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Thils note 1s an addition to Normann [4]. The starting polnt
for the imbedding theory in [4] was the search for a notion of
abstract k-sectlon. This notlon was not found in [4], but by
Sacks [6]. The purpose with +this note 1s to see how Sacks'
result can be stated and proved inside the imbedding framework.

We also adopt the method of Sacks to find a notlon of abstract
section for the super-jump. In the end we will try to throw

some light on the extended plus-one hypothesis and on some degree-
theoretic problems.

The use of forcing in characterisation-problems was intro-

duced by Sacks [5], when he characterized the one-section of a

normal type-2 functional. An alternative proof was given 1n

Normann [3].



1. Reflectling properties.

A type-k-theory is sald to be a'Grilliot-theory if it satis-

fles the Grllliot selection principle, 1l.e. from every semirecur-
slve set containing a type k element we are able to effectively
select a nonempty recursive subset. MacQueen and Harrington [2]
proved that recursion in a normal type k+2 functlonal gives a
Grilliot-theory. Harrington [1] used this fact to prove the re-
flection principles listed Below. These were verlfied in a more
general setting by Kechris and Moldestad. We omit all proofs

here, just formulate the various concepts in our terminology.

Lemma 1

Let © be a Grilliot-theory on type k (=I).

Let Spec 0 = <<M >, e1,R>. Let‘A%a " cetP(k-1) M<a,c>
Let ¢ be a Ao-formula in R with parameters from Ma‘

Assume

vb € I 3x Ecﬂg ¢(b,x)

a,b>
Then
3f € M vb € T 3x € £f(b) ¢ (b,x)

The conclusion in Lemma 1 may be regarded as a definition of
Grilliot-selection on spectra. The only 'natural' proof of Grilliot
selection 1s of recursion theoretic flavour. The consequences are,
however, soft and can be proved in all reasonable frameworks.

Theorem 2 (Harrington [1]. Further reflection.)

Let © be a type-k~-Grilliot-theory. Let <<Ma>a€I,R> = Spec © .,

Let C be a complete I*(R,a)-subset of tp(k-1).
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Let ¢ Dbe AO(R)—formula wlth parameters from Ma' Then

M l3xe 1f and only if M_ kE 3xo .
a,C a

2. Abstract k-sections.

Everything in this section 1s based on Sacks [6].

Definltion 3

Let A c VI' We say that A 1is admissible with gaps if

A 1s a rudimentary closed structure.

| L

i1 A |z -collection.

In Sacks [6], 1 1s given by: A 1s closed under palring

and unlon and satisfies Ao—separation.

Remark, Given a nice familly <Ma>a€I’ each 1individual Ma

will be admissible with gaps.

Definition 4

A is an abstract k+1-section 1f there 1s a B such that

A and B are admissible with gaps.

11  vx € A(B) 3nice <Ma>aeI (x € Mo & M° c A(B) )

In Sacks [6] +this 1is called .‘closed under recursion in k+2E'

111 A and B are abstract structures. (See definition 2.11 of

Nérmann [43.)

iv ‘A € B,A <4 B and A 1s countable in B.



Theorem 5

Let F be a normal functional of type > k+2.
Let R = {<a,a> ; |a|F = al.

Let <M > be the least family nice relative to R.

a"a€l

Then Mo is an abstract k+1-section.

Proof. Let C Dbe a complete F-r.e. subset of w. Then, by

theorem 2, M° <4 MC: Moreover there is an enumeration of Mo in

MC.

Theorem 6 (Sacks [61)

et A Dbe an abstract k+1-section. Then there exists an R

such that when <Ma>a€I is the least R-nice family, then Mo = A,

Proof: Let B be as in the definitlon of abstract k+1-section.
Define the set of conditions P by : p € PAGPB) if p € IxOn,
p € A(B), rank(p) 1s O,p-necessary (i.e. O-necessary when R 1is

replaced by p.) P 1s ordered by q < p if q n I x rank(p) = p.

We say that for a 21-formu1a Ixe ,

P F 3x0 = Mgank(p)(p)|k 3x¢ . The forcing relation is

extended in the usual manner.

Claim 1 pl} 'n 1s an ordinal notation' is 4, over A(B)
Proof': plF 'n is an ordinal notation' e= 3y € Mgn(p)(p) (n is
a notation for +vy). The ordinal notations may for instance be as

described in Normann [4] definition 5.5 with discussions.

Claim 2 Let p €ZPA, X € A, Then there 1s a ¢ €]PA such that
q<p and x € Mrn(q)(q).

o]
Proof: Let x and p be given. Let <Na>aEI be a nice family

such that N c A and =x,p € No. Let Q be a code for x. Let



q, = {<a,rn(p)>; a €Q}. Then q €N_.

Let g=gq UpU {<0,rn(p) + rn(x)>}. Then ¢ €P, Dby the
followlng argument : In the code Q, 1let for a €1 X, be the
set coded by a. By 1nduction on rank X, and by I*-collection

rn(p) + rn(xa)
one proves that x € N n M (q). The claim will

follow.
Now, let P be a IPA-generic set, Since A 1s countable

In B we may assume P € B.

Claim 3 If P€B 1is IPA-generic and <Ma>a€I 1s the least

P-nlce famlly, then M, < A

Proof: To obtain a contradiction, assume that this 1s not the
case., Let a € M° ~ A have a notation m, while for some p €P,
pl- 'm 1s not a notation' , i.e. Vq<p 7q| 'mis a nota-
tion'., Let B8 be minimal such that o € Mg(P). Let

P° = P U {<0,B>}. To prove that B € B, we use that there 1s a
nice family <Na}aeI such that P € N < B. Then M < N_.

By definition of 8, B8 wlll be O-necessary. Thus Po €]PB and

B £ 'm is a notation in P '. Thus
Bl 3g<p qlf 'mis a notation' .

Since A < B, we have A k=3 <p gl 'm 1is a notation' .

This 1s a contradiction and the claim is proved,

Theorem 6 now follows trivially from claims 1 to 3.
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3. On abstract k+3S-sections.

