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ABSTRACT 

We study homogeneous symmetric Markov diffusion processes on 

separable real rigged Hilbert spaces, with rigging provided by 

locally convex complete vector spaces. The infinitesimal gene­

rators are given by Dirichlet forms associated with quasi in-

variant measures on the rigged Hilbert spaces. The processes 

solve singular stochastic differential equations on these 

spaces. We exhibit ergodic decompositions. We also prove 

path continuity properties for the case of bounded measurable 

drift and discuss briefly the relation with potential theory 

on such spaces. The methods and results of the general theory 

are then applied to models of local relativistic quantum fields 

in two space-time dimensions, with polynomial or exponential 

interactions. In particular we prove that the phycical vacuum, 

restricted to the a-algebra generated by the time zero fields, 

is a quasi invariant analytic and strictly positive me~pure. 
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1., Introduction 

The main concern of this paper is the study of stochastic 

Markov processes and the corresponding stochastic differential equ­

ations on separable real rigged Hilbert spaces K ~ where the rigging 

Q c K c Q' is given by a locally convex real complete vecto'r space 

Q , densely contained in K , and its dual Q' • This study contin­

ues in other directions and extends our previous one [1]. 1)some re­

ferences concerning work from other points of view on stochastic 

differential equations, stochastic processes and their relations to 

differential operators in infinite dimensional spaces are e.g. [2]­

[14] and references therein. 

We shall now briefly discuss the content of the different sections 

of our present paper .. 

In section 2 we study Dirichlet forms on a rigged separable 

real Hilbert space K, the rigging Q C: K c Q' being as above. 

We recall that for any probability measur~ ~ on Q' which is quasi 

invariant under translations by elements of Q two strongly continu­

ous unitary representations q ~ U(q) and q ~ V(q) of Q in 

L2 (d~) are defined, such that U and V satisfy the Weyl commuta­

tion relations. Such representations have been studied intensively 
. 1 

before, see e.g. [15]- [23]. We have (V(q)f)(s) = (da&t~J))2" 
f( s+q) , for any f E L2 (d~) , q E Q, s E Q' .. 

Let i.rr(q) be the infinitesimal generator of the unitary group V(tq), 

t E R. Let ~(Q') be the space of all quasi invariant probabi-

li ty me!;:.sures on Q' with the property that the function 1 is in 

the domain of n(q) for all q E Q. -~(Q') is the space of mea­

sures considered henceforth. The gradient q.~ in the direction q 

is defined in a natural way, hence also the closed map f ~ ~f from a 
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dense subset w1 of L2 (di.J.) into K ® L
2

(di.J.) • The Dirichlet form 

we consider is then defined as the closed positive form Jvr · Vfdi.J. 

in L2 ( di.J. ) • 2.) 
We study the correspondent self-adjoint operator H. In particular 

we exhibit its ~-ergodic decomposition induced by the ergodic decom­

position of 1.J. with respect to translations by elements in Q. 

We also give a definition of the Laplacian on L2 (d~.J.) , for 1.J. in 

a subspace of c9>1 (Q'), as a self-adjoint positive operator. This 

is an alternative definition to ones given before ([27],[28],(6],[7]). 

In Section 3 we start by proving that the semigroup -tH e 

t > 0 generated by H in L2 (d~.J.) is positivity preserving,i.e. it 

is a Markov semigroup. The proof is done by reduction to finitely 

many dimensions. In this case (as well as in the case of locally 

compact separable Hausdorffspaces) a general theory of symmetric pro­

cesses generated by a class of symmetric bilinear forms has been given 

in a series of papers by Fukushima, see [29] and references therein. 

The class of forms considered by Fukushima consists of Dirichlet 

forms in a general sense related to potential theory and contain in 

particular, in the finite dimensional case, the closed Dirichlet 

forms considered by us in this paper and in [ i]. Since the proof 

that our operator H generates a Markov semigroup can be reduced to 

the proof that an operator given by a Dirichlet form in finitely many 

dimensions generate a Markov semigroup, we can apply ~ukushima's re-

t -tH sul s to prove that our operator e is positivity preserving. 

Then we use the Markov semigroup to construct, by an adaptation of 

the standard Kolmogorov Theorem, the quasi invariant measure 1.J. be­

ing regular, an homogeneous Markov process s(t) with state space 

Q' and invariant measure 1.J. • We then show that s( t) solves, in 
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the sense of weak processes on Q' ([;OJ .... [ 32]) ·the stochastic dif-

ferential equation of a diffusion process 

ds(t) "" 13(s(t))dt + dw(t), 

where w(t) is the standard Wiener process on K and the osmotic 

velocity 13(.), in the sense of [1], is such that q.13 = 2n(q)1. 

/
correspondent 

This result covers in particular the one mentioned in [1]. In the 

proof a suitable characterization of the standard Wiener process on 

R is used. Note that 13 is, in general, neither Lipschitznorbounded.!) 

We continue Section 3 by giving the time ergodic decompoetion of the 

process s and of its generator H. We also compare the time-ergo­

dic and Q-ergodic decompositions and show that the former is in ge­

neral strictly finer than the latter. We also give a sufficient con­

dition for the measure ~ in order for the two ergodic decompositions 

to be equivalent. The condition, called strict positivity, is that 

the conditional measures obtained from ~ by conditioning with re-

spect to closed subspaces of codimension one be bounded away from zero 

on compacts of the corresponding one-dimensional subspaces. Twosimple 

criteria for strict positivity of ~ are then given. The first re­

quires 1 to be an analytic vector for n(q) and that n(q)n·1 E 

D(q·~) for all q E Q' • The second requires a gap at the bottom of 

the spectrum of H and a simple estimate involving the multiple com­

mutators of n(q) with H. These criteria find applications in 

Section 4. 

We end Section 3 by proving continuity properties of the paths s(t) 

in natural Banach norms, for· a class of measures ~ in ~(Q'). We 

use.here results from Gross theory of abstract Wiener spaces (see e.g. 

[6 ],[ '7]). Our results on continuity properties give an extension 

of Stroock-Varadhan ones [ 3~ to processes with infinite dimensional 

,state space. 
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In Section 4 we apply the results of the previous sections to the 

case of .two space-time dimensional quantum field theoretical models, 

continuing the discussion of Section 4 of Ref. (1]. For these ap­

plications the rigging is given by the real spages Q = ~(R) , 

K = L2 (d!-l) , Q' = dtR) • We show in particular for the weakly 

coupled P(~) 2 models ([38]),(39]), the P(~) 2 model with Dirichlet 

boundary conditions and isolated vacuum (vacua) ((40]- [43]) and the 

exponential interaction models ([44],[45]), that the physical vacuum 

measure restricted to the a-algebra generated by the time zerofields 

is an analytic, strictly positive quasi invariant measure 1-l on 

Thus 1 is an analytic vector in L2 (d!-l) for the canonical 

momentum n(~) , ~ E ft(R) and, with natural identifications for 

finitely based functions on fCR), 

Jfdl-l = J f(x1 , ••• ,xn)p(x1 , ••• ,xn)~···· ~ for any bounded con­
Rn 

tinuous f on Rn , with p strictly positive on any compact in 

Rn • 

The restriction to time zero fields of the physical Hamiltonian of 

above Wightman field models coincides on the dense domain FC2 of 

finitely based twice continuously differentiable functions with the 

Dirichlet operator H given by the Dirichlet form J V'f • V'fdl-l , as 

well as with the diffusion operator given by 1-l in the terminology 

of Theorem 2.7 in Ref. [1]. The results of Sections 2, 3 apply and 

give in particular ergodic decompositions as well as the above men­

tioned stochastic differential equation for the Markov process s(t, •) 

with state space .SO'(R), infinitesimal generator H and invariant 

measure 1-l : 

ds(x,t) = "(s(t))(x)dt + dw(x,t), 

w( • , t) being the standard Wiener process on .5/1 

(R) and ~ ( •) = 

2i n( • ) • 1 the osmotic velocity corresponding to the measure 1-l • 



2. The Dirichlet form and the Dirichlet operator 

Let 6 = be the Laplace operator as a self-adjoint 

operator in There are well known conditions on a real-

valued measurable function V(x) such that H = - 6 + V(x) is es­

sentially self-adjoint on C:CRn). E.g. it suffices that 

V E L(Rn)+Ito(Jtl), p = 2 for n = 1,2,3, and 
p 

p > n/2 for n > 4 [ 4()]. 4) Let us now assume V is such a 

function and H has an eigenvalue E such that H ~ E • Again 

general conditions are known which are sufficient to ensure that E 
·' is a simple eigenvalue of H. E.g. it suffices that v has the 

form V=V1 +V2 , with 0! V 1 E L~oc and V2 E Ln/2(Rn) + ~(Rn) for 

n> 3 ' and Ln/2 replaced by L , p > 1 for n = 2 and by L1 p 
for n = 1 [ 48] , 5 ). In such a case,where E is a simple lowest 

eigenvalue of H, the corresponding normalized eigenfunction ~(x) 

may be taken to be strictly positive almost everywhere. 

In the case where V is smooth one has ~(x) > 0 for all 

x ERn ([ 501), ·so. that p(x)dx with p(x) = c:p(x) 2 is a normalized 

probability measure equivalent to the Lebesgue measure. A simple 

calculation shows then that, for any f and g in c2 (Rn) , we 

have 

(fc:p, (H-E.)g~) 
n -

= L: j ..£f.. ..2B.. p dx 
. 1 ox. ox. 
1.= 1. 1. 

