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In this paper we describe the cohomological "orbit structure" 

of the action of a torus G on a spac.e X whose rational cohomo­

logy ring is isomorphic to H*(Smxsn,Q), (with m and n even 

integers) from the equivariant cohomology of X • The basic ap­

proach follows ideas of Wu-Yi Hsiang, in particular we interpret 

his notion of. "geometric weight system" as a set of invariants 

from the equivariant cohomology simple enough to be effictively 

computable, on the other hand strong enough to determine the coho­

mological orbit structure of X • This means the following: The 

connected orbit types of X are determined by the identity 

components Go of the isotropy subgroups. If E X the 0 
.X 

X F -va-

riety of x, F0 (x), is the connected component of X in the fixed 

point set of 0 
Gx • The structure of this network of F0 -varieties 

determines the orbit structure of X • Thus, in particular, the 

geometric weight system should determine all connected orbit types, 

the cohomological structure of the corresponding F0 -varieties and 

their "relative positions". 
( 

For some cases when H*(X,~) has one generator, this program 

has been quite successful; see Hsiang ( '1 ) and Hsiang and Su( 1t ) • 
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The case with two generators is already considerably more compli­

cated and shows interesting new features. As is demonstrated by 

many examples, the general case is no longer modelled on "linear 

actions". However, we obtain a complete description in terms of 

suitably defined geometric weight systems, and there is good cor­

respondence between the theory and the examples which can be con-

structed explicitly. 

The basic tool for setting up the geometric weight system is 

a linearity theorem for certain ideals associated to the equivari-

ant cohomology algebra. This idea goes back to the "topological 

Schur lemma" of Wu-Yi Hsiang. (Hsiang ( i )). In an early version 

of this work, (Tomter (15)), special cases of annihilator ideals 

of submodules of Ha(X,XG;~) were studied. (Here H~ is the 

equivariant cohomology functor and XG is the fixed point set 

of X • ) A general structure theory for annihilator ideals of 

such submodules has been developed by T. Chang and T. Skjelbred 

(see Chang and Skjelbred (7 )) and has found interesting applica-

tions. In our situation, however, it is necessary to consider the 

more general case of the primary decomposition of a quotient of 

two submodules of H~(X,XG;~) • 

In section one, after a few remarks on the basic notions and 

theorems of equivariant cohomology, we prove the relevant theorem 

for such ideals. This is applied to set up geometric weight sys­

tems in the second part. A number of examples show that practi-

cally all the phenomena predicted by the theory can occur. Under 

additional assumptions, however, many of the more complicated 

cases may be ruled out, for example fixed point sets of the type 
2 P (h)+ [pt.} • (See section 2.4). On the other hand, consider 
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the case H*(XG;~) = H*(SP+Sq;~) of section 2.3. It was shown in 

Tomter (1~) that if G = s1 it is possible that pI q •. (Exam-

ples of this were known for ~-transformation groups.) 
p 

This is 

improved here to show that there exist tori of arbitrarily large 

rank acting on spaces with integral cohomology isomorphic to some 

H*(SmySn; ~) with H*(XG; ~) ~ H*(SP+Sq; ~), pI q • 

After the basic theory of the action of a torus is understood, 

it is possible to carry through systematic studies and computations 

for actions of simple, compact Lie groups by restricting to the 

maximal torus and using the Weyl group. Here we only include a 

simple example of such results, and leave a classification of prin-

cipal isotropy subgroups, orbit types and dimension estimates for 

a later paper. 

In this paper cohomology is taken with rational coefficients 

and is denoted by H*(X); hence we only get information on the con-

nected orbit types. 

information. 

Cohomology with ~ -coefficients gives further 
p 

An early version of this work ( ) was done with support from 

Sonderforschungsbereich Theoretische Mathamrtak at the University 

of Bonn. 
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§ 1. Structure Theorems in Equivariant Cohomology 

Let G be a compact Lie group. All G-spaces X are assumed 

to be paracompact, of finite cohomological dimension and with a fi­

nite number of orbit types. X~ Y means that H*(X) is isomor­

phic to H*(Y) as a ~-algebra. For standard constructions we 

refer to Bredon ( '-1 ) or Hsiang ( '7 ) • Thus XG is the total space 

of the fibre bundle associated to the universal G-bundle : EG ~BG 

by the given G-action on X • The equivariant cohomology of X 

is defined by H~(X) = H*(XG) • If Y is an H-space; p: G ~ H 

is a homomorphism of compact Lie groups, and f: X~ y is p-equi-

variant, there is an induced homomorphism from H~(Y) to H~(X) 

We need more jnformation on this homomorphism if y = X and f 

is the identity. G acts freely on EG x EH by (e 1 ,e2 )•g = 

(e 1 .g,e2 ·p(g)); hence we may take EG x EH as the total space in 

a universal bundle for G • There is a well-defined map: 

given by 

is easily seen 

When G is connected, the classifying space BG is 

simply connected. The Eilenberg-Moore spectral sequence is a 2. 

quadrant spectral sequence (:B~r,dr) where Er => Ea:: = H~(X) and 

E2 = TorRH(RG,H~(X)). Here we denote H*(BG) by RG ; RG and 

H~(X) are RH-modules through cup-product and the homomorphisms 

induced in cohomology from the commutative diagram of fibrations: 

X -> X 

~ ~ 
HG -> XG -> XH 

t t t 
HG -> BG -> BH 

• 
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If RG or H~(X) is a flat RH-module, it is well known that 

TornRH(RG,H~(X)) = 0 for n I 0 and 

E2 = Tor0RH(RG,H~(X)) = RG®RHH~(X) • Hence we have the following 

result: 

Theorem 1. 

If RG or H~(X) is a flat RH-module, the above Eilenberg-Moore 

spectral sequence collapses and H~(X) = H~(X) ®RHHG ; i.e. H~(X) 

is obtained from H~(X) by an extension of scalars corresponding 

to the canonical homomorphism p* : RH ~ RG . 

The assumptions of the Theorem are satisfied in the following 

special cases: 

a) G is a subgroup of H and X is totally non-homologous to 
.. 

zero in the fibration X ~ X _, B 
H H • Then H~(X) = H~(X) ®RH RG • 

If G = (e) is the trivial subgroup, we get H*(X) = H~(X)· ®RH ~ . 
b) G is a torus, K . is a subtorus, and p is the epimorphism 

G ~ H = G/K . Then H~(X) = HG/K(X) ~(G/K) RG 

c) G is a maximal torus in the compact, connected Lie group H. 

Then H(} (X) = H~(X) ®RH RG , and H~(X) = HG (X) W where W is the 

Weyl group. 

Proof. In case a) it is obvious from the Serre spectral sequence 

of X~ XH ~ BH that H~(X) is a free RH-module; hence it is 

flat. In case b) it is easy to see that the fibre 

HG = EG xG(G/K) ~ BK. We may identify RG with the polynomial 

t. IS 
1 

functionals on G ; i.e. elements of 

are identified with linear 

H1 (G), via transgression in 

the universal bundle G ~ EG _, BG • It is then obvious that RG 

is a free R(G/K)-module. For c) we notice that in general, if 

G is a subgroup of H, then EH is also an EG and there is a 
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fibration from HG = EH xG H to HH with fibre H/G ; since 

HH ::= B(e) is acyclic~ it follows from the Serre spectral sequence 

that H~(HG) ~ H*(H/G) o Let G be a maximal torus in H~ let 

N(G) be the normalizer of G in H and W = N(G)/G the Weyl 

group. Then H/N(G) is ~-acyclic and the Serre spectral sequence 

of the fibration H/N(G) ~ XN(G) ~ XH showB that H~(X) = H~(X)W, 
RH = RGW Clearly RG = RH ®~ H*(tl/G) is a free RH-module, 

hence it is flat~ and the proof of Theorem 1 is complete. 

Now if x E X, let rx be the canonical projection from RG 

to RGx induced by inclusion of Gx in G • If S is a multi­

plicative subset of RG~ let XS = (x EX; S n ker(rx) = ,0} • The 

basic localization theorem for equivariant cohomology is now well 

known. 

Theorem 2. 

Th 1 1 . d t · t· h h' s-1HG*(x) ~ s-1HG*(xs) e oca 1ze res r1c 1on omomorp 1sm ~ is 

an isomorphism. 

If s is the complement of a prime ideal p~ we denote 

s- 1 H~(X) by HG(X)p and xs by xP • If p = ( 0) ~ Xp = XG = F 

is the fixed point set, and HG (X) ( 0) = HG (X) ~G RIG = H; (F) ~RG RG I 

= (H*(F) ~QRG) ®RGR'G = H*(F) ®QR'G, where R'G is the quotient 

field of RG • 

From now on we assume that G = T is a torus. There are 

examples of Hsiang which show that only in ~his case is there a 

strong relationship between the algebraic structure of the equi-

variant cohomology and the orbit structure of X • Let (x.} and 
1 

(v j} be a set of even - and odd-dimensional generators of H;(x)(O), 

respectively. Then there is a presentation of H;(x)(O) given by 
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an epimorphism p from the free, anti-commutative R'T-algebra 

AT= R'T[x1 , ••. ,xk] ®R'T"R'T[v1 , ••. ,v1 ] to H;(x)(O) • Let pj: 

H;(F)(O) ~ H;(Fj)(O) be induced from the inclusion of the j-th 

component Fj into F, let I = ker p and Ij = ker(pj "P) • 

Theorem 3. (Hsiang (10)). 

1. The radical of I is the intersection of s maximal ideals 

whose varieties are rational points 

i = 1, ••• ,s 

2. There is a natural bijection between the connected components 

Fj of F and the above points [a.}, such that the restriction 
J 

homomorphism of an arbitrary point q. E Fj c X maps the even ge-
J . -

nerator xi E H;(x)(O) to aji'E H;([qj})(O) ~ R'T. 

Moreover 

Let X be a cohomology manifold over ~ . then any component Fj 
' 

of F is also a cohomology manifold over Ql • Let wi E H2(BT) 

and let H. = 
1 

J. (w. ) 
l 

be the corank one sub torus whose Lie 

is the kernel of w. 
l 

interpreted as a linear functional. 

