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Jntroduction. The following pages contain the notes of a series 

of lectures given at the University of Oslo during the year 1974-75. 

Knowing that the alternative is not publishing, I have chosen to 

publish these notes in the present form even though, as a result of 

many suggestions and dissatisfied grunts from an otherwise very 

pleasant audience, I have become aware of the fact that the exposi

tion is very far from being perfect, 

The subject of these lectures were deformation theory, and in par

ticular the existence and the structure of the hull of the various 

deformation functors in algebraic geometry. 

These notes contain work done by the author over a long period of 

time, In fact some of the results date back to 1968-69. Since 

then, and in particular since 1971, when a first version of the 

theory presented in this paper was published (in the Preprint 

Series of the Institute of Mathematics at the University of Oslo), 

there has been done a lot of work on this subject, 

I shall obviously not attempt to write a history of deformation 

theory, not even of this last period, but I think it may be proper 

to mention a few names and their relation to the results of these 

notes, 

Inspired, I beleive, by results of Kodaira-Spencer and Grothendieck 1 

Schlessinger and Lichtenbaum defined in ( t,i) a cotangent complex 

good enough to enable them to prove the first nontrivial theorems 

relating deformation theory to the cohomology of algebras, 

Later Andr~ (An} and Quillen ( Qu) defined the correct cotangent 

complex, using quite different technics, 

The approach of Quillen was then extended by Illusie (Jl) to yield 
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a global theory, working nicely for any topos, 

The method used in (La4. was based upon the work of Andr~ and the 

study of the inductive and projective limit functors on small ca

tegories (see La"1,La'3). 

The work of Illusie, having become standard, contains by far the 

most general results on the subject, thus suggesting that his 

methods might be the best suited for the purpose of deformation 

theory, 

However, I have not resisted the temptation to continue the study 

of deformation theory along the lines of (La4), and this paper pre

sents the first results of this study. 

Many of these results are therefore not entirely new, Some will, 

properly translated into the language of Illusie be found in his 

Springer Lecture Notes, others may be deduced from his general 

theorems, 

This is particularly true for the following results: (34 1, '12) 

(3.2.~) (~~~:~4). 

Now, the present study is based upon the following well known idea, 

that infinitesimal deformations of schemes (resp. morhisms of 

schemes) may be considered as infinitesimal deformations of the 

corresponding categories of algebras (resp. morphisms of algebras) 

associated to affine open coverings. 

This way of looking at the problem of deforming schemes has many 

advantages. As will be shovm we may, using well known functorial 

complexes, construct a global cohomology theory for any small cate

gory of algebras, having the same :r-elation to the deformation theory 
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of the category as the Andr~ cohomology has to the deformation 

theory of a single algebra, 

The main results of this paper are: 

(3,1,12): Given any S-scheme X and any quasicoherent Ox-Module 

M , there exist cohomology groups 

n > 0 

the abutment of a spectral sequence given by the term 

E~,q = HP(x,t,q(M)), v1here the sheaf !q(M) is an Ox

Module defined by A q(M) (U) = Hq(S ,A;M(U)) whenever 

U = Spec(A) is an affine open subset of X , the last 

cohomology being that of ~1dr6, 

(3,1.14): Given any morphism of S-schemes f: X~ Y, and any 

quasicoherent Ox-Module !II , there exist cohomolog 

groups 

n .:=:: 0 

the abutment of a spectral sequence given by the term 

E~,q = HP(Y,t:_q(f;M)) , where the sheaf t,q(f;M) is an 

Oy-Module 

ever V = 

defined by = Aq(B,r 1 (V) ;M) when-

Spec(B) is an open affine subset of y • 

(3.1.16): Let Z be a locally closed subscheme of the S-scheme 

X , and let M be any Ox-Module. Then there are coho

mology groups 

A~(S,X;M) n _::: 0 , 

the abutment of a spectral sequence given by the term 

Moreover there is a long exact 

sequence 

-> n-1 ( ) n-1 ( ) Az S,X;M --> A S,X;M 

-> A~(S,X;M) --> ••• 
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( 3. 2, 3 ) : Given any morphism of S-schemes f : X __, Y , and any 

Ox-Module M there is a long exact sequence 

--> 

--> 

An-1(S,f;M) -> An- 1(S,X;M) 

An(S,f;M) -> .. • 

-> An- 1 (S,Y;R'f,M) 

(4,1,14): Let n: R __, S be any surjective homomorphism of rings, 

Suppose (kern) 2 = 0 and consider a morphism of S-schemes 

f : X ... Y Then there exists an obstruction element 
2 o(f,rr) E A (S,f;Ox®3Jcer n) , such that o(f ,rr) = o is a 

necessary and sufficient condition for the existence of 

a deformation of f to R (see definitions (4.1.)). 

The set of such deformations modulo an obvious equiva-

lence relation, is a principal homogenous space over 
1 

A (S,f;Ox®skern) • 

(4.2,§ ): Let k be any field, and let f: X__, Y be any morphism 

of algebraic k-schemes. Then the infinitesimal defor

mation functor of f has a hull H characterized in the 

following way: Let Ti denote the completion of the sym

metric k-algebra on the (topological) k-dual of 

A i (k, f; Ox) (see ( 4. 2) for definitions), then there 

exists a morphism of complete k-algebras 

with 

(i) 

o(f):T2 -·T1 

the following properties: 
2 

o(f)(~T2) ~ (~T1) 

(ii) o(f) is unique up to automorphisms of T1 • 

(iii) the leading term of o(f) (the primary obstruc

tion) is unique, 

(i v) H = T 1 ~ 2k , 
T 
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(5."1.2) : Severi-Kodaira-Spencer: Let X be any closed sub scheme 

of the algebraic k-scheme y Suppose X is locally a 

complete intersection of y 
' 

then if f: X .... y is the 

imbedding of X in y ' we have: 
1 

Ho(X,)iX/Y) A (k,f;OX) = 

2 1 A (k,f;OX) = H (X,)iX/Y) 

where !ix;Y is the normal bundle of X in y • 

(5."1.7) : Let Z be a locally closed subscheme of the algebraic 

k-scheme X Suppose the Ox-Module M has depth ~ n+2 

at all points of Z , then the canonical morphism 

AP(k,X;M) .... AP(k,X-Z;M) 

is an isomorphism for p < n • 

Notation.s: Let . -> . -> . be tvro composable morphisms in 
cp \:: 

some category. We shall denote by CflW tho composition of cp 

and ~ • 

N.B. To avoid set theoretical difficulties \ve shall assume that 

all constructions involving categories, sets etc. take place in a 

fixed universe. No attempt is made to prove that the results emerg

ing from these constructions are independent of the choice of this 

universe. 

Ho\·rever, this seems rather obvious, see the corresponding discussions 

in (An ). 
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Cha'Qter 1. Sections of functors. 

(1.1) Derivation functors associated to a functor. 

Let rr: Q -+ £ be a functor of small categories. lve shall con

sider the c~tegory !~or £ , for which 

1. The objects are the morphisms of c. 

2. If ~.~· are objects in Mer £ then the set of morphisms 

!~or(~.~·) is the set of commutative diagrams 

* <_!L_ * 
~! t~· 
* * 

We write (~•~'): ~ ~ ~· for such a morphism. 

€ Mer c --- be an object (i.e. a morphism of£) and let 

{A € Mer Q I rr(A) ::::(j)}. 

If ~1 and are morphisms in c which can be composed then 

we have a partially defined map: 

defined by composition of morphisms in C. 

\~e shall suppose that there exists a functor 

Der: Mor .2. _, Ab 

with properties: 

(Der 1) There exists a map: 

and a partially defined map 

defined on the subset of those pairs (A 1 ,,.2 ) having same "source" 
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and same "aim". These maps satisfy the following relations 

p(>.,a+~) = p(p(>.,a),S) 

( 11-1(•n) i.e. the subsets of o/ with fixed source and aim are 

principal homogeneous spaces over Der(q>).) 

(Der 2) Suppose q>1 and q>2 can be composed in £, then 

the diagram 

11-1(q>1) X 

jv xv 
(11-1 (q>1 )xDer(q>1))x(11-1 (q>2)xDer(q>2)) 

commutes, with o defined by: 

Note that (ld,q>2): q>1 o q>2 + q>1 and (t~~ 1 ,id): q>1 o q>2 + IP2 are 

morphisms in Mor £ , since the diagrams 

(jl1 1 
"' > * * > * 

(jl1 ° (jl2! !(jl2 tp1 ° (j)2! !(jl1 

* < * * < * 1 (jl2 

commute. 

We shall from n01q on use the following notations: 

<P1f3 = De r (til 1 , id ) ( f3 ) 

aq>2 = Der( id,c:p2) (a) 

>.1->.2 = v(>.1'>.2) 
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A functor with these properties will be called a derivation 

functor associated to n, 

There are some obvious examples, 

Ex,1. Let n: R + S be a surjective homomorphism of rings. Let 

I = ker n and suppose I 2 = 0. Consider the category C of 

flat R-algebras and the category c of flat S-algebras. Tensori-

zation with S over R defines a functor 

n: C + c 

and the ordinary derivation functor 

given by: 

Der. ~ .£ + Ab 

Der(<P) = Der8 (A,B@I) 
s 

where q>: A + B defines the A-module structure on B ® I, is a 
s 

derivation functor for n, 

Ex.2. Let Q
0 

be the full subcategory of C defined by the free 

R-algebras (i.e. the polynomial rings over R in any set of 

variables), and let c be the full subcategory of c defined -o 
by the free S-algebras. As above the ordinary derivation functor 

induces a derivation functor for the restriction of to 

C· -o· 

Ex.3. Let n: R + S be as before and let C be the category of 

R-flat affine group schemes over R and c the category of S

flat affine group schemes over S, 

Tensorization by S over R defines a functor 

n: C + c 

Let <P be an object in Mor c (i,e, tp: Spec(B) + Spec(A) is a 

homomorphism of S-flat affine group schemes over S) and consider 
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where \lA: A + A 0A and llJ3 B + B @B are the comultiplications 

defining the group scheme structure on Spec(A) and Spec(B) re

spectively. 

Then Der is a derivation functor for n. 

Remark, If n- 1 (~) is empty then the conditions (Der 1) anq 

and (Der 2) are vacuous. 

( 1 • 2) Obstructions for the existence of sections of functors. 

Given a functor n with a derivation functor Der: ~ £ + Ab, 

let us try to find conditions on c and n under which there 

exists a section a for n, i.e. a functor a: c + C such that 

a on = 1.£ 

We observe immediately that if such a a exists then certainly 

we must have 

for all ~ € Mor £ , 

and moreover there must exist a quasisection i,e. a map 

a 1 
: Mor £ + Mor Q such that if and can be composed 

then a 1 (~1 ) and a 1 (~2 ) can be composed and a 1 (~01 )0 a' (1()
2

) 

have the same "source" and "aim" as a 1 (~1 o ~2 ). Given such a 

quasisection a' we deduce a map a
0 

ob c + ob c, which we shall 

call the stem of the quasisection a'. 

