \ldots,\left(w_{s} ; k_{s}\right)\right\}$ where $\left\{w_{1}, w_{2}, w_{1}-w_{2}, w_{1}+w_{2}, w_{3}, \ldots, w_{s}\right\}$ are pairwise linearly independent. Then $\mathrm{X}=\mathrm{S}(\xi \oplus \varepsilon) \sim \mathrm{s}^{4} \times \mathrm{s}^{2 \mathrm{n}+2}$, $F=X^{T}=F_{1}+F_{2}+F_{3}+F_{4}$, and the corank one F^{0}-varieties are: $F\left(H_{1}\right)=X_{1}+F_{3}+F_{4} \sim S^{2}+\{p t\}+\{p t\}, F\left(H_{2}\right)=F_{1}+F_{2}+X_{1} \sim\{p t\}+\{p t\}+S^{2}$. $F\left(\left(w_{1}-w_{2}\right)^{1}\right)=X_{1}+X_{2}$
$\sim S^{2}+S^{2}$ where $F_{1}+F_{3} \subseteq X_{1}, F_{2}+F_{4} \subseteq X_{2} \cdot F\left(\left(w_{1}+w_{2}\right)^{\perp}\right)=X_{1}+X_{2}$
$\sim S^{2}+S^{2}$ where $F_{1}+F_{4} \subseteq X_{1}, F_{2}+F_{3} \subseteq X_{2} . F\left(H_{i}\right)=X_{1}+X_{2}$ $\sim S^{2 k_{i}}+S^{2 k_{i}}$ for $i \geq 3$. We see that F_{1} may be linked to each of F_{2}, F_{3}, F_{4} in cohomology spheres in various corank one $F^{0}-$ varieties. By theorem 15 this is not possible for Case 6 a). Choosing $n+2>8$ we are outside the dimension range where both parabolas can be non-degenerate; hence we must be in Case 6 b). The weights w_{1} and w_{2} correspond to Theorem 16 (a), $w_{1} \pm w_{2}$ corresponds to (b). If $w_{3}=w_{1}-w_{2}, F\left(H_{3}\right) \sim S^{2} \times S^{2 k_{3}}$ gives an example of (c).
c) Both parabolas are non-degenerate, $c_{1} \neq 0, c_{2} \neq 0$. In this case, which is possible only for $n<2 m<4 n$, the orbit structure can be more complicated. We give a description of the orbit structure from the equivariant cohomology and outline the computations. It is eastly seen that $a_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$ for $i \neq j$. Furthermore we have the relations (iii) $\left(a_{i}+a_{j}\right)\left(b_{i}+b_{j}\right)=c_{1} c_{2}$ for $i \neq j$,

$$
\left(a_{i}+a_{j}\right)\left(a_{i}+a_{k}\right)\left(a_{i}+a_{1}\right)=c_{1}^{2} c_{2},\left(b_{i}+b_{j}\right)\left(b_{i}+b_{k}\right)\left(b_{i}+b_{1}\right)=c_{1} c_{2}^{2}
$$

for $\{i, j, k, I\}=\{1,2,3,4\}$, and $a_{1}+a_{2}=a_{3}+a_{4}=b_{1}+b_{2}+b_{3}+b_{4}$. Using these the local geometric weight systems can be computed:
$I_{j}=\operatorname{Ann}\left(\left[1_{j}\right]_{T}\right)=\left(c_{1}^{-1}\left(a_{j}-a_{i}\right)\left(a_{j}-a_{k}\right)\left(a_{j}-a_{1}\right)\right)=$
$=\left(c_{2}^{-1}\left(b_{j}-b_{i}\right)\left(b_{j}-b_{k}\right)\left(b_{j}-b_{l}\right)\right\}$ with $\{i, j, k, 1\}=\{1,2,3,4\}$, (also see the computation in Proposition 4). Let $M_{1}=\left[1_{2}, 1_{3}, 1_{4}\right]$, $M_{2}=\left[1_{3}, 1_{4}\right], M_{3}=\left[1_{2}, 1_{4}\right]$ and $M_{4}=\left[1_{2}, 1_{3}\right]$ and let
$I_{j}=\operatorname{Ann}\left(M_{1 T} / M_{j T}\right)=\left(a_{j}-a_{1}, b_{j}-b_{1}\right), j=2,3,4$. Define the indices $r_{i j}$ and $I_{i j}$ by the localizations $\left(I_{j}\right)\left(w_{i}\right) \cap R T=\left(w_{i}\right)$ and $\left(I_{j}\right)\left(w_{i}\right) \cap R T=\left(w_{i}{ }^{1}\right)^{\prime}$, then $l_{i j}$ is the minimum of the multiplicities of w_{i} in $a_{j}-a_{1}$ and $b_{j}-b_{1}$.

