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Abstract

Let A be a Jordan algebra over the reals which is
a Banach space with respect to a norm satisfying the require-

ments: (i) [lasb] < [lafl Ipll, (i1) [8®)| = Jall® ,
2

(1i1) ||a°f] < ]a®+b2| for a,b €A .

It is shown that A possesses a unique norm closed Jordan
ideal J such that A/J has a faithful representation as
a Jordan algebra of self-adjoint operators on a complex
Hilbert space, while every "irreducible" representation

of A not annihilating J is onto the exceptional Jordan

algebra M% °
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§ 1., Introduction

One of the main results in Banach algebra theory is the Gelfand-
Neumark theorem which asserts that an abstractly defined B*-algebra
has a faithful isometric representation as a concrete C*- algebra.
The proof, which is obtained by taking the direct sum of the GNS -
representations due to all states of the algebra, fails for Jordan
algebras because multiplication is non-associative., Indeed, the
analogous result must be false for Jordan algebras, because it ap-
pears to be impossible in any reasonalbe way to exclude the excep-
tional Jordan algebra M% - the hermitian 3 X3 matrices over the
Cayley numbers, cf. Lemma 9.4 below,

The classical representation theorem, which takes care of the
exceptional case M% , was proved by Jordan, von Neumann, and Wigner
in 1924 [15]. They classified the finite dimensional simple Jordan
algebras over the reals, which were formally real, i.e.

a2-+b2-+...-+02

= O dmplies a =b=.,..=¢c =0. Ixcept for M%
these algebfas were all represented as Jordan algebras of self-
adjoint operators acting on a complex Hilbert space.

The purpose of the present paper is to prove a Jordan Banach

algebra version of the theorem of Jordan, von Neumann, and Wigner.



 Our assumptions will be quite close to those of Segal [25], see also
[5]. We shall assume the Jordan algebra A has identity, always de-
noted by 1, and is a Banach space with respect to a norm | || hav-

ing the following three algebraic properties: if a,b € A then

i) llacoll < llafl ol
i1) 8% = Jal®
iii)  |a?) < [la®0?)

where ° denotes the Jordan product. An equivalent definition is
order-theoretic and states that (A,1) is a complete order-unit
space such that agf_O for all a €A, and -1<a<1 => a2_<_’|.
In analogy with the name B* -algebra we shall call a Jordan algebra
as above a JB-algebra. The analogues of concrete C*-algebras have
been called JC-algebras by Topping [30], and are by definition
norm closed Jordan algebras of self-adjoint operators on a complex
Hilbert space. The structure of JC-algebras is quite well under-
stood, and is close to that of C*-algebras, see [11, 27, 28, 29, 30,
31].

Our main result, Theorem 9.5, asserts that the study of JB-
algebras can be reduced to that of JC-algebras and the exceptional
one M%. More formally it states that there is a Jordan ideal J
in a JB-algebra A such that A/J has a faithful isometric repre-
sentation as a JC-algebra, and every "irreducible' Jordan represen-
tation of A not annihilating J is onto M?.

Our proof of this result follows well known paths, but is some-
what lengthy because we have to develop the necessary technigues on
the way. The proof, and thus the paper,is divided into eight parts
as follows.

In §2 we give the formal definition of a JB-algebra A and



prove the basic results. In §3 we construct the enveloping JB-
algebra A of A, which is the analogue of the second dual so suc-
cessfully used in C*-algebra theory. X turns out to be a monotone
complete JB-algebra with "sufficiently many" normal states. 1In the
following sections we lat M be a JB-algebra with the same proper-
ties as A, In §4 we study commutativity in M and the projec-
tion lattice, and in §5 the center of M. Of main interest is the
case of JB-factors, i.e. the case when the center is the scalars.
If p is a state of A, i.e. a positive linear functional such
that p(1) =1, then its central support c(p) can be defined in
L. TIf we cut down A Dby c(p) we obbain a map P, s A - Ae(p),
which is a Jordan homomorphism of A onto a dense JB-algebra.
mp plays part of the role of the GNS-representation in C*-algebras,
If p is pure, then the strong closure of mp(A) is a JB-factor.

In §6 we develop the necessary comparison theory for idempo-
tents in a JB-factor with the aim of proving the important halving
lemma, which states that except in the simplest cases the identity
can be split into two equivalent idempotents.

From the theory of JC-algebras we know that the so-called
spin factors, which are the JW-factors of type I,, see (28] or
[31], have to be treated separately. This we do in §7 . Then in

§ 8 the other possible kinds of JB-factors are studied, and we use
the halving lemma to conclude they are all Jordan matrix algebras.
Thus, except for the exceptional algebra M% and the spin factors,
we can construct an "honest" GNS-representation for each pure state.
As a consequence we ghow that if p dis a pure state, then the strong
closure of mp(A) is isomorphic to a JC-algebra, unless it is the

exceptional algebra.



In order to complete the proof of the main theorem, we begin
8§ 9 by showing that the quotient of a JB-algebra by a norm closed
Jordan ideal is itself a JB-algebra. Then the desired ideal is
found by letting it essentially consist of those elements in the
algebra which do not satisfy the so-called s-identities of Glennie
[12). In particular, it follows that A itself is (isometrically
isomorphic to) a JC-algebra if and only if all elements of A sa-
tisfy the s-identities.

The authors are indebted to professor Richard Shafer for in-

valuable help with the proof of the halving lemma.



-5 -

§ 2, Definition and basic properties of JB-algebras.

Definition., A JB-algebra is a Jordan algebra A over the

reals with identity element 1 equipped with a complete norm

gatisfying the following requirements for a,b € A :

(2.1) lasn] < llall|o]
(2.2) 18] = [ja))?
(2.3) 182 < [la®+p?)

We recall (cf.e.g.[3]) that an order-unit space is a partially

ordered normed vector space with a distinguished order unit 1
which is Archimedean in that na <1 for =n = 1,2,... implies

a <0 , and with norm given by

(2.4) lall = inf{rx> 0|-A1 < a <A1} .

Theorem 2,1, If A is a JB-algebra, then the set A2 of

all squares in A 1is a proper convex cone organizing A to a

(norm) complete order-unit space whose distinguished order unit

is the multiplicative identity element and whose norm is the

given one, and such that for ae€l :

(2.5) -1<a <1 implies O < 8’ <1.

Conversely, if A is a complete order-unit space equipped with

a8 Jordan product for which the distinguished order-unit acts as

identity element and such that the regquirement (2.5) is satisfied,

then A is a JB-algebra in the order-unit norm (2.4).

Proof. 1. Suppose first that A 1is a JB-algebra.
For given ae¢ A +the polynomials in a will form an associative

subalgebra (see e.g. [133;p.%6]), and by (2.1) the closure of this
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algebra is a commutative Banach algebra: the Banach algebra C(a)

generated by a and 1,

By elementary theory of Banach algebras (binomial series for

square roots), the following implication is valid for beA :

(2.6) bl <1 =>1+Db = d° for some de¢C(b) .

We claim that for ac€A +the following four statements are

equivalent:

(2.7) Jlat1-a] <o for all a > |a
(2.8) |lat1-a]l < o for some a > |a
(2.9) 8 = 0° for some c¢ € C(a)

(2.10) & ¢ AZ .

The implication (2,7) => (2.8) is trivial.
To prove (2.8) => (2.9) we suppose that [al-a|] < a for

given a > |lal] + Writing b = « 'a-1 eand applying (2.6), we get

a1
1+ b = @° with daeC(b) = ¢(a) . Defining c¢ = a®de C(a) , we

obtain a = a(1+b) = ad® = ¢° .,
The implication (2.9) => (2,10) is again trivial.
To prove (2,10 => (2.7) we suppose a = ¢® . Tet o > llall

and define now b = —o 'a . By (2.6) 1+Db = a2 with decC(a) .

P

Defining f = ao®d, we obtain

at-a = a(1+b) = ad2 = f2 o

Hence o1 = c2+ f2 . Using the equation above together with (2.3)

and (2.2), we now find
2 2 .2
lat-all = 1£7) < lle™+£7)] = al|t]] = o

To prove that A2 is a convex cone, we only have to verify

that A2+A2 c A2 . To this end we consider two elements a, b



-7 -
in A% , and we write a = |a), g = ||b]] . By (2.7)
I (a+p)1 = (a+®)|| < flat-af+ [l81-b]] < a+p,

and since o+ g > |la+b|] we can apply (2.8) to conclude that
a+b € A2 .
It is easy to see that the cone A2 is proper, i.e.

A% (~A%) = (0} . In fact, if a° = -b°

then a2 = 0 by virtue
of (2,3), and then a = 0 by (2,2).

A partial ordering is now defined on A Dby writing a < b
when b-a ¢ A% , By (2.6) the inequalities 1+a> O and 1-83>0

are valid when Jla]l < 1 . Hence we have the implication
(2,11) Jal s 1 =>-1<a <1,

from which it follows that 1 is an order unit.
To prove Archimedicity we first note that A2 is closed,
since by the mutual equivalence of (2.7) - (2.10) it can be ex-

presgsed as follows:
2
A" = {ac Al[af 2 llllafl1-2]} .
Now, if na <1 for n = 1,2,...,, then dn = n_11-a € A2 , and so

aist(A%,-8) < [la+ell = o) = 07

2

for n=1,2,..., Hence —eae(Az)' = A" , and so a < O .

To verify (2,5) we assume -1 < a < 1 . By definition of
the ordering a2 > 0 3 so we only have to prove a2 <1 . Now
1-82 = (1-a)°(1+a) with the factors at the right side both

positive, By the equivalence of (2.9) and (2.10) there exist

2 2

elements ¢, 4@ in C(a) such that 1-a = and 1+a = 4" .

c
. - 2 2 .2 2
By the associativity of C(a) , 1-a° = ¢“ed° = (ced)° . Hence



(2.12) 8% + (ced)? =1 .

Thus a2 <1, and (2,5) is proven.

Continuing from (2.12) and making use of (2.2) and (2.3),

we also find
lel® = [1a%] < 8%+ (eea)? = 1l = 1 .
Hence we have proved the implication
(2.13) -1 <a<1=>|a] <1.

By (2.11) and (2.13) the order-unit norm of A coincides

with the given norm, and the first part of the proof is complete.

2., Suppose next that A is a complete order-unit space
and a Jordan algebra for which the distinguished order-unit is
identity element, and suppose also that (2.,5) is satisfied.
Consider two elements a, b in A such that |a]l < 1 and
o]l <1« Now |[F(a+b))i < 1 and |&(a-b)|| < 1 . Hence
-1 <#(a+b) <1 and -1 < 3(a=b) < 1 . By (2.5) 0 < [H(a+b)]%<1

and 0 < [%,.;(a-b)]2 < 1 . Hence

< (BB)2 - (&h?% <1,

and so

lasb] = [[(B5R)% - (E®)%) < 1 .

Now we have proved that |a|| <1 and |b]] <1 imply
llaeb|| < 1 . From this (2.1) follows,
Assume next ”a2” <1 . Now 8’ < 1 , and since all squares

are positive by (2.5), we obtain

a = %[a2+ 1= (3-1)2] < %[32+1] <1
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and 2

a = %[(a+1)2— a” =13 > %f—a2—1] >-1,

which gives -1 <a <1, i.e., Ja]] <1 .

Now we have proved that Ha2” < 1 implies ”a”2 <1.
From this (2.,2) follows.

Pinally it follows from (2,4) and (2.5) that for arbitrary

a€h
inf{r> 0|0 < a° < 11}

< inf{)> 0|0 < a+ 1° < A1} = ”a2+b2” .

18]

This establishes the inequality (2.%), and the proof is compléte.

O
Corollary 2.2, If A is a JB-algebra, then A is formally
. n 2 . .
real, i,.e. i§1ai = 0 implies a;_= O for i = 1,40, &
n 2 .
Proof, Suppose that i§1ai =0 and let 1 <k <n ., Since
A2 is a convex cone, there exists b€ A such that ? ai = b2 .
i£k
By (2.2) and (2,3)
2 2 2 2
flall™ = llagll < llag+ o[ =0 ,
and the corollary is proved. T

Note that our axiom (2.2) is analogous to the "B¥-condition"
in the theory of involutive Banach algebras, and that the above

2 . ‘o .
is a convex cone, is similar to the ori-

verification that A
ginal proof by Kelley and Vaught for the corresponding statement
for abstract B¥-algebras [187.

Note also that our axiom (2.3) has been used before, e.g.
by Arens [5] and by Segal [257 (in a slightly different version

involving sums with more than two terms). By this axiom one can

never decrease the norm of a square by adding another square;
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a fact which was used in an essential way in the above proof that
every JB-algebra is formally real, However, there exist normed
Jordan algebras which are formally real and satisfy all require-
ments for a JB-algebra except (2,3). One such example is the
real subalgebra of the disk algebra consisting of functions with
real values on the real axis.

It is possible to replace our axioms (2.1)-(2.3) by equivalent
systems of axioms in various ways. One possibility is to keep
(2.2) and to replace (2.1) and (2.3) by the following axiom (also
used by Segal in [257):

2 2
(2.14) &%= v| < max(la?]],|v2)) .