Hi 1 1 Gk. Is X = G . + , • • + G . with the 
l l l 

connected; then each 

algebra 

Let 

is 

included in a unique G~(j) • w. 
l 

is a local geometric weight at 

Fj if dimG~( j) -dimFj > 0, and 
l 

the multiplicity is defined to be 

~(dim G~(j)- dimFj) • 
1 

The local Borel formula asserts that the 

G~'s 
1 

are transversal in the sense that dim X - dim Fj 

= I:(dimG~(j)- dimFj) 
i 1 

Let X E X and Fj cF0 (x)· let - ' 
be the local geometric weight system at Fj • Then 

= (nHk; Hk=(w~)~G~) 0 , and dimF0 (x)-dimFj = 2I:mk 

Go 
X 

(sum over 

the k 1 s such that Hk ~ G~). This reveals the signigicance of 

the local geometric weight system. 
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After the proof of the Su conjecture this can be generalized 

to Poincar~ duality spaces over ~ (see Chang and Skjelbred (b)). 

A torus L c T is said to be cohomology ineffective on X if 

T acts cohomology effectively if the only cohomo-

logy ineffective subtorus is the trivial subgroup. An F0 -variety 

in X with generic isotropy subgroup K = K0 is then a component 

V of XK such that the action of T/K on V is cohomology ef-

fective~ Then the above statements hold in the more general set-

ting of Poincar~ duality spaces over ~ when dimension is now in-

terpreted as formal dimension. If X is a compact, orientable co-

homology manifold, the two notions of local geometric weights co-

incide. 

We will use the following observation: Let K be a subtorus 

of T and let PK be the kernel of the homomorphism rK: RT ~RK. 

The variety of the ideal PK is the Lie algebra of K; this de­

termines a bijective correspondence between subtori of T and li-

near subspaces of the Lie algebra of T which are rational with 

respect to the ~-structure determined by the defining lattice of 

the torus T • It follows that to a given prime ideal P in RT 

there exists a unique minimal subtorus K in T such that 

PK ~ Pf hence Xp = XPK = XK • 

Let X be a T 'th F -- XT 1 d and -space w1 r p K a subtorus 

of T • Let M be a submodule of H*(F) and define 

MT,K = o(M ~RT) S H;(xK,F), where a is the boundary operator in 

the exact sequence in the equivariant cohomology for the pair 

(XK,F) • If K is the trivial subgroup ( e ) ' we denote MT,K by 

MT simply. Let p be the projection from T to K' = T/K . It 

follows from Theorem 1 that H;(x) z Hi 1 (X) ®RK' RT, similarly for 
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Theorem 4. 

Let X be a T-space with T F = X I ¢ . Let M and N be sub-

modules of H*(F) with N c M . Then the prime ideals correspon­

ding to a reduced primary decomposition of Ann(MT/NT) 

= (a ERT; a·MT ,SNT} are linear ideals. The isolated primes 

P1 , ••• ,P1 are characterized as follows: A prime ideal P of RT 

is equal to one of the Pi' i = 1, ••• ,1 if and only if P = PK, 

where K is a maximal subtorus of T with respect to the property 

MT,K I NT,K • 

We need a lemma for the proof. 

Lemma 1. 

Let K be a subtorus of T • Then all primary ideals associated 

with a reduced primary decomposition of Ann(MT K/NT K) are con-
' ' 

tained in PK • 

Proof. RT is a flat RK'-module. (K' = T/K); hence it is easily 

seen that and 

It is well known that in the flat case we must then have 

hence P*(RK') c P 
- K 

T 

The generators in 

which vanish on K· 
' 

Let 

Ann(MK I ,KINK, ,K) = n qi be a reduced primary decomposition in RK' 

with associated prime ideals p .• 
1 

Again, since RT is flat as 

an RK'-module, it follows from Proposition 11 in Ch.IV, §2.6 in 

Bourbaki ( l) that in order to prove that n qi ~RK' RT is a re-

duced primary decomposition of Ann(MT ,K/NT ,K)' it is sufficient 

to show that all the ideals pi ®RK' RT are prime. Let 
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RK = ~[t 1 , ••• ,t1 ], then it is clear that RT ~ RK'[t1 , ••• ,t1 ] . 

Here RK'[t1 ]/Pi[t1 ] ~ (RK 1 /Pi)[t1 J; RK 1/Pi and hence 

(RK 1 /Pi)[t1 J is an integral domain, so Pi[t1 ] must be a prime 

ideal. By repetition we see that Pi ®RK1 RT is prime in RT. 

Hence Pi ®RK1 RT are the primes associated to a reduced primary 

decomposition of Ann(MT,K/NT,~; since P. c RK' 
1 -

it follows that 

these are in PK • q.e.d. 

Proof of Theorem 4: Let Ann(M~NT) = n q. 
1 

be a reduced primary 

decomposition and let pi = /q. 
··/ 1 • If p is a prime ideal in RT, 

Ann(M~NT)P n RT == n {q. j P. cp1 • Hence p = P. for one of the 
1 1- . 1 

i 1 s if and only if Ann(M~NT)P n RT ~ n Ann(M~/NT)P 1 n RT, the 

last intersec·cion taken over those prime ideals P 1 with P 1 f P • 

(Observed in Chang and Skjelbred (7 )). Choose one of the P. 1 s 
1 

and let K be the minimal subtorus with PK c P. • Let Q be 
- 1 

any prime ideal such that the minimal subtorus L with PL ~ Q 

is equal to K . We have: Ann(M~NT)Q n RT = Ann((M1/NT)Q n RT 

= Ann[(MT)Q/(NT)Q] n RT = Ann[(MT,K)Q/NT,K)Q] n RT 

= Ann[(MT,J!NT,K)Q] n RT = Ann[MT,K/NT,K]Q n RT 

The first and the last equalities follow since we are dealing with 

finitely generated RT-modules. By the localization theorem 

HT(X,F)Q ~ HT(XK,F)Q; hence (MT)Q ~ (M~,K)Q and the third equali­

ty follows. For the main step in the proof we apply Lemma 1. 

Since PK ~ Q it follows from Lemma 1 that Ann(MT,lfNT,K)Q n RT 

= Ann(MT,K/NT,K) • But if PK I Pi' this contradicts the fact 

that (Ann MT,K/NT,K)Pi n RT f n(Ann MT/NT)P 1 nRT; P' f Pi • 

Hence Pi = PK ; i.e. all the associated primes are linear. The 

isolated primes Pi are the minimal prime ideals P containing 

Ann(M~NT), i.e. they are minimal with respect to the condition 
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that Ann(MT/NT)P n RT I RT • Again, letting K be the subtorus 

determined by P , we have 

Hence K is a maximal subtorus with respect to the condition that 

MT K I NT K; and this concludes the proof of Theorem 4. 
' ' 

Remark. 

If N = (0), we get the result of Chang and Skjelbred (() for the 

submodule MT of H;(x,F) • In this case it follows directly 

that (Ann MT K)Q n RT =Ann MT K , since it is easily shown (Theo-
' ' 

rem 1) that the map H;(xK,F) ~ H;(xK,F)Q is injective. This is 

not sufficient to conclude that MT,K/NT,K ~ (MT,K/NT,K)Q is in­

jective, and we need Lemma 1 to see that Ann(MT,K/NT,K)Q n RT 

= Ann MT,K/NT,K • 

If X is totally non-homologous to zero in XT, we have 

H;(x) ~~RTR'T.::: H*(F) OR'T. If M is a submodule of H*(F) 

Ann MT is always a principal ideal (generated by the least common 

multiple of the denominators when a set of generators of M are 

expressed as reduced RT-rational linear combinations of elements 

of H;(x)). If (0) IN~ M, however, there are several examples 

in section 2 showing that Ann(M,piNT) is not in general a prin­

cipal ideal, and the general primary decomposition is needed. 

The following corollary is lmown (Allday and Skjelbred ( 1 ) }. 

Proposition 1. 

Let X be a Poincar~ duality space over ~ and let T act on X • 

Let F 1 , ••• , F s be the connected components of f. 
J 

be the fundamental cohomology class of Fj and 1 . 
J 

the generator 

Then Ann M1 is a prin-

cipal ideal whose generator is the product of the local geometric 
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weights at Fj with multiplicities,and the isolated prime ideals 

of Ann M2 correspond to the generic isotropy subgroups of the 

minimal F0 -varieties connecting F 1 with other components of F • 

§ 2. Geometric Weight Systems for Cohomology Product of Spheres 

We use the theory developed in the last section to study the 

orbit structure of a cohomology effective action of a torus T on 

a space m n X ..... S x S , where m and n are positive, even in te-

gers. From the Serre spectral sequence it is clear that all dif-

ferentials are zero in this case; hence X is totally non-homo-

logous to zero in the fibre bundle XT __, BT • We use j* for the 

homomorphism in equivariant cohomology: H;(x) __, H;(F) induced 

from the inclusion of F = XT in X, and i* for the homomor-

phism: H;(x) __, H*(X) induced from the inclusion of the fibre X 

some times we use this notation also for the oorrespon-

ding maps for invariant subspaces of X . Let x and y be gene­

rators in Hm(X) and H11 (X) respectively; it is easy to find 

x E H~(X) and y E H~(X) such that i*(x) = x, i*(y) = y and 

H;(x) ~ RT[x,y]/I , where I is the ideal generated by 
A2 A A2 A 
x -c1y-d1 and y -c2x-d2 cj,dj E RT, j = 1,2 The vari-

ety of I consists of the intersection points of the parabolas 

A2 A 

x = c 1 y + d 1 and "' 2 
A d h • t t • • t y = c 2x + 2 , eac 1n ersec 1on po1n corres-

pending to a component of the fixed point set with the intersection 

number of a point equal to the Euler characteristic of the corres­

ponding component. (Tomter (I~)). 
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Theorem 5. 

Let X -· sm x sn wl·th m and n even posl·tl·ve l·ntegers and 
·- ' ' 

let T act on X • There are the following possibilities: 

1. Both parabolas degenerate to double lines which intersect at 

the origin. p and q even, positive integers. 

2. One parabola degenerates to a double line, the other is tangent 

to this at the origin. F ~ P3 (h) with h an even, positive in­

teger. 

3. One parabola degenerates to a double line, the other intersects 

this in two distinct points. p and q even, 

positive integers. 

4. The parabolas have one transversal intersection point and a 

point of tangency with intersection number three. F ~ P2 (h) + [pt} 

with h an even, positive integer. 

5. The parabolas intersect at two simple pQints and are tangent 

at a third point. Then F ..... sP + (pt} + [pt} with p an even, 

positive integer. 

6. The parabolas intersect transversally at four distinct points 

and F has four acyclic components. 