Theorem 17.
In Case 6 c) the cohomological orbit structure of X is determined by the above ideals I_{j} and I_{k} of $R T, j=1,2,3,4 ; k=2,3,4$. The connected components of the corank one isotropy sucgroups are given by $H_{i}=w_{i}^{1}$ (where $r_{i j}>0$ for some j) and the cohomological structure of the corank one F°-varieties are given as follows: (let $\{j(1), j(2), j(3), j(4)$ be a permutation of $\{1,2,3,4\})$:
(a) $r_{i j(1)}=r_{i j(2)}>r_{i j(3)}=r_{i j(4)} \geq 0 \cdot F\left(H_{i}\right)=X_{1}+X_{2}$ $\sim S^{2 r_{i j}(1)}+S^{2 r_{i j}(3)}$, where $F_{j(1)}+F_{j(2)} \subseteq X_{1}$, $F_{j(3)}+F_{j(4)} \subseteq X_{2}$.
(b) $r_{i j(1)}=r_{i j(2)}=r_{i j(3)}>r_{i j(4)}=0$,

$$
F\left(H_{i}\right)=X_{1}+F_{j(4)} \sim P^{2}\left(\frac{2}{3} r_{i j(1)}\right)+\{p t\}
$$

(c) $r_{i j(1)}=r_{i j(2)}=r_{i j(3)}=r_{i j(4)}>0, l_{i k(2)}>0$,
$I_{i k(3)}=l_{i k(4)}=0$. (Here $\{k(2), k(3), k(4)\}$ is a permutation of $\{2,3,4\}$.) Then $F\left(H_{i}\right)=X_{1}+X_{2} \sim S^{2 r_{i j}(1)}+S^{2 r_{i j}(1)}$, with $F_{1}+F_{k(2)} \subseteq X_{1}$.
(d) $r_{i j(1)}=r_{i j(2)}=r_{i j(3)}=r_{i j(4)}>0 . I_{i k(2)}, l_{i k(3)}, I_{i k(4)}>0$ 。 If $l_{i k(2)}=l_{i k(3)}=1_{i k(4)}=\frac{1}{3} r_{i j(1)}, \quad F\left(H_{i}\right) \sim P^{3}\left(l_{i k(2)}\right)$. Otherwise $\left.F\left(H_{i}\right) \sim S^{2 l_{i k}(2)} \times S^{2\left(r_{i j}(1)^{-1}\right.} i k(2)\right)$.