Now, with all this we may prove: 

Theorem (1.2.1) Suppose given a quasisection a' of n, 

Then there exists an obstruction 

o(a') = o(a ) € lim( 2 ) 
o Mor £ 

Der 
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such that o(a
0

) = 0 if and only if there exists a section a 

of rr with the same stem a 
0 as a' • Moreover, if 

then the set of sections having the stem a , modulo isomorphisms 
0 

reducing to the identity, is a principal homogeneous space over 

lim( 1 ) Der 
+ 

Mor c 

Proof, Consider the complex D = o'(Der) of abelian groups 

defined by 

D0 (Der) = n Der(1 ) 
c € ob c c 

n > 1 

where the indices are chains of morphisms in .£• and where 

is defined by: 

(do~) (1J!1) = 1J!1 F; -~ 1J!1 
c1 co 

n 
(d ~)(1J!1,•••1J!n+1) = 1J!1s(1J!2,•••,1J!n+1) + 

for ;1 !:_ 1 • 

One easily verifies that dn odn+1 = 0 for all n > 0 

Lemma (1.2,2) Hn(D') ~ lim(n) Der 
+ 

Mor c ---
The proof will be given in (1,3) 
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Now consider the quasisection o' and define the element ~(o') 

of D2 by: 

CV(o')(.p 1,.p2) = o 1 (.p1 o .p 2) - o'(.p1) o o'(.p2) , 

By assumption {Y(o') (.p1 ,.p2) € Der(.p1 o .p2) • 

In fact 61-'(o') € leer d2 since 

(d2cY(o'))(.p1,.p2,.p3) = .p10"(o')(.p2,.p3) - &'(o')(l/11 ° 1/12,1/13) 

+ &'(o')(l/11'1/12 ° 1/13) - O'(o')(.p1'.p2).p3 

= .p1 (o'(.p 2o.p3)-cr'(.p2)oo'(.p3))-(cr'(.P1o.p2o.p3)-o'(v1o.p2 )oo'(v3)) 

+ (cr 1 (.p 1o.p2o.p3)-o 1 (.p1 )oo'(.p2o.p 3))-(o'(.P1 o.p2 )-o'(.p1)oo•(.p2)).p3 
= (o'(.P1 )oo'(.P2o.p 3)-o'(.p1)oo'(.p2)oo'(.p3)) 

- (o'(.P1o.P2o.P3)-o'(.P1o.p2)o'(.P3)) 

+ (o'(.p1o.p 2o.p 3)-cr'(.p1)oo'(.p2o.p3)) 

- (o'(.P1o.p 2)o'(.p 3)-cr 1 (.p1 )oo 1 (.p 2)ocr'(.P3)) 

= 0 • 

It follows that I'Y(o') defines an element o(cr') € H2(D•) 

Suppose o(o') = 0, then there is a ~ € D1 such that 

d~ = 6'(o') , 

Now put 

o(q>) = o'(<P) + ~(q>) 

Then o(.p1o.p 2) - o(.P1)oo(.P2) 

= (o'(.P1o.P2)+~(.P1o.P2))-(o•(.p1)+ ~(.p1))o(o'(.P2)+ ~(.p2)) 

= 0 ' (.p1o.p2)-cr' (1/11 )oo' (1/12)-(cr' (1/11 )~(1/12)-E;(l/11 o.p2) 

0 • 

i.e. o is a functor, (we easily find that o(1c)=1 ) o
0

(c) · • 
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Obviously the stem of (J is equal to the stem of a' (i.e. = (J ). 
0 

Now let (11 and (12 be two sections of 1T with the same stem 

ao' Then (a1-a2) defines an element in D1 by . 
' . 

(a1-a2) (.p) = a1 (.p)- a2(.p) ' 

Since a 1 and a
2 

both are sections (d 1(a1-a2))(.p1 ,.P 2 ) 

= .P1 (a1-a2 )(.p
2
)- (a1-a2 )(.p1 o.P2 ) + (a1-a2 )(.p1 ).p2 = 0 , and therefore 

(a1-a2 ) defines an element in H1(D'), 

Suppose this element is zero, then there exists an element ~ € D0 

such that 

i.e, 

for all 

Conversely, suppose s € H1 (D') is represented by ~ € D1 then 

given. any section a of 11, ~ + a is another section with the 

same stem as a. 

QED, 

(1,3). Resolving functors for lim, 
+ 0 

Let c be any small category and denote by Ab£ the category 

of abelian functors on c0
• Recall (see (La1)) the standard 

resolving complex 
co 

Ab + Compl,ab.g£. 

defined by 

cP(G) = 
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with differential dP: cP(G) + cP+1(G) given by : 

+ 

The basic properties of 
• • 0 

C = C (c ,-) are the foll011ing 

1 ) c'(c 0,-) is an exact functor 

2) Hn (c.(£ o'-) ) = lim(n) for n > 0 
+0 
c 

Now let F be any abelian functor on Mor c (i.e, F is an 

object of AbMor .2.) and put 

rrF(.p 1o•••o>Pp) 
C -+ C +• • 0 + C 

o>P 1 >P p 
1 p 

Let dp be the homomol'phism DP(F) + Dp+ 1 (F) defined by 

(dP(~))(>P1,•••,>Pp+1) = F(>P1' 1c )(~(>P2,•••,>Pp+1)) 
p+1 . 

+ ~ (-1)i~(>P1,•••,>Pio>Pi+1'•••,>Pp+1)+(-1)p+1F(1c '>Pp+1)(~(>jJ1,•••,>Pp)) 
i= 0 

(Remember that (>P1 ,1c ) is a morphism 
p+1 

in Mor c and that (1c ,>Pp+1 ) is a morphism 
0 

in Mor .2_), 

It is easy to check that (DP(F),dP)p~O is a complex of abelian 
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groups defining a functor 

D': Ab~lor .£ -+ Compl. ab. gr. 

Lemma ( 1 , 3. 1 ) • The functor D' = D' (.£,-) has the following 

properties: 

1) D' (.£.,-) is exact 

2) Hn(D'(£,-)) = lim(n) 
+ 

Mor c 

for n > 0 , 

Proof. Let L be the constant functor on Mor .£. 1 i.e. L(ep) = ~ 

for all ep • 

We shall construct a projective resolution of L in AbMor c , 

Let ~: x + y be any object of Mor .£. and consider the sets 

e: p 
{x + c + y 

0 

! c \ 
0 

There exists maps: 

defined by : 

e: 0 p = ~} • 

~} 

e: id . p 
= (x+co+••+ei+ci+••+cn+y) 
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p 
+ c2+••+cn+y) ,i = 0, 

e .P1 tJ!n p 
oin(x+ c + c1+••+c 1 + c + y) = o n- n 

e .pi ol)li+1 p 

(x+co+••+ci-1 + ci+1+•..-cn+y) 

for 0 < i < n 

e l)lnop 
(x+c +••+c 

1 
+ y) 

. o n- ' i = n 

giving 6n(~) , n > 0 the structure of a simplicial set. 

Moreover for each n > o, 6n(~) is functorial in ~ defining a 

functor 

6: ~ £ + Simplicial sets 

Composing 6 with the functor C.(-,~) we have constructed a 

complex of functors 

c.: Mor £ + Ab 

Now, by a standard argument we construct a contracting homotopy 

for C, thereby proving 

Hi(C.) -- { Lo 

Moreover 

li 
(e:,p) :~'+~ 

in Mor c 

for 

for 

i = 0 

i -F 0 

{I~ } 

.p1,•••,.Pn 

.p1 o• • •o.Pn=~' 

Using ((Le:i),Prop.1.1.a) it follows. that each en is projective as an 

object of AbMor £ • 

Therefore C, is a projective resolution of L in AbMor £ • 
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Since 

we find by a dull computation that 

o' {F) ""r4or (c. ,F) 
Mor c 

Ab- -

thereby proving the lemma. 

+ c .p n 
n 

QED. 
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Cha~ter 2. Lifting of algebras and morphisms of algebras. 

~) Leray S£ectral seq~ence for lim. 

Let .2. be any small category and let c be an object of .£. 

Consider the contravariant functor C( Zi\ , c) defined by: 

C(?Z,c)(c') = li ?Z 
c ·~ c cp 

vle knm~ (see (La1)) that these functors are projective objects in 
co 

A~-· • 

Suppose M is a full subcategory of c and consider the restric-

t;ion of C(?Z, c) to M. Let F be any contravariant functor on 

1'1 with values in Ab , then we find, 

Mo 
Ab~ (C(Zil,c),F) ~ - -

Now, suppose c
0 
~ c in c is an I-1 epimoi')2his,!!!, i.e. c

0 
E obM 

and the map 

Mor(c' ,c
0

) _, Mor(c' ,c) 

is surjective for every c 1 E ob ,t1 • 

SlX_ppose further that c has fibered products and consid.er the 

system of morphisms 

c.o t-
c ... c 0 .... 

.... .... 
co X co 

.... .... c v xco .... 
+- .... 0 0 ,... 0 •• • ... • \ c c ) • c 0 . 

.... v .... p 

Put c = c X • •• 
p \ 0 c 

X c 
c 0 _; 

and denote by 

v 
p+1 

di • c p. p .... c 
p-1 

the p+1 projection moLLJhisms. 

i = o, ••• ,p 
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Consider for each di p the corresponding morphism 

o~ : C(~, cp) _, C(?Z, cp_1 ) and let 

0 0 1 = 0 p p- for all p > 1 • 

LermJ1.e"'"J_2 .1.1 ) The complex 
0 

of C(~,c) in AJ:! • 

Proof. See f.ex. (Lr) p. 18. 

0 p = 

Let F' be an injective resolution of F 

the double complex 

Nor( C. , F" ) 

Then 

is a resolution 

and consider 

We shall compute the two associated spectral sequences. But first 

v1e have to establish the foll01'1ing lemma. 

Lemma (.?.t.2.2) Let f: ll/c _, !'1 be the canonical forgetful functor 
0 

and let F be injective in Abl"' , then the composed functor 

f•ll': (l"'/c) 0 _, Ab is injective as an object of Ab(l"'/c)o • 

Pr~.Z· The functor f induces a functor 

He 11ant to prove that f * takes injecti ves into injectives. 

To prove this v;e construct a left adjoint 

0 

AJ:! 

Let G be an object of Ab(l"'/c)o and put 
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J_j Cj) 
p(G)(m) = G(m ~ c) 

cp E Mor(m, c) 

0 

so that p(G) is an object of AbM • 

One easily checks that there is a canonical isomorphism 

Mor(p(G),F) ::_ Mor(G,f,,(F)) 

proving that p is left adjoint to f ,, • Since p is exact we 

lmow that f* takes injectives into injectives. 

QED. 

Going baclr t;o the double complex Nor( C. , F" ) vle find the E2 terms 

of the two associated spectral sequences: 
~ 

'h~'q = HP(Hq(Mor(O.,F'))) 

"EE'q = nP(Mor(Hg(o.),F')) 

\Ve lmmr already that 

= nll( lim (F')) 
(Rifc)o 

and by Lemma ( 2. '1. 2) \ve deduce 

.. ..,n,o -.1',2 -

Since 

l1or(Op,F') = l~m F' , 

.1'1/c - p 

we find, using Lemma (2.'1.'1) once more that 

'Ep,q = HP( lim (q)F) • 
2 ... 

11/c. 

1de have proved the following theorem. 
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Let I1 S:.£ and rn•c->c 
't' • 0 be given as above. 

Then there exists a Leray spectral s~uence given by: 

converging to 

= E~'q(I1) = HP( l~m (q)F) 
(!1/c. )o 

lim (' )F • 

(I1/c)o 

Re_Jp.arlc j_. The spectral sequence above is nothing but the Leray 

spectral sequence associated to the "covering" cp : c
0 

_, c in 

an appropriate Grothendieck topology. 

2. Since c
0 

E ob !1 the category !1/c
0 

has a final object. 

Therefore E~'q = 0 for all q 2: 1 • 

\ve deduce from this the formulas 

and the exact sequence 

9orolla£L_(f.1.~l Suppose that 

i+j = p and for i+j =p-1 • Then 

lim(p)F ~ Ep,o 
C£Yc)o - 2 • 

for i > 1 , 
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Assume for a moment that there exists a functor i : c _, Ab 

commuting with fibered products. 

'!'hen 

l!m g = i(cp) 
M/cp 

lim g = 0 • 
M/~(1) 

~ 

for all p :::_ 0 • 

Proof. Let E be an injective a.belian group and consider the 

functor 

We lmow that 

F(-) = Ab (g(-),E) • 

Ab ( lim g,E) ~ 
~ tl/~(-1) 

= ker{ lim F .... lim F }/ira{ lim F _, lira J!'} 
<- <- <- <-

(:t!/c1)0 (:t!/c2)0 (!1/cJo (f1/c1)o 

But since i(cp) = i(c
0

) X ••• X i(c
0

) 

. "----.:. i(c) i(c) _;J 
p+1 

this last group is zero. 

Since this holds for all injective abelian groups E we have proved 

that lim g = 0 , 
f:!/~( 1) 

Q,ED. 
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Re~~· The last corollary and the nexb one are important in our 

development of the lifting theory for algebras. 