In this section we willl use methods from section 2 to see
that we may obtain similar results for the sectilons of some
type k+2-functional F and the superjump., This result 1s based
on § 7 of Normann [4], which again is based on Harrington [1].
In § 7 of Normann [4] we gave a definition of strongly impenetrable
family‘which worked well for the spectra of theorlies, Here we will
have to use a seemingly stronger definition. However, the results
and proofs in § 7 work also for this stronger definition. The only
place where we proved something to be strongly impenetrably was in
lemma 7.5, and that argument works for thls new concept too. Thus

we do no harm if we use the following definition,

Definition 7.

A family <Mb>b€I 1s strongly impenetrable if for all a € I

*
and all Ay functions f, 1if f 1s closed in <M<a,b>>b€I’ then

there is a famlly <Nb>b€I’ nice relative to a, such that f 1s

closed in <Nb>beI and <Nb>b€I € Ma'

Definition 8 of abstract k+3S-section.

k=0: A 1is an abstract 3S-section if

&
1 A 18 an abstract 1-section (See Sacks [5] or Normann [3]).
11 If ¢ is a A _-formula and vy € A" and A E vxaye(x,y,¥)
then there 1s an abstract 1-section N such that
YENEM and N E vx3ye(x,y,y).
b k> O: A 1s an abstract k+3S-section 1f there exlsts a B

such that A € B, A 1s countable in B, A < B and both

A and B have the followlng properties:
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They are admissible with gaps and satisfy the proper-

ji

ties of abstract k+1-sections in definition i,
ii vx € A(B)3<Na>a€I(x € No c A(B) & <Na>a€I is strongly

impenetrable.).

Remark 1 and 1i play the same role in both definitions,

11 gives the appropriate variant of the Mahlo-property.

Theorem 9

Let F be of type k+2. Then Str(k+1-sc(F,**3s)) 1s an
abstract k+3$-section.

Proof: Let o = Th(F,k+3S) be the Harrington-theory of
F and ¥"35, Let Ry = {<o,a>;|o|O = a}.

Rg

La where o 1is the filrst

Case 1 k = 0 : We have that A

Re-recursively Mahlo ordinal. If A E Vx3y¢(x,y,§), define
R R '
g(y) = uB : Vx € LYOBy € LBew(x,y,§).
R
g 1s closed in an admissible ordinal @ and Lag will be an

abstract 1-section.

Case 2 By a lemma to theorem 3.7 of Harrington [1], © will be
a Grillliot-theory, and thus theorem 2 applles. Let C be a
complete o6~r.e., subset of w, and let B = k+1—sc(F,k+3S,C). 1 1s

clearly satisfied. To see 11, we can let <Na>a€I be Spec(o)

or Spec(o[Cl).

Theorem 10

If A 1s an abstract k+3S-section, then there 1s some normal

type k+2-functional F such that A 1s the k+1-section of F,k+3E.



Proof :

Case 1 k = 0 : By Normann [4] it 1s sufficient to find a P
such that A 1s the least P-recursively Mahlo structure. Thus,
let pc On be a condition if p € A and no ordinal < rn(p) is
p-recursively Mahlo, p <q 1if q = p N rn(q). As in Norﬁann

[4] we may prove that if P 1s generic, then

P

i rn(p) = A

i1 A 1s P-admissible.

By the way we defined the condltions, we see that no ordinal
<rn(p) will be P-recursively Mahlo. We will prove that rn(p)
is P-recursively Mahlo.

Assume <A,P> = vx3ye(x,y,y). This fact will be forced by

some p € P, and thus

* Vq < pvxar < q3ayr | o(x,y,¥)
Let p be any condition forecing anym(x,y;;). ILet N € A be
admissible such that N 1s an abstract 1-section and

1 p €N

1N g
Let p' be an extention of p generic over N. Then <N,p'> 1is
admissible and <N,p'> k& anyw(x,y,§5.
Let o be the least ordinal such that a is p'-admissible and

?
<L§ ,p' N a> & vxayelx,y, ¥).

If o = rn(p) we have <L§,P n a> anyw(x,y,§), which 1s what
we want to prove. If o > rn(p), we have a < rn(p'). Let p1==p3 Na.
By definition of a, p, 1s a condition and p, < p. Thus

<L§1,p1> |= anyw(x,y,g). Since P 1s generic, Mahloness 1s proved.
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Case 2 k > 0: We are golng to use the same proof as in the
ordinary abstract k+i1-section result, except that we want A ¢to
be the recursive part of the least strongly P-impenetrable family

instead of the least P-nlce family.

To definition 5.5 in Norman [4] we add

a
iil1 o« 1s a-necessary if <M<a,b>(P)>b€I 1s penetrated, i.e.

<M° (P)>

* L
<a,b> is nice, and there 1s a Aa-function g: On » On

bel
that is not closed 1n any famlly belng an element of MZ(P).

We then use the same definition of the conditions as in the same
part of section 2., In addition we will also have to prove that'
when P € B 1s generic over A, and when <Na>aeI is the 1least
famlly strongly impenetrable in P, then No = A,

A c N will follow by the definition of P. Assume N ¢ A.
Then there has to be some ordinal, necessary by clause ii or iii,
not in A, Anyhow, since P € B, the ordinal will be in B. Assume
o 18 necessary by clause 1il, 1.e. there is a aA*-function f that
is not closed in any nice family <M:(P)>ael for any B8 < a, while

<M:(P)>aeI is nice (due to the fact that we use clause 111.).

Since p € B we have B F 3<N > e - (N> 1 1s nice and f is

closed 1in <Na>a€I)' Let P' = P U {«0,a>}. Then P! EJPB, and

a€l (<Na>a€I

p €P nZPA. -Then P' < p. By reflection we find a p' <p in A

1]
P' | 3<N_> is nice and f is closed in <N_> ;). Let

forcing the statement above., But thils is a contradiction by the

choice of Ff.
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4, On the extended plus.- one-hypothesis.