Proof: Here cases (a) and (b) follow directly from the local geometric weight systems I_{j}; (c) follows once we observe that the intersection points $\left(a_{1}, b_{1}\right)$ and $\left(a_{k(2)}, b_{k(2)}\right)$ of the parabolas are linked to the same intersection point under change of rings from $R T$ to R_{i}, but the other points are not linked to this. This is seen from the localizations $\left(L_{k(2)}\right)\left(w_{i}\right) \cap R T=\left(w_{i}{ }^{1 k(2)}\right)$ $\neq R T$, and $\left(L_{k(3)}\right)\left(w_{i}\right)^{\cap R T}=\left(I_{k(4)}\right)\left(w_{i}\right)^{\cap R T}=R T$. In (d) $\left(I_{k}\right)\left(w_{i}\right) \cap R T \neq R T$ for $k=2,3,4$; hence all intersection points $\left(a_{j}, b_{j}\right)$ are linked to the origin under change of ring from $R T$ to RH_{i}, and $F\left(\mathrm{H}_{\mathrm{i}}\right)$ is connected. From Theorem 4 it follows that the dimension of one of the generators of $H^{*}\left(F\left(H_{i}\right)\right)$ must be $21_{i k}(2)$. If $F\left(H_{i}\right) \sim P^{3}\left(2 k_{i}\right)$ and \hat{x}_{i} is a suitable generator for $H^{2 k_{i}}\left(F\left(H_{i}\right)\right)$, then $j^{*}\left(\hat{x}_{i}\right)=1_{2} \otimes q_{2} w_{i}+1_{3} \otimes q_{3} w_{i} k_{i}+1_{4} q_{4} q_{i} w_{i}$. The roots of the characteristic equation $\hat{x}_{i}\left(\hat{x}_{i}-q_{2} w_{i}\right)\left(\hat{x}_{i}-q_{3} w_{i} k_{i}\right)$ $\left(\hat{x}_{i}-q_{3} w_{i} k_{i}\right)=0$ correspond to the components F_{j} of F by Theorem 3; hence each root has multiplicity one, and the q_{j} are different, non-zero rational numbers, $j=2,3,4 . \quad\left(I_{k}\right)\left(w_{i}\right) \cap R T=\left(w_{i}\right), k=$ $2,3,4$, and by dimension counting $6 k_{i}=\operatorname{dim} F\left(H_{i}\right)=2 r_{i j}(1) \cdot$ On the other hand, suppose that the H_{i}-action is Case 1 and that
 Let $m\left(w_{i}, a_{1}-a_{2}\right)$ denote the multiplicity of w_{i} as a factor of $a_{1}-a_{2}$, etc.; then $l_{i k(2)}=\min \left(m\left(w_{i}, a_{1}-a_{k(2)}\right), m\left(w_{i}, b_{1}-b_{k(2)}\right)\right.$. Since $m\left(w_{i}, c_{1}\right)>0$ and $I_{1}=\left(c_{1}^{-1}\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right)\left(a_{1}-a_{4}\right)\right.$), it is clear that $m\left(w_{i}, a_{1}-a_{j}\right)>I_{i k(2)}$ for at least one $j=2,3,4$; by a symmetric argument $m\left(w_{i}, b_{1}-b_{j}\right)>l_{i k(2)}$ for at least one j. We may then assume that $m\left(w_{i}, a_{1}-a_{2}\right)=m\left(w_{i}, a_{1}-a_{3}\right)=1_{i k(2)}$, $m\left(w_{i}, b_{1}-b_{4}\right)=1_{i k(2)}, m\left(w_{i} ; a_{1}-a_{4}\right)=I_{i k(2)}+m\left(w_{i}, c_{1}\right)$. From (i): $\left(a_{1}-a_{4}\right)\left(a_{1}+a_{4}\right)=c_{1}\left(b_{1}-b_{4}\right)$,
hence $m\left(w_{i}, a_{1}+a_{4}\right)=0$, which contradicts the assumption that all the intersection points $\left(a_{j}, b_{j}\right)$ are linked to the origin under the change of rings $\rho_{i}^{*}: R T \rightarrow \mathrm{RH}_{i}$. q.e.d.

We finish this investigation by giving various examples of Case 6 c). We notice that this case allows much more freedom than cases 6 a) and 6 b). For example, it follows from Theorems 15 and 16 that if $m \geq 2 n$, there is only one other component that can be linked with F_{2} to a cohomology sphere in an F^{0}-variety of the type $S^{p}+\{p t\}+\{p t\}$, (this component is called F_{1} in Theorem 16). We give an example of a torus of rank 3 acting such that F_{2} can be linked with all the other components in corank one F^{0}-varieties of the type $S^{p}+\{p t\}+\{p t\}$ 。