Another possibility is to keep (2.1) and (2.2) and to replace (2.3)
by the requirement that 1+ a2 be an invertible element in the
Banach algebra C(a) for all aelA ., The equivalence of the
various approaches is proved by arguments similar to those in the

proof of Theorem 2,1, and we omit the details,

Examples of JB-algebras are the so-called JC-algebras, i,e.
the norm closed Jordan algebras of self-adjoint operators on a
complex Hilbert space, and the exceptional algebra Mg consisting

of all hermitian 3 x 3-matirces over the Cayley numbers, see [26].

We will now establish some of the basic properties of

JB-algebras,

Proposition 2.,%. If A is a JB-algebra and M is a closed

associative subalgebra containing 1 , in particular if M = C(a)

for aehA , then M is isometrically (order- and algebra—-) iso-

morphic to C(X) for some compact Hausdorff space X .




Proof. Note first that if a, b are positive elements of M,
then it follows from the equivalence of (2.9) and (2.10) that

there exist ceC(a)cM and de C(b)cM such that a = 02_ and

b=a . By the associativity of M a.b = (Cod)2 . Hence we

have the implication:
(2.15) a >0, b >0 and a,beM => a°bh >0 .

Now the proposition will follow by application of Stone's

Theorem on functional representation of partially ordered algebras

(see [163 §37) . 0

‘Recall that an element a of a Jordan algebra A with identity

is called invertible with b &as an inverse if ao.b = 1 and

a“eb = a (cf. [13;p.51]). This notion reduces to the customary

one for special algebras, i.,e. for Jordan algebras which can be

embedded in an associative algebra with product ab in such a way

that acb = $(ab+ba) , by virtue of the following equivalence

(proved in [13;p.517):

(2.16) a°p = 1, 2%eh = g <=> ab = ba = 1 .

Proposition 2.4, Let a, b be elements of a JB-algebra A.

Thenthe following are equivalent:

(2,17) & is invertible with inverse b in the

Jordan algebra A,

(2,18) & is invertible with inverse b in the

Banach algebra C(a).

Proof. 1, Assume first (2,17). By the Shirshov-Cohn

Theorem [13;p.48] the Jordan subalgebra MO generated by a, b
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and 1 is special, By (2.16) ab = ba = 1 ; in particular a, b
are commuting elements with respect to the associative product of
the special algebra Mo . By definition any two elements ¢, d
of M_ are ("Jordan~" and hence also "associative-") polynomials
in a, b and 1 ; since a and b commute, the two polynomials
¢c and 4 will also commute, i.e. c¢d = dc , and therefore
cod = cd . Hence the two products defined in Mo will coincide,
and MO must be an associative subalgebra of the given Jordan
algebra A ,

By continuity of the Jordan product (axiom (2.71)) the closure
M of Mo is also an associative subalgebra of A , and by Propo-
sition 2,3 M £ C(X) for some compact Hausdorff space X . Now
b is the inverse of a 1in the Banach algebra M = C(X) , and it
follows by elementary theory of commutative Banach algebras that

b is a norm limit of polynomials in a and 1 , i.e. be C(a)

2, Assume next (2.18). Then a.b = 1 , and by associativity

of C(a) also aleb = ac(asb) = a ., This completes the proof.

For a given element a of a JB-algebra A we define the
spectrum of a to be the set o(a) of all A eR such that a-2\1
is not invertible. By Proposition 2.4 o(a) is the same as the
spectrum of -'a with respect to the Banach algebra C(a) . Hence
the spectrum of an element a of a JB-algebra A will enjoy all
properties of spectra in real Banach algebras isomorphic to C(X).

In particular o(a) is a non-empty compact subset of R such that:

(2019) la” ?
Xeo?a)
(2.20) a >0 iff o(a) cRY ,
(2.21) for a >0, a is invertible iff there

exists A > O such that a > A1 .
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Moreover, we can identify the compact set X in the isomor-
phism C(X) £ C(a) with the spectrum of the generator a ., Then
the isomorphic image of the identity function (£e-E) on o(a)
will be & itself, and more generally the image of any polynomial
n will be n(a) , For an arbitrary ¢ €C(o(a)) the isomorphic
image of ¢ 1is denoted by ¢(a) . Thus, we have a well behaved
(continuous) functional calculus in A ,

An important composition in a Jordan algebra is given by the

Jordan triple product [13;p.367:

(2.22) fabe} = (@aeb)ec— (coa)ob+ (boc)ea ,

which reduces to the following if the algebra is special with

a.b = +(ab+ ba) :
(2.,23) {abc} = #(abc+ cha) ,

In particular, {aba} = aba in a special Jordan algebra, In any
Jordan algebra we shall denote the linear mapping x »> {axa}

by Ua » Thus
2
(2.24) U x = 280.(a°x) —aex ,
The following two identities are wvalid in any Jordan algebra:

(2.25) {{aba}x{aba}}

{a{b{axalbla} ,

(2.26) {bab}° = {bfabalb} .

We shall indicate the proofs, since they provide an opporunity
to present a general method which will be used repeatedly in the
sequel, TFirst one applies (2,13) to verify that the identities
hold in any special algebra. Then one makes use of Macdonald's

Theorem [133;p.41] by which every polynomial Jordan identity in
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three variables and 1 which is of degree at most one in one of
these and which holds for all special Jordan algebras, is valid
for all Jordan algebras.

For later references we state the following result whose

proof involves (2.25) in an essential way (see [13;p.52] for details):

Proposition 2.5. An element a of a Jordan algebra is
1

existsy in this case
-1

O ®

invertible iff the inverse operator U
1

a has the unique inverse b =U_'a and U, =7T

{aba} = UanUa holds for

every pair a, b of elements in a Jordan algebra, and therefore

By (2.25) the operator identity U

-1 . -1 -1
U{aba} exisgts iff Ua and Ub exist. Hence we have the
following:

Corollary 2.,6. Let a, b be elements of a Jordan algebra.

Then f{abal 1is invertible iff & &and b are both invertible.

Our next result will be an important tool in the sequel.
But first some notation: The set of invertible elements of a
JB-algebra A will be denoted by Ao s, the set of positive ele-
ments of A by AT (in fact AT = A2) , and the set of positive

elements of Ao by AZ . Note that Ag is a convex subset of A
by (2.21),

Propogition 2.7. TFor every element a of a JB-algebra A

the operator U, 1is positive, i.e. U.(AY) < A%,

Proof. 1. We shall first prove that if aesAO s, then
+ +
Ua(Ao) c AT .
Suppose not, then for some a€ A, there exists be'Ua(A:)

such that bgAY . By (2.20) there exists % €o(b) such that
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Ao < 0. Now we can write O as a proper convex combination of

A, and 1, say 0=t + (1=t) where O < t< 1 , Applying the
linear function m(k) = tA+ (1-t) +to the scalar Xo at the left
side of the inclusion A\ € o(b) and also to the element beA

at the right side of the same inclusion, we find
0 =g )eale(d)) = altb+ (1-%)1) .

Hence tb+ (1=t)1 is not invertible.
At this point we note that 1¢ Ua(A:) . In fact, if c¢ 1is
the inverse of a , then ceC(a) by Proposition 2.4, and since

C(a) is associative we have
2
1 = (aec)o(coa) = {ac ale Ua(A:) .

Since A; is convex and Ua is a linear map, the set

Ua(A;) is also convex, Hence
+
th+ (1-t)1€ U (A)) < U (A0)

But it follows from Corollary 2,6 that for invertible a ,
Ua(AO) c A, . By the relation above tb+ (1-t)1 must be invert-

ible, a contradiction.

2. We shall next prove that if a €A  , then u, (A7) ¢ At o,
By the definition (2,24) and axiom (2.1), U, is a continuous
operator on A . By (2.21) A: is dense in AT . Prom this and

from the first part of the proof the conclusion follows.

3, Now we consider an arbitrary a€Ad , and again we shall
first prove Ua(A;) At

We consider an arbitrary element ¢ of A; e Since c¢ 1is
positive and invertible, it has an invertible square root

be Cle) = C(X) (Propositions 2.3 and 2.4). Thus c=b>,.with beh .
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By (2.26):

(2.27) ULU,(b?) = {bab}® » O .

Let dE.AO be inverse of b , By Proposition 2.5, Ug1

exists and is equal to Ud . By the preceding part of the proof,

Uq is a positive operator. Applying Ug1 = Uy to the inequality
(2.27), we find Ua(bg) > 0 ., Hence we have proved Ua(c) >0,

as desired,
4, Tinally the general inclusion Ua(A+) c AT for arbitrary

a€hA , follows by continuity of Ua and density of A; in At

as in the second part of the proof, 0

For the proof of our next proposition we shall need a general
inequality which will also be useful later. Observe that from
the relation &° < Ha2H1 and from the positivity of U, we obtain
the following relation valid for an arbitrary element a of a

JB-algebra A :
4 2 2 24,2
a’ = {aaa} < [a7[[{ala} = [a[la” .
Hence for every positive element b of A we have the inequality

(2.28) b° < ||b]|b .

Proposition 2,8, If a, b are positive elements of a

JB-algebra A , then (2.29) and (2.30) are equivalent and

imply (2,3%1):

(2,29) ({aba} =0 ,
(2,30) {Dbab} =0 ,
(2.31) asb =0 ,
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Proof. 1. Assume first (2.29). By positivity of U, and
by (2.28), we find

(2.32) 0 < {ab°a)} < |b]|{aba} = O .

By the general identity (2.26), this implies {bab}2 = 0 , which
gives (2.30),
By symmetry, (2.,30) also implies (2.29).

2, In any associative algebra one has the identity

2

[%(ab+ba)]2 = %[a(bab)+ (bab)a + ab a+—ba2b] .

By Macdonald's Theorem the corresponding identity
2 1 2 2
(2.33) (aeb)” = z[2ac{bab}+ {ab"a}+ {bab}]

will hold in any Jordan algebra.
Assume now that {aba} = {bab} = 0 . Then also {abza} =
{bab} = 0 by virtue of (2,32). Now it follows from (2.33) that

(aob)2 0 , which gives (2.3%1). J

If p 1is an idempotent element of a JB-algebra A , i.e.

if p2 = p , then

(2.%4) {pap} = 2p°(p-a) - p.a

for all a €A , Hence we have the following:

Corollary 2,9, Let & be a positive element and p an

idempotent in a JB-algebra A . Then {pap} =0 iff pea =0 ,
For a given idempotent p of a Jordan algebra we denote the

complementary idempotent by the symbol p' ; thus p' = 1-p .

Now the following relations are easily proved by Macdonald's

Theorem:



(2.35) U0, =0, , U

Corollary 2,10. Let & be a positive element and p an

idempotent in a JB-algebra A , Then Upa = a iff Up,a =0 ,

Proof. If Upa = a , then Up,a = Up,Upa = 0 . Conversely

if Up,a =0, thenm p'ea = 0 Dby Corollary 2,9. Now

a = (p+p')ea = pea , 50 by (2.34)
Upa = 2pe(pea) - pea = pea = a . ]

Note that the equivalence stated in Corollary 2.10 will not
subsist if the hypothesis &a > 0 is omitted, One can give easy
counterexamples where A is the self-adjoint part of a C¥-algebra
0L . (It suffices to consider the case where (JL is the 2x2 -

matrix algebra).

Prom the definition of the Jordan triple product one can
obtain the following identity valid for an arbitrary element a

and an idempotent p in a Jordan algebra:
pea = 3(a+ (pap}- {p'ap'}) .

Denoting the multiplication operator determined by p by the

symbol Lp , Wwe can rewrite this as an operator identity:

-U_,) .

- L
(2.36) L, = z(I+Up D

p

We recall that two elements a, b of a Jordan algebra are

said to operator commute if La and Lb commute as operators,

i,e, if [La,Lb] =0 [133p.3207.
The following lemma gives useful criteria for operator
commutativity. (Note that this lemma is valid for general Jordan

algebras, and it is of course not new., In fact, it can be ex-
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tracted from the proof of Lemma 1 in [133p.320], but it is just

as easy to give a direct proof).

Lemma 2,11, Let a be an arbitrary element and p an

idempotent in a Jordan algebra. Then the following are equivalent:

(1) a and p operator commute,
(ii) Lpa = Upa ,
(1ii) a = (Up4-Up,)a .

Proof. (i) => (ii). Assuming (i) we have (LpLa-LaLp)pzzo,
from which we get Lp(aop)-aop = 0 . Hence Lpa = Lpra .

Using (2,3%4) we find

Upa = 2Lpra-Lpa = Lpa .

(ii) => (4iii) Substituting the expression (2.36) for Lp
into (ii), we get (iii)

(iii) => (i) 1In the general Jordan identity

[Lbod’LC]+ [Lb°011‘d]+ [Lcod’Lb] =0

(see (01) in [13;p.34]) we write b=a and ¢ =4 =7p,
obtaining

(2.37)  2[L,,5005) + [D5,1,1 = 0 .

poa’

Assuming (iii) and writing r = U_a, s = U_,a, we have by

p p!