Here X ""' Pr(h) means that H*(X) has one generator u of dimen-

sion h Which satisfies the relation r+1 = 0 u . 
Case 1 • 

Here c. = J_ 

HP(F) and 

modules of 

tively. 

Theorem 6. 

d. = 0 
J_ 

Hq(F) 

H*(F) 

i = 1,2 • Let u and v be generators of 

respectively. Let U, V, and W be the sub­

generated by [u,uv}, (v,uv} and [uv} respec-

The ideals Ann(UT/WT) and P~n(VT/WT) are principal ideals. 
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The geometric weight system is defined by two generators 
k1 ks 

a= w1 .•. ws and 
11 ls 

b = w1 .•• ws for these respective ideals, 
2 

wi E H (BT) • The connected components of the corank one isotropy 
J. 

subgroups are given by H. = w. ; 
l 1 

ding corank one F0 -varieties are 
p+2ki q+2li 

S X S , i = 1, •• 09 S. 

the structure of the correspon­
H· 

given by X 2 = F(H.) 
1 

~ ~2 
Proof: Let j*(x) = a 1+u®a2+v®a

3
+uv®a

4 
, ai E -RT • From x. = 0 

we have a 1 = a 2a3 = 0 , by renaming we may assume that a 3 = 0 

Hence j*(x) = u&~a2+uv®a4 , and it follows easily that j*(;y) 

= v~b3+uv~b4 • Hence Ann(UT/WT) = (a2 ) and Ann(V~WT) = (b3 ) 

are principal ideals. In this simple case, Theorem 4 implies that 

the factors of a2 and b3 are linear; i.e. we have generators 

a and b ehich are rationals multiples of a 2 and b
3 

and which 

split as above. From the proof of theorem 4 it follows that the 
k. 

Ann(UT,H./WT,H.) = (wi1) ' 
1 l 

Obviously this implies that 

q.e.d. 

Remark 1. Ann W = (a·b) ; by Proposition 1 a b determines the ' 

local geometric weight system, i.e. it determines the local geome-
H· m. ni 

tric weights w. and the total dimension of X 1 S 
1 >c S , 

1 

but to determine the individual sphere dimensions mi 

need the above refinement. 

and n. we 
l 

Remark 2. To compute H*(F((HinHj) 0
)) one simply determines the 

weights which are in the two-dimensional subspace spanned by wi 

and 

F (H. nH.) 
l J 

Then 
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compute the cohomology of all the higher corank F0 -varieties 

F (H. n .•• !lH. ) • 
11 1k 

The result shows that in case 1 a general 

torus action on X has the same cohomological orbit structure as 

the diagonal of two linear actions on sm and sn with weight 

systems a and b respectively. 

We digress briefly in this case to cons1der a typical application 

to actions of classical groups. 

Theorem 7. 

Let G = SU(l) , 1 > 4 act on Sm x Sn , let T be a maximal 

torus with F(T) ~ sP x Sq and assume that 1(1-1) > m-2,n-2 • 

Then all orbits are finitely covered by complex Stiefel manifolds 

SU ( 1) /SU ( 1-k) . 

Proof: Let WG = N(T)/T , then F(T) is easily seen to be WG­

invariant; hence there is a linear representation of WG on each 

Hk(F) . Let e1, ••• ,e1 with e1+ .•. +91 = 0 be the usual coordi­

nates on T , then WG is the symmetry group on [8 1 , ••• ,91 } • 

Any represent~tion of WG of degree less that 1-1 is trivial on 

the subgroup Al of even permutations, so in our case Al acts 

trivially on each Hk(F) • Since j*: HT(X) -+ HT(F) is a. WG-

morphism, it is clear that Ann(U~WT) and Ann(V~WT) are Al-

invariant; i.e. the weight systems [(±w1;k1 ), ••• ,(±ws;ks)J and 

[(±w1;11 ), ••• ,(±w
8
;ls)} are invariant under even permutations of 

Let 

seen that the shortest 

n. E ~ • 
1 

A1-orbit occurs if w = e. 
1 

It is easily 

for some i 

and the second shortest occurs if w = ei +8j , the latter has 

length ~1(1-1) • From the dimension estimates 1(1-1) > m-2 and 

n-2 , it follows that only the shortest orbit can occur; 
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k1 k1 11 11 
a= 91 ... 91 and b = 91 .•• 91 i.e. the weight systems of 

k 1 (1 1 ) copies of the standard representation of SU(l) on c1 

Now we can use the technique in Hsiang ( ) to reach the conclusion. 

By choosing a suitable point x on an arbitrary G-orbit of X 

one may assume that the maximal torus of is contained in 

T , i.e. there exist weights such that T = T0 = 1 X 

.1. .J.. 0 J. J. 
w. n •.. nw. one may as well assume Tx = w1n •.• nwk Let 6(G) 

l1 lk 
be the weight system of the adjoint representation, and 6(G)j T1 

the restriction of this to 'r1 • The action of G along the orbit 

G/Gx has weight system 6(G)IT 1 ~ 6(G~) , hence, if 

o = [(e 1 ;k1+1 1 ),. •• ,(e1 ;k1+1 1 )}, then 6(G~) ~ 6(G)IT1 -o!T1 • 

From this equation it is a Lie algebra computation to show that 

G~ = SU(l-k) • q.e.d. 

Remark. By considering cohomology with ~2-coefficients and 2-

weights, one can show that '·the orbits must actually be complex 

Stiefel manifolds. Obviously there are similar theorems for 

SO(n) and Sp(n) • 

Case 2. 

Here c 2 = d 2 = d 1 = 0 . Let u be a generator in Hh(F) • From 

the relations A2 A A2 (A) x = c 1 y , y = 0 we get: j * x = 

j*(y) = u 20b
3

+u30b4 with ai,bi u0a2+u2 :9a3+u3~a4 , 

the relations: a~ = c 1 b 3 , 2 a 2 a 3 = c 1 b 
4 

, 

E RT satisfyin~ 

3 = u ®a2b 3 • Let 

U, V and W be the submodules of H*(F) generated by 2 3 [u,u ,u L 

(u2 ,u31 and [u31 respectively. Then it follows from the above 

that Ann(WT) = (a2b 3 ) , Ann(U~VT) = (a2 ) 
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Theorem 8. 

The geometric weight system is defined by two splitting elements 
k1 ks 

and b 
11 ls 

with E I-I2(BT) ' 0 < 2k. > 1. a = w1 •. • ws = w1 ••• w s 9 w. 
l l- l 

for i = 1 ' ••• 's • The connected components of the co rank one iso-

tropy subgroups are given by Hi= w~, i = 1, •.. ,s • The struc­

ture of the corank one F0 -varieties are given by: 

a) 1. < 2k. 
l l 

h+2k. ?h+21. 
F(H. ) '"" S 1 

X S 1 

. l 

Proof: Since Ann(WT) is a principal ideal, it follows from 

Theorem 4 that the generator a 2b3 must split as 
2 k1 ks 

weights in H (BT), hence a2 = q2w1 ••. ws and 

Wl. th q2 , q
3 

E Q , wi E H2 (BT) • S. 3 . th f d t 1 1nce u lS e un amen-a co-

homology class of F , it is actua.l.l.,y clear !rom. Proposition 1 that 

w1 , ••• ,ws are the geometric weights. From a~= c1b
3 

it followsthat 

2k. > 1. • Also dim F.(H.) = 3h+2k. +21 .• We have the exact sequence 
l - l l l l 

0 ~ I ~ RT!x,y] ~ H;(x) ~ 0 ; since H;(x) is a flat RT-module 

it follows from Theorem 1 a) that 0 ~I®RTRHi .... RHi[x,y] ~H~. (X) .... o 
l 

is exact. Here o1*(c1 ) I 0 in RH. iff 1. = 2k.; i.e. in this 
l l l 

case the H.-action on X belongs to case 2, else it belongs to, 
l p. q. 

case 1. Thus, if li < 2ki, F(Hi) ,..., S 1 x S 1 with pi+qi = 

3h+21.+2k. . From Theorem 4 it follows that the localization 
l l 

k. 
(a2 )(w.) n RG = (wi

1
) = Ann(UT,H./VT,H.) • Applying the above 

l l l 

discussion to the T-action on F(Hi), it is then clear that one 

of the sphere dimensions pi' q. 
l 

must equal h +2k. 
l • Hence 

F(Hi) 
h+2k. 

~ s l X S 
2h+21. 

l If 1. = 2k. 
l l 

the multiplicity of wi 

is 3ki ' from the above remarks it follows that F(H.) ,...p3(h+2k.). 
l l 

q.e.d. 
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We can construct examples of Case 2 with the torus T 

arbitrarily high rank. Let Q be the quaternions and s7 

unit sphere in Q2 ~ c4 . We have the Hopf-bundle 

s3 ~ s7 ~ QP(1) = s4 , by taking the quotient by s1 we get 

bundle s2 ~ ~P(3) ~ s4 and the corresponding E 3-bundle s 
s4 • Let '11 be a Cd-bundle such that s 6 '11 is trivial, 

of 

the 

the 

over 

let 

S 1 act on fl by complex multiplication and trivially on !; • 

(This is the" Su" construction, see Bredon ( Lf ) , p. 4l0 ) Let R 

be a representation of the r-dimensional torus on ([)e with 

weight system [(w1 ;r1 ), ••• ,(ws;rs)} , such that [w1 , ••• ,ws} are 

pairwise linearly independent. We may choose a weight w which 

is linearly independent of each wi, i = 1, ••• ,s; let p be the 

corresponding homomorphism from Tr to s1 • Then Tr acts on 

the trivial bundle e(e) over s4 by R, and on s ~ '11 by p; 

hence s ® '11 ~ e(e) is a Tr-bundle over 

bundle X = s4 X s2d+2e+2 and fixed point 

s4 with unit sphere 

set F = «}P(3) • From 

the Serre spectral sequence it follows that the corank one Fo-

for i = 1 ' • 0 • 's and 
~ 4 2r.+2 

varieties are given by F(w.) ~ S x S 1 
1 

F(w1 = s4 x s2
d+

2 

Case 3. 

Here 
. p q 

F = F1+F2 "" S +S • Let u and v be generators in 

and Hq(F) respectively, and let 1i be the generator of H0 (Fi), 
A2 2 i = 1,2. From the relations x = c 1y+d1 and y = 0 it follows 

easily they j*(;y) = u®a +V®b , j*(x) = U~C + 11®d +V®e -1 2®d , 

where we have the relations (i) d1 = d2 I o. (ii) ac 1 = 2cd. 