Let T act linearly on $X_{1}=Q P(2)$ with quaternionic waight system $\left(2 a_{1}, 2 a_{2}, 2 a_{3}\right)$ and on $X_{2}=Q P(2)$ with $\left(-a_{2}+a_{3}, 2 a_{1}-a_{2}-a_{3}, 2 a_{1}+a_{2}+a_{3}\right)$, where a_{1}, a_{2}, a_{3} are linearly independent weight vectors on T. Then $X_{1}^{T}=F^{1}+F^{2}+F^{3}=\{p t\}+\{p t\}+\{p t\}$ and $X_{2}^{T}=F^{4}+F^{5}+F^{6} \sim\{p t\}+\{p t\}+\{p t\}$.
The local representations around F^{1} has complex weight system $\left\{ \pm 2 a_{2}-2 a_{1}, \pm 2 a_{3}-2 a_{1}\right\}$ and around $F^{4}:\left\{2 a_{1}-2 a_{3},-2 a_{1}+2 a_{2}, 2 a_{1}+2 a_{2}\right.$, $\left.-2 a_{1}-2 a_{3}\right\}$. Taking equivariant connected sum around F^{1} and F^{4} we have: $X=X_{1} \# X_{2} \sim S^{4} \times S^{4}$ and $X^{T}=X_{1}^{T} \# X_{2}^{T}=F^{2}+F^{3}+F^{5}+F^{6}$. By computing the weights of the local representations around $F^{2}, F^{3}, F^{5}, F^{6}$, we get the following corank one F^{0}-varieties: $F\left(\left(a_{1}-a_{2}\right)^{\perp}\right)=\left(S^{2}+F^{3}\right) \#\left(S^{2}+F^{6}\right)=S^{2}+F^{3}+F^{6}$. $F\left(\left(a_{1}+a_{2}\right)^{\perp}\right)=\left(S^{2}+F^{3}\right) \#\left(S^{2}+F^{5}\right)=S^{2}+F^{3}+F^{5}$. $F\left(\left(a_{2}-a_{3}\right)^{\perp}\right)=\left(S^{2}+F^{1}\right) \#\left(F^{4}+F^{5}+F^{6}\right)=S^{2}+F^{5}+F^{6}$. $F\left(\left(a_{1}+a_{3}\right)^{\perp}\right)=\left(S^{2}+F^{2}\right) \#\left(S^{2}+F^{5}\right)=S^{2}+F^{2}+F^{5}$. $F\left(\left(a_{2}+a_{3}\right)^{\perp}\right)=\left(S^{2}+F^{1}\right) \#\left(F^{4}+S^{2}\right)=S^{2}+S^{2}$. $F\left(\left(a_{1}\right)^{\perp}\right)=\left(F^{1}+F^{2}+F^{3}\right) \#\left(F^{4}+S^{2}\right) \sim S^{2}+F^{5}+F^{3}$. $F\left(\left(a_{1}-a_{3}\right)^{1}\right)=\left(S^{2}+F^{2}\right) \#\left(S^{2}+F^{6}\right) \sim S^{2}+F^{2}+F^{6}$.

The equivariant cohomology can be computed explicitly (Tomter ()). The three first F^{0}-varieties give the desired linkings of F_{2} to other components, and show that this must be Case 6 c).

There exists a map $f: S^{2 n-1} \rightarrow S^{n}$ of Hopf-invariant 2 , such that the adjunction space $X=D^{2 n} U_{f} S^{n} \sim P^{2}(n)$. (Steenrod-Epstein ()). Let φ be an orthogonal representation of T on \mathbb{R}^{n}, let T act on $D^{2 n}$ by $\varphi \oplus \varphi$ and on $S^{n} \subseteq \mathbb{R}^{n+1}$ by $\varphi \oplus 1$. Then f is equivariant, and there is an induced T-action on X. Equivariant connected sums of such spaces gives only trivial exapmles of Case 6 a). There is a more interesting example if we let one of the spaces come from the usual Hopf fibiation. Thus let rk $T=2$ and let φ be a faithful representation of T on $\mathbb{C}^{2}=\mathbb{R}^{4}$ with complex weights w_{1}, w_{2}. Consider the induced action on $X_{1}=D^{8} U_{f} S^{4} \sim P^{2}(4)$, then $X_{1}^{\top}=F_{1}+F_{2}+F_{3}$, where F_{1} corresponds to the origin in D^{8}. The local weight system at F_{1} is $\left\{\left(w_{1} ; 2\right),\left(w_{2} ; 2\right)\right\}$. Let $X_{2}=Q P(2)$ and let T act by a quaternionic linear action with weight system $\left\{(0 ; 1),\left(w_{1} ; 1\right),\left(w_{2} ; 1\right)\right\}$ and $X_{2}^{T}=F_{4}+F_{5}+F_{6}$. The local weights around F_{4} are $\left\{ \pm w_{1}, \pm w_{2}\right\}$. Locally, X_{1} is a manifold aroung F_{1}; taking equivariant connected sum around F_{1} and F_{4} we obtain $X=X_{1} \# X_{2} \sim S^{4} \times S^{4}$. The corank one F^{0}-varieties are easily computed to be:
$F\left(w_{1}^{1}\right)=\left(D^{4} U_{f} S^{2}\right) \# S^{4}+F_{6} \sim P^{2}(2)+\{p t\}$.
$F\left(w_{2}^{1}\right)=\left(D^{4} U_{f} S^{2}\right) \# S^{4}+F_{5} \sim P^{2}(2)+\{p t\}$.
$F\left(\left(w_{1}-w_{2}\right)^{1}\right)=\left(F_{1}+F_{2}+F_{3}\right) \#\left(F_{4}+S^{2}\right) \sim S^{2}+\{p t\}+\{p t\}$.
$F\left(\left(w_{1}+w_{2}\right)^{\perp}\right)=\left(F_{1}+F_{2}+F_{3}\right) \#\left(F_{4}+S^{2}\right) \sim S^{2}+\{p t\}+\{p t\}$.
This gives an example of (b) in Theorem 17.