(2.3%) U r=r,U ,r=0,Us=0,U_,8=28 . Hence by (2.3%6)

b b p p
per = r, 80 (2.,37) gives [Lr,Lp] =0 . By (2.36) also pes = O,
so (2,37) gives [Lp,LS] = 0 , Hence [La'Lp] - [Lr+ LS’Lp] - 0,

and (i) is established, O

Note ghat if A is the self-adjoint part of a C*¥-algebra,

then an element a of A will "operator commute" with an idem-
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potent p in A (a projection) exactly when ap = pa , i.e.
when a and p commute in the customary sense.

The following result will be useful later.

Proposition 2,12. Let a Ybe an arbitrary element and p

an idempotent in a JB-algebra A , If p operator commutes

with a , then p will operator commute with all elements of C(a).

Proof. By (ii) of Lemma 2,11 we can assume {pap} = p.a .
Let Mo be the Jordan subalgebra of A generated by a, p and 1.
By the Shirshov-Cohn Theorem, MO is a special Jordan algebra,
say that c°d = $(cd+dc) for c,de M .

The hypothesis {pap]} = pea can now be written

(2.38) pap = &(patap) .

Multiplying (2.38) from the left and from the right by p , we
obtain in turn pap = pa and pap = ap. Hence the two generators
a, p of M, will commute, As in the proof of Proposition 2,4,
we conclude from this that evéry pair c, d of elements of Mo
will commute, i,e. c¢d = dc , and hence c¢e°d = c¢d . Thus Mo is
an associative subalgebra of A , and by the continuity of the
Jordan product the closure M of Mo will also be an associative

subalgebra of A ,
Now if be C(a) «c M , then by (2,3%4)

{pbp} = 2pe(peb) = pob = pob .

By Lemma 2,11, ©p operator commutes with b . O
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§ 3, The enveloping algebra of a JB -algebra

Throughout this section we suppose that A is a fixed JB-algebra

and we denote the state space of A by Kj; thus op € A* belongs

to K iff |lpll = <1, = 1. Also we equip A** with the ordering
determined by K, i.e. a € (A**)T iff (a,p) >0 for all p € K.
Then one can identify A** with the ordered Banach space Ab(K) of
all bounded affine functions on K, and A with the space A(K) of
all w*-continuous affine functions on K (cf. Theorems IT.1.8,

IT.1.15 of [%]).

Recall that the Arens product on A** is the unique bilinear

extension of the (Jordan) product from A to A** satisfying
(3.1) lla=dll < fall=[o] for (a,b) € A**x A%+,
(3.2) a - a°b is w*-continuous for (a,b) € A** x Ax*

(3.3) b = a°b is w*-contimuous for (a,b) € A x A** .,

(Note that the construction of the Arens product is not symmetric
in the two variables [6,Thm.3.2].)

It is not clear a priori that A** with the Arens product be-
comes a JB -algebra. In particular, we do not a priori know that
the (Arens) squares are positive, nor even that the product on

A#* w A** g commutative.

Lemma %.1. Let M be a linear subspace of A** such that
a2 is a positive element of A** for all a € M. Then for every

1
p € K the function a - (ag,p)2 is a seminorm on M .

Proof. By the assumption on M we can apply the standard

proof of the Schwarz inequality to obtain
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(3.4) (E(a*b +Db°a),00° < (a2,pd(b2,p)

for a,b €M and P € K. From this we get the triangle inequality.

The other properties of a seminorm are trivial. []

For brevity we shall say that ay ~ & weakly in A** when

{aa] converges to a in the w*-topology (i.e. o(A**,A*)), and

we shall refer to (%.2) and (3.3) as respectively weak left conti-

nuity, and weak right continuity on AxA**, If M < A** gatisfies

a
the hypothesis of Lemma 3.1, then the seminorms a - (ag,p>2 (with
p € K) define a locally convex Hausdorff topology, which we call

1
the strong topology on M. Note that by the inequality <a2,9>?'§

lall (for p € X), norm convergence will imply strong convergence.
Note also that by (3.4) (a,p>2_§ (ag,p> (for p € K), and hence
strong convergence will imply weak convergence. Note in particular
that A itself satisfies the requirement on M in Lemma %.71, so

the notion of strong topology is defined on A.

~

Definition. A is the set of all weak limits in A** of norm

bounded strong Cauchy nets in A .

Proposition 3.2. If [aa} is a norm bounded strong Cauchy net
in A which converges weakly to a € K, then {ai} converges

2 ~
weakly to a2; in particular a~ > 0 for all a € A,

Proof. For arbitrary p € K we decompose
l<a2-q§,p>1_g |<(a—aa)°a,p>l + l(aa*’(a-aa),p)l .

By weak left continuity of the Arens product ((a—aa)°a,p) - 0.

It remains to prove <{ay°(a-a,),p) » 0. TLet N = SWPaHaq“
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and let € > 0 be arbitrary. We choose a, such that
<(aauas)2,p> < eN™2 for @,B > a . Then by weak right continuity
on AxA** and by Schwarz inequality (for states on A ), we have

a =Y > :
for a2z aj

[<ay°(a-ay), )| = i [Cay-(ag-ay),p) |2
=0

o]
i 1imsup (ai,p><(ae_aa‘ L-lp> _<= € b
B>

which completes the proof. []
By Proposition 3.2 the notion of strong topology can be de-

fined on K, so that it now makes sense to state:

Corollary 3.%. If {a_} 1is a norm bounded strong Cauchy net

2q
A

in A such that a, 6 = a € - a strongly; in

1 o
particular every a € X is strong limit of & norm bounded net from

weakly, then a

A .

Proof. Observe first that

(%.5) a°b = bea when a € A, b € A**,

In fact, if {b,} is a net in A and b, @ b weakly, then by (3.3)

a*b, = a*b weakly, and by (3.2) also asb, =byca = bea weakly.

a
Now by left continuity and by Proposition 3.2

<(a—aa)2,p> = <a2,p>-2<aa°a,p>+<a§,p> -0, U

Corollary 3.4. The Arens product on AxX with values in A**

is commutative and weakly continuous in each variable separately.

Proof. By (3.2) it suffices to prove commutativity. Let

a,b € X and choose {aa} in A such that ay - a strongly. By
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(3.2), a,°b = a°b weakly . By using (3.4) with a-a, 1in place
of a, we conclude that aa°b-+b°aa - a°b +b°a weakly. Combining
this with the preceeding statement, we see that b°aa - bea weakly.

By virtue of (3.5) a,°b = bea, for all a . Hence asb = bea. L]

Note that by the positivity of a2 for all a € A (Proposi-

tion 3.2) and by the commutativity of the Arens product on AxA

(Corollary 3.4), the Schwarz inequality
2
(3.6)  (ab,pd® < (a%,pXb7,p)
holds for all a,b € A and p € K.
We now state two auxiliary results valid for norm bounded nets
{agd, by} in K. The first of these follows directly from (3.6),

the second follows by applying the first and separate continuity to

the terms at the right side of the equation ay°by = a“°(ba-b)+aq°b :

(3.7) a, = 0 strongly implies a °b, = O weakly.

(3.8) a, » O weakly and b - b € X strongly implies

aa°ba -+ 0 weakly.

The next lemma is crucial.

=

Lemma 3.5. If {a,} is o bounded net in A and a, - a €

strongly, then a2 € & and ai - a2 strongly.

Proof. The proof proceeds in four steps.

1. TFirst we assume that the net {aa} is norm bounded, say
with sup,llayll = ¥, and that it converges to zero strongly. We
claim that in this case also. ai -+ 0 strongly.

In fact, for every p € K the inequality (2.28) gives
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((a5)%,p) _<_N2<a§,p> - 0.

2. We keep the assumptions imposed on {aa} in part 1 of the
proof, and we claim that if {ba} is any norm bounded net in A

such that by = b € A strongly, then {b,ap,} * O strongly.

To prove this, we write M = sup|lb | and use the identity

(2.26) together with positivity of the maps Ua s UB to obtain
a  Ca
2

(3.9)  [byagby}® = (b, lagbia,lb,]

< MPb fagtay by} = ME(2b o (adeb ) -bsead

By part 1 of the proof ai - 0 strongly; then by (3.7) ba°a§-'0

weakly, and then by (3.8) ba°(ba°a§) - 0 weakly. Since ai - 0

strongly end [[bS|| <M for all &, then by (3.7) a5°b - O

weakly. Thus, the right side of (3.9) tends to zero weakly, and it

follows that {baadba} - 0 strongly.

%« We keep the assumptions imposed on {aa} and {b,} in
part 2 of the proof, but we now claim that aa°bu - 0 gstrongly.
In fact, this follows from part 2 of the proof by means of the

following general identity:

(3.10) a°b = +[{(1+b)a(1+b)} - {bab} - a].

4, We now assume that {aa} is a norm bounded net in A and

that 8y, ~ A& € strongly, and we will show that {ai} is strongly

Cauchy., This will complete the proof by Proposition 3.2 and
Corollary 3%.3.
For given &,B we write C“,B = aa-aB and dQ,B = aq4-aB.

Then {c B} and {d, ,}] are nets with the product ordering on
?

%, B

the indices. Note that ¢ - 0 strongly and da 8 -+ 2a strongly.
9

' B 5
-aB = CG,BOdG,B -

'eMOR

By part 3 of the proof = O strongly; hence
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{a2} is strongly Cauchy. U
o

Our next lemma, concerning the norm closure (K)_ of A in
A**¥ . is of a provisional nature; we shall eventually prove that X

itself is norm closed.

Lemma 3,6, (K)' is a JB-algebra.

Proof. We will first show that X enjoys all properties of
a JB-~algebra stated in Theorem 2.1, except possibly norm complete-
ness. By Corollary 2.4 the product on Axk with values in A**
is commutative, By Lemma 3.5 K is closed under squaring, and by
the identity |
2 2]

(3.11)  ab = +[(a+b)® -a°-Dd

& is closed under products. Furthermore, if {a,} and {ba} are

bounded nets in A such that a, - a € & strongly and 'ba-'t)e X

C
strongly, then by (3.11) and Lemma 3.5 a,°by ~ a°b strongly.
By Corollary 5.3 every element in X is strong limit of a bounded

net from A ; hence the defining Jordan identity
(a2°b)°a = a2°(b°a)

will hold in 4.

Now observe that since A** = Ab(K) is an order-unit space,
then K is also.

We next verify the implication (2.5). By Proposition 3.2
a® >0 forall a€X, If -1<a<1, then |a|| <1, so by
(3.1 [la)l < lall® <15 thus 0 <a® < 1.

Having proved that Y possesses all attributes of a JB-algebra

except possibly norm completeness, we now turn to (&)”. By (3.1)
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the Arens product on A** X A** is jointly norm continuous. From

this it follows easily that (5)" is a JB-algebra. 0

We shall need a result on joint strong continuity of multipli-
cation on bounded sets. This could be prowed by minor modifications
of the proofs of Proposition 3.2, Corollary 3.3 and Lemma 3.5,

but we prefer to give a direct proof.

Proposition 3.7. Let A cM c A** with M a JB-algebra for

the norm and product inherited from A**, Then multiplication is

jointly strongly continuous on bounded sutsets of M,

Proof. Below {aa} and {b.} are norm bounded nets in M,

a
and arrows indicate strong convergence. We will successively prove:

(1) 4y = 0 implies ay - O,
(ii) ay ~ 0 eand b, ~ O imply a,°b, = O,

(#) ay~ 0 and b €M imply a,°b = O,

(iv) ag " a €M and by~ b €M imply ay°b ~ acb.

By (2.28) 0 < (ai)2 < Haanai, from which (i) follows. Then
(ii) follows from (i) and the identity (3.11). To prove (iii) we
assume a, » 0 and b €M. TFor any c € M the identity (2.26)
gives

{caac}2 = {c{aac2aa}c} < Hc2u{ca§c} = HCEHUCai.

By weak left continuity of the Arens product on A**, the map
U, tM - M is weakly continuous (cf. the definition (2.24)).
Hence {camc}2 tends to zero weakly, and then {caac} tends to

zero strongly. By the identity (3.10) ay°db » 0. Tinally, (iv)
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follows from (ii) and (iii) and the identity

acb-a, b, = (a—a“)°b-+(aa-a)°(b-ba)4-a°(b—ba) . ]

Corollary 3.8, Let M Dbe as in Proposition 3.7 and let

®t R - R be continuous, then the mapping a - ¢(a) is strongly

continuous on bounded subsets of M.

Proof. The function ¢ can be uniformly approximated by poly-
nomials on compact subsets of IR . By Proposition 3.7 a = m(a)
is strongly continuous on bounded subsets of M for every polyno-

mial w, and from this the corollary follows. g

Proposition 3.9. The unit ball Aq of A is strongly dense

in the unit ball Kq of K.

1

Proof. Let a € &, and choose a bounded net {aa, in A

1
converging strongly to a. Let ¢: R -~ [-1,1] be a continuous
function such that o(A) = A for |A] < 1., Then {m(aa)} is a

net in A,| , and by Corollary 3.8 w(aa) - p(a) = a strongly. [j

Note that the proof above is similar to part of the original

proof of Kaplansky's density theorem.