Sacks [6] formulated the extended plus - one-hypothesis as

follows:

Definition 11

Let H be a normal object of type > k+2. By the extended

~k+l-section of H we mean

v k+i-sc(H,a)
a €tp(k)

The extended plus -~ one hypothesis 1s

There exists a normal type k+2-functional F such that
extended k+1-section H = extended k+1-section F,

Sacks [6] states that the extended plus-one-hypothesis is
correct when GCH holds. We will indicate the proof here. All

ingenious parts are based on private information from Sacks.

Let I = tp(k).

Definition 12 (GCH)

Let Mc V;. We say that M is an abstract extended k+1-

section 1f

1. M 1s an abstract structure (X € M s x has a code in M)

2. M 1is closed under subsets of cardinality < ;~{‘k.
k+2

3. M 1s closed under full recursion in E. 1.e. If x €M
and <Na>a€I 1s the least nice family such that x € No’
then U N M.
: a€l &~
==)‘

4, M ,\k.
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Theorem 13  (GCH) Let McV; .

The following 1s equivalent

1 M 1s an abstract extended k+1-section.

11 For some normal F of type k+2, M n%(1) = Ext.k+1-sc(F).

Proof: 11 =» i, That the extended section of F has pro-

perties 1 to U 1is clear. For detaills see e.g. Normann [4]

To prove 1 = i1 we need the following theorem of Moschovakis [8]:
Let F be a normal functional of type k+2. Let A < I be co-
semirecursive 1n F with index e. Then for some recursive
function f 1independent of e there 1s a s.r.set B wilth index

f(e) such that a € A <= 3b<b,a> € B,

An alternative proof of this came out of the model theoretic con-
siderations in Moldestad-Normann [9],

In our setting we will obtain:

Proposition (Moschovakis) : There is a xX*(R)-set B, uniformly

definable in R, such that a 1is not a set-notation e=3b<b,a>€ B,

The construction of the functional will be by forcing. Let

p EP 1f pec IxOn and 1f for some a € I rankp 1s a,p-

necessary. P<qQesqNIxrank p=p,.
Claim 1

If <qB>B<a is an 1ncreasing sequence from P and 'a LS CRE
then p = U qBEIP.

B<a

Proof p € M since M 1s closed under subsets of cardlnality
<-bfk and recursion in k+2E. .Let rank g be aB-necessary via
formula no. g <ap’eB>B<a may be coded as one element a€Tl,

and rank(p) wlll be a-necessary.
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Cleim 2
If X €M and p € P, there 1s a q < p such that

qa
x € Lrank(q)c

Proof This 1s proved exactly in the same way as in the abstract

k+1-section case.

Claim 3
If a €1 and p €P, there is a q < p such that ql a
1s a set notation, or ql a 1is not a set notation in a way so

that the truth of 'a 1s a set notation' wlll be settled there

and then,

Proof Let <N be the least p-nice family, by the normal

b”bET |
construction. If a 1s a set notation, let o be the first level

rank (p) such that a 1s a set notation at level a. Let

v

qQ = pU<0,0>
If a 1s not a set notation, let o be the first level

a
rank (p) such that <Mb(p)>b€I 3b<b,a> € B(p).

|v

Agaln let q = p U <0,a>,
In both cases q 1s sufficlently llke the trivial extention of
P to guarantee that for any extension q' of q, a 1s a set-
notation relative to q' 1if and only if it is so relative to
the trivial extension of P.
So, let P be generic. Then a set is in the least family
nice relative to P 1f and only 1f it.has a set notation from
a part of P that is in M 1f and only if 1t 1s in M. This

proves the theoren,
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5. Degrees of functlonals, imbedding of order types.

Some notions of foreing have thé advantage that they may
be regarded as product forcing, with assoclate product lemmas.
So 1s the case with the constructions of functionals we have
made in thls note. As a consequence we are able to split our
generic functionals up 1in several recursively incomparable
functlionals, which agaln enables us to construct imbeddings of
partial orderings into various orderings of degrees of functio-
nals. The method is applicable whenever we have a generlc
functional of the kind described above, and thus the imbedding
results will be finer the more spectra we are able to construct

generic functionals over.

Theorem 14 .

Let a € tp(k), f and G € tp(k+2). We say that F-(a G
k+2

if ¥ 1s Kleene-recursive 1n a, G and E.

Let £ be a partial ordering with countable domain. Then

k+2

{ may be imbedded in ~{ar<k+2E, E,c> where ¢ 1s a complete

k+2E, a-r.e. subset of wu,
Proof: To save notation, let a be recursive in k+2E.

Identify tp(k) and wxtp(k) 1in a recursive way, and let IP
be as in the proof of theorem 6., Let P be generic over

k+2 k+2

k+1-s¢” “E and assume P 1s 'recursive' in E,c. Let

P1 = {<a,a>: <<i,a>,a> € P}, and let F, be the associated
functional. If A < w 1s recursive in k+2E, we have Fi
recursive 1in <FJ>J€A if end'only if 1 € A.

There exists a recursive partial ordering <« such that each

other countable partial ordering may be imbedded in 4 . So, assume

{ to be recursive. For n € dom< , let H = <FJ>J4\n' Then
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H ~1is reocursive in H ~ if and only if m < n.

To Justify the sharpest formulations of our next result,

we need the followlng

Lemma 15 (GCH)

There exists a partial ordering -« of type k such that
every other partlal ordering of type k may be imbedded in -{ .
Moreover, 1if <tp(k) is a minimal well-ordering of tp(k), we

may find ,< recursive in <tp(k) and k+2E.

We willl not prove this in detall,

Step 1. By a construction of length f{‘k we may extend any

partial ordering of cardinality }Ck to one with the property *

* Let A,B,C be disjoint subsets of dom(< ), all of
cardinality'_f(k_1. If it 1is consistent to assume the
ekistence of an a such that A <a <B and a and C are

incomparable, then there exlsts such a.

Step 2. Any two partial orderings of cardinality }%Tk satls-
fying * ‘aré isomorphic, This 1s a speclal case of a theorem in
Sacks [7). It 1s much the same as proving that dense, countable

linear orderings are isomorphic.