(2.1) 

with 

(f~,gc:p) = J f g pdx. 

Moreover for any f E c2(Rn) we have 

(H-E)fc:p = (-6f- 13·vf)~ (2.3) 
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where of of 
13 = Vlnp· and Vf = (ox ' ••• 'ox } • 

1 n 
See also ( 1 ] .. 

Hence we see thatJ in L2 ( pdx) , H-E is represented by 

(H-E)f = - t:.f- 13•"f (2 .. 4) 

for f E c2(~) , and the form given by H-E is the Dirichlet form 

in L2(pdx) i.e. 

( f (H E) ) - ~ J of ~ pdx ' - g p - . 1 ox. ox. 
~= ~ ~ 

(2.5) 

where ( , ) P is the inner product in L2 ( pdx) • So that the Dirichlet 

form in L2(pdx) given by (2.5) defines an operator that is equiva­

lent with the operator H-E = - t:. + V- E in L2 (Rn) having cp(x) = 
1 

p(x)~ as an eigenfunction with lowest eigenvalue zero. The relation 

between p and V is of course given by 

or 

where 
n 
I: 13? 

. 1 ~ 
~= 

V-E = ~ cp (2.6) 

(2.7) 

If we now let pdx be an arbitrary probability measure which is 

absolutely continuous with respect to the Lebesgue measure,then 

first of allJby a well known theorem, pdx is an arbitrary probabi­

lity measure which is quasi invariant under translations in Rn and 

moreover, by what is said above, the Dirichlet form (2.5) is a natu­

ral generalization of the forms given by operators of the type 

-t:.+V ..... E. 

We shall say that a real separable Hilbert space K is rigged 

if there is a real locally convex complete vector space Q such that 
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Q c K c Q' , (2.8) 

where Q' is the dual space of Q and such that Q is densely 

contained in K and Q 1 respectively and the inner product ( , ) 

in K coincides on Q x K with the dualization between Q and Q' •. 

In this case the inner product (,) on Q x K extends by con­

tinuity in the last variable to Q x Q' and this extension coincides 

with the dualization between Q and Q' • Hence we shall denote the 

dualization between Q and Q' by (q, s) , q E Q, s E Q' • 

Let now ~(Q') be the space of bounded measures defined on 

the cr-algebra generated by the weak *-topology, and let ~(Q') 

be the subset of probability measures. We shall say that 1.1 E ffJ(Q') 

is quasiinvariant if, for any q E Q , dl.l( s) and dl.l( s+q) are equi­

valent as measures, and we shall let ~(Q') denote the subset of 

quasi invariant probability measures. 

Let now 1.1 E fJ(Q') , then on L2 (d1J.) we have a representation 

U(q) of Q by unitary operators with the cyclic vector n(s) = 1, 

given by 

(U(q)f)(s) = ei(q,s)f(s). (2.9) 

We have easily that q - U(q) is a strongly continuous representa­

tion of Q , because for f E Ioo(diJ.) we have 

IICU(q)-1)fll~ ,:5. 2\lfii~1-Re J ei(q,s)dl.l(s)), 
Q' 

(2.10) 

which shows that U(q) is strongly continuous since ~(dl.l) is 

dense in L2(dl.l) • 

If moreover 1.1 E ~ ( Q' ) , then we also have another represen-

tation of Q. Since diJ.( s+q) and d1J.( s) are equivalent we know 

that 
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(2.11) 

is a non negative L1-function, and if we define 

1 

(V(q)f)(s) = ~2Cs,q)f(s+q) (2.12) 

then q ~ V(q) is again a unitary representation of Q on L2 (d~) , 

which is not necessarily continuous. However, it is always ray con­

tinuous and moreover if Q is a Frechet space or a strict inductive 

limit of Frechet spaces then q ~ V(q) is also strongly continuous 

i.e. for any f E L2 (d~) the mapping q ~ V(q)f is strongly contin­

uous. (For this last result see [20].) 

It follows now easily that U and V satisfy the Weyl-commu-

tation relation 

V(p)U(q) = ei(p,q)U(q)V(p). (2.13) 

We have obviously that (q,s) is the infinitesimal generator for 

U(tq) , and we shall use the convention (q, s) = s(q) • Let rr(q) 

be the infinitesimal generator of the unitary group V( tq) , and let 

0 E L2 (d~) be the function 0( s) = 1 o 

We shall say that ~ E ~(Q') is n-times differentiable if 

0 is in the domain of rr( q1 ),. o. , rr( ~) for all n-tuples q1 , ••• , ~ 

in Q, and the subset of n-times differentiable probability mea­

sures will be denoted by ?n(Q'). 
6

)we shall also say that ~ E ~(Q') 
is analytic if 0 is an analytic vector for rr( q) , for all q E Q. 

Let now ~ E ~ (Q') then 

~-q = 2irr(q)O (2.14) 

is a linear mapping from Q into L2 (d!-l) , and we denote by 13( s) •q 

the value of the image function at the point s E Q' • 
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Remark: The mapping q ~ ~·q is not necessarily continuous. We 

have though by Prop. 2. 3 and Prop. 2. 5 of ref. [ 1 ] that if Q 
\ 

is a countably normed space then q ~ ~·q is continuous, and if 

Q is a nuclear space then ~ is actually given by a measurable 

mapping ~(s) from Q' to Q' so that (q.~(s)) is the value of 

~.q at the point s. 

Let now R be a finite dimensional subspace of Q. Then the 

orthogonal projection PR in K with range R extends by conti­

nuity to a continuous projection from Q' into Q with range R. This 

because if r 1 , ••• ,rn is an orthonormal base in R then for any 

k E K we have that 

n 
PRk = L: (r. ,k)r. , 

. 1 l. l. 1.= 

which obviously .extends by continuity. 

We shall say that a measurable function f on Q' is finitely 

based if there is a finite dimensional subspace R of Q such that 

f( s) = f(PRs) • Moreover we shall say that a finitely based f"Lmc­

tion f is in FCn(Q') if its restriction to its base R is in 

Cn(R) i.e. n-times continuously differentiable. This definition 

is obviously independent of the choice of R. 

We shall say that a function f E C(Q') is in Cn(Q') if, for 

any ·; E Q I and any q E Q ' f( s+tq) is n-times continuously dif­

ferentiable functions of t and at t = 0 all the derivatives are 

in C(Q'). If f E c1 we define 

(q·vf)(s) = tt f(s+tq) lt=o. (2.15) 
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We see that if ~ E ~(Q') then c1 (Q') is contained in the do­

main of n(q) for all q E Q and for f E c1 we have 

(2.16) 

Now the operator q•V is defined on c1 and it has a densely de­

fined adjoint, namely - q • v - f3 • q ) whose domain contains C 1 which 

is obviously dense in L2(diJ.). Hence q.v is closable and we shall 

denote its closure also by q•V. 

Let now f E D(q•V) for all q E Q. For any finite dimensional 

subspace R c Q we define 

R n 2 
(f,f)1 = I: 1\e.•Vf\1 2 . 1 1 1= 

where e1 , ••• ,en is an orthonormal basis for R. 

(2.17) 

It is evident 

that (2.17) is independent of the particular basis e1 , ••• ,en• 
R1 R2 We have obviously that if R1 c R2 then (f,f)1 ~ (f,f)1 • 

Hence the limit of (f,f)~ over all finite dimensional subspaces 

exists and we denote this by (f ,f)1 • It follows immediately by 

taking the limit over the subspaces spanned by (e1 , ••• ,en}, where 

(ei }::o is an orthonormal base in K of elements in Q, that 

co 2 
(f,f)1 = E lie. •Vfl\ 2 , (2.18) 

i=1 1 

so by construction (2.18) is basis independent. We shall also use 

the notation 

c f , r ) 1 = J v f • v f diJ. , (2.19) 

and we call (f ,f)1 the Dirichlet form given· by 1-1 • 
7

) 

Let R be a finite dimensional subspace of Q and let ER be the 

conditional expectation with respect to the cr-subalgebra generated 

by the functions (q, s) with q E R. We then have the following. 

formula for any f E D( q • v) n 1tx:> and. any q E Q 
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In particular we have that ~ maps D( q ·'II) n roo into D( q • 'II) • 

This follows from a simple computation. From (2.20) we find that 

~f converges to f strongly in the graph norm of q • 'II • It is 

also easy to see that D( q • 'il) n Ioo is dense in D( q • 'il) in the graph 

norm. Hence if we let Froo denote the finitely based functions in 

roo we have the following lemma 

Lemma 2o1 

If 1-1 E &;CQ') then Fitc, n D(q•'il) is a core for q•'il, i.e. 

it is dense in D(q•'il) in the graph norm. LJ 

If f is in the domain of q•'il for all q E Q, and the Dirichlet 

form (f ,f)1 is finite \oJ"e define 'ilf as an element in K ® L2 (d1J.) 

and obviously we have then 

(2.21) 

Lemma 2.2 

Let 1-1 E ~ ( Q, • ) , then the mapping 'il from L2 ( diJ.) into 

K ® L2 (diJ.) is closable. 