(iii) bc 1 = - 2ed. (iv) be+ ae = 0 0 

Let u, v and w be the submodules of H*(F) generated by [u]' 

[v} and (u, v} respectively. Then Ann(W~VT) = (a) ' 
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Ann(W~UT) = (b) • Let M = H*(F) , then Ann(MT/WT) = (d) • 

Since j*(xy+ dy) = u®2ad and j*(xy+dy) = -v®2bd, we have 

Ann(UT) = (ad) , Ann(VT) = (bd) , hence ad and bd determine 

the local geometric weight systems around F1 and F2 respective]y. 

The complexity of the orbit structure depends on whether the 

first parabola degenerates to two parallell lines 

or not. We treat the simpler case first •. 

a) c 1 = 0 • 

Theorem 9. 

Let the equivariant cohomology of X 
1\2 

be given by the ideal I 

of relations generated by x = d 1 I 0 and The geome-

tric weight system is then given by the generators of the above 
k1 ks 11 ls 

three annihilator ideals: a= q 1w1 ••• ws b = q 2w1 ••• ws , and 
P1 Ps 2 

d = q3w1 ••• ws , where qi E Q and wi E H (BT) • The structure 

of the corank one F0 -varieties are. given as follows: 
i p+2ki q+2li 

Let Hi= wi. Then F(Hi) ,....s +S if pi= 0. 

2p. p+2k. 
and F (Hi) ,.... S 2 x S 2 if p. > 0 • 

l 

Proof: By Theorem 4 the generators of annihilator ideals which 

are principal ideals must split into linear factors as above. 

If pi = 0, we know from Theorem 4 that the localization 

i.e. 11 - 1 2 is in the 

F(H.) has two components • 
. l 

From the multiplicities of w. in the local geometric weight sys­
l p+2k. q+21. 

terns ad and bd it then follows that F(Hi) "' S 2 + S 2
• 

,.2 
On the other hand, if pi > 0 , I ®RT RHi is generated by x and 

y 2 from the exact sequence 0 _, I ®RT RHi _, RHi [x,y] _, H~. (X) ""' 0 
. l 

m. n. p. 
it follows that F(Hi) "'S 2 x S 2

• Here (d)(w.) nRT = (wi
2

); 
l 
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it is then an easy corollary of Theorem 4 that one of the indi-

vidual sphere dimensions must be 2p .• 
l 

By counting dimensions in 

the local geometric weight systems, it follows that the other is 

p + 2k . = q + 21 . • 
l l 

q.e.d. 

b) c 1 I 0. 

Theorem 10. 

Let the equivariant cohomology of X be given by the ideal I 

f d 
A2 A A2 

0 
_L o relations efined by x = c1y + d1 y = where c1 ,d1 r 0. 

Let N be the submodule of H*(F) generated by 11 -1 2 • Then 

the geometric weight system is given by the above three annihilator 
k1 ks 

ideals defined by a= q1w1 ••• ws , 
l1 ls P1 Ps 

b = q2w1 ••• ws , d= q3w1 _w
8 

r.. rs 
together with Ann(NT) = (w1 ' ••• ws ) • The structure of the corank 

one F0 -varieties are given as follows: 
p+2k. q+21. 

Let 
J. 

H. = (w.) • 
l l 

Then: 

F(Hi) ....- S 1 + S 1 if pi = 0 • 

if p. > 0, r. < 3p .• 
l l l 

There is at least one corank one F0 -variety of type 
2p. p+2k. 

S 1 
X S 1 

Proof: The same proof as in a) gives the splitting of a, b and d 

and the structure of F(H.) 
l 

We may consider o(1 1-1 2 ) 

when pi = 0 • We compute 

as the generator of H1 (X;F) and x, 

y, xy as elements of H*(X;F) • From Theorem 2 we know that 

H;(x;F) is a torsion RT-module; hence, in the Serre spectral se­

quence for the pair of fibrations XT ~ BT' FT ~ BT one of the 

E2-elements x, y, xy must transgress to o(1 1-1 2 ) ® g • Since 

we are in the lowest filtration degree, this expression becomes 

zero in H*(XT;FT) , and it follows that Ann(NT) = (g) From 

the cohomology exact sequence of the pair (XT,FT) . this means that 
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We claim that 

it is xy which transgresses to 0(1 1-1 2 ) ® g . For otherwise 

gives a 1c+a2a = a 1e+a2b = 0 

get 2a2b = 0 , i.e. a2 

a 1 or a2 equal to 1 • This 

Substituting the relation (iv), we 

= 0 a 1 = 0 · which is a contradiction. 

We have j*(xy + bde-1x) ( ) 2 -1 = 11-1 2 ®bd e ; it follows that e 

must divide bd and g is a rational multiple of bd2e-1 • 

Now if pi > 0, it follows as before that F(Hi) is connected. 

From relation (iii) we see that the multiplicity of wi in c 1 

is 1. + 2p. - r. + p. - 1. = 3pJ.. - rJ.. J. J. J. J. J. Hence if and 

only if r i < 3pi , where P! is the canonical homomorphism 

RT-+RHi If ri=3pi' wehave I®RTRHi=(y2 ,x~pi(c 1 )y); if 

( ""2 ""2) r i < 3pi , we have I ®RT RHi = y ,x • Hence from the exact 

sequence 0 ... I ®RT RHi ... RHi [x,y] ... H~. (X) .... 0 it again follows 
J. 

that these correspond to Case 2 and Case 1 for the Hi-action on 

X , respectively. The dimensions in these cases are computed by 

the multiplicities of w. J. in the local geometric weight systems 

and by localizing the ideal (d) as in Theorem 9. If all connec-

ted corank one F
0
-varieties were of type p3(2pi) 

' 
we would have 

.... 2 " m+n =dim g = 3dim d =3m , i.e. x = c 1y+d 1 , c1 E ~ hence 

x 2 = c 1y 1 which would mean that X was a cohomology projective 

space. q.e.d. 

If T acts linearly on Sm and sn with fixed point sets 

sP (p >0) and S0 respectively, then the diagonal action of T 

on Sm sn X gives an example of a) with p = q ' 

("linear examples"). We now construct an example with equivariant 

cohomology as in b) (non-degenerate parabola); it is sufficient to 

show that corank one F0 -varieties can occur as cohomology projec• 
I 

/ 
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tive spaces. Let s7 c Q2 = c4 , let s 2 ~ ~P(3) U QP(1) = s 4 

be the "Su bundle" considered in Case 2, and let s be the asso-

3 cia ted JR. -bundle. Consider a linear action of a torus T on 

with weight system ((w;2)) , i.e. g•(x1 ,x2 ) = 
(exp(2ni(w,g)x1 , exp(2ni(w,g))x2 ) , this projects to a linear action 

on QP(1) = s 4 with F = s 2 and the local representation of T 

around F given by the weight system ((0;1),(-2w;1)} • On the 

other hand, viewing Q2 as ~4 , this also induces a linear action 

on ~P(3) with complex weitht system (±w;2) and fixed point set 
2 2 F1 + F2 = S + S • The local representations around fixed points 

now have weight systems ((0;1),(2w;2)} (see Tomter (!b)). Let 

R be a representation of T on ~n with weight system 

((w1;r1), ••• ,ws;rs)J and let 8 be the corresponding trivial T­

bundle on s 4 (for the given T-action on the base space). This 

defines a T-structure on the unit sphere bundle X of the 

Whitney sum of s and 8 • From the Serre spectral sequence of 

this bundle it is clear that X~ s4 X s 2n+2 • We may assume that 

the weight vectors (w,w1, ••• ,ws} are pairwise linearly indepen-
T 2 2 dent. Then F = X = S + S , 

J. .l. 2 
are F(w) = ~P(3), F(wi) ~ S 

and the corank one 
2r· 

F0 -varieties 

X S l . 1 
'l = , ••• ,s •· 

From this it is clear that Case 3 b) can occur with tori T 

of arbitrarily large rank. By a variation of this construction we 

can obtain the following improvement of Theorem 2 in Tomter (1~) 

for circle actions, also see Chang and Comenetz ( ~), Theorem 3. 

Theorem 11. 

For any torus T it is possible to find a space X whose integral 

cohomology is isomorphic to H*(S4xsn ; ~) for some even integer 

n and an effective action of T on X such that the fixed point 
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set F = S P + S q with p f. q • 

Proof: Consider the Su bundle ~P(3) ~ QP(1) = s4 and s as 

in the last example. Now take a linear T-action on Q2 with 

weight system ((w;1),(0;1)} , this defines a linear action on 

QP(1) with fixed points P1 and P2 and local weight systems 

((±w;1)) and ((-w;2)} respectively. On ~P(3) the induced 

action has complex weight system ((±w;1),(0;2)) 

set F1 +F2 +F3 , where F1 and F2 are points 

and fixed point 
2 and F3 = S • 

The corresponding local representations have weight systems 

((2w;1),(w;2)], ({-2w;1),(-w;2)} and ({0;1),(±w;1)) respectively. 

Here the local representation around F1 has weight 2w along 

the fibre of the Su bundle and ((w;2)} transversally to the 

fibre, similarly for 

rr(F3) = ~2 • Let R 
"(, 

with weight system 

F2 and F3 • We have n(F1 ) = rr(F2 ) = P1 , 

be a faithful representation of T on ~n 

((O;r
0

),(w1 ;r1 ), ••• ,(ws;rs)} such_that the 

weight vectors w,~1 , ••• ,w
8 

are peirwise linearly independent. 

Let e be the corresponding trivial T-bundle on s4, and proceed 

to construct X as in the previous example. Then the Serre spec-

tral sequence actually shows that X ~ s4 X s2n+2 with ~-coeffi-
T 2r0 2r +2 

cients. Furthermore F =X = S +S 0 
, and the corank one 

F0 -varieties are given by F(wL) ~ 4 2r +2 
S x S 0 and 

~ 2r +2r. 2r +2r.+2 
F ( w. ) ~ S 0 ~ + S 0 ~ for 

~ 
i=1, ••• ,s. q.e.d. 

Case 4. 

non-zero ele-

ments of RT ; the variety of I consits of the two intersection 

points (a, -2a2c11) and (-3a,6a2c11) corresponding to the 
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2 fixed point components F1 ~ P (h) and F2 ~ (pt) respectively. 