Step 3. Starting with the empty ordering, see that the construc-

tion in step 1 can be done effectlively in <tp(k) and k+2E.

We willl also use the lemma in section 8.
Recall <, from theorem 14. Let F< G if 3a € tp(k)

F ﬁa G. We call the degrees derived from this inequality strong

degrees.
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Theorem 16 (GCH)

Any partial ordering of cardinality }*?k may be lmbedded

a
in the strong degrees.
b (V=L). Any partial ordering of cardinality }(k may be
imbedded 1n the strong degrees of functionals F such that
Full-k+i-section F = Full-k+l-section X'3E,
Remark: In section 8 we will strengthen b to functionals
r.e, in k+2E and an individual,. |

Proof: Let M = Full-section E, <tp (k) where <tp(k)

1s some minimal well-ordering of tp(k).

Let P be generic over M such that Full-sc P =
Full-sc k+3E, <tp(k) (See theorem 13); As in theorem 13 we
may split P up, this time in (P, : a € tp(k)}. Let < be a
universal ordering from lemma 15. Define Ha- in analogy with
the proof of theopem 14. Then Ha < Hb = 3 % b. Moreover, by

- k+3
genericlty, for each a, Full-sc P, = Full-sc By <tp(x)?
k+2

and 1f V = L, <tp(k) may be assumed to be recursive in E.
Corollary 17 (GCH)
Let the 'degrees' mean Kleene-degrees modulo k+2E. Then a

partial ordering A of cardinalilty _ﬁfk is subordering of the
degrees of type k+2 functlionals 1f and only if each initlal-

segment 1is countable.
Proof: Assume £ 1is on tp(k), and imbed <4 as in theorem

16. Given a € dom(<{), {b : bX a} 1s countable and recursive

in 4 and k+2E. Then this set has an enumeration, and using
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<, and X*25, we may pick one. But then b= a=b is

recursive in <tp(k)’a’% . Since bQ a = H 1is recursive

in H a and { , we have <H_, a,3 » < > 1s recursive in

—_—

b’
<Hb,b,g_,<k > if and only if a= b.

6. Degree on the individuals.

This section 1s devoted to the setting of terminology for
sections 7 and 8. We assume V = L and let < be the canonical
wellordering of ¢tp(k). < 1s recursive in K*2p  ang of length
}[k. Whatever we are going to do in the next two sections, 1t

_ k+2
will be modulo the subindividuals, so let <Ma>a€I(=tp(k)fSpe°( E).

For a € I, 1let ”“é = U M<a 1>
1€tp(k-1) ’
k+2
Let a€I. {b:b<a}l 1s recursive in a and E and

has cardinality ‘}$k-1‘ Then {c € I : ¢ 'enumerates' {b: b < a}}

1s recursive in k+2E, and the c¢ of this form least in < will be

recursive In a. But then each b < a 1s recursive In ¢ and a
subindividual (the one 'enumerating' b in ¢) and b is recursive

in a, k+2E and some subindlvidual. This leads to

a<b ¢cﬂ% E‘J%b’

We call a minimal 1f a 1s not recursive in k+2E, a
subindividual and any b such that b < a,.
a - a -
Let Kk-1 = Sup(On.ncﬁg). Aeoq = least ordinal not in u&%

(which coincides with both the order type of the ordinals subcon-

structive in a and the supremum of a-recursive prewellorderings

on tp(k—1)o
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Let a' = the filrst minimal point after a. Read a' as
a=-Jump. a' will be element no. A§_1 In < and thils leads to

the following:

a.
va € T K- , €M, .
Problem: et a be minimal., Will then

>sup{Kb : b <a} ?

a
K k-1 °

k-1

Now, this 1s true for all jumps and for most limits of jumps.
We have, however, veriflied nelther the existence nor the non-
existence of a counterexample,

We call a bad if a glves a negatlive answer to the

problem.

By the recursive well-ordering we may from each recursive set

plck a recursive element. Using simple and further reflection as

well we see that
Vva € I M, < dﬁgﬂ .

We also have thils grand Ao-Dependent Cholce

Assume ¢ € I

vavx € dwg,cay € U%%,c o(x,y,c) where ¢ 1s A .

Then 3<X > e1 €M, ¥, €I ¢(<Xb>b<a,Xa,c).

Proof: Uslng our single-valued selection operator, we obtain

vavx € M, '3y €M o(x,y,c)

,C a,c
In this situation we may use Gandy's selectlion operator and
1*-collection to find the wanted sequence (as in the proof of

ordinary AO-DC).
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7. Recursion theorles on spectra.

Companion theory on Spector-theorles of w gilves rise to
an infinite recurslion theory, which 1s the natural theory on the
admissible companion. We wlll here define a 'natural' recursion
theory on the full section of a type-k-theory. By the lack of a
recursive selection operator and admissibility, semirecursion in
the thoery will not be I, over the underlying structure, but

£* over the underlying spectrum.

Definition 18

Let © be a type-k-theory, Speco:= <<Ma<a€I’Re> = cﬂt.

We willl deflne a theory of partial functions
£ | M" + M| with indices in |[Jf|. The recursion is defined

by 15 schemata, with indices

i f(xl,-o-,xn) = Xy <1,n,1>
11 f(xl,---,xn) = XyNX, <2,n,i,j>
114 f(xl"°°’xn) = {xi,xj} <3,n,i,J>
iv  f(x ,---,xn) « U h(y,x ,---,xn) <4,n,e'> where e' 1is an
1 yEX 2 index for h.
z f(xl,ouo,xn) o <5,n,m,e',e1,o..;em>
h(gl(xl,o-o’xn),oco,gm(xl’ooo’xn)xl’ooo,xn)
vi f(x,1) = (x)y <6> (x varies over
I = tp(k) 1 over w)
vii f(x,y) = <x,y> ' <7> X,y vary over I

viii f£(x) = Ci(x) <8,i> x varles over 1
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ix  f(x,y) = (ev)i(x,y) <9,1i> x,y vary over I
X f(xl,...sxn) = X | <10,n,x>
xi Induction scheme
h(a,x) « f(a,X) a€I vazgp
h(y,X) o g(<h(z,I)>z€y,§) <11,e1,e2>
x11 Diagonalization

fle,X) = {e}(X) <12,n>

x111 0 1f x €1
£(x)

<13>

1 1f x ¢ I

xiv 0 1if x € R,
f(x) = <14>
1 1f x € Ry
Xxv  Permutations of X s®®0,X <15,n,o> o a permu-

tation of n

Thié definltion 1s probably not the most economic. All
rudimentary functions will be recursive by schemate 1 - xi. Our
program willl be to prove that A c I 1is semi-reéursive in our
theory with index in M, 1f and only 1f A 1s z;-definable

over Spec(e) (if and only if A is e-s.r. in a).