Proof: Let R be a finite dimensional subspace of Q, , and let 

e 1 , ••• , en be an orthonormal basis in R. Let h E R ® L2 (d1J.) have 

the decomposition h == {h1 , ••• ,hn) , hi E L2 (d1J.) , with respect to 

the basis e1 , o •• , en • Assume that the hi are in D( q o 'il) for all 

q in Q,.. Then such h are dense in K ® L2 (d1J.) and the adjoint 

of 'il is applicable to such h and we have 

n . 
V'*h = 'E e. •'ilh. +~·e .• 

i==1 ~ ~ ~ 
(2.22) 



Therefore v has a densely defined adjoint, hence it is closable. 

This proves the lemma. 0 

From now on we shall denote the closure also by 'i/ , so that in 

what comes v is a closed map from L2 (d~) 
domain equal to W1 (d~) consisting of those 

into K ® L2(d~) with 

f E L2 (d~) which have 

finite Dirichlet norm, and in fact (2.21) holds for all f E w1 • 

The adjoint v* of v is also densely defined and closed. We have 

thus proved the following theorem. 

Theorem 2.1 

Let ~ E ~ ( Q' ) , then the Dirichlet form 

( f ' f ) 1 = s v f. v f d~ 

is a closed form in L2 (d~) and its associated operator is given 

by the selfadjoint operator 

H = v*v ~ 

For f E FC2(Q') we have that 

Hf = - b.f - ~ • v f ' 

where and ~·V = 
n 
~ (~·e.)(e.•V), where 

. 1 l. l. 
l.= 

is an orthonormal base in R, f being finitely based in R • 0 

In the same way as for the Dirichlet form we get that (2.17) defines 
R a closed form (f,f1 ) for any finite_dimensional subspace R c Q, 

and the corresponding selfadjoint operator ~ is given by 

where 'VR is the corresponding map from L2 (d~) into R ® L2(d~) • 
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Theorem 2.2 

R ~ HR is a monotone map from the ordered set of finite dimen-

sional subsets of Q into the ordered set of positive selfadjoint 

operators. Moreover -tHR -tH e converges strongly to e uniformly 

on finite t-intervals as R ~ Q through the net of finite subsets. 

Proof: In the paragraph following (2.17) we already observed that 

R ~ HR is monotone. The monotone form convergence follows from 

(2.18) and this implies the strong semigroup convergence by the theo-

rem on convergence from below of symmetric semibounded forms. 

(Theorem 3. 13), Ch. VIII, Ref. [.51].) 0 

We shall call the operator H of theorem 2.1 the Dirichlet operator.~ 

We shall say that a measure ~E. ~(Q') is Q-ergodic iff the 

only measurable subsets of Q' which are Q-invariant, i.e. invari­

ant under translations by arbitrary q E. Q , have ~-measure zero or 

one. 

There exists a compact Hausdorff space Z with a regular mea­

sure dz such that ~ has a unique Q-ergodic decomposition 

~ = J ~z dz. 
z 

(2.24) 

Z is simply the maximal ideal space for the subalgebra of ~(d~) 

consisting of Q-invariant functions. Hence a continuous function 

on Z is in natural correspondence with a translation invariant 

function in ~ and dz is just the restriction of d~ to the 

translation invariant functions. 

So that in fact ~z is the conditional probability_measure, 

conditioned with respect to the subalgebra of Q-invariant subsets. 

(See also [2.0]). 



Lemma 2.3 

If then .L llz • 
2 

Proof: If. z1 I z2 , since Z is Hausdorff, there are two open 

non intersecting sets A1 and A2 such that z1 E A1 and z2 E A2 • 

Now for any I-t-measurable set B c Q' and any A open in Z we 

have by definition that 

J~-tz(B)dz = ~-t(A() B) 
A 

(2 .. 25) 

"" where A is a Q-invariant measurable set such that its character-

istic function is represented on Z by the characteristic function 
,.... 

of A. So that if z E A then, by (2.25), 1-tz has support in A • 

"" "" Since A1 n A2 = 0 we have that A1 and A2 may be chosen such 

"" that A1 n A2 = 0. This proves the theorem. 0 

Theorem 2.4 

Let 1J. E ff-!1 ( Q' ) then zero is a simple eigenvalue of H if 

and only if 1J. is Q-ergodic. Moreover the eigenspace of eigen­

value zero is exactly the subspace of L2 (d~-t) consisting of Q-in­

variant functions. 

In fact the decomposition (2 .. 24) gives a direct decomposition 

of L2 (d~-t) of the form 

L2 (d~-t) = J L2 (d~-tz)dz 
z 

and with respect to this decomposition · H decomposes as 

H = J Hz dz 

such that,for each z , Hz has zero as a simple eigenvalue. 
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Proof: Let f E D(H) such that Hf = 0 • Then 

( f 'Hf ) = ( f ' f ) 1 = s ~f. ~ f dll = 0 • 

By the definition of (f,f)1 this implies that the derivative of f 

in any Q-direction is zero, hence f is Q-invariant. On the other 

hand if f is 

f E w1 = D(Ht) 

Hf = 0. 

Q-invariant, then obviously (f,f) 1 = 0 so that 

and Htf = 0 , which implies that f E D(H) and 

The direct decomposition of L2(d~) . follows from the fact that 

~z .L ~z for z1 ~ z2 • That H decomposes and that Hz has a . 
1 2 

simple eigenvalue follows from the corresponding decomposition of 

w1
• 0 

We shall say that a ~ E ~(Q') is in ~(Q') if ~ E 

K® L2 (d!l) i.e. if the Dirichlet norm of ll, 

(2.26) 

is finite, where 13. = 13•e. and 
1. 1. 

00 
(e.}. 1 

1. 1.= 
is an orthonormal base 

in K of elements in Q. Similarly as in lemma 2.1 we have 

Lemma 2.4 

If ll E ~(Q') then Firo n w 1 is dense in 

the graph norm of v , i.e. in the Dirichlet norm 

(f ,f)1 + (f ,f) • 

w1 = D(v) 

Cllfll 1
)
2 = 

Proof: Let f E w1 and set fk(s) = f(s) if lf(s)l ~ k and 

equal to ::!:: k if f( s) is larger than k (smaller than - k) • 

Then fk ~ f in L2 (d~) and 

( k k f-f ,f-f )1 = s ~f-~f d~ 
lfC s) }>k 

in 
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which goes to zero since 'ilf • 'ilf E t 1 • So that W 1 n Ito is dense 

in w1 • Let now f E w1 n Ito and let R be a finite dimensional 

subspace of Q with its corresponding conditional expectation ER. 

Then by (2.20) 

So from the triangle inequality in K ® L2 (d~) we have 

and thus, since ER is a projection in L2 , 

so that ERf E w1 
• 

to zero in L2 (d~) 
Consider ~ow f - ERf, which obviously goes 

as R ... Q • On the other hand 

ll'il(f-~f)ll ~ ll'ilf-ER'ilfll + IIER[(~-ER13)fJII 

~ ll'ilf-~'ilfll + llfllaJI13-ER~II. 

Since ~ ... 1 in L2(d~) we have that 1 ® ~ ... 1 in K ® L2 (d~) , 

hence the right hand side of the previous inequality goes to zero. 

This proves the lemma. 0 

Let now ~ E ~(Q') and let us also assume that, for an orthonor­

mal basis {en} in K of elements in Q , 

00 2 
V = - r: n( e ) 0 n n=1 

(2.28) 

converges in L2 (di.J.) , where 0( s) - 1 • In that case the Laplacian 

2 00 2 n = r: n(e.) (2.29) 
i=1 J. 

is defined on FC2 , it is obviously non negative and we shall 

denote by n2 also its Friedrichs extension. Although (2.29) looks 
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basis dependent, we may see in the following way that it is not. 

Let R be a finite dimensional subspace of Q and 

2 n 2 
nR = E n(r.) , 

. 1 J_ 
J.= 

(2.30) 

where r 1 , .... ,rn is an orthonormal base in R. We denote also by 
2 nR its Friedrichs extension. It is easy to see that (2.30) is basis 

independent. Moreover R ... n~ is monotone from the directed set 

of finite dimensional subspaces into the directed set of non negative 

operators. n2 is then simply the limit,by theorem 3.13 of Ch. VIII 
2 of ref. [51] , of nR as R ... Q. This shows that the Friedrichs 

extension of (2.29) is basis independent. 

We have obviously that on FC2 (Q') 

2 
H = n + V, (2. 31) 

where H is the Dirichlet operator. We can also give the L2- func­

tion V directly in terms of ~ if we assume ll~lln < ro. Since 

we see that 

Now, if 

in(q)O = i~·q 

2 
00 

1 - n 0 = E ( f'V . ~ . + r.l3 . • ~ . ) • i=1 J_ J_ ~ J_ J_ 

~ ~? 
. 1 J_ 
J.= 

converges in 

that (2.28) converges, we get that 

V = fdi v~ + ~13 • ~ , 

where 

and divl3 = 
ro 
E 'V.j3. 

. 1 J_ J_ 
J.= 

(2.32) 

so, by the assumption 

(2.33) 

(2.34) 

and 13· = 13•e. J_ J_ 
and 'V. = e.•'V' J_ J_ 

(e.} 
J_ 

being an orthonormal base in 

K of elements in Q. 
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Remark: The Laplacian - n2 on L2 (d~) as introduced here has no 

relation to the Laplacian studied by Gross in [ G ] or the Laplacian 

studied by Levy in [27]. 

It is not immediately obvious that the class of qudsi invariant 

measures so that (2.28) converges in L2 (d~) is non empty. So we 

shall therefore give a simple example. 