An easy computation 3 2 2 gives the relations (i) Sa = c 1c2 , d1 = 3a 
2 4 and d2c 1 = 12a • 

Let u, 11 and 12 be generators in 

respectively. Let x' 
2 

u ® ex.+ u ® S - 1 2 ® 4a , 

,.. 
= x- a, 

j*(y') = 

( 2) -1 cx.,~,y,o E RT • Straightforward computations give y = 2aa+S c 1 , 

o = 2sac11 • Let M and N be the submodules of H*(F) gener­

ated by u 2 and 12 respectively. Then Ann(MT) = ($ 2ac11 ) and 

Ann(NT) = (a3c1 1 ) = (c 1c2 ) • By Proposition 1 these define the 

local geometric weight systems around F1 and F2 , and the ele­

ments a, c 1,c2,s must all split as the product of weights in 

H2 (BT) • 

In this case we can describe the orbit structure from the 

equivariant cohomology as follows: 

Theorem 12. 

The geometric weight system is given by the splitting elements 

a = 
k1 kl s h1 h1 hl+1 hl+S 

and q1 w1 • • • wl = q2w1 ••• wl wl+1 ••• w l+s 
p1 pl 

where k. hi+ ~h for i 1 ' .•• '1 and c1 = q3w1 • • .wl = = 
l. 

l+S J. 
L: 2h. = (l-1)h • Let Hi = (wi) ' 

i = 1 ' ..• 's The co rank 
j=l+1 J 

one F0 -varieties are given as follows: 

a) Let 1 < i < 1 Then 3 
• 0 < p. < ~k. • - l. - l. 

If 0 < P· l. < ~ki: F(Hi) 
2k. 4k.-p. 

~ S l. X S l. l. 

0: F(Hi) ~ P3(h+2k.) If p. = ~k.: 3 If pi = • F ( H . ) ...... P (h+k. ) • 
l. l. l l. l. 

b) F(Hi) 
2 Let i > 1 . Then ,... P (h+2ki) + F2 • 
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Proof: For 1 < i < 1 the two intersection points of the para-

bolas are joined to zero by restricting the action to 

F(Hi) is connected. Comparing multiplicities of w. 
~ 

H. , hence 
~ 

in 

and Ann(NT) we get ki = hi +ih • From (i) it follows that 

hence 

3k .• 
~ 

If 0 <pi < ~ki it follows that pj:(c2 ) = 0 in RHi' 
n. 
~ x S • Let U and V be the submodules of 

H*(F) generated by (u2 ,u,1) 

Ann(U~VT) = (a,a
2

c1
1

) and 

2 and (u ,u) respectively. Then 
1· 

Ann(UT,VT)(w.) n RT = (wi~) with 
~ 

1. = min(ki,2k.-p.) • 
~ ~ ~ 

From Theorem 4 it follows that 21. = 
~ 

min(mi,ni) , from the local geometric weitht systems m.+n. = 6k.-2p. ~ 
~ ~ ~ ~~ 

2k. 4k.-2p. 
hence F(Hi) ,.., S ~ x S ~ ~ • 

If pi= 0 , pj:{c 1 ) I 0 in RHi , hence the Hi-action on X is 

Case 2 and F(Hi) ~ P3(h+2ki) • If pi = ~ki , pj:(c 2 ) I 0 and 

F(H.) ~ P3 (h+k.) as is easily seen by checking dimensions. 
~ ~ 

If i > 1 , the intersection points of the parabolas remain sepa­

rated when restricting t.o Hi , by a dimension check 

F(H.) ,.., P2 (h+2k. )+ {pt}. q.e.d. 
~ ~ 

Case 4 can occur only under rather special circumstances. It is 

possible only in the dimension range n <2m< 4n. In Tomter (I~) 

an example was constructed for a circle action on X ~ s4 xs4 , the 

construction has been extended to circle actions with other dimen-

sions in Chang and Comenetz ( ~). In a recent paper of Skjelbred 

(fi), he applies a theorem by Sylvester and GrUnwald on affine de-

pendence relations of points in the plane to prove that if 

F = F1 +F2 with F2 acyclic, then rk T < 3 (for an arbitrary 

Poincar~ duality space X with dim H*(X) = dim H*(F) and 

dim F1 >dim F2 ). Hence Case 4 cannot occur for tori of large 

rank; we do not know of examples with rk T = 2 or rk T = 3 • 
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Case 5. 

Let (ai,bi) ' i = 1,2,3 be the intersection points of the para-

bolas ... 2 .... x = c1y+d 1 and ....2 ... y = c2x=d2 with (a1 ,b1 ) the point of 

tangency. We may assume that c1 ,d1 ,d2 are non-zero. Let 

F = F 1+F2+F3 ~ sP+[pt}+(pt) , let u and 1i be generators of 

HP(F1 ) and H0 (Fi) respectively, i = 1,2,3. Then j*(x) = 
u®c + 11®a1 + 12®a2 + 13®a3 , j*(y) = u®d + 11®b1 + 12®b2 + 13®b3 • 

Straightforward computation gives the relations: 

(i) (a.-a.)(a.+a.) = c1(b.-b.) , 
~ J ~ J ~ J (bi-bj)(bi+bj) = c2(ai-aj). 

4a1b1 = c1c2 • 

Again, the simplest orbit structure occurs when the second 

parabola degenerates to two parallell lines. 

a) c2 = 0 • 

This implies a 1 = 0 a2 = -a3 , b1 = - b2 = - b3 • Let a = a2 
and b = b1 • Then j*(x) = u®c + 12®a -1 3®a From j*(y2) = 

j*(d2 ) = d2 ®(1 1+1 2+1 3) it then follows that 

j * (y) = 11 ®b - 12®b - 13®b • 

Proposition 3. Let M and Mi be the submodules of H*(F) 

nerated by u and 1 . 
~ 

respectively. Then Ann(MT) = (be) 

Ann(M1T) = (b) and Ann(M2T) = Ann(M3T) = (ab) • 

Proof: j*(xy+bx) = u®2bc, j*(xy-bx+ay-ab) = 12 ®(-4ab) 

j*(xy-bx-ay+ab) = 13 ®4ab , j*(y+b) = 11 ®2b • 

Theorem 13. 

, 

The geometric weight system in Case 5 a) is given by the three 
k1 ks 11 ls 

splitting elements a= q1w1 ••• ws b = q2w1 ••• ws and 

ge-
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P1 Ps 
c = q3w1 ••• ws , qi E ~ • The structure of the corank one F0

-

.L 
varieties are given as follows: Let Hi = wi • 

2k. 21. 
(a) 2k. > 1. > 0: F(H.) ~ S 1 x S 1 

• l l l 

(b) 2k. = li > 0: F(Hi) "' p 3 ( 2k. ) • l l 
p+2p . 2k. 

(c) 2k. > 1. 0: F(Hi) ....... s l + s l = l l 
p+2p. . 

(d) ki = li = 0: F(H.) ,.., s l + [pt} + [pt} l 

Proof: From (i) we get 

(a) P!(c1 ) = p!(d1 ) = p!(d2 ) = 0 in 

= (x2 ,y2 ) , from the exact sequence 

RHi , hence I ®RT RHi 

(b) 

0 .... I ®RT RHi .... RHi [x,y] 
.... H* (X) .... 0 

Hi 
it follows that the restriction to the H.-action 

l 

on X is Case 1 and 

local geometric weight systems around 

by ab , hence 

Ann(M1T)(w.) n 
1. 

m.+n. = 2k. + 21. • By 
l l 1· l l 

RT = (wil) = Ann(M1T,H.) 
1. 

dividual sphere dimensions is 21. and 
1. 

By Proposition 3 the 

F2 and F3 are given 

Theorem 4 

, hence one of the in-
2k. 21. 

F(Hi) ...... S 1 xS 1 
• 

H. -action on X 
1. 

is Case 2, and from the local geometric weight system 

F(H.) ~ P3(2k.) • 
l 1. 

(c) P!(c 1 ) = p!(d1 ) = 0, p!(d2 ) I 0 and the Hi-action on X 

is Case 3 a). 

(d) p!(c 1), p!(d1 ) and p!(d2 ) 

action on X is Case 5 a). 

are all non-zero, and the 

The dimension in (c) and (d) follow from the local geometric 

weight systems. q.e.d. 

H.-
1. 
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b) c2 1- 0 . 

Proposition 4. 

I1 = 

I2 = 

I3 = 

Ann(MT) = 

Ann(M2T) 

Ann(M3T) 

= 

= 

(c(a1-a2)(a1-a3)c11) = (d(b1-b2)(b1-b3)c21) • 

((a2-a3)(a2-a1)2c11) = ((b2-b3)(b2-b1)2c21) 

((a2-a3)(a3-a1)2c11) = ((b2-b3)(b3-b1)2c21) • 

These determine the local geometric weight systems around F1 , F2 
and F3 respectively. 

Proof: We compute r1 • 

j*(x'y'+Ax'+By') = u ®D 

Let 

for 

A A 

X 1 = X - a3 , y 1 = y - b 3 • Since 

A,B,C,D E RT we get: 

(1) A(ai-a3 ) +B(bi-b3 ) + (ai-a3)(bi-b3 ) = 0, i = 1.2. From (i) 

we get A(ai-a3 ) +Bc1
1 (a~-a~) + c1

1 
(ai-a3 )

2
(ai+a3 ) = 0. For the 

intersection points ai 1- aj and bi 1- bj in case 5 b) if i/-j. 
2 2 Hence c 1A = -(ai+a3 )B -ai +a3 for i = 1,2 by subtraction we 

get B =- (a1+a2 ) • Similarly A =- (b 1+b 2 ) . Substitution of A 

in (1) gives -(b2+b 3)(a1-a3 ) +B(b 1-b3 ) = 0, using (i) we obtain 

B = c2 1(b 1+b 3)(b2+b3 ) = -(a1+a2 ) = -c 1c2 (b 1+b2)-1 , hence 

(b 1+b2 )(b1+b 3 )(b2+b 3 ) = -c 1 c~, similarly (a1+a2 )(a1+a3)(a2+a3 ) 
2 . = -c1c2 • Now D = c(b1-b2 ) + d(a1-a3)- c(b1+b2 ) -d(a1+a2 ) 

= -c(b2+b3)- d(a2+a3 ) =- cc 1c 2(a2+a3 )-1 - 2a1cc1 1 (a2+a3 ) 

= cc1 1 (a1+a2)(a1+a3 ) -2a1cc1 1 (a2+a3 ). = cc1 1(a1-a2 )(a1-a3), and 

this gives the formula for r 1 • By similar computations we 

obtain the others. q.e.d. 