Lemma 19

Let a € I, If e,x ,**°,x € Ma and {e}(xl,---,xn) & X,

then x € M,. Moreover, the relation {e}(xl,aoo,xn) ~x 1s x*
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Proof: The first claim is proved by inductlon on the length
of the computations. To verify the latter, note that 'T 1s a

computation tree for <e,X;,***,X ,x>' 1is 4 . We prove that

if €,X,,°°*,X  are in Ma’ then the computation tree is 1n Ma'
This 1s also proved by induction on the length of the computation.
Both inductions are falrly trivial; 1n cases iv and x1 we use

v*_collection, The rest 1s straight forward.

Lemma 20
n
Sm-theorem.

Proof': Given e' and xl"°°’xn we want to find an e,

uniform in e' and x such that
{e}(yl’ooo’ym) - {e'}(xl’o-o’xn’yl’o-o’ym)

First let ey = <10,m,xi> s ©pn4q <10,m,e'> , 1.e. the constants.

We want
{e}(yl’...,ym)= {<12,n>}(fen+1}(yl,...,ym),{el} (yl’...’ym)’..
cao {en}(yl,...,ym),yl,...,ym)
So let e = <5,m,n+1,<12,n>,en+1,el,--o,en>:

As usual the recursion theorem follows from the S;-theorem.
Recall from Normann{4] that we have a canonical well-ordering <a

on each Ma induced by the partial constructibillity.

Lemma 21

'x<ay' is a recursive relation in x,y and a,

R

Proof: First we see that the function f(a) = Lae
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is recursive., We use the induction scheme, and it suffices to

prove that DEF 1s a recursive function.

We give an informal description of how to compute DEF(X)
glven X. PFirst, given ¢, there 1s a canonical index e € w
such that {y € X : wx(y,i)} = {e}(X,z). e will be an 1ndex
for a rudimentary functlion. The set of such indices 1s recursive.

Call 1t A. Then

DEF(X) = XU ( U {{e}(X,%)}).
e €A
n
x €X

s2(Ry), the part of Lie(I) proved to be in M_, will be
recursive as a function of a and a, since it is Ao-definable
from Lie(I) and a.

Note that the p-operator on the ordinals will be recursive. So
glven x,y € M_, let a = wa(x,y € Si(Re). In o we may

effectively declide whether x g ¥, X =y or y<, X

Lemma 22

Qur theory admlts a selection operator in the following sence;
There 1s a recursive function ¢ such that when e € Ma and

3x € Mé{e}(x)+ , then {el(o(e,a))+ .

Proof: Let o'(e,a) = ua(3T € SZ(RQ)) (T 1s a computation
tree for {el(x) = y. ) In <> pick the least such T, and

let ¢(e,a) be the argument 1n the actual computation.
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Theorem 23

A set X cM 1s semicomputable with an index in M,

a
e=> X 1s Z;-definable
b A set X <M is computable with an index in M,

e X 1is A;-definable.

Proof: = in a and b follow from lemma 21.
«ina, Let y € X e 32 € My aw(z,y,a), where y 1s 4 .
3
There 1s an index e such that ({el(z,y,a) =~ 0 = y(z,y,a).

Then y € X &= ¢(e,<y,a>) =~ 0,

Remark: In lemma 22 we defined ¢ on arguments in I only.
There is no harm 1n doing constructibility relative to y and

thereby extending 1t to all kinds of arguments.

< 1n b. By the selectlon operator used in e a 1t is not hard
to see that when both X and M~X are Z;, then X 1is

computable,

From a-recursion theory we borrow the followlng concept :
Let X,Yc M., We say that X < Y 1s there exlsts an 1ndex e

such that for all x,y

xcX&ynX=0 = au,vefﬂ}f y e({e}(x,y,u,,v)eto&U.EY& vnY=gQ)
' 2J 9

The intultion behind the definition 1s this: To decide finite
information about X we only need equally finlte information
about Y., This definition can then only be Justified when
'Y-finite' means the same as 'finite'. In a-recursion theory
this 1s the case for regular and hyper-regular sets. We have not

found a striking formulation of a good substitute for regular and
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hyper-regular. However, our discusslons below indicate what it
should be 1like.

Let, for X c M,[X] = {A : A codes an element in X}

If X 1is z;, [X] will be z;. [(X] and X are a* in each
other over any nice family. Note that r*-subsets of £P(tp(k))

are semi-recursive. Section 8 will be devoted to the proof of

the following :

Theorem 24

- - k+2
Let V =L and let <Ma>a€tp(k) (=I) © Spec( E)., Then

there exists a I*-subset Q@ of .I x M such that when

Spec(Q,k+2E) = <Na>aeI we have for all minimal a that are not

bad that c/ma = ,/}’a. Moreover, let @Q = {x : <b,x> € Q}. Let
Qy = <Qc>c#b' For any minimal, not bad a, if b is recursive
in a and a subindividual, Qg N omé 1s not reducible to

Qp ncﬁg via an index 1n Jué.

We end this paragraph by proving two corollaries of this

theorem.