Example: Let A be a positive invertible trace class operator on 

a real separable Hilbert space K. Consider now the Gaussian mea­

sure d~A with covariance A - 1 , it is 

Let Q be the Hilbert space Q = D(A-1 ) with its natural norm. 

Then we have that Q' is the completion of K in the norm \I Axil • 

It is well known that, since A is of trace class, d~A is a mea~ 

sure on Q' , which is quasi invariant under translations by all 

q E Q, in fact by all q E Q' such that (q,Aq) < co. In this 

case 

~q = - Aq 

so that ~A E ffn(Q') namely 

and 

So that with 

we have that 

II~AIIn = JIIAsll 2d~A C s) = tr A 

II VII~ = EA ( ( SA2s)2 - 2trA( sA2
s) + (trA)2J 

= trA2 + (tr A) 2 - 2(trA)2 + (trA) 2 , 

(2.35) 

(2.36) 
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i.e. 

(2.38) 

which is finite since A is of trace class. We see in fact that 

we may do with the weaker condition that A is a Hilbert-Smith 

operator , because (2o 38) still holds and also in this case diJ.A 

is a measure on Q' o 
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3. The diffusion process generated by the Dirichlet operator. 

We have from the previous section that the Dirichlet operator 

H = v*v is a self adjoint operator in L2(du) which is the limit 

in the strong resolvent sense of the operators 

( 3.1) 

where vR is the gradient in the direction of the finite dimen­

sional subspace R , i.e. 9R = (PR® I)v , where PR is the 

orthogonal projection in K with range R • The limit is to be 

taken over the filter of all finite dimensional subspaces. From 
-tHR -tH the strong resolvent convergence we then have that e ~ e 

strongly. 

We say that a contraction semigroup Tt in L2 (d~) is a 

Markov semigroup if for any f E L2 (d~) with f ~ 0 we have 

that Ttf ~ 0 • From the strong convergence above we get that 

-tHR -tH 
if e is Markov, then so is e We shall now see that 

is Markov if 

We have seen in the previous section that since R is finite 

dimensional PR extends by continuity to a continuous projec-

tion defined on all of Q' and with range R • We shall denote 

this extension still by PR • The decomposition of the identity 

on Q' given by 

(3.2) 

gives a direct decomposition of Q' of the form 

Q I = R (f) R.L , (3.3) 

where R~ is the annihilator of R in Q' • Since PR is 

continuous on Q' , so is I- PR , hence for x E R and 71 E RJ. 

we have that (x,y) ~ XEBY is one to one and bicontinuous. Hence 



Q' and Rx R~ are equivalent as measure spaces. Therefore we 

may consider 1-L as a measure on the product space R x R"'- • Let 

now ~Cxl~) be the conditional probability measure on R condi­

tioned with respect to RL • Thus for any measurable set A c R 

we have that IJ.(AI~) is a positive measurable function on R~ 

such that, for any measurable set B in RL , 

where \) is 

and B c Rl. • 

elements in 

fixed B is 

(3.4) we get 

s~(A!~)dv(~) = u(AxB) , 
B 

(3.4) 

the measure induced on R.L. by tJ. • Let now AcR 

The quasi in variance of l..l under translations by 

Q gives us that u(A x B) as a function of· A for 

a quasi invariant measure on R ' and therefore by 

that :·J.(A I Tl) is a quasi invariant measure on R for 

v-almost all ~ E R~ • Thus we have 

u(Aj~) = Jp(xj~)dx 
A 

(3.5) 

with ~(xj~) and p(xl~) different from zero almost everywhere 

in the sense of Lebesgue. From (3.4) we now easely get 

" L2 (du) = J L2 (du(·l~)dv(~) (3.6) 
RJ.. 

where the integral is taken in the sense of a direct integral of 

Hilbert spaces. We see that the operator HR of (3.1) is re­

ducible with respect to the direct integral decomposition (3.6) 

and in fact with respect to that decomposition we have 

· where 

HR = s H dv ( ~) > 
J. ~ 

R 

is the Dirichlet operator in L 2 (R;du(·l~) • 

(3.7) 



Hence 
-tHR s e-tHTJ 

e = dv ( TJ) -
R.J-

(3.8) 

-tH 
Therefore if we can prove that e TJ is a Markov semigroup, 

then 
-tHR 

e is a Markov semigroup. Hence we have reduced the 

-tH d problem of whether e is Markov or not to a correspon ing 

finite dimensional problem. 

Let now [X,dm} be a a-finite measure space. Let e be a 

closed non negative symmetric form on the real L2-space L2 (X,dm) 

with domain of definition D(e) which is dense in L2(X,dm) • 

We shall say that every unit contraction operates on e if 

for any u E D(e) the function v = (Ov u) A 1 is again in D(e) 

and e(v,v) ~ e(u,u) • (3.9) 

The following theorem is proved in section 3 of ref. [29] • 

Theorem 3.1 [Fukushima] 

Let X be a locally compact separable Hausdorff space with 

a Radon measure dm • Let e be a closed non negative symmetric 

for~ on real L2 (X,dm) with a dense domain of definition ·'D(e) • 

If every unit contraction operates on e , then the semigroup 

e 
-tH 

€ generated by the self adjoint operator H 
€ 

associated 

with the closed form e is a Markov semigroup. Moreover·if 

e 
..-tH 

e: 

on e: • 

is a Markov semigroup, then every unit contraction opera.tes 

: .. 0 

Since HTJ in (3.7) is the Dirichlet operator in R and R 

is finite dimensional and HTJ is the operator associated with 

the Dirichlet form in L2(R,p(x1TJ)dx) we have only to check that 

every unit contraction operates on the corresponding Dirichlet 



form. However with v = ( 0 v u) 1\ 1 we have that 

(v,v) 1 = J j~Vul 2p(x!T1)dx .s Jlvuj
2

p(xlf1)dx = (u,u) 1 • 
0<v<1 

(3.10) 

Hence we see that the condition of theorem 3.1 is satisfied so 

-tH 9) 
that e 71 is Markov. Thus we have proved the following theorem. 

Theorem 3.2 

Let u E JD1 (Q 1 ) , then the corresponding Dirichlet operator H 

generates a contraction semigroup e-tH which is Markov. [] 

Since u is a regular measure on Q' and -tH e is ·a Markov 

semigroup, it gives rise to a Markov process ~(t) on Q' which 

is homogeneous in t such that •.J. is an invariant measure for 

s(t) and for any f E L2 (d•J.) we have that 

(3.11) 

where E
0 

is the conditional expectation with respect to the 

subalgebra generated by the linear functions (q,s(O)) for q E Q. 

Let now (X,dw) be the underlying probability space for the 

process s(t) induced by the Markov semigroup by the Kolmogorov 

construction. Then we have the natural inclusion L2(du c L2 (X,dw) 

as the subspace of L2-functions measurable with respect to the 

subalgebra generated by q·~(O) . Moreover the time translation 

s(s) ~ s(s+t) induces in a natural way a strongly continuous 

unitary group Tt in L2 (X,dw) , and with this notation (3.11) 

takes the form 

(3.12) 

where E
0 

is the projection onto the s(O) measurable functions, 

i.e. onto L2 (d1J,) • Let now f E L2 (du), then of course 

\ 



f(~(t)) = Ttf(s(O))T_t so that f(s(t)) E L2 (X,dw) and depends 

strongly continuously on t • 

Since ~ E §J 1 (Q•) we have that q•S E L2(du) so that 

q·S(s(t)) E L2(X,dw) , and this depends strongly continuously 

on t • Hence it is strongly integrable and 

I CJ.·~ (~(r))dr E L2 (X,dw) is actually strongly differentiable with 

respect to t • Consider now the real valued process 

t 

q·w(t) = q·s(t) - Jq.a(s(r))dr • (3.13) 
0 

We have obviously that q•w(t) is well defined for all q E Q 

and as a function on the probability space (X,dw) it is linear 

in q • In short w(t) is a weak process on Q' [30]-(3~We 

shall se that it. is actually the restriction to Q of the standard 

weak Wienerprocess on K • Consider for this 
t 

iaq•W(t) ia.q·s(t) -ia.J
0
q·a(;(r))dr 

e = e •e • (3.14) 

From (3.12) we get that if f E L2 (du) is in the domain of 

definition of the Dirichlet operator H then E
0
f(;(t)) is 

strongly differentiable in L2 (X,dw) with respect to t and 

for all t > 0 

By homogeneity we therefore get that 

(3.15) 

for all s .:z 0 and t 2 s • For t = s the derivative above 

is the one sided derivative. Since eia.q•s E D(H) we have by 

(3.14) that E eia.q.w(t) is strongly differentiable with respect. s 



to t for t > s 

we have for t > s 

(3.16) 

Hence for any function f E S(R) we get that Esf(q•w(t)) is 

strongly L2(X,dw)-differentiable and 

(3.17) 

where q2 = (q,q) • By lemma 3.1 below we then have that q•w(t) 

is the Wiener process with diffusion 2q2 on R • Hence we have 

proven that 

process on 

Theorem 3.3 

w(t) given by (3.13) is the standard weak Wiener 

K • We have thus proven the following theorem. 10
) 

Let ~(t) be the Markov process given by the Markov semigroup 

of theorem 3.2. Then ~(t) satisfies the following stochastic 

differential equation in the sense of weak processes on Q' 

ds(t) = ~(~(t))dt + dw(t) , 

where w(t) is the standard weak Wiener process on K .(]In the 

proof above we rna ·e use of the fo~lowing lemma. 