The description of the orbit structure is more complicated 

in this case. However since there are examples of such torus 

actions, we state the result with a short proof. 

Theorem 14. 

The geometric weight system in Case 5 b is determined by the fol-
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g1 gs 
lowing annihilator ideals: I 1 =Ann MT = (w1 ••• ws ), I 2 =AnnM2T 

h1 hs j 1 j s 
= ( w 1 • • • w s ) ' I 3 = Ann M3 T = ( w 1 . • • w s ) ' I 4 = Ann((M +M2+M3)i(~-HVI~T) 

. k1 ks 
= (c,d) = (w1 ••• ws ) There are the following possibilities for 

corank one F0 -varieties (Hi = w~) : 

(a) 

(b) 

(c) 

(d) 

g. > 1 o, 

h. > o, 1 

ji > o, 

h. = 1 

h .. = 
1 

j . 1 

h. = ji 1 

j . = o, 1 

hi = o, 

> 0, ki 

p+2g. 
= 0 . F(Hi) ""'s 1 +(pt}+{pt} • 

gi = hi-~· F(Hi) = F' + F3 "'P
2

(hi) + {pt} 

gi = ji- ~· F(Hi) = F' + F 2 "' p2 ( j i) + (pt} 

p+2g. 2h. 
= gi • F(Hi) -s 1+S 1 

p+2k. 2(h.-k.)-p 
() S 1 s 11 • k. <g .• F H. "" X 1 1 1 

• 

• 

for 

ji = gi + ~ > 0 

3p + 6ki 1- 2hi and F(H.) "' p3 (p+2k.) for 3p+6k. = 2h1 .• 
1 1 1 

Proof. (a) and (b) follow by inspecting the local geometric weight 
k· 

= (wi
1

), (I1)(w.) nRT = 
1 

systems 
g. 

(wi 1) • Hence one of the generators of H*(F(H.)) has dimension 
1 

p + 2ki and the dimension of F(Hi) around F1 is p + 2gi If 

is disconnected, and in (c) we get these are equal, F(Hi) 
p+2g. 2h. 

F(Hi) ""' S 1 + S 
1 from I 1 , I 2 , I 3 • Conversely, in (d) 

must be connected. If F(H.) ""'p3(p+2p.), we would have 
1 1 

p· k· 
Ann((M+M2+M3 )T,H./(M2+M3 )T,H_) = (wi

1
) = (wi

1
), hence 

1 1 
pi = ki 
m. n. 

3p + 6k. I 2h. 9 F(H.) ,..., s 1 
X s 1 and 3p + 6k. ::: 2h .• 

1 1 

by the localization of 

Thus, if 1 1 1 

must be p + 2ki ; i.e. 

only to prove that if 

I 4 again one of the sphere dimensions 
p+2k. 2(h.-k.)-p 

F(Hi) "' S 1 x S 1 1 • It remains 
p+2k. 2p+4k. 

3p + 6ki = 2hi , F(Hi) ,..., S 1 x S 1 is 

impossible. From the dimensions it is clear that in this case the 
p+2k. 

T-action on F(Hi) must be Case 5 a). Let X. 
,.. 

HT 1(F(Hi)) I: 1 
2p+4k. 

X~ and yi E HT 1(F(Hi)) be generators, then E RT and from 1 
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5 a) we would have 

which is a contradiction. 
q.e.d. 

Again, 5 b)can occur only inrather special cases. It is possible 

only in the dimension range n < 2m < 4n • If rk T > 4 , then 

rk H. > 3 and (b) in Theorem 14 cannot occur. The local geome-
1 

tric weight systems around F2 and F3 must then be the same, 

hence a2 - a 1 = q1 (a3-a1), b2 - b 1 = q2 (b3-b1 ) with q1 ,q2 E ~ , 

from (i) we get a 3 = q3a 1 , similarly for a2 ,b2 , etc. 

( 2 -1) ( ) ( 3 -1) ( ) ) I 1 = ca1 c1 = cb1 , I 2 = I 3 = a 1 c1 = a 1 b 1 , just as in 5 a • 

Hence it is only for rk T ~ 4 and n <2m < 4n that the more 

complicated description of Theorem 14 is necessary. We give ex­

amples which shows that it can occur for tori of rank two. 

First we obtain an example of 5 a). Let s be the Su bundle 

over and let T act on Q2 = ~4 with weight system 

{(0;1),(w;1)) • Let e be the trivial ~n bundle over the T-space 

s4 = QP(1) corresponding to a representation of T with weight 

system ((w1;r1), ••• ,(ws,rs)} with (w,w1 , ••• ,ws} pairwise li-

nearly independent. (See Case 3) Let X 

bundle of S 'tl e: , then X "" s4 X s2+2n and 

be the unit sphere 

F = XT =S~pt}+(pt} 

Instead of computing the equivariant cohomology, we just observe 

that if n > 8 , we must be in Case 5 a. The corank one F0-varietie~: 

.L. 
F(w ) = 

~ 2+2r. 2r . 
G3P(3), F(wi) ""S 1 + S 1 

• This shows that case (b) of 

Theorem 13 can occur for tori of large rank. 

Next we give exapmples which shows that both parabolas may be non­

degenerate. Let T have ranlc two, and let a 1 and a 2 be line­

arly independent weights on T • Let T act on x1 = QP(2) and 

x2 = QP(2) with weight systems ((0;1),(a2-a1;1),(-a2-a1;1)} and 
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((a2 ;2),(a1;1)} respectively. Then xr = F1 +F2 +F3 = (pt}+{pt} 

+ (pt} and X~ = F4 + F5 = s 2 + (pt} • The local representations of 

T around F1 and F5 have complex weight systems 

(±(a2-a1),±(a2+a1)} and ((~a2-a1 ;2)} 
are disc neighbourhoods around F1 and 

respectively; hence there 

F5 which are equivariantly 

diffeomorphic under an orientation-preserving diffeomorphism. Let 

X be the equivariant connected sum x1 # x2 as in Tomter (fb), 

then X r'J s 4 xs4 and XT = xr #X~= F4 +F2 +F3 = S2 +(pt}+(pt}. 

The local representations around fixed points have weight systems: 

F4: [0,-2a2 ,±a1-a2 } • F2 : ((a1-a2 ;2),2a1 ,-2a2 } • 

F3: ((a1+a2;2),2a1 ,2a2 } • Then the corank one F0 -varieties of X 

are the following: F((a1 -a2 )~) = (S4+F3 ) # ~P(2) = ~P(2) +F3 • 
J.. 4 2 . 2 l 

F((a1+a2 ) ) = (S +F ) # VP(2) = QJP(2) +F • F(a1 ) = 

(F 1+S 2 ) # (S 2+F5) = s 2 + s 2 • F(a;) = (F 1+S 2 ) # (S 4+F5) = s4 + s 2 • 

The equivariant cohomology can be computed explicitly·-. ' ·.··,:;·; . ~ 

Since there are corank one F0 -varieties as in Theorem 14 

(b), it is clear that this is Case 5 b). The weithts a 1 and a 2 
correspond to (c) of Theorem 14. By other choices of weight vee-,. 
tors other cases of the theorem can be illustrated. For ex~~ple, 

consider the quaternionic weight system ( ( 2a1; 2), (2a2 ; 1 )] for x1 

and ( ( a 1-a2 ; 2), ( 3a1 +a2 ; 1 ) } for x 2 , with xr = F 1 + F2 
= s 2 + (pt} 

and X~ = F3 + F4 = s 2 + (pt} • The local representation around F 1 

h · ht t (0 4 2 ( ) 2 ( ) } and around F3 1.· t as we1.g sys em ,- a, a 3-a1 ,- a 3+a1 
is (0,2a1-2a

3
,2a1+a

3
,-4a1} • Hence we can take the equivariant 

connected sum; this time with respect to points on the two spheres 

F 1 and F3 such that the torus T acts on X "' s 4 x s 4 with 

xT = s 2 + (pt }+ (pt} • The corank one F0 -varieties are now 
.1. J. 2 2 

F( (a1-a2 ) ) = <llP(2) + (pt}, F( (a1+a2 ) ) = ~P(2) fir ~P(2) "' S x S , 

and F(a~) = ~P(2) + (pt}, corresponding to b) and d) of Theorem 14. 
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Case 6, 

The two defining parabolas have four simple intersection points 

(ai,bi)' i = 1, ••• ,4 corresponding to four acyclic compnents of 

F = F1 + F2 +F3 +F4 • Let 1i be the generator of H0 (Fi), then 

j*(x) = 11:59a1 + 12®a2 + 130a3 + 1
4
0a

4 
and j*(;y) = 11®b 1 +1 2®b2 + 

13:8>b 3 + 14®b4 , and substitution of the defining equations of the 

parabolas gives the relations (i) (a.-a.)(a.+a.) = c1(b.-b.), 
~ J ~ J ~ J 

(b.-b.)(b.+b.) = c2 (a.-a.) , i,j = 1,2,3,4. Again the complexity 
1 J ~ J 1 J 

of the orbit structure depends on the shape of the parabolas, and 

there are three possibilities. 

a) both parabolas degenerate, c1 = c2 = 0 . The intersection 

points are of the form (±a,±b), and, after renumbering, we may 

write j*(x) = 11&a + 120a- 130a- 14®a . j*(;y) = 1 1®b- 12®b +1 3®b-1 4®b. 

Theorem 15. 

If the equivariant cohomology of X is defined by the ideal 

( "2 ... 2 ) I= x -d1,y -d2 with d1 and d2 non-zero 
k1 

in RT 
' 

the geo-

metric weight system is given by a = 

11 ls 
q1w1 

ks 
••• w s and 

b = q2 w 1 •• • w s ; qi E Ql ' w i E H
2

(BT) ' 
with 

Let H ..L • 1 . = w. ; ~ = , ••• ,s. 
1 ~ 

The corank one 

given by: 
2k. 21. 

(a) ki > O, li > 0: F(Hi) ""'S ~><S 1 

2k. 2k. 
= X1+X2 ""S ~+S ~ 

= X1+X2 ...... s 
21. 21. 