Corollary 25 (Post's Problem) (V = L)

There exlst two subsets A and B of tp(k+1) such that
k+2

both are Kleene-semirecursive in E and neither is Kleene-
recursive in the other modulo k+2E and any individual.
k+2 : _
Proof: Let a # b, both recursive in E. Let A = [Q]]

and B = [Q ). Since Q, 1s reducible to Q_, and vice versa,
Qa and Qb wlll not be reduclble in each other modulo any
type-k-element. Thils must also hold for A and B then.

k+2

Assume A 1is Kleene-recursive 1n B, E, c, 1
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(1 € tp(k-1)). We may assume c¢ to be minimal and not bad.

Let x < [Al, y n [A]l = § eand assume x,y €/,. Then there

will be B, k+2E, ¢, l-recursive sets =z,u such that 2z 1s the

part of B wused poslitive and u 1s the part of V~B used
negative to verify x < A and yn A = @. Then, since 545 = cﬂ%,

z and u will be in JZC. For disjoint 2z,u, let

0 1if v € 2z

o(z,u)(v) = {1 ” .
if v € u

Define

k+2 k+2
<X,Y,Z,u>€R e Vv €X{1} E’a(z’u)’c(v)=O&Vv€y{i} E,a(z,v),c(v)=1

Clearly R 1is =* and AnJb will be reducible to B ncﬂ@
c,1 c

via R. But this was impossible.

L)

Corollary 26 (V

Any partial ordering on tp(k) can be imbedded in the strong

e(k+2

r, E)-degrees.

Proof: The strong degrees are defined after the proof of

lemma 17, By lemma 17 1t is sufflcient to lmbed a partial ordering

k+2

recursive in E, so let {. be an ordering on tp(k) recursive

k+2

in E. Let Q[a] = <Qb>bja‘ Then Q[a] 1s reducible to Q[b]

if and only 1f a< b. As 1n corollary 25 we prove that [Q[a]]

k+2E and an individual if and only

if a< b. Since [Q,4] 1s r.e in K*25  ana a, the corollary

1s Kleene-recursive in [Q[b]]’

1s proved.

Remark: Harrington [1] proved that Post's problem always

has a solutlion when 'recursive in an individual' is replaced by
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'recursive in a subindividual'., Thus there will exist two

kK+2p  Such that none of

k+2

type k+2-functionals semirecursive in
them 1s Kleene-recursive in the other modulo E and a sub-
individual, By the same method he will be able to prow theorem

24 for subindividuals.

8. Proof of theorem 24,

For reasons. of convenlence we enumerate all r.e.-sets by a
pair of a type-k-element and a subindlividual; if x € a@é, there
is a subindividual 1 and an Index n for a code of x as an 1,

a-recursive set. If n 1s an 1,a-index for a code for x, we let

Reen 15 g» = (X:{x} ()¢}, We let

3 L]
RY ={x:{x} (X)+ 1n less than o-steps and cﬁk°|= n
<<n,i»,a> ’ P a

is an 1,a-index for x}.

To obtain simplicity in formulas, we contract <n,1> to one a-index

for x. The definition of R’ is meaningful for all

<J,a>
J € tp(k-1), -a € tp(k), so we let

o
R, = U R .
<3,8>  geon <527

Irf BcM, let xcli,al® if (3y,ze€H )(ycB & znB =
]

@ &R (x,y,2)). We will only regard the cases where we have

<i,a>
'1f and only if' above. If b 1s recursive in a via subindivi-

dual 1, denote b by [112.
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We now start on the detalls of the proof. We are led to

the fbllowing conditions
Q ndi

1.<1,3>,2 MM ~Q #[3,al] -[11% *
d s 9 a [i]a H

or, in English : 1f b 1s recursive in a, then 'Jka\Qb is not

recursive in Q_ ncﬁ% via subindividual Jj.

2.<n,1>,a . If 3x wn(x,i,a,Q) then 3x EcJZa wn(x,i,a,Q).

Each condltion may be vliewed as a palr of a subindividual
and an indivlidual. Using the minimal recursive well-ordering,
we wellorder the conditilons in the antllexlicographical ordering.

Each condition then recelves a position v < »$k’

The construction is golng by induction on the pair <o,v> 1in
the lexicographic ordering, o < K:+2E, v € Positions. The pair
<g,v> 1s called a stage 1n the construction. Stages will be
denoted by E,E' ete. The conditions are glven priority from the

ordering on them.

We define a function f(&,v) 1ndlcating what we want kept
out of Q to meet condition v at stage E. Let f(b,gE,v) =
(f (E,v))y = {x: <b,x> € £(g,v)}.

We also define QE = <Q§> at each stage E.

When we belleve to have met a condition v, we put up a
marker at v. When we have no reason to belleve 1t any more, we
take the marker down. At limit stages £, define

f(b,g,v) = 1lim n f(b, €",v) 1in the discrete topology except
E2E E'<E"<E

when £ = <o,v> and f(b,f,v) defined this way is empty.
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Then let #f£(b,E,v) € Me y be something nonempty and disjoint
]
1
from the other f(b,£,v) and from QF where Q° = u Q% .
E'<E
It will follow from the construction that the limit above always

exlsts.

Remark. When we as above say: Let f(b,g,v) € ME p, De ¢se
]
we may always find such value effectively by a selection operator.
Thus the instructions for the construction will give a single-

valued construction.

The construction.

Step &. Let & =.<o,v>
Case 1 v = 1,<i,J>,a

Question 1 Is there a marker at v ? If that is so, procede

to 'no' under question 2. If not, ask :

Question 2  3y3z(y,z €JM- & kL F [11* 1s total (=b) &
£(b,6,v) €l & RE, | (£(b,£,9),5,2) & y  QF &
20 Q5 =9 2
If yes, put up a marker at v and remove all markers
at v' for v' > v, These conditions are then
injured. Select a pair y,z in cﬂtg.

8¥1 - Q% U (b} x £(b,,v).

Let Q
For v' < v, let f(g+1,v') = f(g,v').

Let f(g+1,v) be the part of 2z not in any f(g+1,v')
for v' < vor in {b} x M, Let for v' > v + 1
£(g+1,v") = £(g,v') ~ (@1 U £(2+ V). If for

c €1 f(c,g+1,v+1) 1s nonempty when defined in this

way, 1t is OK Else find something nonempty in
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dﬂg’c disjoint from QC7' and the other £(c,E+1,v')
for v' # v+l .