Lemma 3.1 

Let n(t), t z 0 be a real valued stochastic process, i.e. 

a real valued measurable function n(t,u.J) from ( [O, oo) x X,d>.. x dw) 

into R where (X,dm) is a probability space and A. is the 

Lebesgue measure. For any measurable function f on R we 

define the forward derivative 

( D f)( 11 ( t) ) = lim ~ Et ( f ( n ( t+ h) - f ( n ( t) ) ] 
+ h~o 

where Et is the conditional expectation with respect to the 



subalgebra generated by ~(T) for 0 ~ T ~ t , whenever this 
,', 

limit exists in the strong L2 (X,dw) sense. D+f(~(t)) is thus 

a function in EtL2 (X,dw) whenever it exists. 

If for any f E S(R) , the Schwartz test function space, we 

have that f(~(t)) is strongly L2 (X,dw) differentiable and 

then ~(t) is a Wiener process on R with diffusion a , i.e. 

~(t) is a Markov process and if v is the distribution of ~(0), 

then the distribution of ~(t) is 

1 2 
1 - r-Cx-y) 

(2ncrt)-"2 J e crt dv (y) • 

Proof. Since obviously Es·Es+t = Es for s and t positive, 

we have by the assumptions of the lemma that Esf(~(t+s))' is 

strongly L2 (X,dm) differentiable in t for t > 0 , since Es 

is a strongly L2 (X,dw) continuous projection, and 

(3.18) 

There-fore since t:d, 
2 

b. f' .•• are again in S(R) we get from 

(3 .18) that, for all t .2: 0, 

(3.19) 

where we must remember that for t = 0 the derivatives are the 
A 

one sided derivatives. Hence for f E S(R) with f of bounded 

support we easily get by Sobolev inequalities that there is a 

constant c such that 

(3.20) 



;.s 

From this it follows that Esf(~(t+s)) 

analytic in t so that for all t > 0 

is strongly 

we have 

(3.21) 

L (X, dw) 
(X) 

(3.22) 

Since t 15. is the infinitesimal generator of the semigroup 

with kernel 
1 2 

1t15. 1 - '2-t(x-y) 
e2 (x,y) = (2nt)~ e (3.23) 

we have that 
1 2 

00 tn 1 n n 
1": -, (2cr) 15. f(x) n. n=o 

1 - 2t'cr(x-y) 
= (2nat)-:a J e tcr f(y)dy, (3.24) 

where the sum is strongly L convergent. From (3.22) and cc 

the strong L convergence of (3.24) we get 
00 

(3.25) 

where . 1 2 
1 - -(x-y) 

(Ttf)(x) = (2nat)~ J e 2tcr f(y)dy • (3.26) 

In particular 

(3.27) 

Since Tt is a semigroup (3.27) proves that ~(t) is a Markov 

process and from (3.26) we get that the conditional distribution 

of ~(t) given the condition ~(0) = 0 is 
1 2 

1 - 2tcr(x-y) 
(2ncrt)~ e dx • (3.28) 

This then proves the lemma. 0 
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In what follows we shall also need the following lemma of 

Frobenius type. 1.1) 

Lemma 3.2 

Let A be a bounded operator on an L2-space, such that 

IIAII ~ 1 and A is ~ositivity preserving, i.e. f > 0 => Af > 0 • 

If 1 is an eigenvalue for A , then 1 is a simple eigenvector 

if the only multiplication. operators that commute with A are the 

constants. Moreover if 1 is a simple eigenvalue, then the corre-

spending eigenfunction may be taken non negative, and if the only 

multiplication operators that commutes with A are the constants, 

then the corresponding eigenfunction is positive almost everywhere. 

Proof: Let us assume that 1 is a eigenvalue of A with 

a corresponding eigenfunction ~ • Since A is positivity 

preserving, we have, if 11~11 = 1 , that 

1 = ( ~ , Acp ) ~ ( I cp I ,A I cp I ) so that I cp I is an 

eigenfunction to the eigenvalue 1 , since IIAII .s 1 Hence 

if 1 is simple, we may take lcpl as the corresponding eigen­

function. On the other hand if 1 is not simple, we have at 

least another one , $ , which is orthogonal to I<+> I • Since A is 

positivity preserving, the real and imaginary parts of $ will 

also be eigenfunctions and both will be orthogonal to I cp I ' 
so 

we may for this reason take $ to be real. If w = ±I w I ' 
then 

I<+> I and I wl are orthogonal, and if $ and I w I are not pro-

portional, then lwl ± $ are two positive orthogonal eigenfunctions. 

Hence if 1 is not simple, we can always find a non negative 

eigenfunction v corresponding to the eigenvalue 1 such that 

the characteristic function X of its support is not a constant. 

As a multiplication operator x is a projection of L2 (X,dw) 
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onto L2 (XX,dw) • Obviously the functions f E L2 (X,dw) such 

that lfl ~ c·v for some constant c are dense in the range 

of X • Since Av = v and A is positivity preserving we have, 

for any -cv ~ f < cv , that -cv ~ Af ~ cv , so that A takes 

a dense subspace of the range of X into itself. By continuity 

A then takes the range of X into it self, i.e. A commutes· 

with X • Suppose now that the only multiplication operators 

that commute with A are the constants. Then 1 is a simple 

eigenvalue and it follows from above that the characteristic 

function to its support commutes with A • If this characteristic 

function is to be constant, then the eigenfunction must be posi-

tive almost everywhere. 0 

Let now u. E .fJ 1 ( Q' ) and let H be the corresponding 

Di-richlet operator in L2 (Q' ,d,.J.) • By L (V) we shall under-cc 
stand the subalgebra of L (Q' , dl,.l) of multiplication operators cc .. ,,.:_ 

-tH which commute with e for all t > 0 Since L (V) is a 
00 

commutative C*-algebra, we have that it is equal to all the 

continuous functions on some compact space which we shall denote V. 

Let dv be the measure induced on V by the integral induced 

on L (V) 
0:: 

by It is then easy to see that L (V) 
00 

is also 

isomorphic with Loc(V,dv) • The spectral decomposition of 

L2(du) with respect to the commutative algebra of operators 

L
00

(V) is then given by 

L2 (Q',du) = JL2 (d~(·lv))dv, 
v 

(3.29) 

where d•..l( ·I v) is the conditional probability measures condi tionerl. 

with respect to the cr-subalgebra generated by the functions in 

L ( ) 1 t ( ) -tH V • Since all the e emen s .in L V commute with e 
cx;, (X) 
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we have that H is reduced by the direct decomposition (3.29) and 

dv • (3.30) 

Thus Hv is a self adjoint operator for almost all v • By the 

corresponding reduction of the Dirichlet form we get that 

(f,Hvf)v = Jvf•vf du(~lv) • 
Q' 

Hence we get that the Dirichlet form in L2(du(·lv) 

(3.31) 

is closed, 

and the corresponding Dirichlet operator is Hv • We should here 

bear in mind that d~(g!v) is not necessarily quasi invariant 

under translations by elements in q , but nevertheless the corre­

sponding Dirichlet form (3.31) is closed. 

By the decomposition (3.29) we have that the only multipli-

t . t h' h t 'th 11 e-tHv 1'n L
2

(d\J.(•Iv)) ca 1on opera ors w J.C commu e WJ. a 

are the constants. Hence,by lemma 3.2, 0 is a simple eigenvalue 

of Hv . We have thus proved the following theorem. 

Theorem 3.4 

Let u E ~P1 (Q') and let 

L2 (d\J.) = JL2 (du(·lv))dv 
v 

be the spectral decomposition with respect to the subalgebra 

L (v) e-tH of multiplication operators which commutes with 
cc 

for all t > 0, then u(·lv) is the conditional probability. 

measure conditioned with respect to the cr-subalgebra generated 

by L (V) 
00 

and the Dirichlet forms in L 2 ( d\-1 ( • I v ) ) are closed 

for almost all v • If 

H = JHv dv 
v 
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is the corresponding direct decomposition of H , then Hv are 

the self adjoint operators in L2 (d~(·lv)) given by the Dirichlet 

forms in L2 (·1v)). Zero is a simple eigenvalue for Hv and the 

corresponding eigenfunction is positive almost everywhere, for 

almost all v • Moreover the zero eigenspace for H is the closure 

Proof: That the zero eigenvalue for Hv is positive almost 

everywhere follows from the fact that the only multiplication 
-tHV 

operators that commute with e for all t > 0 are the con-

stants,in a similar way as in lemma 3.2. Now obviously L (V) 
Cf2 

is in the zero eigenspace for H since it is invariant under 

e -tH e-tH f __ f • Suppose now for all 

real~ Then of course we have also that 

t , and let us assume f 

e-tH(f-X) = f-A. and by 

the proof of lemma 3.2 If-;>.. I ±(f-A.) is also invariant. In the 

same way as in lemma 3.2 we then also get that the support of 

If-XI ± (f- X) has a characteristic function which is invariant. 

Hence the characteristic function of any set of form x
1 
~ f < x

2 

is invariant under -tH e But then f is obviously in the 

L2-closure of Lo£V) • This proves the theorem. [] 

The Markov semigroup e-tH is said to be ergodic if the only 

multiplication operators that commute with e-tH are the constant. 