CorollarY (2.!.6) Let ~ S M be two full subcategories of £ , 

Suppose £ has fibered products and let c E ob £ • 

Assume that (~ 1~ 1 M) satisfies the following conditions: 

(c1 ) There exists an object c
0 

of ~ and an IT-epimo~~hism 

rn•c ""'*c • .,.. • 0 

(c2 ) For any M--epimorphism $ : d
0 

... d in c vrith d
0 

E ~ 

there exist objects ep E ~ and 11-epimorphisms 

p.?:_2. 

Then vre may conclude 

Proof .• He first observe that (c1 ) and (c2 ) together vrith (2.1,1) 

imply that there are canonical isomorphisms 

(1) 

\vhere 

Nmv the canonical lll;orphism 

induces morphisms of spectral sequences 
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Using (1) we find isomorphisms 

p ::. 0 • 

Thereby proving that is an isomorphism. By an easy induction 

argument we may assume that t~,q are isomorphisms for all p,q 

with p+q ,::: n or q < n • This implies that 

are isomorphisms for all p,q vlith p+q = n, thereby proving that 

tn is an isomorphism. 

QED. 
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(2.2J~ifting of algebras 

Let S be any commutative ring v1ith unit. Let §--alg_ denote the 

category of S-algebras and let S-free denote the category of 

free S-algebras (i.e. the cateogry of polynomial algebras, in any 

set of variables, over S ) • 

Let A be any object of S-alg and consider the subcategories I1o 
and r1 of .s.-alg/A \vhere r1 = S-free/A and t1.a = (S-free/A)epi 

is the full subcatego:coy of r1 defined by· the epimorphisms F _, A. 

Thus we have !:1<> c r1 S S-alg/ A • 

\Ve observe that we have isomorphisms of categories: 

Let f (resp. 

~ "' r1 /(A .f A) 
"'<> A 

r1 "' !1/(A 1 ... A) 
A 

S-al£i::::. (S-~A)/(A 1 ... A) • 
A 

f
0

) be the 

By straight 

forgetful functor r1 -> S-alg (resp. 

for~vard verification \ve find that 
1 

and the object (A 'j. A) satisfy the conditions 

of Corollary (2.1.6). \.Je therefore conclude 

Lemma (2.~~1) There are canonical isomorphisms of functors 

... lim(n) ... 
(S-free; )epi,o 
-A 

n > 0 

Let i : S-alg ... Ab be the forgetful functor, then i commutes 

\•lith fibered products. Thus Corollary (2.1. 5) implies 
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Lemma (2.2._?2 Let g = f i (resp. g = f i ) be the composed func-· 
0 0 

tor, then 

lim g .... 
S-free;A 

= A , l!m(-1)g = 0 

S-free;A 

(resp. lim g = A, .... 
(S-free;A)epi 

l~m( 1 )g = 0) 

(S-free;A)epi 

Rem~. The isomorphism of (2.2.1) is obviously induced by the 

natural homomorphism of complexes 

Novl recall (see (An)) that given any A-module 11 the algebra 

cohomeology H" (S,A;I1) is defined by: 

~(S,A;M) = l~m(n) Der8 (-,M) 

(S-free;A) 0 

1·1here 

is the functor defined by: 

ivhere it is understood that M is considered as an F-module 

via cp • 

Lemma (2.2.1) therefore tells us that we may compute Hn(S,A;M) 

using only the subcategory (S-free;A)epi of (S-free.JA) , or 

sta-Ged in a form vle shall need later on: the homomorphism of 

complexes 
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is a. quasiisomovphism (i.e, induces isomorphisms in cohomology). 

Consider any 8-module I and let 

be the functor defined by: 

where F 0 I 
1 s is considered as an F -module via the morphism 

0 

Der8(-,A~ I): I1or(S-free;A) ... Ab 

be the functor defined by 

Der8 (F ,A® I) 
0 s 

vrhere A ~ I is considered as an F 
0 

-module via the morphism 

0 0 ( = 0:101 ) • 

Obviously there is a morphism of functors 

Der8(-,-~ I) ... Der8 (-,A® I) • 

The restriction of this morphism to the subcategory 

Mor(S-free;A)epi of Mor(S-free;A) is moreover surjective. 

Notice that by construction 

D' ((S-fre.e4) ,Der8 (- ,A~ I)) = c· ( (S-free j A) 0
, Der8 (- ,A~ I)) 

D" ((S-freea!pi ,Der8 (-,A ®I)) = C'((S-free,.y!Pi,o, Der8 (- ,A ~I)) 

.'. 
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Thus there is a commutativ diagram of complexes 

~k 

in which i is a quasiisomorphism and j is a surjection. 

Put: 

rc· = ker j • 

l'Toi·l let 

TT:R->S 

be any surjective homomorphism of commutative rings and con-

sider the diagram 

e = {R .... S .... A} . TT 

Defirgjzion (2.2.)) A lifting of !l, or a lifting of A to R, is 

a commutative diagra~ of commutative rings 

such that: 

('1) A'OS-:;A 
R 

R .......:> A' 

S -:>A 

(2) Tor~(A',S) = 0 

Abusing the language we shall usually call A' a lifting of 

A to R • 
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;pefinition ~2.2.4) T1'lo liftings, A' and A", of A to R are 

equivalent (\'lritten A' ~A" ) , if there exists an isomorphism 

of rings 

S:A' _,A" 

such that the follol'ling diagram COlllill1J.-Ges 

R 

A(el~" 
v 

! i/s\j J 
A = A 

'!'he set of liftings of A to R modulo this equivalence rela

tion is denoted 

Def(e) = Def(R->S->A). 

'!'he purpose of this paragraph is to ans~1er the following two 

questions 

1) \fuen does there exist liftings of A to R ? 

2) If there do exist some, how many are there ? 

As usual the anm·Ters given lvill be rather formal and only 

partial. 

In fact \'le shall have to assume that 

(kern)2 
= 0 , 

implying that I = leer TT has a natural structure of S-modul. 

Notice that in this case vte already kn01·1 ( ( 1.1) Ex. 2 ) that 

the functor 

Der8 (-,-0I) :Mor(S-free) _, Ab 
s 
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is a derivation functor for the functor 

-® S: R-free 
R 

.... S-free , 
~ 

the restriction of - ® S to the subcategory R-free of 
R 

R-Alg. 

Suppose there exist a section o of this las-t; functor, then 

an easy argument shows that the R-algebra 

A' = lim (f•o) 
.... 

S-free/A 

where 

f : S-freejA .... S-free 

is the forgetfull functor, defines a lifting of A to R • 

l'Tovr, clearly, the existence of a section o of -® S is too 
R 

much to hope for, but the idea, properly modified, is still 

good. 

In fact there are lots of quasisections o' of - ® S : R-free 
R -

.... S-free (but only one 

tion cocycle O(o') in 

stem ) Picking one we find an obstruc-
2 D (S-~, Der8(-,-® I)) (see (1.2)). 

s 
Obviously the forgetfull functor f defines a morphism of 

complexes 

Thus O(o') defines a 2-cocycle O'(o',A) of 

D"(S--free;A),Der8(-,-~ I)), which maps to a 2-cocycle 

O(o',A) = l(O'(o',A)) E c2 ((S·-freejA)0 ,Der8(-,A~I)) 

under the morphism 1 (see diagram a.bove). 
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We already know that the corresponding cohomology class 

o(rr,A) E Ii(S,A;A® I) s 

does not depend upon the choice of guasisection a'. Moreover 

1·re shall prove the following 

o(n,A) E H2(s,A;A® I) 

such that o(n,A) ~ 0 if and only if there exists a lifting 

of A to R • In that case Def(R _, S _,A) is a principal 

homogeneous spa.ce over H\S,A;Ii.® I) • s 

PrQQ£. Consider the diagrams of functors 

R-.free 

.!,-®S = u 
R 

Deftnition (2.2.§2 A map 

a' : mor(S-freejA) 

R-free 

I- ®S = u 
'f R o 

(S .• .free_!A)epi --> S-free 
f 0 

mor(R-free) 

(resp. a~: mor(S-freejA)epi .... mor(R-free)) 

respecting the objects (Le. objects are mapped onto objects) 

will be called an .f (resp. f
0

) - guasisection provided 

a'u = f (resp. 

Let a' (resp, a~ ) be any 

consider the cochain O(o') 

a'u = f ) • 
0 0 0 

f (resp. £'
0 

) - guasisection and 

(resp. O(a~)) of 
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c2 ((S··freejA)0 ,Der8 (-,A® I)) (resp. 

c2( (S-freejA) epi' 0 ,Der8(- ,A® I)) ) defined by 

One proves as in (1.2) that 0 (a') 
0 

cycle, and that the corresponding cohomology class coincides 

v1ith the cohomology class o(n,A) constructed above, Now 

suppose there exists a lifting A' 
6 

of A to R • Then we 

may, for every object (Jl' ~o A ) ·o of S-free;A, piclc an object 
6' 

(F~ ... 0 A') 

Obviously 

of H-free;A' such that 

cr'(6 }= F' and let us put 
0 0 ' 

6' ® s = 60 • OR 

v/i th these notations let Q
0 

= Q
0 

(a' ,A' ) be the 1. co chain of 

C'((S-fr~.~-fA) 0 ,Der8(-,A®I)) defined by 

Qo ~6oo\ ~A_;'I A6F;~ --\ J\Jt' j cr'(a.1 )cr.A_,(o 1 )-crl,(60 ). 

vle find 
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- (a' (a.1 a.2 )al, (6 2 )- al, (6
0

)) +(a' (a.'1)a;,, (6'1/:-a_k\(60)) 

=a' (a.'1)(a' (a.2 )al, (62 )- al, (61 ))- (a' (a.'1a.2 )al, (62 )- al, (6
0
)) 

Thus O(a') =-dQ
0

(a',A') and o(n,A) = 0, proving the "if" 

parG of the theorem. 

Suppose oC n ,A) = 0 , then there exists a '1. - co chain (; of 

c"((S-free;A) 0
, Der8 (-,A®I)) such that O(a',A) = d(;. 

Since j : D" ~ c· is surjective there exists a 1-cochain 

s of D • such that j ( S) = i (; • Let a'1 be given by 

Then a'1 is a f
0
-quasisection. 

One checks that the 2. cochain w of D" defined by 

') 

is mapped to zero by j , thus sits in K~ • 

Now 

A 1 = l:!,m a '1 

(S-free j A) epi 

exists as an R-modul. vle shall shoi'J that A' j_s a lifting 

of A, thus justifying our claim of "good idea" above. 

Consider the resolving complex C. = C.((S-free;A)epi,-) of 
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lim , for details see (La .1) or the Appendix ( 1. 3). .... . 
(S-freejA)ep~ 

Since a1 is not a functor C,(a1 ) will not necessarily be 

a complex, but nevertheless we may consider the commutative 

diagram 

0 0 0 A 0 I 

t t t 
s 

i3 Sl 
C2(a1) 0 I--~ c1 (a 1) 0 I --'> Co(a1) 0 I -»A' 0 I-> 0 

R R R R 

t t t a. 
v 

C2(a1) C1(a1) 
y 

Co(a1) A' 0 ----~ -> -> ·-> 

t t t t 
C2(o1) 0 s ~·-» C1(a1) 0 s -» Oo(a1) 0 s -:> A ~>0 

R R 

t t t t 
0 0 0 0 

in which all sequences of morphisms marked \vith solid arrov1s 

are exact, 

In fact v1e have c.(a1)0I = c,(g )0I and 
R . 0 S 

where, v1e recall, g
0 

= f
0

i (see (2.2.2)). The vertical se-

quences are exact since all CP (a 1 ) are R-free , the lower 

horizontal sequence is exact due to Corollary (2,2.2), and 

finally, part of the middle horizontal sequence is exact by 

the a.efini tion of 

Remember that \ve do not lmow that 6 o y = 0 • In fact it may 

well be that Hmvever im(ooy) c C (a") 0 I 
- o R 

and 

fortunately we have arranged the situation such that 

P(im(ooy)) = 0 • 
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This follo1·1s by observing that the image of o•y consists of 

sv~s of elements of the form 

1vhere 

is an object of (S-free;A)epi and 

Since w E rc2 we conclude 

Using this we may easily see that a is injective. 