If nos let Q°*1 = Q5. For v' # vi1, let
£(g+1,v') = £(E,v'). If for c € I, f£(c,g,v¢1) # @,
let f(c,e+1,v+1) = f£(c,g,v+1)., If not, let

fc,g+1,v+1) € ME . De as above.
L]

Case 2 v = 2, <n,i>,a

Question 1 Is there a marker at v ? If yes, set y = @ and

procede to *,

If no, ask

Question 2  3x e«ﬂkg(Qg) [wn(x,i,a,Qg)]. If no, set y = ¢

and procede to *, If yes, ask :

Question 3 Is thils verifiable using negative Information about

Q% collected in  U{f(£,v'); v' < v} ? If yes, set
y = § and procede to *., If no, let & be the least
ordinal such that 3Ix € ;ﬂ{g(Qg)[cpn(x,i,a,QE)] and
E
let y =LY [(11~q §

*

Let Q%1 = @%. et f£(z+1,v) = £(g,v) U (y~ U £(g,v').

vicy
flE,vt).

Let for wv' < v f(g+1,v')

Let for v' > v#1 f(g+1,v") flE,v')Ny.

If for b €1, f(b,s,v+1)\yb¢95,let f(b,e+1,v+1) = f(b,s,v+1)\yb.

be nonempty and disjoint from all

E,b
other f(b,t+1,v') for v' # v+1 and from QE+1 .

Else let f(b,E+1,v#1) € M

This ends the construction, Now 1t Just remains to prove that

it works.
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A condition is said to be met at stage & 1if it is eilther
marked for ever at stage &, or if 1t after & will never be
marked .

Let fv(E) = £(g,v).
'We say that we do a change on condition v at stage &, 1f we

put on or remove a marker or f(E+1,v) # f(&,v).

Claim 1 The number of changes on a condition v has at most

cardinality _}fk_1.

Proof': By Induction on v. When all changes on all conditions
v! < v are done, there is at most one change to do, i.e. if we
want to put a marker on. Since v <?§k, there will at most be

- BN
>{k-1 X }(k_1 +1 = }\k_1 changes on wv.

Corollary.
All conditilions will be met,

Proof: Since the cofinality of our construction is )ﬂhk,

this 1s immedlate from the claim.

If a condition v 1s of the form <i,a> where 1 € tp(k-1),

a €I, v 1s said to be én a-condition. We also divide the condi-

tions in type-1-conditions and type-2-conditions (as 1n case 1

and 2 above).

Claim 2 If a<b and b € c/%a, then all b-conditions are met
when all a-conditions are met. (We may, by formulation, assume a.

to be minimal.)

Proof: We will first see that when all a-conditions are met,

then for each y € TC(J%a) we have decided whether y € Q@ or not.
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Let x € J%a be such that y € x. We regard the sentence

Vy € x(y € Avy ¢ A), Since x € J)Za will have a code, this 1is
?’1-sentence for some 1 € tp(k-1), leading to an
a-condition of type 2. This condition will be met wlth a marker

formally a z

put on it at stage &. Then X\QE is kept out of Q for ever.

This gives us that for b-condltions of type 1 our claim 1is
formally clear, since each effort on meeting this conditions will
be injured by some a-condition, and when all a-conditions are met,
we will be unbable to put any marker on any b-conditlon of type 1

due to the demand that f(c,&,v) EdW'g (where here c¢ = [i]b).

What we really want to achieve is that Qc 1s not b-recursive
in Q_c. But 1if b 1s recursive in a and we obtaln that Qc 1s
not a-recursive 1in Q_c, Qc cannot be b-recursive in Q-c either.

Now assume we are 1n case 2 and

ax € ME@%)Mo, (x,1,0,05)].

Since b 1s recursive in a via a subindividual, this may be
viewed as a z?’d—formula no. m, adding a description of b,i

from a,j. Since all c-conditions for ¢ < b are assumed to be
met, nothing would be added to Q to interfere wilith the fact
mn(x,i,b,QE) until next time we come back to the b-conditions.

Let v' be the position of the condition 2, <m,J>,a. Since
wn(x,i,b,QE') holds, where E' 1s the associated stage to v°',
ZT’J—formula no. m will also hold. Since this condition is already
met, 1t would have received its final marker at a stage ¢'!

before &. Then at stage £'', 3x €cﬂf§")(Qg")[wn(x,i,b,qgf')]1s
tfue and will remain so. Then we will answer yes to question 3

and do nothing.
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What claim 2 actually shows 1s that we positively try to meet
the conditions for minimal a, and when this is done, starts
directly on a'-conditions. Also, if an a-condition of type 1
is injured cofinally many times 1in K§_1 there is no hope in
meeting it in the way we want. In thls case, which is actual
when a 1s bad,‘ we may try to meet a'-condltions of type 1,

and these wiil never be injured by any a-conditions of type 2.

Thls leads to the followlng :

Claim 3 If a 1s minimal and not bad, all a-conditions of
type 1 are met inside Jké. i.e., at a stage in cﬂ(a. If a
1s bad, they will be met at stage Ki_1. This also holds for

the last injury of any a-condition.

That we have a simllar pattern for the meeting o f condi-
tions of type 2 will follow from the next claim.

There 1s a notation system for the elements in the least
Q-nice family, see for instance Normann [4]. Each element in
U%Q(Q) willl have a notation [a,1], and the : -formula
ax (x has notation [a,1]) is complete :*., Thus we restrict

ourselves to this fbrmula what concerns meeting of conditions
of type 2.
Claim 4 Let a,c € I, 6 Eio&% , DPe an ordinal. Assume

3
b €<ﬂLa(Q) has a Q-notation [a,i]. Let v be the position of
the type-2 condition associated with the formula 3x(x has nota-

tion [a,1].) Then there 1sa o > §, o € Jf . such that
3
3x € J%g<°’“> (Q“°+¥>) [x has Q?*Y’-notation [a,11].