We see from above that this is equivalent with 1 being a simple 

eigenvalue which again is equivalent with the condition that if 

f > 0 and g ~ 0 , then (f,e-tH g) = 0 for all t implies 

that f = 0 or g = 0 • Take f and g to be characteristic 

functions for measurable sets A and B . Then for s ~ t 

(3.32) 



Now we have that if (3.32) is zero for all t , then either A 

or B has measure zero which is to say that the stochastic 

process s(t) is ergodic. We also get that if s(t) is ergodic, 

then e-tH is ergodic. 

Since in the decomposition 

-tH I -tH e = e v dv (3.33) 
v 

-tHV 
the semigroup e is ergodic, (3.33) gives the ergodic de-

-tH composition of the Markov semigroup e • But by what is said 

above we then have that 

~(A) = J~(A!v)dv 
v 

(3.34) 

is the ergodic decomposition of the measure ~ with respect to 

the action of ~he Markov process s(t) • 

Example 3.1 

Let K be one dimensional, i.e. Q = K = Q' = R (the real 
1 2 2 

line) and let d~ = (rr)~ P 2 (x) e-x dx where P2 (x) is the 

properly normalized second Hermite polynomial, i.e. 

2 We then have that d~ = ~ dx , where and u E fP . 1 
2 third lowest eigenfunction of the operator - t.+ x • 

(-t~+x2)cp = 5cp so that by (2.6) 

H =- t:J. + x
2 

- 5 

cp is the 

In fact 

when applied to functions of the form f:cp with smooth f • 

+ 1 1:2-1 Since cp has simple zeros at x = 2~ we actually find also · 

that H = - t:.
0 

+ x2 . - 5 in L2 ( dx) where t.0 is the Laplacian 

+ 1 ,,__,2 with Dirichlet boundary conditions on x = _ 2 .J • Hence 
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is the ergodic decomposition of du given by (3.33) in this case. 

The corresponding decomposition of H and -tH e is given by 

(3.36) 

where in each component 2 
H = - 110 + X - 5 , 110 being the Laplacian 

with Dirichlet boundary conditions for each component. 

We shall call the ergodic decomposition (3.34) of u with 

respect to the action of the Markov process s(t) "the T-ergodic 

decomposition". Thus we have that the T-ergodic decomposition of u 
· . of 
ie just the decomposition7u into its conditional probability mea-

sures u(•/v) conditioned with :respect to the cr-algegra generated 

by the functions which are eigenfunctions with eigenvalue zero for H. 

Since we know already that the Q-invariant functions are 

eigenfunctions with eigenvalue zero for H , we see that the 

T-ergodic decomposition is a finer decomposition than the ,Q-ergodiD 

decomposition given in (2.24), and the example 3.1 indicates that 

normally the T-ergodic decomposition is strictly finer than the 

Q-ergodic decomposition. 

Let now u be a Q-quasi invariant probability measure on Q'. 

Let Pq be the orthogonal projection onto q in K , and let 

p(xl~) for x E PqK and ~ E (1-Pq)Q' be the conditional proba­

bility density in (3.5). We may identify PqK with the real 

line R • So that for A c PqK and B c (1-Pq)Q' we have 

u (A X B) = J ( J p (xI ~) dx) dv ( ~) .. (3.37) 
B A 

We shall say that ~ is strictly positive if p(xl~) are bounded 



away· from zero on compacts in R for v~lmost all ~ • 

Theorem 3.5 

If \.l. is strictly positive and u E ,~P 1 ( Q') then the T-er­

godic decomposition and the Q-ergodic decompositions are identi-

cal .. 

Proof 

Let A c Q' be a subset that is measurable with respect to 

the cr-subalgebra generated by the eigenfunctions corresponding 

to the eigenvalue zero of H • Then as we have seen the charac­

teristic function XA is an eigenfunction of eigenvalue zero of H. 

Since H = v*v we therefore have that xA E D(v) and vxA = 0 • 

In particular q•VXA = 0 , so that 

(3.38) 

Let now 2 
q = 1 with (q,n) = o • Since 

J I q • v f I 2 
du = J ( J I fx f ( xq + n) I 2 p (xI T]) dx) dv ( 'rl) , 

RJ. R 
(3.39) 

we see by (3~38) and the fact that p(xjn) is bounded away from 

zero on compacts that xA(xq+ n) is independent of x for 

v-almost all TJ • Since q was arbitrary we have that XA and 

therefore A is invariant under translations by elements in Q 

Hence we have proved that the a-algebra generated by the zero 

eigenfunctions is contained in the a-algebra of Q-invariant 

subsets. The other direction was proved in theorem 2.4. This 

proves the theorem. 0 

We shall say that a quasi invariant probability measure ~ 

is analytic if 1 is an analytic vector for rr( q) for any q E Q, 

and with this notation we have the following criteria. ll) 



Theorem 3.6 

Let ~ be analytic, and such that ~(q)n·1 is in the domain 

o qa~ • Then we have that u is strictly positive. 

Proof: That 1 is an analytic vector for n(q) is by definition 

to say that there are some r > 0 depending on q , such that 

-n r n! • 

Let now q E Q with 2 
q = 1 and for 

given by ( 3 .. 37). '·"Then we have the direct decomposition 

L2 (Q',du) = J L2 (p(x/~)dx)dv(~) , 
R.l. 

(3.40) 

be 

(3.41) 

where R1 is the subspace of Q' orthogonal to q • This de­

composition reduces V(tq) and therefore also n(q) , so that 

(3.42) 

We shall see that 1 is an analytic function also for n~(q) , 

inasmuch as 

(f,V(tq)1) = J [Jf(xq+~)cp(x/~)·cp(x+t/~)dx]dv(Y)) 
R.L 

where cp(x/ 11 ) = p(x/~)t. 

"(3.43) 

(3.42) is analytic in t for It/ < r , so let r be any 

smooth closed curve in the disk /z/ < r • Then the integral of 

(3.43) with respect to t around r is zero. So by the Fubini 

theorem 

J cJf(xq+ ~)cp(x/~)(Jcp(x+ t/~)dt)dx]dv(~) = 0 • 
Ri R r 

(3.44) 

Since f is arbitrary in L2 (d~) and cp(x/~) > 0 for almost 



3.17 

all :x: and v .... almost all T) we have that 

Jcp(x+ zl T])dz = 0 
r 

(3.45) 

for almost all x and v-almost all TJ • Hence cp(x + z I TJ) is 

analytic for I z I < r for all x and v-aJmost all TJ, where r 

is given in (3.40). So that cp(ziTJ) is analytic in a strip of 

with 2r around the real z axis. 

Further more we have that n(q)n·1 is in the domain of q•V • 

Using now the direct decomposition (3.42) we have 

s II q. v TJ rtll ( q ) n. 1 112 9-v ( Tl ) = n q. v • TT ( q) n 1 112 

for 
so that,/v-almost all TJ llq•VTJTTTJ(q)n.111 < oo. 

However 

= J cp ( n+ 1 ) (xI Tl) _ cp ' ( x 11)) . co ( n) ( x t n) 2 2 
I cp(xiTll cp(x Tl) cp(xJTlJ I cp (xiTJ)dx ~ 

R 

(3.46) 

( 3 .47) 

(n+1) 
Now we have that cp E L2 (~ 2 ( •ITJ)) for v-almost all n 

cp 

since 

( 3 .48) 

which is finite by assumption. Since by (3.47) and (3.46) the 

difference is in L2 (cp 2 (x!TJ)dx) for v-almost all Tl we have 

that 

for v-almost all TJ • Now since cp(x/Tl) is analytic in x we 

have that the zeros of cp are isolated and of finite order. 
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Let ~(a/D) = 0 , then there is an n such that rp(n)(a/D) -1 0 • 

By (3.49) ce~ f ~ / ~ ~ • cp ( n) ( xI n) E L 2 ( dx) and since If> (n) (x/ n) I 0 

in a neighborhood of a , we get that ce~~~~~~ is in L2(dx) 

near a • Let n be the lowest value such that ~(n)(aln) -1 0 , 

then rp(x/D) ~ c(x-a)n near a • From this we get that 

near x = a • Hence we have that cp(x/D) > 0 for all x , and 

this proof goes for v-almost all D • Since rp(xjn) is ana-

lytic in x , it is therefore bounded away from zero on compaots. 

This proves the theorem. 

Theorem 3 .. 7 

Let u E !]J 1 (Q') and assume that zero is separated from the 

rest of the spectrum of H by a positive distance m > 0 , where 

H is the corresponding Dirichlet operator. 

Let ad n(q)(H) = [n('q),H] and let us assume that for any 

q E Q there is a constant cq > a depending only on q such that 

1 1 

II (H+1) -sr adn n (q) (H) (H+1) """21/ _::: c~ 

for all n = 1,2,3, ••• 

Hv = 0 we have that 

Then for any vector v such that 

In particular we get that v is an analytic vector for n(q) , 

and u is analytic and strictly positive. 

Proof: For any n we have the following algebraic relation 

Hn(q)n = n(q)n H- ~ (~)adj n(q)(H)n(q)n-j • 
j=1 J 



So if Hv = 0 we get by the assumptions of the theorem that 

(3.51) 

Let m > 0 be the separation of zero from the regt of the spec­

trum of H, then, since Hn(q)nv is in the subspace orthogonal 

(H+1 )H-1 m+1 to the zero eigenspace and is normbounded by -m-
on that subspace, we have 

II(H+ 1 ) ~ rr(q} nvll _:> m~ \~1 c ~ Cj) II (H+ 1)t nC q)n-j vII • (3.52) 

Let us now assume that 

(3.53) 

which is obviously true for k = 0 • Then by (3.52) we have that 

(3.54) 

Hence the inequality of the theorem is proved by induction. 