~ +S 1 

d1 
2 and = a d2 = b 

F0 -varieties are 

with X1 => F1 +F3' 
X2 =>F2+F4 • 

with X1 =>F1+F2, 

X2~F3+F4 • 

Remark. The geometric weight system then determines the relative 

position of F in the F0 -varieties. Notice that the components 

2 
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F. do not enter symmetrically here, e.g. a geometric weight w. 1 1 
can join F1 to either F2 or F3 into a cohomology sphere 

(2 and 3), but not to F4 • 

Proof: For (a) p!(d1) p!(d2) = 0 in RHi I 0 RT RHi 
...2 "'2 = (x,y ), = 

and the restriction to the 
m· n· 

F(Hi) ~ S 1 x S 1 • Let M 

' 
H.-action on X must be Case 1, with 

1 

be the submodule of H*(F) spanned 

by (1 1+1 2 ) , then Ann(MT) = (a) 
k· 

= (wi1 ) • It follows that one of 

, and Ann(MT,H_) = (a)(w.)nRT 
. 1 1 

the sphere dimensions must be 

2ki We have j* (xy+bx+ay+ab) = 11 ® 4ab , and it is easily seen 

that the local geometric weight systems around all components Fi 

are given by ( ab) • Hence m. + n. = 2k. + 21. , and the conclusion 1 1 1 1 

of (a) follows. In (b) pi(d1 ) = O, p!(d2 ) I 0 , I ®RT RHi = 
(x2 ,Y.2-p!(d2)) and the Hi-action is Case 3. The dimensions fol­

low from the local geometric weight system, the same argument 

applies to (c). 

Let T act on sm and sn with weight systems a and b re­

spectively and assume that there are no zero weights. Then the 

d . 1 t . f T Sm X Sn b 1 t 1agona ac 1on o on e ongs o 6 a), and Theorem 

15 shows that the general case 6 a) is modelled after this "linea~" 

example. 

b) One parabola is degenerate: c1 I 0, c2 = 0 • Now a 1 = - a 2 , 
2 2 2 2 A a 3 = -a4 , b1 = b2 = b3 = b4 = d2 , and we can write: j*(x1) 

= 11 ®a1 - 12·g,a1 + 13®a3 - 14 ®a3 , j * (;y) = 110b + 1 i8>b - 13®b - 14 2lb • 

The relations (i) reduce to (ii) (a1-a3 )(a1+a3 ) = 2c1b • 

Denote the submodule generated by elements z1 , ••• ,zr of H*(F) 

by [z1 , ••• ,zr] • Define Mi = [1i], M = [1 2 ,1 3 ,1 4], U = [1 2 ,1 3] 

and V = [1 2 ,1 4 ] • 
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Proposition 5. 

11 = Ann M1T = Ann M2T = (a1b) • 12 = Ann M3T = Ann M4T = ( a 3 b). 

13 = Ann(M1+M2 )T = (b) r 4 = Ann(M~UT) = (a3+a1 ,b) • 

15 = Ann(Mr/VT) = (a3-a1 ,b) • 

This is proved by straightforward computations. 

r 1 and r 2 determine the local geometric weight systems. The 

next theorem shows that r1 , ••• ,r5 determine the whole cohomologi 1 

cal orbit structure. 

Theorem 16. 

Let the equivariant cohomology of X be given by the ideal 

( A2 A A2 ) I= x -c1y-d 1 ,y -d2 with c1 , d1 and d2 non-zero in RT. 

Then the cohomological orbit structure of X is determined by the 

above five ideals r1 , ••• ,r5 • Let wi E H2 (BT) and Hi= w~. 
r·. 

Define the indices rij by the localization (Ij)(w.) nRT = (wi 1 J~. 
1 

Then the corank one F0 -varieties are given as follows: 
2r. 1 2r. 2 (a) ri3 = 0 • F(Hi) = X1+X2 ,...,s 1 +S 1 with F1+F2 ~X1 , 

(c) 

F3+F4 ~X2 
2r .. 1 (if ri2 =0, F(Hi) ,...,s 1 +(pt}+(pt}, etc.) 

2r i 1 2r i 1 . 
0 <ri 1 = ri2 = ri 3 • F(Hi) = X1+X2 ..... s + S 

Here either ri5 = ri1 ' ri4 = 0 and F1+F3 £ X1 , F2+F4 ~ X2 

or ri4 = ri 1 , ri5 = 0 and F1+F4 ~ x1 , F2+F3 ~ x2 

2ri3 2(ri1-r:i3) 
ri1 =ri2 >ri3 >0. E-ither 3ri3 ;i2ri1 and F(Hi) ---s yS 

or 

or 

= 2ri1 = 6ri4 = 6ri5 

= 2r i 1 < 3r i4 + 3r i5 

and 

and 

3 F(H.),..., P (r.
3

) 
1 1 

r. 3 2r. 3 F(H.) ,..., S 1 X S 1 
1 

Proof: (a) pi(d2 ) = pi(b2 ) I 0 in RHi • Hence F(Hi) is not 

connected; since (r3)(w.) nRT = RT = Ann(M1+M2 )T,H.) by Theorem4, 
1 1 
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it is clear that F1 and F2 is in the same component of F(Hi). 

(b): pt(d2 ) = 0 from a~ = c 1b+d 1 it follows that pf(d1 ) I 0, 

hence F(Hi) has two components. From (ii) it follows that wi 

divides exactly one of a
3
-a1 , a

3
+a1 at least times. Now 

ffi· 

I 4 (wi) n RT = (wi 
1

) , where mi is the minimum of the multiplici-

ties of wi in b and a 3+a1 , hence or 

ri4 = ri 1 ' ri5 = 0 • In the first case p!(a1 ) = p!(-a3 ) ; hence 

the first and the fourth intersection points are joined in RHi , 

also the second and the third; i.e. F1+F4 ~ x1 , F2+F3 ~ X2 • 

(c) pt(d1 ) = p!(d2 ) = 0 , hence F(Hi) is connected. One of the 

generators of H*(F(Hi)) has dimension 2ri
3 

(from I 3 's locali­

zation). If ri 1 = 3ri3 , it follows from (ii) that p!(c 1 ) = 0 , 
2ri3 2(r. 1-r. 3 ) 

hence F(Hi) ~ S x S 1 1 
• The same conclusion must 

then also hold if 3ri3 I 2ri1 • If 3ri3 = 2ri1 , we have 

r. 4 > min(r.
3
,r. 1-r.

3
) = tr.

3 
, similarly 

1 - 1 1 1 1 
for ri5 • From (ii) 

it follows that pJ(·c 1 ) I 0 precisely if r r 1. r 
i4 = i5 = 2 i3 , i.e. 

in this case F(H.) ~ P3 (r.
3

) 
1 1 

q.e.d. 

Consider again the Su bundle over s4 , and let T act on 

Q2 = m4 with quaternionic weight system ((w1 ;1),(w2 ,1)) , where 

w1 and w2 are linearly independent. This defines a T-action 

on mP(3) with four isolated fixed points F1 , F2 , F3, F4 and 

F2 
= n(F

3
) = n(F4) in two fixed points. F

1 = n(F1 ) = n(F2 ) 

the base space s4 • (See Case 3.) 

and 

The complex weight systems 

for the local representations are: F
1

: 2w1 ,w1-w2 ,w1+w2 • 

F2 : -2w1 ,-w1-w2 ,-w1+w2 • F3 : w2-w1 ,w2+w1 , 2w2 • F4 : -w2-w1 , 

-w2+w1 ,-2w2 , and around F1 : ±w1-w2 , around F
2

: ~w2-w1 • Add 

a trivial T bundle e over the T-space s4 corresponding to a 

representation of T on en with weight system 
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{(w3;k3), .... , (ws ;ks)J where {w1 , w2 , w1 -w2 , w1 +w2 , w3, ••• , w
8 

J are 

pairwise linearly independent. Then X = S( S®€) ,.., s4 x s2n+2 , 

F = XT = F1 + F2 + F3 + F4 , and the corank one F0 -varieties are: 

F(H1) = X1 + F3 + F4 ,.., s2 + {pt)+(pt] , F(H2 ) = F1 + F2 + x1 - (pt]+{pt]+S2• 
J. 

F( (w1-w2 ) ) = X1 + x2 

IV s2 + s2 J. 
where F1 + F3 ~ x, ' F2+ F4 5: x2 F((w1+w2 ) ) = X1+X2 

IV s2 + s2 where F1 +F4 :: x, ' F2 + F3 :: x2 • F(Hi) = x 1 + x2 
2k. 2k. 

"'"'s 1 + s 1 for i .?: 3 We see that F1 may be linked to each • 

of F2 , F3 , F4 in cohomology spheres in various corank one F0
-

varieties. By theorem 15 this is not possible for Case 6 a). 

Choosing n+2 > 8 we are outside the dimension range where both 

parabolas can be non-degenerate; hence we must be in Case 6 b). 

The weights w1 and 

corresponds to (b). 

example of (c). 

If 

c) Both parabolas are non-degenerate, c 1 I 0 , c 2 I 0 • In this 

case, which is possible only for n <2m < 4n , the orbit structure 

can be more complicated. We give a descriptiop of the orbit struc­

ture from the equivariant cohomology and outline the computations. 

It is easily seen that a. I a. 
1 J 

and 

Furthermore we have the relations (iii) 

for i I j , 

(a.+a.)(a.+ak)(a.+a1 ) 
1 J 1 1 

for i I j • 

(a.+a.)(b.+b.) = c 1c2 1 J 1 J 

for [i,j,k,l} = (1,2,3,4] , and a 1+a2=a3+a4 = b1+b2+b3+b4 • 

Using these the local geometric weight systems can be computed: 

I . = Ann ( [ 1 . ] T) = ( c -1
1 (a. -a. ) (a. -a. )(a. -a1 )) = 

J J J 1 J K J 

= (c21(bj-bi)(bj-bk)(bj-b1 )} with (i,j,k,l} = [1,2,3,4} , (also 

see the computation in Proposition 4). Let M1 = [1 2 ,1 3 ,1 4 ] , 

M2 = [1 3 ,1 4 ] , M3 = [1 2 ,1 4 ] and M4 = [1 2 ,1 3] and let 



.,.. 36 -

j = 2, 3,4 • Define the indices 
r .. 

r. . and 1. . by the localizations 
~J ~J 1· . 