Proof: . We prove this on rank x. From the first part of the

proof of claim 2 1t is clear that each d%g 1s rudimentary closed
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in Q. Thus the cruclal point 1s when x 1s constructed by

z*-collection. So assume
Vb € I 3x_ € Ma,i,b(Q) o(b,x,_,a,1)

and that x 1s the collectlon of these xb's. The first such

X will have a notation I[<e,i>,<b,a>] uniform in 1,b with

b
assoclated position %

Subclalm
“Op2Vg> <%psVg>

(o, >y & Vasbay el

vevy EMa ch € Iacb €M d,a

R <c,a,b,1>

(y has notation [<e,1>,<d,a>]1)).

Proof of subclaim: Note that the induction hypothesis means

that the c¢laim shall hold for all ¢ and §. We will find Oy

in oﬂt

<c,a,b>! and by reflection find it 1n M<c,a,b,i>'

After K;E%a’b> none of the d-conditions of type 2 can be
injured for d < b by the proof of claim 2. Now, by the induc-

tion hypothesils

<c,a,b>
vy >'Kn-1 va<b(ye “%<c,a,b>' = 560 > Y(Go Etﬂ'{’<c,a,b>'_

§ ,v
O’

<8 sVg>, < a>
& 3y, €y 2 (Q ) (y4 has notation [<e,1>,<d,a>]))
]

By our extended AO-DC we find a sequence <6d>d§p EJ%;c,a,b>' s
and since no injuries can be done, at each stage <6d,vd> we

secure the fact that Y4 has notatlon [<e,i>,<d,a>] in Q.

Let 6 = Sup(&d : d < b). Since nothing can be injured, §

must have the wanted property of 9 except belng in M<c,a,b,i>
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But 6 1s in °ﬂ(<c,a,b>' , B0 by zl—reflection we find an

element in M having the same properties.

<Cc,a,b,1>

(End of proof of subclaim).

Now let everything before position v have calmed down

a,c
n-1

vy = max(y',8). Let o, come from the subclaim. We may assume

at level <y',0>. We may choose «y' = K + 1. Let

that 4 < b = o, < oy, Let A = Sup(o, : b €I), A€ U%<a,c>'
by the extended AO-DC. Let E = Sup{<ob,n> t: b€l

& n € Posltions}: &€ = <2,0>, & will have cofinality ?{k' We
will now regard the construction up to stage &§. We say that

a condltion is 'met under £ ' at stage &' 1f 1t undergoes

no changes between (' and &. By the proof of claim 1 and

its corollary every condltion is 'met under ¢V,

By our subclaim each condition Yy will be marked after
any 1inJury at any stage under ¢&. Thus vy will be ‘'met

under £ ' by a marker,

Thus Vb 3y, € M (Qg)(yb has Q*-notation [<e,i>,<b,a>] ).

<a,b,c>
By the choice of y' nothing will happen between <2,0> and
<i,v>, Thus

<A V> <A,v> <A,v>

3x €‘Ak<a,c>(Q Vb € I 3y, € X ntﬂ6<a,c’b> (yb has a notatlon

[<e,1>,<b,a>]). But this is the same as

<A,v>  <A,v>

3x €¢ﬁé<a’c,(Q ) (x has notation [1,al]).

Now, A may be in uﬂt s » but by I -reflection we find a o
<a,C> 1

in d%i with the same properties.

<a,Cc»>
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Claim 5 If a 1s minimal and not bad and <i,a> 1s a Q-

notation for x, then x €{,. If a 1s bad, then x €M_,.

Proof: Let v be the assoclated position. Assume that a

1s not bad. Then the last injury on thils condition takes place
at a stage <é6,v> GLA[ao By claim 4 there 1s a ¢ > 8§, o GcAZa
such that at stage <o,v> we find an x eun;c,v> having
notation [1,a]J. At this stage v will be marked if it is not,
and since this marker cannot be removed, we wlll add nothing to

Q@ to prevent [i,al] from being a code for x.

If a 1s bad, let & = K& and use claim 4 as above.

n-1

Claim 6 Let a be minimal, b recursive in a and some
tp(k-1)-element 1. Then Q, N J%a' is not a-recursive in

Q_, NJ, via any subindividual.

Proof: Let j € tp(k-1). Let v Dbe the position of the
condlition

Q g N
S M, NQ o #15,e1 THH :

[1]

Assume that all injuries of all conditions v' for v' < v

has been done, and that f(b,£,v) 1s constant for £ > £, €¢ﬁka.

Case 1 v has a final marker, received at stage E' < Eo. Then

\
£(b,§',v) < Qp, but 3ydz €MRE,  (£(b,E",v),y,2)

] 1 :
& ycQ, &znaq° =@ . Since the condition is not injured, we

put no part of 2z into Q at any later stage. Thus

R (£(b,E",v),y,2) & ySQ &2NnQ, =0.

<j,a>

But then f(b,£',v) demonstrates that * must hold.
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Case 2 v has not a final marker. Then f(b,&,v) =
f(b,so,v) €gﬁka for all & > go. Moreover, we would never put
any part of f(b,ao,v) into Q. , and r(b,6,,¥) 1is nonempty.

Thus, 1f * fails we have
3y3dz EJ?(,aR<J’a>(f(b,EO,v),y,z) tycQq,&znQq, =0.

Since Q 1s Z*-definable, we will by x*-collection find
v
£’ Ecﬂza such that y < QEb, But then at some stage

£ > max{f_,&'} , E-Euﬂta, we would ask

Jy3z €¢ﬁKaR (£(b,g,v),y,2) & y < Qp &z N QEb =@ ? and

<j,a>
have the answer 'yes'. But then v would receive a marker at

stage &, contradlcting the cholce of Eo.

But irf Qb 1s recursilve in Q-b’ a and some subindividual,
there must be some 1 tp(k-1) for which * fails, This proves

the claim.

Claim 5 and claim 6 give us the theorem. Note that the
conclusion gives us that Qb 1s not recursive in Q_b and any a.
Thus we have a famlily of incomparable strong degrees of cardinality

}{k. Moreover, all these degrees are r.e.-strong degrees.
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