We recall that a state p on an order-unit space A is called
normal if (aa,p)\go whenever a,\0, i.e. whenever {aa} is a
descending net in A with zero as g.l.be in A. A set S of states

on A is said to be full (cf. [17;p.180]) if it is convex and

(3.12) a >0 iff (a,p)> >0 all p € S.

By a standard argument (see e.g. part 2 of the proof of Prop.l.".7
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of [3]) one can prove that if S is a full set of states on A,
then

(5045) “a“ = 8up l(a,F’)_l °
pES

In particular, every full set of states is point-separating.
If P is a state on a JB-algebra A, then for every b € A
the functional p, :a - (Uba,p> is positive. We say that a set 8
of states on A is invariant if p - P, Maps S into coneS =
UM for all b €A,

kzo

Theorem 3,10, If A 1is any JB-algebra, then X is a Mono-—

tone complete JB-algebra., Furthermore, the notions of "order con-
vergence", '"weak convergence", and "strong convergence" will coalesce
for monotone nets in K, and the states on A act as normal states
on K c A** 3 in particular they form an invariant full set of nor-

nal states on A.

~

Proof. By Proposition 3.9, A,l is strongly dense in Aq.
On the other hand every strong Cauchy net in A,I converges strongly
to an element in Kq. It follows that Kq is strongly complete
[7;Ch I, 83,Prop.9]).

We now consider a net {aa} in Kq which converges in norm
to an element a of A**, By the inequality (cg,p>_§ “0“2 valid
for all ¢ € A and p € K, the net {a&} is strongly Cauchy;
hence it has a strong (and weak) limit b € Kq. Since norm conver-
gence in A** implies weak convergence, a =b € Kq. Hence Kq,
and therefore K, is norm closed in A**, Now it follows from
Temma 3.6 +that A = (K)" is a JB-algebra.

Next let {ba} be an increasing net in A bounded above by

an element of K. Without loss of generality we assume b, > O
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for all &. Then there exists b € A** given by (b,p)::supa<ba,p>
= lim (b ,p> for all p € K. We will prove that b € A and that
ba - b strongly, which will show that A is monotone complete and

that "order", "weak", and "strong" convergence are equivalent for
monotone nets in K.

Let G be arbitrary and o, < a < 8. Then by (2.28) and by
the inequality "bY“.ﬁ o]l valid for all y, the following rela-

tion holds for every p € K:

((bg=by)%,0) < bg-byll<b-bg,pd < 2[bllKbg—bg, 0>

Hence {b,} is strongly Cauchy. Thus {Hbu—qba} is a strong
Cauchy net in Kq, and so it has a strong limit in Kq. Then
{ba} must converge strongly to an element of A, and this strong
limit must coincide with the weak limit b. Hence b € A and

ba * b strongly.

~

By the above argument, the supremum in A of an increasing
net bounded above in K, is the pointwise supremum (as functions
on K), Hence all p € K act as normal states on A,

By definition, positivity of an element a of K means ex-
actly that <(a,p> > O for all p € K; hence K 1is a full set of
states on A °

It remains only to prove that K is an invariant set of states
on A. To this end we consider an arbitrary p € K and b € K,
and we shall prove that there is an w € cone K = (A*)Y such that
the linear functional g, :a - (Uba,p> on A is of the form

pb(a) = (a,w) . Clearly pblA is a positive element of A*, Hence

there is an w € (A*)T such that

(3.14) (Uba,p) = {a,w) all a € A,
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By left continuity of the Arens product in A**, the map I&): K- A
is weakly continuous (cf. the definition (2.24)). By weak density
of A in K, the equality (3.14) will subsist for all a € i,
Hence pb(a) = {a,w) . U

For a given JB-algebra A, the JB-algebra A will be called

the enveloping monotone complete JB-algebra of A, or briefly the

enveloping algebra of A .

IMnally it should be noted that there are two natural questions

we have left open:

1.) Will A Dbe all of A**?

2.) Will X contain all normal states on 12

By a modification of the arguments of Pedersen in [22] one can
prove that A is the smallest monotone closed subspace of A** con-
taining A, and from this it follows that the second question has
an affirmative answer. The first question can probably also be
solved to the affirmative by use of Theorem 9.5 Dbelow and results
in [11]. However, this will not be needed in the sequel, and we

will not pursue the questions above any further.
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§ 4. Spectral theory

Throughout this section M will denote a monotone complete
JB-algebra with an invariant full set of normal states K . Also
we shall denote the linear span of K in M by V . Thus V
consists of all ¢ = Apq~— Aopo where Ay eR" and pj €K for
i=1,2 . The term "weak topology on M" refers to the weak
topology defined by the natural duality of M and V (i.e. oM,V))
it will be the topology of pointwise convergence on K when the
elements of M are interpreted as (affine) functions on X .

Note that the invariance of K guarantees that each map U :M - M
is weakly continuous., The functions a -> (az,p)% where peK ,
are seen to be semi-norms on M (cf., the proof of Lemma 3.1),

and we shall use the term "strong topology on M" with reference
to the locally convex Hausdorff topology defined by these semi-:
norms, Clearly, norm convergencé“implies strong convergence,

which in turn implies weak convergenée. By Theorem 3,10 one may
take M +to be the enveloping algebra of ény given JB-algebra A ,
and XK +to be the set of all states on A . Then the “weakﬁ and
"strong" convergence on M will have the same meaning as in § 3.

We will show that M has "many" idempotents and that they
behave like the projections in a von Neumann algebra. In principle,
this can be done by modifying existing results proved by various
authors under slightly different hypotheses'(see (211,0257,(3%07,047.
However, we find it equally short and more informative to give
direct proofs.

First we observe that the results on weak and strong conver-

gence from § 3 will subsist in the present setting.

Lemma 4.1. For monotone nets in M +the notions of "“order",

"weak", and "strong" convergence coincide. Multiplication in M
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is separately weakly continuous in each variable, and it is jointly

strongly continuous on bounded subsets.

Proof. Let {a,} be an increasing net in M , and assume
without loss of generality that a, > O for all o . Since the
ordering in M is pointwise on K (¢f. the definition (3.12))
and K‘ consists of normal states, an element a of M will be
order limit of {aa} iff it is pointwise, i.e. weak, limit. This
in turn implies strong convergence to a , since by (2.28) for

every p €K :

((a-aa)Q,p> < Ha—aa”<a—aa,p) < 2”a”(a-aa,p) -0 .

Observe next that separate weak continuity of multiplication
follows from the weak continuity of the maps U, by the general
identity (3,10). PFinally, joint strong continuity on bounded
subsets follows as in the proof of Proposition 3.7, which depends

on nothing more than weak continuity of the maps Ua . []

For convenience we shall use the notations aaj*a and aaN a
to express order (-weak and strong-) convergence of monotone nets
in M . Also we shall say that a linear subspace N of M is

monotone closed if aae N for all o and aa;ﬂa.eM implies

>

acN , Recall that C(a) denotes the norm closed subalgebra
of M generated by & and 1 , The weak closure of C(a) in M
will be denoted by W(a)., Prom Lemma 4.1 and Proposition 2,3 we

immediately obtain the following:

Lemme, 4.2. For each aeM , W(a) is a monotone closed
associative subalgebra of M , isometrically isomorphic (as an

ordered algebra) to a monotone complete c(x) .
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Prom this lemma we obtain:

Proposition 4.3. For each aeM there exists a unique

indexed set {e)\}ke]R of idempotents in M such that

(o]

(4.1) eu when A <y ,

A =
(4,2) ex'N eu when A >y and X -y ,
(4.3) e =0 for A < -fla] and e =1 for A > fa| ,
and such that for each p€¢K and n =1,2,...
(4.4)  (a%0) = A7 acey ,0) .
Moreover, exe’W(a) for all Aeée R , and the Stieltjes sums
Ay g )
ELLEEL RN Pl S
partition A < A4 <...<), of [-|af,|la]l] tends to zero.

converge in norm to & as the mesh of the

Proof. The existence of an indexed family {eA}AeIi with
the stated properties follows by calculation in C(X) . (For
detailed proofs see [203;Thms 40.2,43.2]) . In particular we note
that by Lemma 4.2, e is greatest lower bound of ({e},_ =~ 1in M
and not only in W(a) .

To prove uniqueness, we suppose that {fx}xem is another
indexed set of idempotents in M such that (4.1)-(4.4) hold.,
For given gy €K +the Borel measures on R with distribution
functions A +=> (ex,w> and A > <fk’w> must coincide on all
continuous functions by (4.4). Hence the two measures are equal,

and so (ex,w> = <fx,w) for all reR , O

For given a €M the indexed set of idempotents {e\]

described in Proposition 4,3, will be called the spectral family

of a ,
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For given a €M +the set of all real valued functions ¢ on

[-llalls]l2l]] for which there exists be¢ W(a) such that

(445)  (bywd = [p(h)ace, ,w) 811 w e K,

contains all continuous functions (by (4.4)), and it is pointwise
monotone o~complete (by the monotone convergence theorem and the
monotone completeness of W(a))., Hence it contains all bounded

Borel functions. For each bounded Borel function ¢ on [-|al,]||
we now denote by ¢(a) the (unique) element b in M such that

(4.5) holds., Thus o(a) eW(a) , and by definition

(4.6)  (p(a)y0) = [p(M)aley 30y 811 wek .

In this way we obtain a well behaved functional calculus in M
for bounded Borel functions. In particular we note that for

every AER :

(4-7) e)\ = X(—OO,A](a) .

If and eu are two members of the spectral family of

e
A
a €M , then by (2.24) and the associativity of W(a) :

{exeuex} = 26xo(exoeu)— e\, = & e, .

Hence it follows by Lemma 2,11 that every pair of members from

the spectral family of a will operator commute,

Lemma 4,4. Let {ex} be the spectral family of aeM and
let p€eM be an idempotent, Then p operator commutes with a

if and only if p operator communtes with all e -

Proof. Assume first that p operator commutes with a .

Let ({¢,} be a sequence of continuous functions on R with
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values in [0,1] such that Pp N X(_ o 1 * By Proposition 2.12,
, :

p operator commutes with all wn(a) . Hence by Lemma 2.11

Cpn(a) = (Up+ Upl)tpn(a) n = 1,2,-.- )

By weak continuity and by (4.7), this gives e, = (Up+-Up,)ex .
Hence ©p operator commutes with ey *

Assume next that p operator commutes with all ex « Then p
will operator commute with the Stieltjes sums of Proposition 4.3.
Passing to the limit as above, we conclude that p operator

commutes with a ., [}

Now let a,beM and let (e, ] and [fu} be the spectral
families of a and b , respectively, Then the following are
equivalent by virtue of Lemma 4.4:

(4.8) a operator commutes with all fu ,

(4.9) b operator commutes with all ey s

(4,10) all pairs € s fu operator commute .

If these statements are valid, then we say that a and b are

compatible. If a is compatible with all ce M compatible

with b , then we say that a and b are bicompatible.

Clearly, every member of the spectral family of an element
a of M will be bicompatible with a .

Now consider an idempotent p and an arbitrary element a
in M , By Lemma 4,4, p 1is compatible with a iff p and a
operator commute., Note also that p is bicompatible with a
iff p operator commutes with all idempotents which operator
commute with a .

By the above result, since a > L, is linear and isometric,

two compatible dements of M will always operator commute.
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Por positive elements we have the following compatibility-

criterion:

Lemma 4.5, If aeM' and peM 1is an idempotent, then a

and p are compatible if .and only if Upa < a .

Proof. Assume first that a and p are compatible, or what

is equivalent, that a and p operator commute., By Lemma 2.11,

b

Assume next Upa <a . Now a-Upa > 0 , and since

Up(a— Upa) = 0 , we can apply Corollary 2.10 to get Up,(a —Upa) =

a = (Up+-Up,)a >U.a .

a - Upa « By (2.35) this gives a = (Up+ Up,)a , and now compati-
bility follows from Lemma 2,11, O
We recall that for given aeM" the face of MY generated

by a , is the set

(4,11) face(a) = {(beM'|b < Aa some Are RYj ,

Lemma 4,6, If peM is an idempotent and ae¢ face(p) ,

then a < |a|p .

Proof., Applying Up, to all terms of the inequality
O0<a<ip, we obtain 0 < Up,a < 0 , By Corollary 2,10, Upa: 8e
Applying Up to all terms of the inequality O < a < |la]|1 , we
now obtaln 0 < a < |lal]jp « 0

Consider an element a of M' with spectral family {e,} .
Prom the isomorphism of W(a) and C(X) we conclude that e = 0

for A < 0. For X > O and every g€k

0 < XI e y0) < I ud<9u;W> < j wdde ,w> = Ca,w ,
()\,OO) | (X’OO) (Otod
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so 0 <A(1-e,) < a . Hence we have the general implication:

+

(4.12) aeM , A >0 => 1- e, € face(a) .