But a is inject;ive if and only if 

Tor~1(A',S) = 0. 

He have to sho1v that A' is an B.--algebra. Consider a system 

of homomorphisms 

d 
F1 ... F X 

0 A 

in which F 
0 

and F1 
surjective, I and p1 

diagonal. Let D. : F 
0 

D.•d = D.' 
' 

and put P· l 

I 

P'J p 
F ... F ... A 

0 -.. 0 

~ 
l:J.' 

are free S-algebras, 
I are the projections p2 

.... F 
1 be a homomorphism 

"' d•p! 
l • 

Then A is the inductive limit of the system 

p and d are 

and D.' is the 

such that 
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Apply the f
0
-quasisection a 1 on the corresponding morphisms 

of (S-free;A)epi • Then we get a diagram of R-algebras 

Since we have the commutative diagram 

0 0 

~ ~ p®1I 
F1 ® I -.;> Fo ® I --» A® I -> 0 

-~> 

~ ~ 
a 

0 1(p1) t 
I 

]'' coker (a1 (p1 ),a1 (p2 )) ---->A' F1 -.......;> p-r> -;:,. 
0 1(p2) 

0 

~ 
~ t J ~ F1 

p1 
F A -5: 0 p 

p2 

t ~ J 
0 0 0 

in which a is injective and all sequences involving mor-

phi.sms marked with solid arrows are exact we conclude that i3 

is an isomorphism. i-/e therefore m•e reduced to prove that the 

R-modul kerp' = im(a1 (p1 )-a1 (p2 )) is an ideal of F~. 

Suppose x E im(a1 (p1 )- a 1 (p2 )) and y E F~ • He have to 

prove that yx E im(a(p1)-a1(p2 )). First, assmne x E F
0
®I, 

then p'(yx) = (p®1)(y•x) = p(y)•(p®1 )(x) = 0 where y is 
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the image of y in F • 0 
Thus yx E ker p ' • 

Since cr1 is an f
0
-quasisection we have 

1F' 
"' F' .......<1;. F' 0 0 • 

Therefore 

He have already seen that for all y E F' 
0 

w(ll,pi)(y) E F
0 

®I 

w(ll,p)(y) E ker p' 

i = 1,2 • 

i = 1,2 

and since x E im(cr1 (p1 )- cr1 (p2 )) there is a u E F-1 such 

that x = cr1 (p1 )(u)-cr1 (p2 )(u) 

therefore 

yx = (cr1 (p1 )(cr1 (ll)(y)) +w(ll,p1 )(y))(cr1 (p1 )(u)) 

- (cr1 (p2 )(cr1 (ll) (y)) + w(ll ,p
2

)(y) )(cr1 (p2 )(u)) 

= cr1 (p1 )(cr1 (ll)(y)•u) + cr1 (p1 )(u)·w(ll,p1 )(y) 

- cr1 (p2 )(cr1 (ll)(y)•u) + cr1 (p2 )(u)•w(ll,p2 )(y) • 

But, since we already knmv that 

this shows that yx E kerp' = im(cr1 (p1 )-cr,
1
(p2 )). 

Therefore A' is an algebra and we have proved that it is a 

lifting of A to R • 
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Fixing the g_uasisection a' , let A' be any lifting of A , 

and consider the 1.cochain Q (a' ,A') constructed above. 
0 

Remember that 0( a' ) ~ -d Q
0 

• The corresponding a 1 in the 

construction above, \·Thich is unique up to elements of I~ , \'/ill 
co 

be denoted a'(A'). Foranyobject (F
0 

... A) of (S-freeJA) 

let us put a' (A' ) A, ( o 
0

) ;, o J.., ( o 
0

) • For any morphism 

of (S-J're1V A) epi \ve have, by definition of Q
0 

(a' ,A') a com

mutative d:i.agrmn 

which implies 

lim a ' (A' ) = A' • ... . 
(S-free;1lP~ 

Given a lifting A' there is thus a unique, up to elements of 

f
0
-guasisection 0 I (A') such that 

lim a' (A' ) = A' • .... . 
(S-·reeejA)ep~ 

, 

Let A' and A" be two liftings of A, then the correspon

ding cochain 

is a cocycle defininga cohomology class 
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One easily checks that this class does not depend upon t;he 

choices made. 

On the other hand if A is an element of n1 (S,A;A0 I) , let 

(;
0 

be a 1.cocycle of o•((S-free/A)0 ,Der8 (-,A0I)) repre

senting A , then >ve consider the 1 cochain 

and so there correspond s S E D1 
o' such Obviously d (; = -0( a ' ) 

that j(s
0

) = i(!:
0

) j(s) = i(O • The quasisection cr1 =cr'+s 

defines a lifting A" of A • One easily checks that 

i(Q (A')- Q (A")) = i(<;
0

) 
0 0 

cr(A") = cr(A') - s 
0 

0 
(modulo K'- ) 

Suppose A = 0 then (;
0 

is a co boundary. He may assume 

s = d Tl with Tl E D0 
• 

0 

For every morphism 

of (S-free/A)epi consider the diagram 
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Since i(C
0

)= d 11 we find that the diagrams of morphisms 

represented by solid arrows commute. But this implies that 

there exist a morphism A 1 -+ A" \vhich joined to the solid 

diagram will not distroy the commutativity. Obviously then 

A" ~ A 1 
• This proves the theorem. 

Q.E.D. 
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Let n1 : R1 .... s1 and n2 : n2 .... s2 be two surjective homomorphisms 

of commutative rings. 

Let A1 be an S,1-·algebra and A2 be an s2-algebra and suppose 

given morphisms of rings 13
0

, 131 and 132 making the follm·ring dia

gram commutative: 

H1 
l'lo 
-> H2 

TT1t 
131 

~TT2 

81 -> 82 

!11 ,J. 
132 

JJ.l2 

A1 -> A2 

Suppose given a lifting A1 of A1 to R1 and a lifting A2 of 

A2 to R2 • 

]_J!Jfinitiol}. (2. 3-.!.:U A homomorphism of rings "I • A I 
"2 • 1 

ting of to with respect to A' and 1 
lowing diagram commutes 

13' and 13" o.f 2 2 

,.., A' is a li.f-
2 

A2 i.f the fol-

132 to 

respect to A' 1 and A' 2 are equivalent (written I'J I ~ f3 II ) if 2 2 
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there exist automorphisms of R-algebras e1 :A1 ~ A1 and 

a2 : A2_ ~ A1_, such that the following diagram commutes 

The set of liftings of ~ 2 to ~0 w.r.t. A!1 and A2_ modu

lo this equivalence relation is called 

Novr suppose leer TT~ = ker TT~ = 0 • Then w·e may prove the 

follmving: 

Theorem l2·2·32 Given liftings A' 1 and A' 2 of re-

spectively to R1 and R2 there exists an obstruction 

such that o(~2 ) = 0 if and only if there exists a lifting of 

~2 to (3
0 

lvith respect to A1 and A2_ • In this case 

Def((~0 ,f3 1 ,~2 ),A1,A2_) is a principal homogeneous space over 

H0 (S1 ,A1 ;A2 ®leer n2 ) • 

;proof .• As in the proof of (2.2.5) pick any quasisection 

- ® S. : R.-free ~ S.-free, i = 1,2 • 
R. ~ ~ -- ~-
~ 

Consider the corresponding 1.cochain C~ (a! ,A!) 
0 ~ ~ 

of 

o! 
~ 

of 
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C"((S.-free/A ) 0 ,Der8 (-,A.® kern.)) i=1,2. 
~ . . ~ s ~ 

~ ~ . 
~ 

Let O(a.;,a2;A_;,A2_) be the 1.cochain of 

c· ( (s1 .. freej A
1 

) 0
, Der

81 
( -,A2 ~ ker n2 )) 

defined by 

\·There 

is the functor defined by 

<v,.,2l·(i:o) 
F o s 2 

= 
o s1 

~ &'o 

A2 

{>I 
0 

being the composition: 

F ® s
2 

.., A
1 

® S0 ..., A
2 

• 
0 s s <-

1 1 

One checks that O(a!pa2_;A_;,A2_) is a 1.cocycle, and that the 

corresponding cohomology class o(Ai ,A2_) E H1 (s1 ,A1 ® ker n2 ) 
s2 

does not depend upon the choices made. 

Consider for every morphism of (S1-free;A ) , 
1 
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and a.' 1 

V 1 
( 0. ) = ( 1F 1 ® J3 )02A1 

1 ( 0! ) 
~ i 0 2 ~ 

i = o, 1 • 

Then this diagram induces the following diagram 

F,j 

cr,;Ca.1) / ~A~o1) 
F' ~ ~~ 1 A' 

o I v' (o ) "? 2 

cr,;A_; co A -- / ~ ~0~13~ / 
AI / 

'I 

and we find that 

(

F a\,. F ) 
0( cr,; ,cr2_ ;A,j ,A2_) 6 0\A(o~ = v' ( 60 ) -cr.; (a1 )v 1 

( o1 ) 

+Qo(cr_;,A_;)(a1)(J32 ® {3o) • 
81 

Suppose now that there exists a lifting f3' of 2 132 to 

A1 and A2_ then let Q1(f32_) be the 0. cochain of 

C' ( (S_,-free;A
1 

) 0 ,Der
81 

(-,A2 ~ ker rr2 )) defined by 
2 

'l-,(02)1 ±:o) 'v'(6o)-o1A•(6o)02 • 
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\Ve find 

Thus proving the .;if" part of the theorem, 

Let us consider the image of O(a',A1,A2) in C' By definition 

of a1(A1) we find 

11hep_ever 

v• (co)- a1(o;1)v' (61) + Qo(a1,A1)(a1)(f32~ flo) 
1 

Vlith this done, suppose o(A-],A2) = 0, then there exists a 

0, cochain K of 

such that 

Put 

for every object 

of (S-free;A ) , then for every morphism 
1 
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of (81-free;A )epi we find a commutative diagrrun 
1 

which proves that there exists a lifting 

A' 1 In fact we kno\v that A-j 

This ends the proof of (2.3.3) 

Remar}S_(2.3.4) By construction \ve have an equality 

V(6
0

) = cr-jA! (6
0

)fl2 which implies that 
J. 

Q1(t3;2)( 6o) = v' <6o)- 0 1A-j <6o)l32 = l\(&o) 

for all objects (81-free;A ) • 
1 

Remark (2.3.52 Consider any diagram of commutative rings 

R1 
130 

R2 
Yo 

R3 -> -> 

TT1t n2J, TT3~ 

81 
131 
-> 

y1 
82 -> 83 

l-l1t 
fl2 

l-l2~ l-l3~ 
A1 

A y2> 
A3 -> 2-

Q.E.D. 
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Assume n1 , n2 , n
3 

are surjective and, moreover, that 

kern~ "' kern~ = kern~ = 0 • Suppose given J_iftings A1, A2 

and A{5 of A1 , A2 and A
3 

respectively, and suppose vre have 

found liftings !32, Y2, and (!32Y2 ) 1 of P2 , y2 and !32Y2 

respectively, lv.r.t. A1 and A2, A2 and Afs, and A1 and Afs 

respectively. 

Pick any object 

diagram 

An ea.sy computation shows that 

ru1d consider the 

cr,jA,j (oo)(!32Y2) 1 
= !32Y2- (Q1(y2)((!3o,l31,132)*( 0o)) 

- ~ ( (f.l2 Y2) 1 )(llo) + Q1 (132) ( 6o )( Y2°Yo)) • 
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Chap~er 2· Global cohomology. 

(3.1) Def~nitions and some spectral sequences 

Let us first recall some fundamental constructions. If e is any 

small categolJf, one may consider the category of functors (covariant) 

on e ~lith values in ·i;he category of abelian groups Ab • \<Te shall 

denote by Abe this category, which we kno1v is abelian having 

enough injectives and projectives. 