Take v = 1 
' 

then the inequality gives us that u is analytic 

n(q)n1 
1 

and is in the domain of H2 hence also in the domain 

of q•V • This proves the theorem. 0 

Let dn be the normal measure associated with the real 

separable Hilbert space K , i.e. the integral with respect to dn 

is defined for all functions on K which are continuous bounded 

and for which f(x) = f(Px) for some finite dimensional projec-

tion P , and 

Jei(x,y) dn(x) = e-i(y,y) • 

It is well known that the integral above is not given by a 



3.20 

countable additive measure on K , but however there exist suit-

able compactifications of K such that the finitely based conti-

nuous functions can be continued onto the compactification and 

the integral (3.5 ) is given by a countably additive measure dn 

on this compactification. However there is no natural choice of 

such a compactification, and a class of compactifications were 

given by Leonard Gross in the following way. For reference see 

[ G] ) [ 7].} [S" 4 J I [~ 5 J . 

A seminorm p(x) on K is said to be measurable if for any 

e > 0 there is a finite dimensional orthogonal projection P
0 

such that,for any finite dimensional projection P orthogonal 

to P 
0

, we hav~ that 

J dn(x) < e • 
p(Px)>e: 

( 3. 55) 

It is a consequence of (3.55) that p(x) is a continuous seminorm 

on K • Moreover Gross proves that if B' is the completition 

of K with respect to a measurable norm, then the integral (3.54) 

is given by a regular measure n on B' • In fact we have the 

following theorem due to Gross. 

Theorem 3.8 

Let B be the completition of K with respect to a measur­

able norm. Then the integral (3.54) is given by a regular measure 

on B 1 • Moreover if I xl is any measurable norm on K, then I x/ 

is a continuous norm on K and if w(t) is the standard weak 

Wiener process on K and if B' is the completition of K with 

respect to lxf , then w(t) may be realized as a stochastic 

process on B' with continuous paths. 

For the proof of this theorem and more details about the 

Wiener process associated with a real separable Hilbert space see 
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ref. [ G]) [7 J I [S" 4] )[~~. We also remark that in fact it follows 

from the proof of theorem 3.8 that the standard weak Wiener pro-

cess on K is continuous with respect to any measurable seminorm. 

Let us now consider a Banach rigging 

B c K c B' (3.56) 

of the real separable Hilbert space K where B is a real separ­

able Banach space dense in its dual B' such that B' is the 

completition of K with respect to a measurable norm on K • 

We shall refer to the rigging (3.56) shortly as a· measurable 

Banach rigging of K • Let now u. E ,(_}J 1 (Q') where Q c K c Q' 

is the original rigging of K , and let q.~(g) be the correspond-

ing osmotic velocity, i.e. 

( 3. 57) 

Let I I' be the norm in B' , then since B is· separable 
f 

1~(1;)/' = sup 
n 

(3.58) 

is a measurable function,where (qn) is a dense countable set 

in Q that is dense in B , and I is the norm in B • 

We then have the following theorem: 

Theorem 3.9 

Let B c K c B' be a measurable rigging of K such that 

Q c B c K c B' c Q' • Let 1.L E jJ 1 ( Q' ) and 13 (g) and g ( t) 

the corresponding osmotic velocity and Markov process and let 

us assume that 1~(1;)1' is bounded, where I I' is the norm 

in B' Then l;(t) is continuous in the B1 norm, i.e.,for any 

t and s , · s ( t) - g ( s) is in B' and I s ( t) - g ( s) / ' - 0 as t .... s 

for almost all paths. 
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Remark: We may conclude that s(t) is a continuous process with 

values in B' only in the case where B' has u-measure 1 • 

Proof: From theorem 3.3 we know that in a weak sense 

s(t) - s(s) 

t 
r = js(s(r))dr + w(t) - w(s) • 
s 

By theorem 3.8 we have that lw(t)- w(s)l' goes to zero as t- s, 

and the conclusion of the theorem then follows by the triangle 

inequality for the norm. This proves the theorem. [] 

Remark: A corresponding theorem for the finite dimensional case 

was given by Stroock and Varadhan in [3~]. 



~~lications to two-dimensional quantum fields 

theoretical models 

In Section 4 of Ref. [1] we considered the so called weak 

coupling P(~) 2 models of quantum field theory. We shall here 

continue that discussion, using results and methods from the pre­

vious sections of this paper. General references for these P(~) 2 
models are e.g. [38],[~9],[5G]. The models are given by a measure 

~* , the so called physical vacuum, on the space ~5P(R2 ) of tem­

pered distributions over R2 • Let ( s*, o
0 

v cp), where o
0 

is the 

o-distribution concentrated at t = 0 and ~ E jP(R) , be the time 

zero field. In the usual way we identity it with the distribution 

< s,cp) ' cp E SC'(R)' s E Y'(I{) and identify the restriction ~* to 

the a-algebra generated by the time zero fields ( S* 9 60 
X q:>) With 

a measure ~ on the Borel subsets of S?''(R) • In this way the 

closed subspace E
0

L2 (d•.;.*) of L2 (du*) spanned by the time zero 

fields is identified with L2 (d~). 
For the applications in this section the rigging Q c K c Q' of 

the preceding sections is to be taken with Q, K, Q' equal respec­

tively to the real subspaces of .)P(R), L2 (R), JO'(R), as in Section 

4 of Ref. [1]. Thus in this case we have a nuclear rigging. 

In Theorem 4.2 of Ref. [1] we proved that u E ~(g''(R)), i.e. 

the function 1 in L2 (du) is in the domain of the infinitesimal 

generator n(cp) of the one parameter unitary group of transla-

tions by tcp, t E R, cp E JI'(R) in L2 (d~) • n(~) is the so called 

time zero canonical field momentum. Moreover it follows from 

Theorem 4.2 of Ref. [1] that the physical Hamiltonian, i.e. the in-

finitesimal generator of time translations for the Wightman models 

considered, restricted to L2 (d~) coincides1~n the dense subset 
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FC
2 

with the Dirichlet operator H = 

Dirichlet form rQf • Qfd~ given by 
. ) 

associated with the 

according to Theorem 2.1 • 

This is so since H coincides on FC 2 with the diffusion operator 

given by !-1, in the sense of Theorem 2. 7 of Ref. [ 1]. 1~) 

For the Dirichlet operator H the results of Sections 2, 3 hold, 

in particular Theorems 2.1, 2.2, 2.4, 3.2, 3.3, 3.4. We shall now 

see that the measure ~ is strictly positive, so that in particular, 

by Theorem 3.5, the T-ergodic and the Q-ergodic decompositions 

-tH for the Markov semigroup e and Markov diffusion process gene-

rated by H are equivalent. The proof of the strict positivity 

of ~ is as in Theorem 3.7, so that we first derive the estimates 

used in that theorem. 

Let H~ be the Hamiltonian of the space cut-off weak coupling 

P(~) 2 mode~ i.e. 

Hn = H +VI) • 
..{... 0 A.· 

( 4. 1 ) 

H
0 

is the free Hamiltonian, shown in Theorem 4.0 of Ref. [1] to 

coincide with the Dirichlet operator associated with the Gaussian 

measure 1-1
0 

on the real 5P 1
(R) space, with Fourier transform 

1 J ( 2 2 ) _..1. I ,., ( ) 12 exp[- 4 p +m 2 cp p dp] , 

R . 

with ~(p) = (2rr)-i Je-ipx cp(x)dx • (4.2) 

~ is the space cut-off interaction i.e. the real function in 

L2 (du
0

) given by 

(4.3) 

where X,.e is the characteristic function of the interval [-...l,+..lJ 

and p(x) is the real polynomial 

2n 
p ( x ) = I: a xk ( 4 • 4 ) 

k=O k 
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and 
2n 

: P : ( h ) = I: ~ : sk : ( h ) (4.5) 
k=o 

for any hE L2 (R), :sk: being the k-th Wick power of s. 

In the weak coupling P(~) 2 models it is assumed a 2n > 0 and 

sufficiently small coefficients ak • It is well known that 

H
0 

+ ~ is essentially self-adjoint, bounded from below, with an 

isolated simple eigenvalue ~ such that H.£ .:::::, E_.e , see e.g. [SG]. 

It was shown in Lemma 4.1 of Ref. [1], using that the operation of 

taking derivatives with respect to the fields commutes with the 

Wick ordering, that 

(4.6) 

where p' is the derivative of the polynomial p • By the same 

methods we obtain further 

(4.7) 

with p(n) the n-th derivative of p and Ln(~) = 0 for n > 2, 
2 2 

L2 (~) = <~,(-6+m )~) , L 1 (~) = (s,(-6+m )~> . 

By the estimates of Ref. (~7] and a resolution of the identity 

we then have the estimate 

(4.8) 

where c1 is independent of ~ This estimate; for n = 1, was 

used in Theorem 4.1 of Ref. [1] to prove that the measure 

in :?1 (g'1 (R)), where d!-!£ = gldl-!
0 

, with g-e, such that 

~ = ~ 0
0 

, r:e. being the eigenvector to the eigenvalue E.,.e of 

is 

r~ We also recall, incidentally, that the corresponding osmotic 

velocity has uniformly bounded L2 (dl-!£) norms. 