Proposition 4.7. If aeM+ and {ex} is the spectral

family of a , then 1- e, 1is the smallest idempotent p in M

such that a ¢ face(p) .
Proof. PFor every €K

(a,w> = I >\d<e)\ !U)> < ”a” I d(e}\,w> = Ilall(@-eo)’w>
(0,]all] (0,fla]l]

and so a¢€ face(l-e,) .

Suppose now that a e face(q) for some idempotent g . Then
face(a) < face(q) , so by (4.12) 1-e, ¢ face(q) for all A > O .
By Lemma 4.6 1- e, = ||1-e)\”q <q for all A > 0O , and by (4.2)
1-e 71-e, when A >0 and A -0 . Hemce 1-e, < aq , and

the minimality is proved. D

Definitions. We denote the set of all idempotents in M

by jD, and we use the symbols Vv and A to denote the least
upper bound and the greatest lower bound in (73 (whenever they

exist)., For given aecM™ we write
r(a) = 1~ e, = /\{peﬂ)]ae face(p)} .

We will now show that ﬁ is a lattice, In fact, we will

show that it is an orthomodular lattice under the map p +~> p'=1-Dp,

and we recall that this means that the following requirements are

satisfied for p,qc¢€ {p H
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(4‘013) P =D
(4,14) p< a=>4q' <p',
(4,175) pADP' =0 and pvryp' =1,

(4,16) p < q =>4a = p v (gAp') (orthomodular identity).

IA

Lemma 4.8. If p,q € ,@ , then the following are equivalent:

(i) peq = O ,
(i1) p+a e F,
(idid) p+a <1,
(1V) UpUq =0 .

Proof (i) => (ii). If peq = 0 , then (p+q)2 = p2+ q2= P+ q,

S0 p+aq dis an idempotent.
(ii) => (iii) This implication is trivial since every idempo-
tent r satisfies ||r|l < 1 , and then also r < 1 ,

p+U_a < p . Hence

(iii) => (iv) If p+q < 1, then U

b p

p4—qu < p , and therefore qu = 0 , For arbitrary ae]W+ y We
have 0 < a < ||laf|]1 . Therefore O < Ug? < lalla 4 and in turn
O = . = .
< U048 < ”a”qu 0 Hence we have shown U U, =0
. _ ; = = 1 =0 d b
(iv) => (i) 1If UpUq 0 , then qu UpUq , and by
Corollary 2.9, peq = O , O
Remark, Clearly one can replace UpUq = 0 by the symmetric

statement Uqu =0 in (iv).

Definition., We say that two idempotents p, g9 are orthogonal,

and we write ptq , if the equivalent statements (1)-(iv) above

are valid.
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Proposition 4.9. The set ﬁ of idempotents in M is a

complete orthomodular lattice where \l/ p; = r(% pi) for every

finite set {p.],...,pn} ¢ 7 5 in particular

_ . L . .
\i/pi";-:_pi if pyjtpy for i#£3.

Proof. Let Dy,.es,p, € F . Clearly, p, = r(p;) < v(% py)

J
for j=1,s0eyn « Now suppose q € ﬁ and pj < d for j=T,e4yn,
Then % p; € face(q) , so r(x pi) < q . This proves ’
i

- M
\i/pi_r(?_pi)e‘/‘ ’

If Dqreesyb, are mutually orthogonal, then it follows from
Lemma 4,8 that X p; € 7 y and so r(y p;) = ¥ p; . Hence
¥ p; = % p; in this case,

If [pa] is an increasing net from .73, then there exists
p €M such that 1% 7Ap . By Lemma 4,1, p is an idempotent.
Hence V p =pe PR.

o ~o

Oince we have an order reversing 1-1 map p &> p' of ..73
onto itself, we conclude that 2 is a complete lattice.

The requirements (4.13)-(4.15) are trivially satisfied. To
prove (4.16), we suppose that p < q . Then p+q' =p+1-a< 1,
so p 'Lq' (by Lemma 4,8). Thus, by the above results, q'Vp =

Q'+ p . Since p > p' 1is order-reversing, we now find
aAp' = (a'vp)' = 1-(a'+p) = a-p .

In particular, (qAp')+p=q< 1, SO (q/\p')j’p . Hence
pV (aap') = p+ (a-p) = a . 0

By weak continuity of U there exists for every idempotent

*

p
* *
a€M . Clearly, U  will map vt into itself, but U, will not

p 2

*
PEM amap U_ : V=V defined by (a,Upw) = (Upa,w> for all



- 41 =

*
map K dinto itself in general, We shall now prove that U maps

an element of K into K only if it is invariant under UE .

This is an important property of the maps U; . (E.g. it is used
in one of the proofs of the existence of polar decompositions for
normal states of a von Neumann algebra, see [10; Thm,12.2,4]; and

it characterizes the "neutral projections" studied in [41]).

Lemma 4,710. Let péM be idempotent and let p€K . Then

¥ ) *
”Upp” = 1 if and only if Ugp =p .

Proof. To prove the non trivial part of the equivalence, we
suppose ”U;p“ =1, or what is equivalent (since M¥* is a base-
norm space, cf, e.g. [3;Ch IT.§17) ,that (1,U;p>vﬁ 1 . We now
apply (2.36) with p' in place of p ; then we get for arbitrary

aelM :
(4-17) (a;p> = (Upa,p>- <Up,a,p>+ 2<p'°a,p> o

We will show that the last two terms of this equation vanish.
Without loss of generality we assume a > O .

By the assumption on p :
*
(p'yp) = 1=Apyp? = 1- <Up1)p> = 1= <19Upp> .
The desired conclusion now follows from the implication

(p'yp? = 0 => (p'°app> = (U a,p> =0,

p!
which in turn follows by Spghwarz*s inequality and the relation
0 < <Uyi3,p) < |[aflKUL 150> = [laf<p'yed =0 . [

Por given idempotent peM , we denote by Mp the image of M

under Up y loes My = Up(M) . Since U, is an idempotent map
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(cf. (2.35)), an element a of M Dbelongs to Mp iff U.a=a.

Y
Also we denote by Kp the set of all those pe€ K whose restric-
tion to M. is a (positive and) normalized linear functional on

p
Mp s lee.

sup{l(a,p)llaesMp,Ha“ <1} =1.

*
This implies that ”Upp” = 1 . Hence it follows from Lemma 4,10

that Kp consists of exactly those pcXK for which U;p = p

Proposition 4.11. If peM is an idempotent, then M is

p
weakly closed in M . Moreover, Mp is a monotone complete
JB-algebra and the (restrictions of) elements of K form an

b

invariant full set of normal states on Mp »

Proof, It follows by week continuity of Up that Mp is

weakly closed. By monotone completeness of M (and by Lemma 4.1),

Mp is also monotone complete, Clearly also Mp is a norm

closed linear subspace of M ,

For every a€M we have by (2,26)
2 2
(Upa) = U {ap"a} € Up(M) .

Hence Mp is closed under squares, and by (3.11) also under

Jordan products. Clearly the norm conditions (2.1)-(2.3) will

prevail in Mp ¢ Hence Mp is a JB-algebra,

By definition, lep is a positive linear functional of
norm one, hence & state on Mp for every o er . Clearly,
p[Mp is a normal state on Mp since p 1is a normal state on M .,

Since K is a full set of states on M , we have the follow-

ing series of equivalences for a,eMp
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B> 0 <=>(a,p) >0 all pe€kK
=> <Upa,p>20 all pek

<=> {a,p) > 0 all wer

Hence, the set of all p/lVIp where p er is a full set of states

on Mp ., It is also easily seen to be invariant, and the proof

is complete,. D



§ 5. The center

We use the notation of the previous éection and let M denote
a monotone complete JB-algebra with an invariant full set K of
normal states. We shall study the center of M and then construct
representations of a JB-algebra A into a subalgebra of its enve-
loping algebra A for each state of A.

If X <M we denote by Z(X) the set of elements in M which
are compatible with all elements in X. If a € M we write Z(a)

for Z({a}l)

Lemma 5.1, For each b € M Z(b) is a weakly closed sub-

algebra of M containing b.

Proof., If {ex} is the spectral family of b then Z(b) =

N Z(ey,). By Lemma 4.4 Z(e,) is the set of elements in M
AER M M

which operator commute with ey » 50 by Proposition 2.12 Z(ex) is

a weakly closed subalgebra of M. []

Lemma 5.2, A subset X of M consists of mutually compatible
elements if and only if X is contained in a weakly closed associ-

ative subalgebra containing the identity.

Proof. ©Suppose all elements in X are compatible. Then
X cZ(X), so that Z(X) 2 z(Z(X)) o X. Thus 2Z(z2(X)) is by
Lemma 5.1 a weakly closed subalgebra of M consisting of mutually
compatible elements. As remarked after Lemma 4.4 mutually compa-
tible elements operator commute. Thus so do all elements in
2(Z(X)), which implies that if a,b,c € Z(2(X)) then ac(b°c) =

(a°b)°c. Thus Z(Z2(X)) is the desired associative subalgebra.
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The converse is an immediate consequence of the spectral theorem,[j

We define the center of M to be the set 2Z(M). Since Z(1)
= 7Z(Z2(1)) it follows as in the proof of Lemma 5.2 that 2Z(M1) is
a weakly closed associative subalgebra of M containing 1. Also
it is immediate from the preceding that a € Z(M) if and only if
a operator commutes with each idempotent in M. Recall that an
operator s € M is a symmetry if s- = 1. Then we have the fol-

lowing characterization of the center,

Lemma 5.3, a € Z(M) if and only if U,a = a for all symme-

tries s € M.

Proof, There is a one-one correspondence between the set of
idempotents in M and the set of symmetries in M, given by
p~—-s = 2p-1s Furthermore it is easily verified that US = ng_q
= 2Ub-+2U4_P-{[. Thus a € Z(M) if and only if (Ub-kUq_p)(a)==a
for each idempotent p € M (see Lemma 2.11) if and only if U, =a

for each symmetry s € M. []

From Proposition 4.11 we know that if p dis an idempotent in
M then Mp = UP(M) is a monotone complete JB-algebra. If p is

central we compute the center of Mp.

Lemma 5.4, If p 1is a central idempotent in M then Z(MP)

= (1), .

Proof. Clearly Z(M)p c Z(Mp). In order to prove the converse
inclusion it suffices to show that each idempotent e € Z(M?) belongs
to  3(M), . Let a € MT. Then by Lemma 2.11 a = (U, +U,_ a5 50

U.a = Ue(Up-qu_p)a = UU,a < Upa < & using Lemma 4.5 twice.
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Again by Temma 4,5 e is compatible with a, and e € Z(M).
In particular e = Upe € Z(M)P .U

Let p be a gtate in the set K. Since the projections in
M form a complete lattice there is a smallest projection supp(p)
in M with the property p(supp(p)) = 1. Suppp is called the
support of p. If we apply this to the restriction of p to Z(11)
we obtain the support c(p) of p|Z(M), called the central support

of p.
We say M is a JB-factor if Z(M) =R1.

Lemma 5.5, If p 1is an extreme point of K +then Mc(p) is

a JB-factor.

Proof. Suppose e is an idempotent in the center of Mc(p)
such that O # e # c(p). By Lemma 5.4 e € Z(M), so (Ue+U1—e)a
- - ~ g% _ =iy
=a for all a € M. Let p, = (e,P) U¥p and p, = (1-e,p I%nep.
Then p,,pp € K and »p = (e,p>p4-+<4—e,p)p2 is a convex combina-
tion of Pq and o e Thus Pr=pPr=p, which is impossible by

choice of e. EJ

Proposition 5.6. TLet A be a JB-algebra, p a state of A

and c(p) its central support in A. TLet ®, denote the map

Pt A~ Kc(p) defined by wp(a) =U )(5), where a is the image

c(p
of a in A. Then Py is a Jordan homomorphism such that mp(A)
is strongly dense in E;(p). Furthermore, if p is a pure state

then the strong closure of mp(A) in & is a JB-factor.

Proof, Let M =A and X Dbe the state space of A consi-

dered as a full set of invariant state of M. Since Ub is
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strongly continuous for b € M it is clear that wp(A) is strongly
dense in Mc(p)’ and by Lemma 5.5 that the strong closure of mp(A)
in A is a JB-factor whenever p is a pure state. It remains to
show that wp is a Jordan homomorphism, or what amounts to the same,
to show that the map Ue on M is a Jordan homomorphism for each
central idempotent e in M. ILet e be one. Then I = Ue4-Uq_e,
so L, = %(I-kUe-ane) = U, . In particular Lg = Ug =U, =1 ;3
thus if a,b € M we have Le(a°b) = LeLa(b) = LaLe(b) = a°Le(b).

Applying Le again and using that Le is an idempotent we have

L (a*b) = L (L (a*b))
Ly (Lo (b)+a)

L (a)°L,(b)

L (a°L (b))
Ly(b)°L,(a)

1]
]

completing the proof. O

If A is a JB-algebra and ¢ a Jordan homomorphism of A
onto a strongly dense Jordan subalgebra of a JB-factor, we say o

is a factor representation of A,

Corollary 5.7, A JB-algebra has a faithful family of factor

representations.