JJet c· (~) = c· (£,-):A~ ... Compl.aJ?..!EE.• be the following functor: 

Let F be any object of Ab~ and put: 

F(e ) 
et-ef-oof-e 0 

0 1-11 l 1-12 1-lp p 

where the indices run through all strings of p composable mor

phisms in ..2_ • Let the differential dp : cP(~,F) ... cP+\~_,F) be 

defined by: For p = (p / ) E cP(e,F) let dP(p) = 
1-11 '1-12' -· '1-lp 

(dP(p) ) be given by the formula 
1-11 '1-12' ... 'i-lp+1 

dP(f3) = F(!-1 )(!3 ) + 
1-11,1-12, ... 'i-lp+1 1 1-12' 1-13, ... 'i-lp+1 

It is easy to shm-1 that dPdP+1 = 0 thereby proving that c• (e,F) 

= (cP(Q,F),dP} is a complex. Moreover, 1ve observe that c·(e,--) 

is an exact functor, and, almost by construction, we have (see 

Appendix (1.3) or (La 1)): 

we c· <.~.-)) ~ lim(n) • - .. e 

Given the category e we define (see ( 1.1)) the category l1or 2. 

for v1hich the objects are the morphisms of Q and for which the 



- iJ-8 -

morphisms (a,~) : ~ ~ e are commutative diagrams of the form: 

e1 <a;-- e.; 
~~ t€ 

e2 .....-e• 
~ 2 

It turned out that for this special category there exists another 

functorial complex D'(~,-): AbHor~ ~ Compl.ab.g~. with the same 

property as c• (~lor~ , -) hut better sui ted. for our purpose (see 

(1.3)). If G is an object of AbNor~ then D"(e,G) is given 

and 

vrhere 

#(e,G) = G(u..~ 1.1 ) e ~ e ~ ~ e "I' 2' ... ' p_ 
0 ~ 1 ~ • ·~ p 1 2 p 

D'(~,-) is an exact functor, and \•/e proved in (1.3) that 

W(D"(e,-)) ~ - -
lim(n) • 

Nor e 

Definition (3.~ Let G be an object of AbNor ~. '.!'he n.th 

cohomology of e 1·rith values in G is the abelian group: 

(\>Jhy not? ) 

Now, vii th these generalities done, we shall start the construction 



of the global algebra .2.2hpmology 1·rhich eventually 1vill lead to the 

cohomology groups A11(8,X;M) refered to in the Introduction. 

r,et 8 be any commutative ring with unit ol9ment, and let us make 

the follo~ling definUion: 

Defini~ion (3.1.2) A 2.8-algebra is a morphism of 8-algebras. 

If fl :A ... B and fl' :A' ... B' are 2.8-algebras then a 

morphism (o.,(3): fl ... fl' is a commutative diagram of the form: 

A -a> A' 

fl~ I ~flO 
B -T> B' 

Let 2. 8-alg denote ·the category of 2. 8-algebras, and consider 

a sme.ll subcategory d of 2.8-alg • 

Obviously the functor A ... (8-> A) defines an imbedding of 8-alg 

in 2.8-alg • ~-§hal} thereforeideEtify any small~cate_g_oJ:X of 

8-alg with the corresponding subcategory of 2.8-al_g_ • 

Examples {j.1.3J (I) Let Y be any 8-scheme ano. let 1U be 

any affine open Zariski covering of Y • Then ID as a subset 

of the topology of Y is an ordered set, therefore a category 

the morphisms being the inclusions u:;:v. The dual cate-

gory em is a category of 8-algebras. 

(II) Let f:X_.Y be a morphism of 8-schemes, and let UJ 

(resp. W ) be an affine open covering of Y (resp. X ) • Then 

the set f(ID,W) = ((U,V) I UEID, VEW, V:=_f-\U)} is an 

ordered set and the dual catego~7 dm W is a category of 
' 

2.8-algebras. In fact, if (U,V) E f(ID,W) then U = Spec(A), 
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V = Spec(B) and f jv : V .... U corresponds to an S-algebra 

morphism A .... B • 

DefilJ..ition (),1,4) A d--!'1odule !'1 is a functor !'1 : d _, Ab such 

that for any object f.l: A _, B of d l'1(f.l) is a B..l'lodule, 

and such that for every morphism (a.,f3): f.l .... f.l' of d with 

~~· : A 1 
.... B' , the corresponding homomorphism 

1'1( (a., fl)) : l'1(f.l) _, 1'1(1-l') is f3 : B _, B' linear. 

Example (3.1.5_1 In the situation of (3.1.3), (II) any Ox-1'1odule 

v1ill, in an obvious vray, induce a 2:.m w-l'1odule. 
' 

Nm·T, consider a morphism (a.,l3) of d, i.e. a commutative diagram 

A --cr-> A I 

1-lt til' 
B T> B' 

Let 1'1' be any B' --module and consider the functor 

(a.,p),,: A-free/B .... A'-freefn• 

(see ~.2) for definitions) defined by: 

(a.,f3)*(6) =composition of 6®1A' and B®A' _, B'. 
A A 

Here 6 : A[2f) .... B o.enotes any object of A-free;B • 

The functor (a.,l3)* induces a morphism of complexes 

If r : I'1' .... 1'1" is any homomorphism of B' -modules, then the corre

spono.ing homomorphisms of abelian groups 
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'f 0 1 : Der A' (A 1 [;;s,] ,M 1 
) _, Der A 1 (A 1 [:if] ,M") 

where o1 runs through A1 -free/B 1 defines a morphism 

'f: DerA 1 (-,M 1
) _, DerA 1 (-,M") 

11hich in turn induces a. morphism of complexes 

Let M be any d-Module then it follo~rs from what has been said 

above that the map 

induces a functor 

C"(-,Der_(-,M)): Mar£ ... Compl.~b.gr •• 

VIe may therefore consider the double-complex 

Kd_"(M) = D"(d,C"(-,Der_(-,M))) • 

Definition (2_.1 .6) The global algebraic cohomology of d with 

values in M, deno·t;ed by 

n;:o, 

is the cohomology of the simple complex associated to the 

double complex Kd_ • (M) • 

For q ~ 0 let Aq(M) denote the qth cohomology of the functor 

c·(-,Der_(-,M)), then Aq(M) is a functor on Mord with values 

in Ab • 
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Lemma (3. '1. 7) An(S d•M) is the abutment of a spectral sequence ,_, 
given by 

Proof. This is just the first spectral sequence of Kd.' • 
Q.E.D. 

Let ~ be any subcategory of the category d • Given a i-Module 

M we may consider the restriction of M to ~1or .9:a (usually de

noted M , thus abusing the language). 

There is a canonical surjective morphism of double complexes 

K .. (M) ... K' • (M) 
d . d - -'-() 

Let denote the kernel of this morphism, and put: 

Definition (3.'1.8) The global algebraic cohomology of d relative 

to .9:o , 1·1ith values in M, denoted by 

A~ (d,M) 
-o 

n > 0 

is the cohomology· of the simple complex associated to the 

double complex Kdjd (M) • 
- ""'<) 

There is a long exact sequence of cohomology 

••• 

Lemma (3.'1.8) Let e be any small category, and consider the 

functor 

e : Mor _!i ... !i 

defined by: 
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Let F : e _, Ab be any functor, then there are natural iso-

mor-_phisms 

n > 0 

More e 

Proof. This is trivial, due to the fact already observed in (2.2) 

that 

D"C2_,eJJ') = c·ce ,F) • 

Q.E.D. 

Corolla£Y (3.1.9) Let 2.o be any subcategory of the category 2.• 

Let n be the full subcategory of Mor 2. the objects of which 

are the morphisms e
0 

_, e1 vlith e
0 

E ob. 2.o • 

Let F : 2.o _, Ab be any functor, then there are natural iso

morphisms 

n;:o. 

Proof. This is an easy consequence of (3.1.8). In fact Mor2.o is 

a cofinal subcategory of n (see Appendix (1.3)) 

Q.E.D. 

NOiv let us apply some of these generalities to algebraic geometry. 

Let X be an S-scheme, and let ~ be the open covering of X 

consisting of all affine open subsets. Let ex = _g_~ (see (3.1.3) 

I.) be the dual category of S-algebras. 

Let F be any Ox-Module then F is a ex-Module 'l'rhich, via the 

functor e : Mor c... _, c 
-'-11. -X may be considered a functor on Mor eX • 
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Theorem (2o1.10) Suppose F is quasicoherent, then there are 

natural isomorphisms 

n ;::. 0 • 

Proof. By (3.1.8) there are natural isomorphisms 

Hn(c F) ll. m(nL F ~ ll. m(n)F • 
-X' " .- ~ ... 

Mor c:X: c:X: 

Moreover we have isomorphisms 

pefinition (3.1.11) The global algebraic cohomology of X with 

values in F are the groups 

n > 0 o 

If 1.1 :A ... B is any object of Mor c:X:, then 

Aq(F)(I.I) = Hq(c•(S-free;Ao,Ders(-,F(Spec(B))))) 

= Hq(S,A;F(Spec(B))) o 

By (An)po85 we find that 

Hq(S,A;F(Spec(B))) = Hq(S,B;F(Spec(B))) 

and, in fact, A q(F) is the composition of e 1~ith a sheaf on X • 

This shea~l~hich we shall still denote by Aq(F) is quasicoherent 

rrhenever F is. 

Theorem (3.1.12) Suppose F is quasicoherent, then the global 

algebraic cohomology A•(s,X;F) is the abutment of a spectral 
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sequence given by the term 

Proof. This is a trivial consequence of (3.1.10). 

Q.E.D. 

Consider any morphism of S-schemes f : X ..., Y , and let ?Z:z: , and 

~ be the ordered sets of affine open subsets of X and Y re

spectively, Put df = f(~ 1 2Zy) 0 see (3,1.2). 

Let F be any Ox-Module • In an obvious way we may consider F 

a df-Module • 

Definition (3.1.13) The global algebraic cohomology of f 1·fi th 

values in F are the groups 

n~O. 

Theorem (3.1.14) 

1vith 

A'(f;F) is the abutment of a spectral sequence 

E~'q = HP(cy;Aj(F)) 

where Aj(F) is the functor on Mor cy defined by 

Aj(F)(A1 -> A2 ) = Aq(A1 ,r
1 (SpecA2 );F) • 

Proof. Let 'I' : r1or df ..., Mor cy be the functor defined by 

A 

= t • 

A' 
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Let n : Mor £y -+ JP I1or df be the map given by 

n(x) ~ 'f-1 (Q) 

" where x ~ (x' EMorc~l x ... x'}. Using (La3)(1.3) we find a 

homomorphism of compleces 

c•(Mordf'-)-+ C"(Morc~, c•(n,-)) 

inducing isomorphisms in cohomology. 

For x an object of Mor c~ put x ~ A _, A' and put 

TT0 (x) = ~ .J, {A-> B E n(x) 1 :!IA • 

A'--> B' 

then TT
0

(x) is cofinal in 

In fact, given any object 

n(x) 

~1) 
B' 1 

-+B making the t1vo 

commutative · 

(see (La 3) (1.2.4)). 

triangles 

' 

of n(x) , there exists by definition of n(x) a commutative diag:~a 

gram 

• 

Put 

u ~(i -. > ~'fl1) 
A'-> B]1 

then u E n
0 

(x) and there exists a unique morphism u _, ,., in n(x). 

Thus the canonical homomorphism of complexes 

induces isomorphisms in cohomology. 
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Now, observe that; n
0 

(x) is isomorphic t;o Mor cr-1 (Spec(A' ) ) 

where f-1 (Spec (A' ) ) is considered as an A-scheme • 

This implies t;hat the cohomology of the double complex 

c•(n
0
(x),c•(-,Der_(-,F))) 

being isomorphic to the cohomology of the double complex 

c· (Mor cf"1(Spec(A I)) ,c· ( -,Der_ (-,F))) 

is equal to Ai(F)(x) • 

Since we already know that the homomorphism of double complexes 

c• (Mor df' c· ( -,Der_ (-,F))) 

c· (Mor C;Y' c· (n,c· (-,Der_(-,F)))) 

induces isomorphisms in cohomology, the first spectral sequence of 

the double complex 

c•(Morcy, C"(n,c•(-,Der_(-,F)))) 

being given by 

converges to the cohomology of c• (Mor df, c• (-, Der _ (-,F))) vlhich 

is the same as the cohomology of the complex 

n•(df,G"(-,Der_(-,F))) • 

This proves the theorem. 