(I . ) ( ) n RT = ( w. ~ J ) and 
J wi ~ 

(L.)c ) n RT = (w. 1 J), then 1 .. 
J wi ~ ~J 

is the minimum of the mul tipli-

Theorem 17. 

In Case 6 c) the cohomological orbit structure of X is determined 

by the above ideals I. 
J 

and L:k of RT , j = 1 , 2 , 3 , 4 ; k = 2 , 3 , 4 • 

The connected components of the corank one isotropy sucgroups are 

given by Hi = w~ (\'fhere rij > 0 for some j ) and the cohomolo­

gical structure of the corank one F0 -varieties are given as follows: 

(let (j(1),j(2),j(3),j(4) be a permutation of (1,2,3,4}): 

(a) rij(1) = rij(2) > rij(.3) = rij(4) ~ o. F(Hi) = X1 + X2 

2r. . ( 1 ) 2r. . ( 3 ) 
,... S ~J + S ~J , where Fj( 1 ) +Fj(2 ) ~ X1 , 

F j ( 3) + F j ( 4) ~ X2 • 

(b) rij(1) = rij(2) = rij(3) > rij(4) = 0' 

2 2 
F(Hi) = X1 + Fj(4) .-p (3rij(1)) + (pt} • 

(c) rij(1) = rij(2) = rij(3) = rij(4) > 0 ' 1ik(2) > 0 ' 

lik( 3 ) = lik(4 ) = 0. (Here (k(2),k(3),k(4)} is a permutation 
2r . . ( 1 ) 2r · · ( 1 ) of (2,3,4}.) Then F(Hi) = x1 +X2 ..... s ~J +S ~J , with 

F1 +Fk(2) ~ X1 • 

(d) rij(1) = rij(2) = rij(3) = rij(4) > 0 • 1ik(2) ' 1 ik(3) ' 1ik(4) > 0 • 

1 3 . 
If 1 ik(2) = 1 ik(3) = 1ik(4) =3rij(1)' F(Hi) ...., p (lik(2)j. 

Otherwise F(Hi) ,.., S 
21

ik(2) x s 2 (rij ( 1 )-
1
ik(2)) • 
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Proof: Here cases (a) and (b) follow directly from the local geo-

metric weight systems I. ; 
J 

(c) follows once we observe that the 

intersection points (a1 ,b1 ) and (~(2)'bk(2)) of the parabolas 

are linked to the same intersection point under change of rings 

from RT to RH. , but the other points are not linked to this. 
1 1 

This is seen from the localizations (Lk( 2 ))(w.)nRT = (wiik(2 )) 
1 

~ RT , and ( Lk ( 3 ) ) ( w. ) n RT = ( Lk ( 4 ) ) ( w. ) n RT = RT • In (d) 
1 1 

(Lk)(w.) n RT ~ RT for k = 2,3,4; hence all intersection points 
1 

(aj,bj) are linked to the origin under change of ring from RT to 

RH., and F(H.) is connected. From Theorem 4 it follows that 
1 1 

the dimension of one of the generators of H* (F(H.)) 
1 

must be 

2lik(2 ) • If F(Hi) "" p3(2ki) 
2k. 

for H 1 (F(Hi)), then j*(xi) 

k. 
"' 1 (x.-q3w. ) = 0 

1 1 
correspond to the components Fj of F by Theorem 

3 ; hence each root has multiplicity one, and the q. are different 
J 

non-zero rational numbers, j = 2, 3,4. 

2, 3, 4 , and by dimension counting 6k. 
1 

k· 
C r1~) C w. ) n RT = c w i 

1
) , k = 

1 
= dim F(H. ) = 2r .. (...,) • On 

. 1 1J I 

the other hand, suppose that the Hi-action is Case 1 and that 
21ik(2) 4~(2) 

3lik(2) = 3lik( 3) = 3lik(4 ) = rij('1); then F(Hi) ""S xS ~ 

Let m(wi,a1-a2 ) denote the multiplicity of wi as a factor of 

a1 - a2 , etc.; then lik(2 ) = min(m(wi ,a1 -~(2 )) ,m(wi, b1-bk(2 )). 

Since m(wi,c1 ) > 0 and I 1 = (c:j1(a1-a2 )(a1-a3)(a1-a4 )), it. is 

clear that m(wi,a1-aj) > lik( 2 ) for at least one j=2,3,4; by 

a symmetric argument m(wi,b1-bj) > lik( 2 ) for at least one j. 

We may then assume that m(wi,a1-a2 ) = m(wi,a1-a3) = lik( 2), 

m(wi,b1-b4 ) = lik(2), m(wi;a1-a4 ) = lik(2 ) +m(wi,c1). From (i): 

(a1-a4 )(a1+a4 ) = c1 (b1-b4 ), 
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hence m(wi ,a1+a4 ) = 0 , which contradicts the assumption that all 

the intersection points (a.,b.) are linked to. the origin under 
J J 

the change of rings p~ : RT _. RH .• 
l. l. 

q.e.d. 

We finish this investigation by giving various examples of 

Case 6 c) • We notice that this case allows much more freedom than 

cases 6 a) and 6 b). For example, it follows from Theorems 15 and 

16 that if m ~ 2n, there is only one other component that can 

be linked with F2 to a cohomology sphere in an F0 -variety of the 

type 8p + {pt} + (pt} , (this component is called F 1 in Theorem 16). 

We give an example of a torus of rank 3 acting such that F2 can 

be linked with all the other components in corank one F0 -varieties 

of the type 8p + {pt} + {pt} • 

Let T act linearly on x1 = QP(2) with quater.nionic weight 

system (2a1 ,2a2 ,2a
3

) and on x2 = QP(2) with 

(-a2+a
3

,2a1-a2-a
3

,2a1+a2 +a
3

) , where a 1 , a2 , a
3 

are linearly inde­

pendent weight vectors on T • Then x; = F 1 + F2 + F3 = {pt} + {pt} + fPt} 

and X~ = F4 + F5 + F6 ,.... {pt } + {pt } + {pt} • 

The local representations around F1 has complex weight system 

4 {±2a2-2a1 ,±2a
3
-2a1 } and around F : {2a1-2a

3
,-2a1+2a2 ,2a1+2a2 , 

-2a1-2a
3

} • Taking equivariant connected sum around F1 and F4 

we have: X = x1 # x2 rv 84 x 84 and XT = x; :/{: X~ = F2 + F3 + F5 + F6 • 

By computing the weights of the local representations around 

F2 , F3, F5, F6 , we get the following co rank one F0 -varieties: 

F( (a1-a2 ).L) = (82+F3) # (82 +F6 ) = 82 + F3 + F6. 

F( (a1+a2 ).L) = (82 +F3) # (82 +F5) = 82 + F3 + F5 • 

F( (a2-a
3

).!) = (82 +F 1 ) # (F4 +F5 +F6 ) = 82 + F5 + F6 • 

F((a1+a
3
).l) = (82+F2 ) :/{: (82+F5) = 82 + F2 + F5. 

F((a2+a
3
)l.) = (82+F1 ) # (F4 +82 ) = 82 + 82. 

F((a1 )l.) = (F1+F2+F3) # (F4 +82 ) .... 82 +F5 +F3 • 

F((a1-a
3

).1) = (82+F2 ) I (82+F6 ),... 82 + F2 + F6. 
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The equivariant cohomology can be computed explicitly (Tomter ( )). 

The three first F0 -varieties give the desired linkings of F2 to 

other components, and show that this must be Case 6 c). 

There exists a map f: s 2n-1 .... sn of Hopf-invariant 2, such 

that the adjunction space X = D2n Uf Sn ,...· P2 (n) • (Steen.r0d-Epstein 

( ) ) • Let cp be an orthogonal representation of T on Y , let 

T act on n2n by cp <!) cp and on sn c lRn+1 by cp <!) 1 • Then f is 

equi var~ant, and there is an induced T-action on X • Equi variant 

connected sums of such spaces gives only trivial exapmles of Case 6 

a) • There is a more interesting example if we let one of the spaces 

come from the usual Hopf fibiation. Thus let rk T = 2 and let cp 

be a faithful representation of T on e2 =:IR4 with complex weights 

8 4 2 w1 , w2 • Consider the induced action on x1 = D Uf S ,..., P (4) , then 

X~. = F 1 + F 2 + F 3 , where F 1 corresponds to the origin in n8 • The 

local weight system at F1 is {(w1 ;2),(w2 ;2)). Let· x2 = QP(2) 

and let T act by a quaternionic linear action with weight system 

T ((0;1),(w1 ;1),(w2 ;1)) and x2 = F4 +F5 +F6 • The local weights 

around F4 are {±w1 ,±w2 }. Locally, x1 is a manifold aroung F1 ; 

taking equivariant connected sum around F1 and F4 we obtain 

X = X1 # X2 ,... s 4 
X s 4 • The corank one F0 -varieties are easily 

computed to be: 

J. 4 2 4 2 F(w1 ) = (D ufs) :/1: s +F6 ,..., P (2)+ (pt}. 
l 4 2 4 . 2 

F ( w 2 ) = . ( D U f S ) # S + F 5 ,.... P ( 2) + {pt} • 

( ~ 2 2 ) F (w1-w2 ) ) = (F1+F2+F3) #= (F4 +S ) ..... S + {pt} + [pt • 

i 2 2 F((w1+w2 ) ) = (F1+F2+F
3

) #= (F4 +S ) ,... S + [pt} + {pt}. 

This gives an example of (b) in Theorem 17. 

Remarks. 

Throughout the discussion we have determined the structure of the 
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ank Fo . t• cor one -var1e 1es. In Case 1 it was also shown how to de-

termine the higher corank F0 -varieties and the whole cohomological 

orbit structure from the geometric weight system. It is clear that 

this can be done in the same way for the other cases. 

The discussion given here indicates that torus actions on 

spaces with more complicated cohomology must be expected to have 

complicated orbit structures and g60metric weight systems in general; 

in this case practically all possibilities allowed by general prin­

ciples of cohomology theory for transformation groups can occur. 

However, by using the geometirc weight system, it is possible to 

exploit additional information (the dimensions of the cohomology 

groups, the dimension of the torus, Weyl group invariance, etc.) 

to rule out the more complicated cases. 

Clearly Theorem and its counterparts for the other classical 

groups have analogues for all the other cases. Moreover there are 

applications to classification of principal orbit types, degree of 

symmetry, etc., for action of compact, simple Lie groups on cohomo­

logy products of spheres. 
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