Proof. A faithful family is given by the set of wp with »p

a pure state. E]
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§ 6. Comparison theory

Throughout this section M denotes a JB-factor , and OD its
lattice of idempotents, Our main purpose is to show that if 5')

has no minimal elements then there is e 66‘) and a symmetry s €M
such that Uge = 1-e . Note that for a symmetry 's the map U, is a
Jordan automorphism of M , and U restricts to a lattice auto-
&

morphism of 9 We say two idempotents p and q in are

equivalent and write p ~ q 1f there exists a finite family

SqsevesSy of symmetries in M such that
{Sn{sn_1{-.-{S1PS1}~0-}SH_1}SH} =4q 5

i.e. U, Ug ...Us(p)=q.Wesay p~dq vias if U_p = 4.
1 S ——— S

s
n "n-1 53

We write qu if p~r <q for some 1r € . We say p and

qd in gb are related if there exist nonzero D459 € gD with

P1fp9 q15q9 and p1"‘q10

Lemma 6,1 If O;éqesa then V{p egzp Zaq} =1,

Proof. Let e = \/{p € gD:p £4q} . Since M is a JB-factor
it suffices to show e is central, Let s be a symmetry in M .
Then Use = \/{Usp :p € 5391) £4q} . Now p <£q implies Us'p <4,
2
so we have Uce <e ., But then e = Uje <Ugse , so Use =e .

By Lemma 5.3 e 1is central. D

Lemma 6,2 Let p,q € 53 . Then there exists a symmetry s

in M such that US{pqp} = {qpq} .

Proof. Let a = p+q-1 , so a2 = 2p°qd-p-g+1 . Since

L = 4(I+U
p = 2140,

2
a = U —U -— -1 °
( D 1—p)q P

-U4 _p) we have
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By Lemma 2,11 Mp and M1_p are contained in Z(p) , so that
is compatible with p. Similarly a? € Z2(q) . In particular

1
la] = (a2)2 € Z(p) N Z(q) . Therefore we have by Lemma 2,11

{la] plal} = p-lal® = p:a® = pe(2p>q-p-q+1)

{pap} .

2pe(p°q) - p°q

By spectral theory there is a symmetry s 1in the associative
strongly closed JB-algebra W(a) generated by a such that
sea = la| . Since all elements in W(a) operator commute it
follgws that U, and Ulal commute, and USUlal = Use|al , See

[(13,p.38,eq.(66)]. Thus

Uglpap} = U0y, 1(R) = Ugog1(p) = Uglp) =
2(p+a-1)°[(p+a=-1)°p] - (2peg-p-a+1)-p

(apa} . [

Lemma 6.3 Every pair of non orthogonal idempotents p and
d in M dominate nonzZero idempotents e and f in M respec-

tively such that e ~ f via a symmetry.

Proof. Note {pap} <p , so r({pap}) <p . Similarly
r({apa}) < a . PFurthermore p°q # O,soby Lemma 4.8
{pap} # 0 # {apa} . By Lemma 6,2 there is a symmetry s in M
such that' Us{qu} = {apa} . Since US is a lattice automorphism
of 99 it follows that U r({pap}) = r({apal}) . Thus e = r({pap})
and f = r({apa}) are the desired idempotents, {]

Lemma 6.4 Every pair of nonzero idempotents in M are

related,




- 50 -

Proof. Let p and d be nonzero elements in P . 1Ir P
and 4 are not related, then by Lemma 6.3 p 1is orthogonal to
every idempotent r £q . Thus r < 1-p , whenever r £q . By

Lemma 6.1 p =0. N

The next result almost shows that whenever e and f are
orthogonal and e ~ f then e ~ f via a symmetry, We are greatly

indebted to Richard Schafer for showing us the proof.

Lemma 6.5 Let e and f be orthogonal idempotents in M .
Suppose there exist symmetries s and t in M such that

U, U.e = f . Then e ~ f via a symmetry.

Proof. Tet a = 2{est} (recall that {becd]} =
(beec)ed+ (ced)°b - (deb)ec) . We will show

(6.1) a® = e+f
(6.2) ace = %a
(603) aof = %a

r

(6.4) e~f via the symmetry 1+a-a° ,
We first establish

(6.5) {est} = {swt} = [stf} ,

where w = {ses} = {tft} . By [13,p.57,e4.87] we have the identity

{x{becbly} = {{xbelbyl}+ {{cbylbx]} - {{xbylbec} .

Thus we have, since {bbd} = p2ed and {bcd} = {dcbl ,

{swt} {s{ses}t}

{{ssel}st]) + {{est}ss]) - {{sstlse}

{est} + {est} - {tse}

]

{est} .
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Symmetrically {tws} = {fts}, which proves (6.5) .

Now let e, =e, e, =1, e3=’l-e-f. Then ©118p,85 are
pairwise orthogonal idempotents with sum 1. ILet M =
M’I’I@M22®M55®M’l2@M’15@M25 be the Pierce decomposition correspon-

ding to them, i.e.

U M) if i=J
eq
M.. =
13 oy if 1<j
ei,ej(M) * Ledo
where Uei,ej<x) = {eixej} , see [13,p.120].

By the multiplication rules for Pierce components [14,p.2.5]
{e,lbc} € M,],,+M,|2+M,]5 for all b,c € M. Thus za = {est} €
- 4
Mq4 +M/12+M,13. But by (6.5) +a = {fts}, so =za € 1"122+1"I,|2+M25 .
Therefore

a € (M,],] +1".[,|2+M,]3) N (M22+M,]2+1"I25) =1M,5 .

But Mij = {x: ei°x=ej°x=%x} by [13,p.120,eq.(13)]. Thus we
have established (6.2) and (6.3).

From Glennie's result [12], [13,p.51] that there are no iden-
tities of degree < 7 in three variables, which hold for all special

Jordan algebras, but fail for some others, we have the identity
4{xby}2 = 4{x{b(x°y)bly} + {x{bygb}x}

+ {y{bxzb}y} - 2{xbx} ° {ybyl.

Thus we have by (6.5)

a“ = Ll-{swt}2 = 4{s{w(set)wlt] + {s{v\rtgw}s}
+ {t{ws2w}t} - 2{sws} ¢ {twt}
L{s{w(s°t)wlt} +e+f - 2e°f

]

A{s{w(s°t)wit} +e+ T

It

2

Therefore to show a< = e+ f we must show {s{w(s°t)wlt} =0.
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This will be accomplished as soon as we have shown

(6.6) {w(s°t)w} = {s{e{s(s°t)slels]
(6.7) {s(s°t)s} = s°t
(6.8) {e(s°t)e} =0 .

The identity (6.6) follows from eq. 2.25., To establish (6.7) we

use the identity

I, =30 L ,=2T°
CB c 02 c

[13,p.35,eq. 561, which implies Lg = L . Thus

{s(s°t)s} = (2L§-L82)Lst = (2L2-TL )t = s°t,

To prove that (6.8) holds note that s°t = {1st} = {eqst}i-{e2st} +
{east}, so f{e(set)e} ={e1(Sot)e1} = {eq{eqst}eq} = {eq%aeq} = 0,
where we have used that a €1M,,, {e,st] € Myp + M5 +Mpy y and

+M Thus we have shown (6.1).

{eBSt} € 1"155-|—M,]5 03 * v
To show (6.4) let h =1+a-a" = a+ (1-e-f). Then by (6.1)

~ (6.3)

2 _ 824230 (lmemf) + (1me-f)2

[y
Il

e+f+0+1-e~Ff =1,

so h is a symmetry. ZFinally

U e = 2he(h°e)-e = 2h°($a)~-e = a—-e = f .

h

The proof is complete.D

Let e and f Dbe orthogonal idempotents in M, and M= X Mij
i<j

the corresponding Pierce decomposition for e, f, 1-e-f .

Then e and f are said to be strongly connected if there is

a €M such that a° = e+f . By virtue of (6.1) - (6.3) of the

12
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previous proof we have the following corollary.

Corollary 6,6 If e and f are orthogonal idempotents in

M and e~f via a symmetry, then e and f are strongly connected.

Temma 6.7 If e and f are orthogonal idempotents and e~f
then e and f dominate non-zero idempotents p and q respec-

tively such that p~q +via a symmetry.

Proof. By assumption there exist symmetries SqseeesSy in M

and idempotents €1 = €3€535004,€ = £ such that €5 ~ €441 via

n+1

s i=1y00eyn¢ We use induction on n. If n =1 the lemma is

i ?
trivial, and if n =2 it follows from Lemma 6.5. Assume n > 2
and that the lemma holds for all smaller values of n .

If e and e, are orthogonal then by induction there exist
nonzero idempotents p < € and r < ey with p ~r via a symme-

and

try. Let q={snrsn}. Then q <e .4 =f, T~qg via s ,

p and q are orthogonal. By Lemma 6.5 p~q via a symmetry.
It e, and e, are not orthogonal then by Lemma 6.3 there
exist nonzero idempotents p <e;, r <e such that p~r via a

symmetry. Now procesd as in the preceeding paragraph. D

Lemma 6.8 Let {ea} and {foc} be indexed sets of pairwise

orthogonal idempotents. Let e = Ve T = Vfu. and assume e and

o ?

f are orthogonal. If ey~ Ty via a symmetry then e~f via a

symmetry.

Proof, Let p and q be orthogonal idempotents with p~q
via a symmetry. From the proof of Lemma 6.5 applied to the case
t =1 we have that p~qg via a symmetry h = a+ (1-p-q) where
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a® =p+q s Thus p~q via -h = -a-(1-p-q). Since "aEUp...q(M)v

-a =2r- (p+q) where r is an idempotent, r <p+q. Thus p~q
via 2r-1 .,

We can thus for each pair €y f. choose an idempotent Py =

o

ea+foc such thatv em~f“ via 2pa—/l . Let p =Vpa. We show

e~f via 2p-1. For this we establish

(6.9) p-p, is orthogonal to e, for all a

(6.10) {(2p—-’l)e“(2p-’l)} = £, for all «

By assumption e, +f, is orthogonal to eg +fB for all o #B .

Thus p, is orthogonal to Pg for all o #8, and p = \épB+pa.
8 Lo
Therefore

P-D, = Vp j\/(e+f)§_’l—(e+f),
% gda P Topta PP oo

which proves (6.9). In order to show (6.10) it suffices to show

(6.11)  [(20-1)eg(2p-1)] = {2py=T)e (2py-1)} -

Now by (6.9)

Lap—ﬂea = <L2pa—4'FL2(p—pa))em = L2pa;1ea .
Since p Z Py P and Pg operator commute so
IS e, = Lo L e, =L, L e, =15 e
2p-17a = T2p-1"2py~1"a © "2p,~1"2p-1"a ~ “2p, ~17a "
Thus
P 2
{(2P" I)ea(gp-/|>} = (2L2p_/| - I)ed‘
ATl

as asserted. Thus (6.11) and therefore (6.10) follows.

By (6.10) we have that for finite subsets {ea yeess€q 1 of
1 n

{ea} we have
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Y, s % v
U2p—’|<,| ea.i> = U2p—’l(§|: ea..) = % fo. = y o, -

1

By Lemma 4.1 we have ng_,](e) = f, as asserted. D

Theorem 6.9  (The halving lemma). If the JB-factor M has

no minimal idempotents then every idempotent e in M can be
halved, i.e. e =p+9g where p and g are idempotents in N

such that p~q via a symmetry.

Proof. We may assume e #£ 0. Let {e,} end {f,} be maxi-
mal collections of idempotents satisfying the hypotheses of Lemma

6.8 and e +fq§e for all a. Let p=Vea,q=Vfa. By

o
e. If not then

Lemna 6.8 p~qd,p+9 <e. We show p+q
O# r =e-~(p+q). By essumption r is not a minimal idempotent
so there exist nonzero idempotents r' and r" in M with sum r.
By Lemma 6.4 ©r' and =" are related, say O # rj <r' and

0 # I'L|' < " are equivalent, Since r) and r} are
orthogonal +they have by Lemma 6.7 non-zero subprojections ré
and r5 with r) ~r5 via a symmetry. But then {ré} U {ey} and
{rg} U {fq] are families satisfying the conditions of Lemma 6.8,

contradicting the maximality of {ea}, {t,} - Thus we conclude

that p+q =¢e . D

We say a dJB-factor is of type I if it contains a minimal
idempotent. Notice that if p is a minimal idempotent in a JB-
factor M then every idempotent q in Mp is an idempotent in

M with 0<gq=<p. By minimality of p it follows that I =R.

Theorem 6,10 Let M bhe a JB-factor of type I . Then all

minimal idempotents p,q in M satiefy p~q via a symmetry,
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and 1 = Vp, for a suitable orthogonal family {pa} of minimal

idempotents.