Q.E.D. 

Consider a closed subscheme Z of the S-scheme X • The 

category cX-Z is a full subcategory of eX • Let; F be any 

Ox-Module, and let's make the follov1ing definition. 
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Definition (3.1.15) The global algebraic cohomology of X with 

values in F and support in Z , are the groups 

A~(S,X;F) = A~ (S,cX;F) 
-(X-Z) 

n ~ 0 • 

By construction we have a long exact sequence 

Let for any subset ~ of the ordered set ~ , 

a• (e/~,-) 

denote the kernel of the canonical morphism 

Jl.ecall that He denote by ~ the subset of e defined by 

~ = {x E e I :>1: x 1 E e , x < x 1 
} • 

-'-() - -'-() -

By definition 1·1e have an exact sequence of double complexes 

o -+ C' (Mor cx/mor cX-Z, a· (-, Der _ (-,F))) -+ 

c•(MorcX, C'(-,Der_(-,F))) _, 

C'(r-lorcX-Z' C'(-,Der_(-,F)))-+ o, 

inducing the long exact sequence above. 

Using Corollary (3.1. 9) r,re may prove that the canonical morphism of 

double complexes 

_.........--.._ 
a· (Mor cx/Mor CX-Z' c· (- ,Der- (-,F))) -+ 

a• (I1or ex/Mar cX-Z, C' (-, Der _ (-,F))) 

induces isomorphisms in cohomology (use the short exact sequence 

of complexes and the first spectral sequence of the third member). 
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TT. : Hor Cv _, JP Hor Cv 
~ -A -A 

1\ 
=X and 

i = 1,2. 

By O:,a 3) ( 1, 3) there is a canonical morphism of double complexes 

C' (Nor .£x/Nor cx_z,C' (S-free/-0 ,Der8 (-,1!'))) .... 

c· (Hor ex, c· ( TT1/TT2, c· (S-free/-0 ,Ders( -,F)))) 

inducing isomorphisms in cohomology, 

Let x = A .... B be an object of Nor eX then for any object x' = 

(A' -+ B') of n1 (x) there is a unique commutative dLigram 

A-"' B 

t ~ 
A'-"' B' • 

Corresponding to this diagrrun there is a functor 

S-free 1 A, -+ S-free I A 

inducing a morphism of functors on n1 (x) 

C'(S-free1Ao,Der8(-,F)) ... C'(S-free;-0 ,Der8(-,F)) • 

\ole already knov1, see (fill) p. 83 , that this morphism induces isomor

phisms in cohomology. Therefore the canonical morphism of double 

complexes 

C'(n1 (x)/n2(x),C'(S-freeiA0 ,Der8(-,F))) _, 

c•(n1 (x)/n2(x),C'(S-free/-0 ,Der8(- 1F))) 

induces isomorphisms in cohomology. 
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Now there is a canonical isomorphism 

C'(rr1 (x)/rr2(x),C'(S-freejAO,Der8(-,F))) ~ 

c· (S-free I A 0, DersC-, c· ( TI1 (x)/rr2(x) ,1!'))) • 

Putting things together we find a morphism of complexes 

c· (Mor C;x:/Mor C;x:-.z·c· (S-free/-0 ,Ders(-,F))) .... 

c· (Mor C;x:• c· (S-free/-0 ,Derg(-,c·crr1/rr2,F)))) 

inducing isomorphisms in cohomology. 

Consider the exact sequence of complexes 

Suppose F is quasicoherent, then by (3,'1.9) and (3.1.10) we find 

thus 

Hq(C'(rr1(x))) = Hq(Spec(B),F) 

Hq(C'(rr2(x))) = Hq(Spec(B)-Z,F) 

Hq(C'(n1(x)/n2(x),F)) = ~~(F)(Spec(B)) • 

~9~~.1.16) Az(S,X;F) is the abutment of a spectral 

sequence given by 

Proof. Take the first spectral sequence of the double complex 

Q.E.D. 



- 61 -

Consider a morphism of S-schemes 

and let X c: X and Y
0 

c: Y be tvm closed subschemas satisfying 
0-

f-1(Y ) c: X • Then f 
0 - 0 

induces a morphism of 

f :X-X ->Y-Y. 
0 0 0 

S-schemes 

The corresponding category df of 2.8-algebras is, in a natural 
0 

\vay, iden'Gifyed with a subcategory of df • 

Definition (3.1.172 The global algebraic cohomology of f rela

tive -~o f
0 

(or with support in (X
0

,Y
0
)) l'lith values in F 

are the groups 

A~ (f;F) 
0 

=A~ (df.;F) 
-f 

0 

n,:::o. 

Theorem (3.1.18) A[ (f;F) is the abutment of a spectral sequence 
0 

given by the term 

E~,q = HP(cy;Af/fo (F)) 

1·1here Af/f (F) is the functor on Mor cy defined by 
0 

Proof. Virtually the same as for (3.1.14). 
Q.E.D. 
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(3.2) Long exact sequence associated to a morphism of sch~ 

vle shall need 8. technical lemma. 

Let g : e1 _, ~ be a functor of small categories. Suppose ~1 
has an initial object S • Consider the category C/g for ~1hich 

the objects are t;he triples (A,B,p) ivhere A is an object of ~1 , 

B is an object of ~ and p is a morphism g(A) _, B • 

A morphism (A,B, p) _, (A 1 .B 1 , p 1 ) in Q/g is by definition a pair 

of morphisms ( $1 , *2 ) , ~ 1 :A ... A 1 
, ~2 : B _, B 1 in ~1 respectively 

e2 , making the diagram 

g(A) _a B 

g($1) J ~ *2 

g(A')P)BI 

commutative. Let li1 : C/g ... ~1 and li2 : Q/g..., e2 be the functors 

defined by li1 (A,B,p) = A, ~P 2 (A,B,p) = B. Consider functors 

F • e 0 _, Ab, .• --1 

Lemma (3.2.1) Then there are natural isomorphisms 

(1) lim(n)q; oF ~ lim(n)F 
... 1 ... 

Q/go ~1o 

(2) lim(n)q; oG ~ lim(n)G ,_ 2 ... 

Q/go e~ 

Proof. For n = 0 there is nothing to prove. Let for every object 

A' of 2-1 IAI be an injective abelian group. The functor 

C• o • 2-1 _, Ab given by C(A) = II IA I is injective as an object of 
A'-> A 
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the category of abelian functors on ~~ • Let for every (A' ,B' , p' ) 

of 0/g 

I(A',B',P') {O 
"' IA' 

if pI ;, .:lg(A I ) : g(A I ) .... g(A I ) 

if p' "' .:lg(A I ) : g(A I ) _, g(A I ) 

then the functor 0 1 
: Q/rf! _, Ab defined by 

0' (A,B,p) = IT I(A' ,B' ,p') 
(.A',B',p') _, (A,B 1 p) 

is injective as an object of the category of abelian functors on 

Q/g0• Moreover 

Since the functor 

is 
exact and talces ena.1g,'h injectives into injecti ves ( 1) follo~rs from the 

spectral sequence associated to a composition of functors. 

Consider for every object B' of ~2 an injective abelian group 

JB I • The functor D: e~ _, Ab given by D(B) = n JB I 
B'...,B 

tive as an object of the category of abelian functors on 

for every object 

(A' ,B' ,p') of Q/g 
0 if A' f, S 

J(A',B',p') = { 
JB' if A' = S 

then the functor D' : C/g0 
_, Ab defined by 

D'(A,B,p) = IT J(A',B',p') 
(.A' ,B ',pI)_, (A,B, p) 

is injective 

is injec-

0 
e2 • Let 

as an object of the category of abelian functors on Q/g0 
• 
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D' = \li 2 D • 

G _, \li G 
2 

is exact m1d takes enough injectives into injectives (2) foll01vs. 

Q.E.D. 

Let w :A .... B be a morphisms of S-algebras. Then $ induces a 

functor ~ * : S-free/A ... S-free/B • 

Let 2.4 = 8-free/A , e2 = S-free/B and put g = $ * • Then the 

category Q/g = C/$* of (3.2.'1) is the category whose objects are 

commutative diagrams of the form: 

S->A .., B 

with o4 E ob S-free;A 

A morphism of 

F' ... F' 
'1 2 

into t t 
S-o A ..,B 

is a pair of morphisms of S-algebras 

mruring all diagrams commutative. 

The functors i = '1 ,2 are in this case defined by: 
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S-+ A _, B A 

_, B 

Let M be any B-module and define three functors 

i=1,2,3. 

By: 

\ife may consider the subcategOl"'Y £ol** of .Q/IJ!* whose objects are 

diagrams of the form 

There is a natural functor \l! : £a!$* ... A-free /B \{hich takes 

F"' _, ]' 
i' ~ 2 into 
A ... B 



- 66 -

inducing a morphism of complexes 

Obviously 1·1e get an exact sequence of functors, restricted to 2o1 $ 

The corresponding exact sequence of complexes 

1·1ill induce a long exact sequence in cohomology 

'"' Hn(A,B;M) _, W(S,B;M) '"' Hn(S,A;M) 

_, If1+1 (A,B;M) _, ••• 

This is a consequence of Lemma (3.2.1) and the following result: 

Lemma (3.2.2) The canonical morphism of complexes 

o r~ o 
C'((A-free;B) ,DerA(-,1'1)) _, C'(2o/$ ,D3(M)) 

induces isomorphisms in cohomology. 

Proof. Consider the functors 

defined by 

C1(A ~ C _,B) = C'((A-free;c)0 ,DerA(-,M)) 

C2(A ~ C _,B) = C'(2o/~~,D3 (M)) 

i = 1,2 

Obviously there exists a canonical morphism of functors 

C• r· c· 
1 ... 2 

which evaluated on the initial object (A .... B .... B) of (A-algjB)0 

$ 1B 
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is the morphism r~ • 

Now consider an object 1!' ... B 
0 

of and let Fp = 

F
0 

X ••• x F
0 

(p+1 factors). 
B B 

There are p + 1 projection morphisms 

d L F ... F p • p p-1 p ::: 1 ' j = 0' ••• ,p • 

Let 

6j. • C~ (A _, F -+ B) _, C~ (A _, F _, B) pl. • J. p-1 J. p i = 1,2 

be the induced morphisms of complexes. 

Put 
p+1 .. 

op,i = ~ (-1)JoJ . 
j=o p,J. 

Then we prove as in (2.1.1) that the family 

{cl?q) a> = {c9-(A _, F ... B),op,J.' lp,n>.o J. P' ..._o J. P ""'--
i = 1,2 

is a double complex and fixing q the complex 

i = 1,2 

is a resolution of 

c9-(A _, B _, B) 
J. 1B i = 1,2 • 

Moreover we find that r• induces a morphism of double complexes 

No1v we easily check that 

is an isomorphism. Since F is A-free we find that both 

H1(c1(A _, F _,B)) and H1(c2(A ... F _,D)) are zero. Using the 
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morphism induced by r•• on the first spectral sequences of c·. 
1 

and 02 • , we obtain \vhat ~1e want. 

Q.E.D. 

Let f : X _, Y be any morphism of S-schemes and consider any Ox-

1'1odule F • F induces a df-Hodule, still denoted F • 

Consider the functor 

C"(2ol:!, Di(F(-))): I1ordf ... Compl.ab.~, i=1,2,3 

defined by 

j, B!J. _ . .,. 

$' ... ' i=1,2,3 

Remember F( $') = F(B) = F(Spec(B)) • The short exact sequence * 
above \•fill induce a short exact sequence of double complexes: 

0 _, c•(Hord:f' C"(fo;--, D3(F(-)))) 

... c•(Hordf' c•(Slo/-, D2 (F(-)))) 

... c•(Hordf' C"(2o/- 1 D1 (F(-)))) ... 0 

With all this done, we shall state the main result of this paragraph: 

Let f : X '"' Y be any morphism of S-schemes, and 

consider any Ox-I1odule F • Then there is a long exact sequ-

ence 

~/here An(S,Y;R•f*F) denotes hypercohomology of the complex 
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Proof. Consider the subcategory f2c/~ of C/~ • It is easy to 

see that for any diagram of C/* 

(j)1 y1 *1 ----'7 ---~ z or 
X ,.. ... "?' 