The left hand side of (4.8) being independent of ~ for large~ 
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and ~ of bounded support, by a standard procedure, see [58], 

the estimate (4. 8) extends to the infinite volume limit .l .... oo , 

so that 

(4.9) 

where Hph is the physical Hamiltonian of the infinite volume 

weak coupling P(~) 2 model. Since moreover, by a well known re-

sul t of Glimm, Jaffe and Spencer [ ~8'], has a gap m* > 0 

at the bottom of its spectrum , we see from the proof of 

Theorem 3.7 that (4.9) implies 

(4.10) 

where o( s) = 1 and ll II is the norm in L2 (d!-1) • 

In particular we obtain that the physical vacuum is an analytic 

vector for n(~) for all ~ E sP(R) • In addition we remark that 

the estimates (4.9), (4.10) hold also with Hph replaced by the 

diffusion operator Hd associated to 1-1 in the sense of Theorem 

2.7 of Ref. [1]. 

~e recall that Hd 

operator on FC 2 .) 

is the Friedrtchsextension of the Dirichlet 

This is so since on FC 2 so that 
' 

(4.9) holds for· Hd on FC 2 , and thus by continuity to the whole 

form domain of Hd • Then from (4~10) written for Hd instead of 

Hph we obtain that n(~)nn is in the domain of ~·~ for all 

~ E SV(R) • From Theorem 3.6 we then have that the measure 1-1 

is strictly positive. 

We now remark that all the arguments leading to this result can be 

repeated in the case of the P(~) 2 models with Dirichlet boundary 
(C'Io]-[4~]) 

conditions ·\./whfch are such that the physical Hamiltonian has zero as 

an isolated but not necessarily simple eigenvalue. Examples of 
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such interactions are given by p(x) = ax4 + bx2 - IJ.X with a > 0 , 

1..1 I 0 (no restriction on the size of the coefficients) [ 4 2]. 

The basic reason why such models can be treated by the same method 

is that the estimate used for proving (4.8) is also available for 

such models [~9]. 

We have thus proven the following 

Theorem 4. 1 

For the weak coupling P(~) 2 models and for the P(~) 2 models 

with Dirichlet boundary conditions and such that zero is an isolated 

but not necessarily simple eigenvalue for the energ~ the physical 

vacuum (as a measure on sP'(R2)) restricted to the a-algebra gene-

rated by the time zero fields*is an analytic strictly positive 

sP(R)-quasi invariant measure in the sense of sections 2, 3, with 

respect to the nuclear rigging ffJ (R) . c L2 (R) c st'1(R) • , The 

Dirichlet operator ~*~ in L2 (dl.l) associated with the measure 1..1 

coincides on the dense domain FC 2 with the physical Hamiltonian. 

For this Dirichlet operator the results of Sections' 2, 3 hold, in 

particular Theorems 2.2, 2.4, 3.2, 3.3, 3.4. Especially, 1..1 is 
ol'"l .::1" (R J 

the invariant measure of a Markov diffusion process s(t)vs"olving 

the stochastic differential equation 

ds(t) = ~(s(t))dt+dw(t) , 

where s is the osmotic velocity to 1..1 and w is the standard 

Wiener process on L2 (R) • The jP(R)-ergodic and time-ergodic 

decompositions for the measure IJ. , the Dirichlet form, the Diri­

chlet operator and the Markov process are equivalent. 0 

We shall now derive the correspondent results for the case of 

the exponential interactions models of (44], (45]. In these models 



the space cut-off interaction is given by 

(4.11) 

with v ( x) = J e ax d \J ( a.) (4.12) 

and :v:(h) = J:ea.S:(h)dv(a.) for any hE L2 (R) nL1 (R) , where 

dv is an _arbitrary even finite measure with support in [-a.
0

,a.
0

] 

with a.
0 

< Fn . It was shown by one of us in [44] that Vj is 

positive, H...e = H
0 

+ "V_,t essentially self-adjoint on a common domain 

of H
0 

and Vi and that HJ, has an isolated eigenvalue EL > 0 

with eigenvector 0~ at the bottom of the spectrum. Similarly, 

as in the proof of Lemma 4.1 of Ref. [1] and of the formula (4.7) 

above we have, using the method of [45] for the convergence of 

series involved 

(4.13) 

where v(n) is the n-th derivative of the function v , so that 

:v(n): ( 'X.t-cpn) = Ja.n: e a.s: ( "X_e,cpn)dv( a.) (4.14) 

We have now, using that :ea.s:(h) ~ 0 for h > 0 in L2 (R) nL1 (R) 

( [ "!4] , [ 4 S] ) : 

± :v(n): (~cpn) < C~(Hl - E..l + 1) , (4.15) 

with c~ = a.~ U cplj~ . 

We remark that, for n = 1 , this estimate yields the correspondent 

of Theorem 4.1 of [1], i.e. that ~t E .5li1 (g'J(R)) , where is 

the measure corresponding to 0 and that the components of the 

corresponding osmotic velocity ~t have L2 (d~l) norms bounded 

uniformly in _f., • By the same reasons as for ( 4. 8), the bound 

( 4. 15) extends to infinite volume limit -l ..... :o , proven to exist 
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in [ 45] for a:ny a. < .r! , so that : 
0 vTI 

(4.16) 

where is the physical Hamiltonian, i.e. the infinitesimal 

generator of time translations, of the Wightman theory constructed 

in [45]. 

We. can now proceed in the same way as we did for the case of P(~) 2 
interactions, from (4.9) on. This is so since has a mass 

gap (actually larger than the free mass occurring in ~ 0 ), as pro­

ven in (45], and Theorem 4.2 of Ref. [1] holds for the case of the 

exponential interactions also, since it follows from Theorem 4.1 

of Ref. [1] and general theorems of [1],and we already verified that 

Theorem 4.1 of [1] carries over to ottr present case of exponential 

interactions. We have thus proven the following 

Theorem 4.2 

For the exponential interaction models of [44], [4~, the 

physical vacuum ~ restricted to the a-algebra generated by the 

time zero fields is an analytic strictly positive 5P(R)-quasi in-

variant measure, with respect to the nuclear rigging 

.f(R) c L2 (R) c ,$P1
(R) 

The restriction to FC 2 of the physical Hamiltonian of the Wightman 

theory given by these models croncides with the Dirichlet operator 

generated by ~ , in the sense of Theorem 2.1 above 7 and with the 

diffusion operator of Theorem 2.7 of Ref. [1]. Moreover,all results 

of Theorem 4.1 above hold also for these interactions. 

Remark 1 : All results of Theorem 4. 2 above and of Section 4 of Ref.. [1] 

hold also for the case where ~ is replaced by the corresponding 
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measure 

with 

velocities 

4 .. 8 

of the space cut-off exponP~tial interactions (4.11)f 

only restricted by ~0 < ~ • The corresponding osmotic 

norms ·uniformly bounded in J, • 

Remark 2: The results of Theorem 4.2 hold also for the exponential 

interactions with Dirichlet boundary conditions, also considered 

in Ref. [45"], [41]. 

Remark 3: Further results about the circle of problems discussed 

in this section are given in Ref. [60]. 



Footnotes 

1) The present paper together with the paper under Ref. [60.] below 
constitute the reference number 4 in Ref. [1]. 

2) Contexts where related Dirichlet forms appear are [1], [17], 
[22] - [26]. 

3) In fact the drift coefficient ~ is, even for K finite dimen­
dional, more singular (just L2 ) than the ones usually considered 
in the theory of stochastic differential equations. See e.g. 

[33]- [37]. 

4) See also e.g. [47]. 

5) See also e.g. [49]. 

6) The measures ~ in ~ ( Q' ) were called "measures with regular 
first order derivatives" in Ref. [1]. 

7) The restriction of this form to FC2 (Q') is what was called 
Dirichlet form in [1]. Note that in [1] we used the notation 
~ for Fen and (f ,f)1 was denoted by (f ,f)~ • 

8) The Friedrichs extension of the restriction of the Dirichlet 
operator V* 'V to the dense domain FC2 (Q') of L2 (d~) is 
what was called "the diffusion operator given by ~"in Ref. [1] 

(Th. 2.7). It is still an open question whether FC2(Q') is 
a core for the Dirichlet operator, in which case Dirichlet oper­
ator and diffusion operator would coincide on their whole domain. 

9) Thisisthecorrespondent for the Dirichlet operator of Th. 2.7 
in [1]. 

10) Note that about the osmotic velocity ~ we only used what fol­
lows from the assumption ~ E ~(Q') , namely q • 13(s(t)) E L2 • 
Thus, the remark in footnote 4) applies. Cases where 13 is 
linear, Lipschitz continuous or smooth were considered in [3] -

[13]. One reason for ourinterestinresults of above generality, 
with singular 13 , is that in the applications to interacting 
quantum fields such cases a.~tually arise, see section 4 below 
and in Ref. [ 1 ] • 



11) This is ·well known, but we give nevertheless a proof for intro­
ducing methods also used later on. For references to the theo­
rem, see e.g. § '10 of Ref. [47]. 

'12) These criteria find applications e.g. to quantum fields in the 
infinite volume limit, see Section 4. For smoother cases, ap­
plicable to space cut-off or polaron mocels, related results 
are in [52], resp. [53]. 

'13) In the sense that (f ,E
0 
~h E

0 
g) = (f ,H g) for all f, g in 

FC2 • 

'14) It is open w.a.ether FC2 is a core for E
0 

Hph E
0 

and H • If 
it would be so, these operators wo,Lld of course coincide Ni th 
the diffusion operator given by 1-l • 
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