Proof. The first statement follows from Lemma 6.3 if p and

g are non orthogoal, and from Lemmas 6.4 and 6.7 if they are ortho-
gonal.,

For the second statement let {Pa] be a maximal family of
orthogonal minimal idempotents. Suppose p = Vpa<:1' Then for
any B Pg and 1-p are related by Lemma 6.4, say Pg~ P, <1-p
via a symmetry s . Since US is a lattice automorphism of the
lattice gD, p. is a minimal -idempotent., This contradicts the

0
moximality of the family {p,}. Thus Vpy = 1. 0

We shall say that a JB-factor is of type In’ 17<n<oo, if
n is the least upper bound of the number of pairwise orthogonal

non-zero idempotents.
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§ 7. Spin factors

We show that every dJB-factor of type 12 is an abstract spin
factor as defined by Topping [30], and thus isometrically isomorphic

to a JC-algebra [31].

Let H be a real Hilbert space of dimension at least % and e
i
a distinguished unit vactor in H., ILet N = {e}”, so H =IRe®N.
Then H becomes an abstract spin factor when equipped with the

Jordan product

(7.1) (ace+a)°(Be+b) = (ap+(a,b))e + (ab+pa), «,BE€R, a,bEN.,

Proposition 7.1 Every JB-factor M of type I2 admits an

inner product making it an abstract spin factor. Thus every JB-

factor of type 12 is isometrically isomorphic to a JC-algebra.

Proof. Let N be the linear span of the symmetriesin M dif-
ferent from * 1, Then M = R1+N. Indeed, since M 1is of type
12 if a € M then there are minimal orthogonal idempotents p,q €M

with sum 1 and @, € R such that a = ap+Bgq, hence
(7.2) a = F(e+p)1+3(0-B)(p-q) €R1+N,

Thus M = R1+N.

Let s,t € N be symmetries different from 1. Then s°t €R" .
Indeed, let p,q be minimal orthogonal idempotents such that s =p-q.
Let M = M,MGBMgeeM,]g be the Pierce decomposition of M for p,q,
and let +t = Gp+Bg+r be the corresponding decomposition of t.
Then pe°r = q°r = v, so that

2

1 =t = (a2p+e2q+r2) +z(o+p)r .



- 58 -

By properties of the Pierce decomposition r2 € M 9N, [13,p.119,
Lemma 1], and (a+g8)r = 0., If r =0 then 0.2 = 52 =1 s0 4=-B
gince t £ X. If r #£#£0 then «+8 = 0. Thus in either case

t = o(p-q) +r, so that
s°t = (p-q)°(a(p-q)+r) = a1€R1 ,

and the assertion follows.
We now show R1 N N = {0}, thus showing that M =R1@N.
185 o, Symmetries # 1, and
Ajresssh, € R. Then for j € {1,e0.,n}

n
Suppose 1 = ;‘lx. S. with Sq9eeesB

84 = sj°’l = XA sa."si €R,

contrary to the assumption that sa.;éj:’l y80 1 £N, and the sum is
direct.

To constrﬁct the real Hilbert space let p be the linear
functional on M which is 1 on 1 and O on N. Define a bilinear
form on M by

(a,b) = p(acb).

By (7.2) a €M can be written as a = M +us with s a symmetry
in N. Then if a #£#0
2) 2

(a,a) = p(a®) = A% +p° £ 0,

so that (,) is an inner product on M. Note
(11" = {a:p(as1) =0} = W.

By (7.2) and M = R1@®N every element of N is a multiple
of a symmetry; thus if a,b € N then a°b € R1 , and therefore
(a,b)1 = p(a°b)1 = a°b. Thus we have

(a1+a)°(B1+b) = (ag+(a,b))1 + (ab+Ba) ,

which shows that (7.1) holds. It therefore remains to show that M
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4
is complete with respect to the norm ||| a||l = 0(a®)? . But if a
ap+Bq €M with p and q orthogonal minimal idempotents then

with |la|| = max(|a],|8]) the JIB-norm, we have from (7.2)
277 a|l < 27%(a®+8%)7 = ||l alll <llall

so the two norms are equivalent. The proof is complete.
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§ 8. Jordan matrix algebras

Let (. be any algebra over R with identity 1 and involu-
tion * . TLet Czﬁl denote the nxn matrices over (L with A - A*
the usual involution (apply * +to each entry and then transpose).
Let H(CLH) denote the hermitian matrices in Clh (A=A*) with the
product A°B = 3(AB+BA), If H(Cln) is a Jordan algebra then we

say H(Cln) is a Jordan matrix algebra.

Theorem 8.1 Every JB-factor M (except those of type I2 )

is isomorphic to a Jordan matrix algebra H(CLn). If in addition

M is not of type I then QL is associative.

Proof. It is known that a Jordan algebra with identity is iso-
morphic to a Jordan matrix algebra H(Cln) with n > %3 if and only
if the identity 1 is the sum of n strongly connected idempotents
[13, Theorem 5, p.133]. Furthermore (I will be associative if
n >4 [13, Theorem 1, p.127]. We apply this result to the differ-
ent types of JB-factors.

1 If M dis of type In, 3 < n <, then by Corollary 6.6 and
Theorem 6.10 the identity is the sum of n strongly connhected idem-
potents.,

2. Buppose M is of type I, . If the identity is the supremum
of an infinite set of orthogonal minimal idempotents, divide these
idempotents into four sets of equal cardinality {pi}, i=1,2,%,4,
and let pi = &Pif Then %pi =71 and by Corollary 6.6, Lemma 6.8
and Theorem 6.10 the pi are all strongly connected. If it should
happen that no such infinite set of idempotents exist, then 1 1is

the sum of arbitrarily large finite subsets of orthogonal minimal

idempotents, so 1, applies
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3. Suppose M is not of type I . By Theorem 6.9 1=p+q
with p~q via a symmetry s . Applying Theorem 6.9 again to p
we have p = P4 +DPs with Pq1~Ps via a symmetry t . Define
Q; = US]L_):.L « Then Adq+qs = Q, and so 1 = Py+Do+dq+dy with
dq~ Py via s, P4~Ds via t, Py~ s via s . By Lemma 6.5
and Corollary 6.6 each pair among {p,l,pg,q,l,q?} are strongly

connected, concluding the proof. D

Lemma 8.2 Let H(Q,), n >3, be a Jordan matrix algebra
which is also a JB-algebra. Then for each a € (L , a*a = aa* = 0

implies a = 0.

Proof. Let {Eij} be the matrix units for OLn. If a €CL

Then A € H(q,) and G
2

let A = a*E_ A, + aF = a*aE,l,‘ +aa"‘E22 o

12 21°

Thus if a*a = aa* = O then A° =0, hence A =0, since H(QA)

is a JB-algebra, Thus a =0 . D

Proposition 8.3 JB-factor M of type I, (3 <n<o) is
finite dimensional, and thus the JB-factors of these types are pre-
cisely the nXn Jordan matrix algebras over the reals, complexes,
or the quaternions, or the exceptional algebra P’I% - the 3Xx35

Jordan matrix algebra over the Cayley numbers.

Proof. By Theorem 8.1 we can identify M with H(A,) . We
will show that if a Jordan matrix algebra H( Q_n) , n>3%, is also
a JB-algebra then Q/, and hence H(CLn) s is finite dimensional.

We will use a result of Albert [1], which says that an a&lter-
native quadratic algebra over IR is finite dimensional.(& quadratic

algebra is an algebra with identity in which every element satisfies

a quadratic over IR and every element generates a subalgebra which
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is also a field. An algebra is alternative if the identities
(@°)b = a(ab) and Db(a°) = (ba)a hold).

We first show that each a € (L satisfies a quadratic. Note
that the set H((OL) of hermitian elements in (1 equals R1.

Indeed, if are the matrix units in CLn then since

{(B..3,_. .
1§°1%i,J<n
ZEii =1 and H(Cln) is a JB-factor of type In’ each E,. is

a minimal idempotent. Thus

{aE..

;3 Pa€ HAY = (B ME,} = RE;, ,

11

and H(AAL) = R1, as asserted. Therefore, if a € A& there is

A € R such that a - A1 is skew adjoint, hence (a-x1)2 is her-
"mitian so in IR1. Say (a—k1)2 =ul. Then a satisfies the
quadratic a2-2ka4-(X2-u) =0,

It is known [13, Theorem 1, p.127] that if H(Cln) is Jordan,
n>3%, then (L is alternative. There remains to show that for
each a € L, R1+Ra is a field. Suppose a satisfies the
quadratic a2-aa-61 =0. If B #O0O then clearly a is inver-
tible in R1+ Ra. If B =O then a° = ca . But then either
a=0 or a=01,., Indeed, since (_ is alternative
%) a(a*a)

(8.1) (a*a)a a*(aa)

]

a*(a

(8.2) a(aa*) = (a”)a* = (ca)a* = alaa*)

Both aa* and a*a are hermitian, hence in M1 . If both are

0O, and if one of them is non-zero

zero then by Lemma 3.2 a

then by (8.1) and (8.2) a = a1 . This completes the proof that
M is finite dimensional,

Finally, the last statement of the proposition follows from
the Jordan —von Neumann - Wigner classification of finite dimensional

formally real Jordan algebras [15]. An alternative proof is provided
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by the fact that finite dimensional alternative division algebras
over IR must be either the reals, complexes, quaternions, or the

Cayley numbers, see e.g. [19, p.234]. {J

Lemma 8.4  Let H(Ot,n) , >3, be a Jordan matrix algebra
which is also a JB-algebra. Assume (I is associative. Then

A*A = O if and only if A =0, and A*A >0 for all A€ (A .

Proof. We assert that if A € A then o(A*A)U {0} =
o(AA*)U {0}, TLet U ve any associative algebra over IR with
identity, and let U be U with the Jordan product acb =+(ab +ba).
Then for elements of ’Z,(+ , Jordan inverses in ’Z,{_+ coincide with
associative inverses [1%3, p.51]. Thus if B € H(Qn) Ca_z then
B is Jordan invertible in a_; if and only if B is invertible in
A, . Thus o(B) = {A€R:A2I-~B is not invertible in C{n} .

Now a standard argument shows that in any associative algebra over
R with identity 1, if O # A€ R +then ab - A is invertible
if and only if ba - A1 1is invertible. The assertion follows.

As a consequence of the preceeding it follows that if a € a.
and a*a =0 then a =0, Indeed, if {Eij} are the matrix units
in AR, and A =aB,,, then A*A = 0. By the above O = AA* =
aa*E,, , so Lemma 8.2 implies a = 0.

We assert that if A*A <O then A =0, 1Indeed, if a €L

then
0 < By, (a*E, +ani)2Eii - a*aE,, ,
so if A = Zaij Ei;j then A* = Za:']fi Eij , and
02 By (AMA)B;; = % (ag ey )F;; 20.
Thus al,;iakiEii = 0, and therefore by the preceeding paragraph
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=0 for all k,i., Thus A =0, as asserted.

1]

ki

Note that in particular A*A = 0O implies A =0,
Let A € Cln' By spectral theory there exist Bq,Bg >0 in

H(A,) such that A*A =B,-B, and B;B, = 0. Now (AB,)*(AB,)

= BEA*AB2 -nggo, so by the preceeding paragraph A32 =0,

hence B, =0, and A*A>0. [

We are now in the position where we can construct the GNS~
representation due to a state on a JB-algebra which is a Jordan

matrix algebra over an associative algebra.

Lemma 8.5 Let H(CLn), n > %, be a Jordan matrix algebra
which is also a JB-algebra. Assume (I is associative. Iet »p
be a state on H(Cln). Then there exist a complex Hilbert space
Hp, a Jordan homomorphism i of H(Cln) into the self-adjoint

such that for

operators on Hp, and a unit vector §p in Hp,

LEH(Q,), (Ao = (m (A)E,E) .

Proof. Extend p to all of (L by defining it to be zero
on gkew-adjoint elements of Clll. By Lemma 8.4 p 1is a linear
functional on O such that p(A*A) >0 for all A€ A . If
C14; is the set of operators A*A, A € Cln then Cl; is a cone and
the map B ~ A*BA maps (1, into itself. Thus if we define ||A|
- Iasa|? then |82 = Braran| < [B*(JaralDB] < 1AJ2IBI2, and

||A+B||2 = ||(a*+B*)(A+B)|| = sxex%{(A*A+B*B+B*A+A*B,w)
U]

a 1
< supl(A*A,w)+B*B,w)+2(A*A,w)*(B*B,w)*]
weEK

< (142 + 112 + 2llallliBll = al+iBh? ,

where K is the state space of H(CLh).
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Since the norm completeness of H(CLn) implies CLh. is norm com-
plete, CX,n with the norm || || is a real Banach algebra. Thus
the usual GNS-construction is applicable to CLn, see [10, Propo-
sition 2.4.4] which is stated for algebras over the complexes, but
whose proof is valid for real Banach algebras. We can tTherefore
find a real Hilbert space H, a =*-homomorphism T of CLn into
the bounded operators on H, and a unit vector & in H such
that <A,p) = (m(A)E,E) for all A € CLn.

Finally, let Hp be the complexification of H. Then the
injection of H dinto Hp induces an isometric imbedding of the
bounded operators on H into those on Hp. The injection is also
a #*-isomorphism, so the image of HCHQZH)) consists of self-adjoint
operators. (It is a JC-algebra by Lemma 9.3 below.) Let Ty be

the composition of m and the injection of H into Hp, and §p

the image of & . {]

Theorem 8.6 Every JB-factor M except M% is isomorphic

to a JC-algebra.