Remarks.

Throughout the discussion we have determined the structure of the
corank one F°-varieties. In Case 1 it was also shown how to determine the higher corank F^{O}-varieties and the whole cohomological orbit structure from the geometric weight system. It is clear that this can be done in the same way for the other cases.

The discussion given here indicates that torus actions on spaces with more complicated cohomology must be expected to have complicated orbit structures and geometric weight systems in general; in this case practically all possibilities allowed by general principles of cohomology theory for transformation groups can occur. However, by using the geometirc weight system, it is possible to exploit additional information (the dimensions of the cohomology groups, the dimension of the torus, Weyl group invariance, etc.) to rule out the more complicated cases.

Clearly Theorem and its counterparts for the other classical groups have analogues for all the other cases. Moreover there are applications to classification of principal orbit types, degree of symmetry, etc., for action of compact, simple lie groups on cohomology products of spheres.

References.

1. Allday, C. and Skjelbred, T.: The Borel formula and the topological splitting principle for torus action on a Poincaré duality space. Ann. of Math. 100, 322-326 (1974).
2. Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Hermann, Paris. 1972.
3. Borel, A. et al. Seminar on Transformation Groups. Ann. of Math. Studies 46. Princeton University Press 1960.
4. Bredon, G.: Introduction to Compact Transformation Groups. New York- London. Academic Press Inc. 1972.
5. Chang, T. and Comenetz, M.: Group Actions on Cohomology Projective Planes and Products of Spheres. Preprint.
6. Chang, T. and Skjelbred, T.: Group Actions on Poincart Duality Spaces. Bull. Amer. Math. Soc., Vol. 78. No 6. 1972. 1024-1026.
7. Chang, T. and Skjelbred, T.: The topological Schur lemma and related results. Ann. of Math. 100, 307-321 (1974).
8. Hsiang, W.Y.: On characteristic classes and the topological Schur lemma from the topological transformation groups viewpoint. Proc. Symp. in Pure Math. XVII. 105-112 (1971).
9. Hsiang, W.Y.: On the splitting principle and the geometric weight system of topological transformation groups I. Proc. 2nd Conf. on Compact Transf. Groups. Amherst. Mass. 1971. Lecture Notes in Math. 298. 334-402. Berlin-Heidelberg-New York. Springer 1972.
10. Hsiang, W.Y.: On some fundamental theorems in cohomology theory of topological transformation groups. Taita J. Math. 2, 61-87 (1970).
11. Hsiang, W.Y. and Su, J.C.: On the geometric weight system of topological actions on cohomology quatermionic projective spaces. Invent. Math. 28, 107-127 (1975).
12. Skjelbred, T.: Torus actions on manifolds and affine dependence relations. Preprint. IHES, Bures-sur-Yvette. 1975.
13. Steenrod, N.E. and Epstein, C.B.A.: Cohomology Operations. Ann. of Math. Studies 50. (1962).
14. Su, J.C.: An Example. Proc. Conf. Transformation Groups. New Orleans, 1967, p. 351. Berlin-Heidelberg-New York. Springer.
15. Tomter, P.: On the geometric weight system for transformation groups on cohomology product of spheres. Preliminary report. Universität Bonn. 1972.
16. Tomter, P.: Transformation groups on cohomology product of spheres. Invent. Math. 23, 79-88. (1974).