~ y2- *2 

of the form 

"l'lith, y1 , y2 and y objects of f2olw, there exists an object z 

of 2alv and morphisms w1 , $2 and $
0 

such that (r1v1 = cp2*2 , 

This implies that f2olv is cofinal in 21v (see (j)1IJI = cp2$ • 0 . 0 

the Appendix (1.3)) 

By an easy spectral sequence argument, using this and ( 3. 2.1) , v1e 

find that the following morphisms of double complexes induce iso

morphisms in cohomology. 

v1here 

c•(Nordf' c•(-.free;~, Der_(-,F(-)))) 

t r• • 

c•(Mordf' c•Cf2c;~, D
3
(F(-)))) 

c· (Mor df' c· (S-free I v~C -) ' DersC- ,F( vic-)))) 

t 
c·(Mord::f, c·cv~, D2 (F(-)))) 

t 
c·(Mordf' c·c~1~, D2 (F(-)))) 

c• (Mor df, c• (S-freej $~ ( _) , Der8 (- ,F( $i(-)))) 

~ 
c•(Mordf' c•(Q/.:!, D1 (F-)))) 

i 
c· (Mor d:f, c· Cf2c;!;, D1 (F-))) 

i=1,2, j=0,1 

·. 
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are the functors defined by: 

~~(~ 
A' 

A 

I)~ t 
A' 

Notice that 

. ~) 
A 

=A ~1 ~ 1 
... B' A' 

. !) A 
= B ,1 t lj12 

... B' A' 

v? is contravariant and 
~ 

Consider the functor 

~ : Mor df .... Mor ccx: 

defined by 

... B B 

= ~ 
.., B' B' 

. j) =A' 

... B' 

• B) t = B' 
... B' 

is covariant, i = 1,2. 

Then \1e have an equality of functors of complexes on Mor d:f 

c•(s-free/
1
\o(-) 0

, Der8(-,F(y~(-))) ·2 

= y c•(S-free;~, Der8(-,F(-))) 

This shows that there is a morphism of double conplexes 

c•(Morccx:, c•(S-freej_0
, Der8(-,F)))) 

t 1 •• 

c· (Mor d:f, c· (S-free 1 ~~~ _) , Der8 ( -,F( y~(-))))) 

This morphism induces a morphism of the corresponding E2-terms of 

the first spectral sequences 
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= lim(p) Aq(F) ... -
Mor c:x: 

J, 
HP(c•(Mordf' ~Aq(F))) = lj,m(p) ~Aq(F) 

I'lor df 

(see (3.1.7)). Novr the functor A q(F) 

therefore (see (3.1.8)) 

lim(p) Aq(F) 
.... -

Mor c 
-x 

on Mor c is a sheaf on X, -x 

To shol'l that these groups are isomorphic under the given morphism 

is now nothing but a simple Leray spectral sequence argument for 

the morphism f : X .... Y • In fact, let G be any pre sheaf on X , 

'; let W (resp.<UJ) be any open covering of X (resp. Y) then con

sider the ordered set 

f(ID ,W) = {(U,V) 1 U EW, V EW, V .S: C\U)} 

and the order-preserving map 

~ : f(W, W) .... W 

defined by ~(U,V) = V • The image of w is an open covering of X, 

the intersection of W and C 1 (W) , let us call it '1I! , Given 

U E W , let ~t(U) be the subset of f(UJ, W) defined by: 

1t(U) = {(U' ,V') 1 U' .S: U, V' .S: f-\u• )} 

It is easy to see that the subset 
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is cofinal in ~t(U) (see (La3(1.3)). Moreover 

U ~t(U) = ~ 
UE 1IlJ 

• 

It then follm1s from ((La 3) ( ) ) that the morphisms of complexes 

C'(~,G) -> C'(f(UJ,W),G) 

c· (UJ ,c· (~t0(-),G)) <- c· (UJ ,c· (~t(-) ,G)) 

induce isomorphisms in cohomology. 

\<Te have proved that 1 • • induces isomorphisms in cohomology. 

To complete the proof of the theorem we shall compare the double

complex 

and the following triple complex 

C'(Morcy, C'(S-free/-0
, Der8 (-,C'(I1orc 1 ,F)))) 

-y- (Spec(.:..)) 

In fact let us consider the obvious functor 

Givenanobject A->A 1 of I1or9.y ,let ~t(A-+A 1 ) bethefull 

subcategory of Mor df the objects of \vhich are those diagrams 

X= (10 
A' 

0 

.. :J 
_, B' 

0 

such that there exists a morphism 

(A_, A') _, h(x) = (A
0 

... A~) 

of I1or£y, i.e, such that there is a commutative diagram 
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A _, A 

to t 
A' .. A' • 

0 

Given such an x we find a commutative diagram 

It is not too difficult to see that this implies that the full sub

category 

R (A _, A I) 
0 

of ~t(A _, A 1 ) , the objects of which are the diagrams of the form 

A ... B 
.!, / t 
A' ..; B' 

is cofinal. 

Remember that both I1or df and I1or gy are ordered sets and h 

being a functor, is order preserving. 

Since c· (S-free 1 $~C-) , Der8 ( -,F( *~(-)))) is a functor on I1or df, 

we find (see (La 3) ('1.3) ·a morphism of double complexes 

c· (I1or df, c· (S-free 1 $~C-) , Der8 ( -,F( $;.(-)))) 

~ 
C"(Morc:y, C"(~t(-), C"(S-free;$~C-) , Der8(-,F($~(-))))) 

which induces isomorphisms in cohomology. 
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The morphism of double complexes 

c•(~t(A ... A'), C"(S-:free;$~C-) 'Derg(-,F($~(-))))) 

~ 
c•(11. (A-+A'), c•(s-:free;,o

0
( ') , Der8 (-,F($2

1(-))))) 
0 ~1 -

II 
c· (S-freyA 0 

, Der8(-,c· (11.
0 

(A ... A') , F( ~~(-))))) 

induced by the inclusion If. (A ... A I) c 1t(A ... A I) 
0 -

induces isomorph-

isms in cohomology. Moreover it follows from the description of 

the objects of 1t (A -+A') that h maps 
0 

cally (as ordered set, or category) onto 

~lor c 1 • -r (Spec(A')) 

~~ (A ... A I) 
0 

isomorphi-

Thus, composing, we find a morphism of double complexes inducing 

isomorphisms in cohomology 

0 1 
c· (Mor df' C" (S-free I$~(-) ' DersC- ,F( ~2(-))))) 

t 
c•(r1orc:y, c•(S-free/-0

, Der8 (-,c•(r1orc 1 ,F)))) - -r (Spec(-)) 

The conclusion of the theorem then follows from the exact sequence 

• 

Q.E.D. 
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Chapter 4. Global obstruction theory 

(4.1) Definitions and the main theorem 

VIe shall define the notion of deformation of categories of 

2,S-algebras in such a way that it generalizes the classical 

notion of infinitesimal deformations (liftings) of algebras and 

schemes, and, moreover takes care of the case of morphisms of 

schemes, 

The applications we have in mind are many. We shall deduce results 

on moduli spaces and, in particular on the local structure of the 

Hilbert scheme, In a later chapter we shall also need the resulms 

of this chapter in the study of (possibly non~flat) descent. 

This last application is responsible for the seemingly hopeless 

generalities that now follow. 

Let 3.S-alg be the category in which the objects are the pairs 

of composable mol'phisms of S-alg ' i.e. diagrams of the form 

R ~A~ B in S-alg • If (rr,J..l) and (rr',J..l') are two objects 

of 3.S-alg then a morphism (TT,J..l) ... (rr',J..l') of 3.S-alg is a 

tripple (s
0
,s1,s2 ) of morphisms of S-alg_ making the following 

diagram commutative 

rr,t ,~TT I 
A -> A' 

J..lt 
!31 

tJ..l' 
B -> B' 

~2 

Let 

iJi = 9 1 , 3 : 3. S-alg _, 2. S-al_g, 

be the functor defined by composition, i.e. 
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Chapter 4. Global obstruction theory 

(4.1) D~figitions and the main theorem 

We shall define the notion of deformation of categories of 

2.S-algebras in such a way that it generalizes the classical 

notion of infinitesimal deformations (liftings) of algebras and 

schemes, and, moreover takes care of the case of morphisms of 

schemes. 

The applications we have in mind are many. We shall deduce results 

on moduli spaces and, in particular on the local structure of the 

Hilbert scheme. In a later chapter we shall also need the resulms 

of this chapter in the study of (possibly non~flat) descent, 

This last application is responsible for the seemingly hopeless 

generalities that now follow. 

Let 3.S-alg be the category in which the objects are the pairs 

of composable morphisms of S-alg , i.e. diagrams of the form 

R ~A~ B in S-alg. If (rr,!J) and (rr',!J') are two objects 

of 3.S-alg then a morphism (rr,!,!) ~ (rr',~J') of 3.S-alg is a 

tripple ($
0
,s1'e2) of morphisms of S-?-l-E;. making the following 

diagram commutative 

f3 
R ....£> R' 

rrJ, trr' 
A-> A' 

!Jt 
s1 

*l.l' B -> B' 
132 

Let 

be the functor defined by composition, i.e. 
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~(R ... A ... B) = R ... B 

and let 

be the functor defined by -2 1 2 (R ... A ... B) = R ... A • 
' 

Definition (4.1.1) A deformation of e is a functor a making 

the following diagram commutative. 

e _!!_> 3.S-alg 

/~ 
2.S-alg 

such that for every object (R_,A ... B) of e writing 

cr(R ... A ""'B) = R ... cr(B) ... B the following two conditions hold: 

(1) cr(B) ®A = B 
R 

(2) Tor~(cr(B),A) = 0 • 

Defi~ition (4.1.2) Two deformations cr and cr' of e are 

equivalent (written cr ~ cr•) if there is an isomorphism of 

functors 

such that ¢(9) is the identity on ~~~. 

~~ark (4.1.31 It is easy to see that ~ defines an equivalence 

relation in the set of deformations of e (N.B, we shall 

prefer not to enter into any set theoretical considerations 

at this point. See the Introduction,) 
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Definition (4,1.4) Let e be any small subcategory of 3.S-alg, 

then we shall denote by 

Def(~) 

the set of deformations of e modulo the equivalence rela-

tion defined above. 

Remark (4.1.5) Abusing the language we shall sometimes use the 

notation a both for a deformation of e and for its equi

valence class, hoping that this will simplify the exposition 

without introducing too much confusion. 

Let e -o be any subcategory of ~ , thus the inclusion 

e c e induces a canonical map -o--

In fact we may consider Def as a functor on the ordered set 

(category) of small subcategories of 3.S-alg 

Remark (4.1.6) Let e be such that for every object R ll A_, B 

of e the morphism TI is surjective, then a deformation of 

e will be refered to as a lifting of ~ , 

Example (4.1.7) Let A be any S-algebra, and let n: R _, S be 

any surjective morphism of commutative rings, Let e be the 

subcategory of 3.:1l- alg consisting of the single object 

(R ... S ... A) and t~ identity morphism. A deformation a of 

e is then an R-algebra a(R) together with a morphism 

a(A) _,A such that the following conditions hold: 
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1 • The diagram 

R -> a(A) 

~ t 
S -> A 

is commutative, 

2, a(A) 0 S ~ A • 
R 

3. Tor~( a (A), S) = 0 • 

Thus a deformation (lifting) of e is simply a lifting of 

the S-algebra A to R • 

Example (4.1,8) Let X be an S-scheme, and consider thecate

tory of S-algebras £x (see (3.1)). Let IT: R ~ S be any 

homomorphism of commutative rings and consider the subcate-

gory e of 3. ?Z-alg the objects of which are the pairs of 

morphisms of ~-algebras 

where S _, A is the structure morphism of an object of £x , 

the morphisms of e being the morphisms of £x extended in 

the obvious v1ay. 