Proof. We have already shown that I,-factors are isomorphic
to JC-algebras, Proposition 7.1. It is a classical result of
Albert-Paige [2] that M% is not special, and so cannot be isomor-
phic to a JC-algebra. All other JB-factors are by Theoren 8.7
and Proposition 8.3 isomorphic to a Jordan matrix algebra H(C{n)
with QL associative. We will show that such JB-factors are iso-
morphic to JC-algebras.

Let K be the state space of M and H the Hilbert space

direct sum I @ Hp, where H_ is given by Lemma 8.5. Let m =

pEK P

2 ™ be the direct sum of the representations np on Hp found
p€K
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in Lemma 8.5. Then for A € CLn

lm(Il = igﬁllﬂp(A)ll = 1Al

On the other hand “np(A)épH2 = p(A*A) , so
llm ()12 > p(a*a)
Thus
> > s ot a2
1A= = flm(aOl= > sup p(A*A) = laxafl = flaf=,
p

so T is an isometry. Therefore the image of M in B(H) - the

bounded operators on H - is a JC-algebra. )

For pure states we can sharpen the above result. The following

proposition will not be needed in the sequel.

Proposition 8,7 ©Let A be a JB-algebra and p a pure state

on A . Let P be the Jordan homomorphism of A into A defined

by p 1in Proposition 5.6. Then the strong closure of mp(A) in A

is a JB-factor of type I .

Proof., Let M be the strong closure of mp(A) in A . By
Proposition 5,6 M is a JB-factor. If M = M% then M is of
type I; otherwise M is isomorphic to a JC-algebra by Theorem8.6.
In particular, by [29,Theorem 7.1] a state w on M is pure if and
only if its kernel I, = {aEPI:w(a2)=(H is a maximal quadratic
ideal (a quadratic ideal is a linear subspace I of M with U b €T
vhenever a € I, b € M). Since every state of M majorized by a
multiple of p 1is itself strongly continuous, p is a pure state
on M ., Thus Ip is a strongly closed maximal quadratic ideal.

Since Ip is a Jordan algebra, it has an identity e, which equals



- 67 -

1-suppp . OSince Mp is a quadratic ideal for each idempotent p
in M , the maximality of Ip implies that suppp is a minimal

idempotent. Thus M is of type I . D
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§ 9. Ideals and representations

In this section we prove our main representation theorem for

JB-algebras,
Let A be a JB-algebra. By a Jordan ideal in A we shall

mean a norm closed linear subspace J of A such that a € J,

b € A implies asb € J. From the identity U.a = obe(bea) ~b>°a
it follows that Uba € J whenever a or b belongs to J. We
say a family (ua) in J 1is an increasing approximate identity

for § if i) 0<wu, <1, ii) a < implies ug < Ug

a
iii) 1gpua-umoan =0 forall a €J. If A/J is given the quo-
tient norm we let a - 2+J Dbe the canonical homomorphism of A
onto A/J.

We shall first show that A/J is a JB-algebra. The proof is

modelled on the analogous one for C*-algebras, as found in [10].

Lemma 9.7 Let J be a Jordan ideal in the JB-algebra A,
Then J has an increasing approximate identity (u“) such that

for all a € A we have

o+ 3l = 1inla=ugeal = 1gnlu, _al -

Proof. Let A Dbe the set of finite subsets of J ordered by
n
. . 2
inclusion. TFor & = {agsaeesal €A let v, = i§1ai’ u, =
va°(%ﬂ-rva)-q. Then u, € J, and by spectral theory O <u, < 1.

On the other hand

-2 1 -2 1
NV (1 +v )T 2 /i,

]

- 2
Z 01810 = Ty (V)
In particular

(9./1) Uua_/](ai)i/l/q'n [ i=/|,..-,n.
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Now if a,b € A then

(9.2)

2 2
10070 = lo,2) -

Indeed, by eq. 2.25

10,2212 = || {alb{ba®bIblal]

< || {pa®}} [I{ab2a)] ,

so that [|Ub%| < [0 a7, and (9.2) follows by symmetry.

(9.3)

Tndeed, (a°b)® = $(U_b) b +4U b

Let a,b € A with b > 0. Then we have
2
lla=pll < lugbll lief .

2-+£Uba2, so by (9.2) we have

2 2
la=bl| < 2| pll o]l + 2l|U, b7

< #ugpll (ol + vl vl

and (9.3) follows. In particular by (9.1)

Thus

i |
I Cag~1) a2 "< nuua_4<a§>n laZll < Anlla;l1®

for all a € J+, and therefore by linearity for all a € J,

[ug=1eall = 0 with o . In particular (u,) is an approximate

unit,

By spectral theory it follows, see [10,p.716], that (ua) is

an increasing approximate unit.

Thus

Let b edJ. Then ua°b - b, Therefore if a € A

Timlla-u call = Tim||a-u, a+b-u bl

Q

I (1-uy)e (a+d))|

IA

lla+bl|

la+]]

v

Toila-uy-al 2 Limja-ug:al

> inflla+b|| = [la+d]l,
beJ
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so the first equality in the lemma follows. To show the second

let a € A. Then
(9.4) U 1(a) = a+c

U.a-

where ¢ =U. (a)=-2u,°a € J. If b € J then by (9.1) U ,{b)-*o.
Uy, o u,-
Thus

(9.5)  THY, _(a)] = TEEIU, @)l < las]
o )
where the last inequality follows since |u,-1|| <1, so the norm
of “Uﬁ _4ll £ 1+ Thus by (9.4) and (9.5)
o
la+dll < l_iLEHUua_q(a)ll < l'l.m!lUu“_q(a)lI

< inflla+b|l = |la+d]| .
bed

The proof is complete. U

Lemnma 9.2 Let J be a Jordan ideal in a JB-algebra A,
Then A/J with its natural Jordan product and quotient norm is a
JB-algebra.

Proof. We have to show that if a,b € A then
1) llacb+d| < la+3] |lo+alf ,
i) a5+ = flasd]|®,
#) |22+ < a2+ .
Let a,b € A, Then

lasb+J|| = inf|a°b+c|]

c€J

< inf ||(a+c)e(b+d)||
c,d&d

< inf Jla+e| |lo+d]
c,d€

la+all lo+3ll .
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Thus i) follows, and in particular Ha2+JH.§ Ha+JH2.
To prove the converse inequality in ii) let a € A. Note that if

beA, b <1, then (Ua)® = U fabZa} < U (a%). Thus ||u, (a)]?

= ”Ub(a2)

. In particular if (ua) is the approximate identity

found in Lemma 9.7
' 2 . 2 . 2 2
lavl? = Lguly, (I < 23alu, (2] = 12431,
and 1ii) is proved.

Tinally we show ii). Since for a € A, U, _1(a2) >0,
o

Uua_q(a2) is itself a square. Thus by Lemma 9,1, if a,b € A
Ha2+b2+J“ = 1&mHUua_1(a2¥b2)H

. 2 2
= 1im||U U b
é@” uarﬂ(a )+ ua-ﬂ( i

v

. 2
1, _q(a)

Ha2+JH . O

Lemma 9.2 ILet A and B be JB-algebras and ¢@:A - B a
Jordan homomorphism such that o(1) =1, Then o¢(A) is a JB-

algebra, and if ¢ 1is injective +then ¢ is isometric.

Proof. Let a € A and C(a) bethe JB-subalgebra of A gene-
rated by a and 1 . By Proposition 2.3 C(a) is identified with
areal C(X), so if ¢ is injective it follows from well known
arguments that |la|| = ||le(a)||, hence ¢ is isometric. In the gene-
ral case let J be the kernel of ¢. By Lemma 9.2 A/J is a JB-
algebra and the induced homomorphism ¢ :A/J - B is an ispmorphism
onto @(A). By the above & is isometric, so its image is complete,

hence is a JB-algebra. g
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It is known that no set of identities exist characterizing
special Jordan algebras among all Jordan algebras [13,Thm.2,p.11].
However, there do exist identities satisfied by all special Jordan
algebras but not by all Jordan algebras, "s-identities'. In what
follows f(a,b,c) = 0 will be any such s-identity in three vari-

ables not satisfied by M% (ef. [13,Thm.12,p.51] for an example).

Lemma 9,4 For a JB-algebra A the following are equivalent:
i) A is special,
ii) f(a,b,c) =0 for all a,b,c € A,

iii) A is isomorphic to a JC-algebra.

Proof, The implications 1iii) = i) => ii) are trivial.
We show ii) = iii). TLet p be a pure state of A, c(p) its
central support in K, and wp the associated factor representa-
tion (cf. Proposition 5.6). Since mp(A) is strongly dense in
Eg(p) the Kaplansky density theorem (Proposition 3.9) shows that
the wnit ball in ¢ (A) is strongly dense in that of Kc(p) .
Since f(mp(a),wp(b),wp(c)) = @p(f(a,b,c)) for all a,b,c € A, it
follows from the strong continuity of multiplication on bounded sets
(Proposition 3.7) that the identity holds in Ko(p)‘ By Theorem8.6
K;(p) is isomorphic to a JC-algebra, hence Lemma 9.3 shows wp(A)
is isomorphic to a JC-algebra.

Let B = ZC)mp(A) be the direct sum of the algebras mp(A),
p apure state (i.e. pointwise operations with HZ(a)pH::s%p”(a)pH).
Clearly B is isomorphic to a JC-algebra, The map a - Zq$(a)
is an isomorphism since the pure states separate points, so by Lemma

9.3 A is isomorphic to the JB-algebra which is the image of A
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in B . Thus A is isomorphic to a JC-algebra. 0

Theorem 9.5 Let A be a JB-algebra. Then there is a unique

Jordan ideal J in A such that A/J has a faithful isometric
Jordan representation as a JC-algebra, and every factor represen-

tation of A not annihilating J is onto the exceptional algebra

8
M5’

Proof. ILet J Dbe the Jordan ideal generated by
{f(a,b,c) 2 a,b,c € A}, DNote that if ¢:A - B is a homomorphism
then the identity f(a,b,c) = O holds in ¢(4) if and only if
J c kerp. In particular this identity holds in A/J, so by Lemma
9.4 A/J is isomorphic to a JC-algebra.

If ¢ 1s any factor representation not annihilating J  then
the identity f(a,b,c) = O fails in o(A), so the strong closure
of @(A) must equal M% by Theorem 8.6, hence o(4) = M%.

To prove uniqueness suppose J' is another Jordan ideal with
the same properties. Since A/J' is special, J' must contain J
by Lemma 9.4. Now each factor representation ¢ of A/J induces
a factor representation ® of A. Since each such ¢ is not onto
Mcg ,  must annihilate J'. Since A/J admits a faithful family

of factor representations, J' < J follows. []

Remark 9,6 Instead of using s-identities as in Lemma 9.4

we could prove Theorem 9.5 by using structure space techniques.

We then let the structure space PrimA consist of the kernels of
all factor representations equipped with the hull-kernel topology.
The crucial lemma is to show that the set C = {ker¢ €PrimA : ¢(A)

is a JB-factor of type In,nSB} is closed in PrimA.
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The ideal J in Theorem 9.5 is defined as kernel T, where T =
{ker¢ € Prim A : (A) is isomorphic to a JC-algebra}. If S =
{kero €Prim A : (&) = M‘%} we have JNkerS =(0) by Theorem 8,.6.

Since C is closed +the proof is easily completed.

Remark 9.7 In the case that A is a separable dJB-algebra,

then the proof of Theorem 9.5 can be greatly simplified. For every
relatively exposed state p of a general JB-algebra A, the weak
closure of the representation mp(A) can be seen to be a JB-factor
of type I. If A is separable, then by a theorem of Mazur and
Milman [23,p.57] the exposed (and a fortiori the relatively exposed)
states of A will be w*-dense among all pure states. Thus, in

this case it will suffice to do all our general analysis of JB~
factors for those of type I, and to restrict attention to minimal
idempotents, Note that the Mazur-Milman Theorem can not be ge-
neralized to the non-separable case, not even if the term "exposed"
is replaced by "relatively exposed". We are indebted to R. Phelps
for this observation, which is based on Proposition 2.1 of [8].

(By the Hahn-Banach Theorem the algebraic exposed points of [8;Prop.
2.1] are the same as the relatively exposed points). Hence it is not
possible to use a "relativized" Mazur-Milman Theorem to prove Theorem
9.5 in the general case. However, it will follow from Theorem 9.5
and [29;Thm.7.1] that all pure states of a JB-algebra are relatively

exposed (cf. Proposition 8.7).

Remark 9.8 It might be expected that Theorem 9.5 could be

improved in the sense that A is the direct sum of A/J and J .
This is not true, as the following example shows.

For n=1,2,0.. 4, let An = M%. Let A c ZC)An consist of
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n

n
all convergent sequences (an), where a_ = (Xij)i,j=1,2,5€ Mg,

and

x?. -0 for 1#je. Then it is easy to show that with point-

wise operations A is a JB-algebra, J = {(an) ta, " 0}, and

A/d

is ?3-dimensional and associative.
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