If rr is surjective then a deformation (lifting) of e is 

a section a of the functor 

- 0 S : R-al~ ~ S-:.g_g_ 
R 

defined on the subcategory £x of S-alg , such that for 

any object A of ex a(A) is a lifting of A to R , 

Suppose IT has nilpotent kernel, i.e. that for some 

n,(ker rr)n = 0 , then a corresponds to an R-scheme X' 
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which is a deformation of X to R • In fact for each affine 

open subset Spec(A) of X we take Spec(a(A)) and we glue. 

This sets up a one-to-one correspondence between the set of 

deformations of e and the set of deformations of the scheme 

X to R • 

Exam12el {4.1.9) Let f:X .... y be any morphism of S-schemes, 

and consider the category £.f of 2,S-algebras (see (::).1)). 

Let rr:R .... s be any morphism of S-algebras, and consider 

the subcategory e of 3.S-alg the objects of which are the 

pairs of morphisms 

A ®R --> A 0 s = A -> B 
s 1l,l)TT s 1.1 

1-l running through the set of objects of if ' 
and the mor-

ph isms being the morphisms of df extended in the obvious 

Vlay. 

Suppose rr is surjective and has nilpotent kernel, then a 

deformation a of e corresponds to morphisms of S-schemes 

e and fi making the following diagram 

x• f' --> Y xSpec(R) 
et t S 1 >rSpec(rr) 
X L>Y 

and satisfying the following condition 

Oy0sR 
Tor 1 (Ox, , Oy) = o 

which reduces to 

cartesian 

In fact, let Spec(A) be any open affine subset of Y , let 
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Spec(B) be any open affine subset of X contained in 

r 1 (Spec(A)) , then cr(A~ R ... A!,.\ B)= A08 R ~· cr(B) ... B. 

We may glue the Spec(cr(B)) •s together to form a scheme X'. 

The morhisms e and f' correspond to the morphisms 

s: cr(B) ... B , and the morphisms !l' respectively. 

This sets up a one-to-one correspondence between the set of 

deformations of e and the set of deformations of f to R • 

suppose e is any small subcategory of 3.S-alg such that 

a,ny object R n A ~ B ... of e the morphism n is surjective 

(ker 2 n) = 0 

Then ker n is an A-module, and the correspondence 

(R ... A ... B) ... B 0 ker n 
A 

defines a functor 

0 0 ker '} 1 2 : ~ ... Ab 
' 

which is an ~-Module • 

We shall construct a functor 

C'(-,Der_(-,00ker •1 1 , 2 )): More ... gompl.ab.gr, 

analogous to the functor 

C'(-,Der_(-,M)) :Mor d ... Compl 1 ~b,gr. 

Studied in (3.1). 

Let (p
0

,p 1 ,3 2) 

(n,}.l) ... (n' ,!J') 

be an object of Mor ~ , i.e. a morphism 

of e VIe then have a commutative diagram 
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R -> R' 

n~ 
f3o 

~n' 
A -> A• 

llt !31 
11-1' 

B -> B' 
!32 

Exactely as before we may convince ourselves that the correspon-

dence 

C' (A-free ;Bo ,DerA(- ,B • ®ker n')) 
' A I 

defines a functor Mor e _, 9ompl. ab, gr 

C • (-, Der _ (-, 0 ® ker ~ 1 , 2 ) ) • 

Consider the double complex 

This is the functor 

K • • 
e 

= D • ( ~, 0' (-, Der _ (-, 0 ® ker ;p 1 2 ) ) ) • 
' 

Definition (4,1,10) We shall denote by 

n > 0 , 

the cohomology of the simple complex associated to the double 

complex K' • e • 

~xamples (4.1,11) In the situation of (4,1.7) there are canoni

cal isomorphisms 

An(_e,O) ~ Hn(S,A;A®Jcer n) 
- s 

n > 0 , 

provided 2 (ker n) = 0 , 

In the situation of (4.1,8) there are canonical isomorphisms 

An(e,O) ~ An(S,X;Ox®ker n) - - s n_::O, 

provided 2 (ker n) = 0 , 
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In the situation of (4,1,9) there are canonical isomorphisms 

n_:::O. 

In fact, the category e in these three cases is isomorphic 

to (S ~A} , £a and £f respectively, 

be any subcategory of the category ~ • Then there is a 

canonical morphism of double complexes 

Let 

K" • 
~ 

K:i be the kernel of this morphism. 
£!~ 

Definition (4;1,12} Yre shall denote by 

A~ (~,0) 
-o 

n > 0 

the cohomology of the simple complex associated to the double 

complex K~ie 
:;v -o 

Thus, by definition, there is a long exact sequence of cohomology 

••• 

ExamQle (4.1.13) In the situation of (4,1.8) let X
0 

be a closed 

subscheme of X Consider the subcategory 0 -X-X 
and the corresponding subcategory 

canonical isomorphisms 

An (~,0) :.:::A~ (S,X,Ox 0ker n) 
~0 0 s 

e -o 
0 

of e , then 

n > 0 • 

of ex 
there are 

In the situation of (4,1.9) let X
0 

be a closed subscheme 

of X and Y
0 

a closed subscheme of Y such that 
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Consider the restriction of f to X - X
0 

, 

f
0 

o X- X ~ Y- Y 0 

0 0 

and the corresponding subcategory 

£f corresponds to a subcategory 
0 

canonical isomorphisms 

S&t of it Obviously 
0 

e of _e , and there are -o 

n > 0 o 

Theorem l4o1o14) There is an obstruction 

o(~) E A2 (~,0) 

such that o(~) = 0 is a necessary and sufficient condition 

for the existence of a deformation of e • It O(~) ,;, 0 then 

Def(~) is a principal homogenous space over A1 (~ 9 0) 

Proof, Y/e shall start by constructing a 2-cocycle of the simple 

complex associated to the double complex K;· , defining the coho

mology class o • Using results of Chapter 2, we shall then prove 

that this cohomology class has the required property. The rest 

will be rather straightforward, 

The component of dimension 2 of the single complex associated to 

K' • has the form 
.@. 

(K'')2 = Ko'2®K1,1®K2,o = Do(~,c2(-,Der_(-,00ker ~,2))) 
.@. §. St Q -1 

(D D\~,c 1 (-,Der_(-,0 ®ker 21 2))) tDD2 (~,C 0 (-,Der_( -,0 0 ker 21 2 ))) 
' . 

= (R __, A ~ B) 
IT \l 

DerA(F ,B ®ker n) 
o A 
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EEl I l I DerA(F ,B' 0ker rr') R -> R' ~a1/.1 o A• 
1T~ ~TI' &0 &1 
A -> A• B 

ll~ lj..l' 
v 

B -> B' 

(j) 
-> R" 

Der ( F B" 0 ker rr") • R -> R' l!' A o' A" 0 
Til n'l n'' ~ 00~ v v 

A ->A' -> A" B 

J..lt ll't J..l" t 
B -> B' -> B" 

Let for every object R ~ A ~ B of e cr• be an f -quasisec
TIP 

tion (see (1,2)) of the functor 

-0x n-~ 
R 

A-free , 

and consider the 

By construction 

2-cochain of K' • 
e defined by 

is an element of the component 

Let d1 and d2 denote the two differentials of the double com-

plex K • • e • We already know (see (1,2)) that 

Let us compute d1 (0
0

) • Vfe find 

1 ) 

where 01 E K 1 '1 
e is given by 

R 
f\ 

-> R' 
lrr' 

131 Iii 

01 --> A' ~' a->F') "' ( S 1 <l9 1 F )( cr ~, P , ( o.1 0 i A, ) -

~,u' 6:~~/&1 A o A 
s2 

--> B' 

1 ) See the Appendix for the calculations. 
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where 'f is the morphism B ® ker n 1 -> B • ® ker n 1 • 

A A' 

Moreover we observe that 

1 ) 

Let 0 = 0
0 

+ o1 and let d be the differential of the simple 

complex associated to K'' then 
e ' 

a cohomology class 2 o E A (~, 0) , 

d(O) = o • Thus 0 

Now o = o is equivalent to the existence of an element 

Q = Q
0

+Q1 E (K") 1 = K0
•
1

(Brc
1 • 0 such that e e e 

defines 

By the proof of (2,2,5) 1, is equivalent to the following state

ment: For all objects (R ~ A ~ B) of e there exists a lifting 

cr
0

(B) of B as A-algebra to R , i.e. there exists a commuta

tive diagram 

such that 

The set of 

property 

a (B) ®A 
o R 

R -> cr
0

(B) 

Tit t 8 

A -> B 

:::: B and Tor~(cr 0 (B) ,A) 

such diagrams corresponds to the 

= 0 

set 

1 • • Given a Qo with the property 

of Q Is 
0 

with the 

1 • then by the 

proof of (2.3.3) 2, is equivalent to the following statement: 

For every morphism (s
0
,s1 ,s2) , 

1 ) See the Appendix for the calreulations, 
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R --> R• 
B 

TT~ 0 _j,n• 
A --> A• 
~ 131 ~IJ' \J~ 

B --> s2 B• 

of ~ , there exists a morphism of rings cr
0

(s 2 ) making the 

following diagram commutative 

The set of such morphisms corresponds to the set of Q1•s with 

this property, 

Finally 3. is equivalent to the following statement: 

e -· 3.S-alg 

defined by 

is a functor, This follows from an inspection of the proof of 

(2,3,3) and from (2.3.5). 

The rest is straightforward, 
Q.E.D. 
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Corollary (4.1,15) 

homomorphism 

Let e -o be any subcategory of e Then the 

maps o(~) onto 

map 

o(e ) • -o Moreover, if both are zero, the 

is a morphism of principal homogeneous spaces via the homo-

morphism 
1 1 A (e,O) ... A (e ,o) • - -o 

Proof, This follows immediately from the proof of (5.1,14). 

Let e -o be any subcategory of the category of 

Q.E.D. 

3.S-algebras e 

(no conditions on e are needed), and suppose given a deformation 

of e • -o 

Definition (4.1.16) We shall denote by 

Def(e 1e ;o ) :::.1 -o o 

the subset of Def(~) vrhich maps to o
0 

under the map 

Def(e) ... Def(e ) . - -o 

~rk (4.1.17) Let cr be any deformation of ~, then the co

chains Q
0

(o(B)) and Q1 (o(\3 2)) (denoted Q
0

(A•) and Q1 (P2)) 

defined in the proofs of (2,2.5) and (2.3.3) respectivelyfuse 

to define cochains Q
0

(cr) and Q1 (o) 

ing the deformation cr • 

of K' • e characteriz-
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Consider now a subcategory e -o of e and suppose we are 

given a deformation 00 of e -o Then (J 
0 

is character-

ized by the cochains Qo( 0 o) and Q1( 0 o) of Ko, 1 and K1,o 
e ~0 -o 

respectively. And we know that the obstruction cocycle 

O(~o) = 0o(~o) + 01 (~0) 

we have: 

of Ke is a coboundary, and in fact 
-o 

0o(~o) = d2(-Qo( 0 o)) 

01 (~o) = d1 (Qo( 0 o))- d2(Q1 ( 0 o)) 

0 = d1(Q1(cro)) • 

Considering the short ezact sequence of double complexes 

K;)e K' • 
p K • • 0 .... ... .... 

-o e ~0 

we find 1-cochains Q• E Ko' 1 and 
0 e 

p(Qp = Qo(cro) ' p(Q1) = Q1 (0 o) ' 

Let Q• = Q~+Q1, 

Since p(O(~) -dQ 1 ) = o vre find that 

... 0 

Q• 
1 

E K1,o 
e such that 

sits in The corresponding cohomology class 

depends only on the choice of 0
0 

Suppose there exists a deformation 0 ef e such that 0 

maps onto cr
0 

under the map 

Def(~) 

then we have: 

.... Def(e ) -o 
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Oo(~) = d2(-Qo(a)) 

01(~) = d1(Qo(a)) -d2(Q1(a)) 

o = d 1 (Q 1 (a)) 

construction, there exists a 

o(Qo(a)) -Qo(ao) = d2( s) 

p(Q1 (a)) - 01 (ao) = d1 ( S) 

co chain S I E K0
'

0 with e p ( S I) 

Q• = Q
0

(a) -d2(s') 
0 

01 = o1(a) -d1(s') 

s E Ko,o 
e ' -o 

such that: 

= f' , • and put: 

Then p(Q~) = Q
0

(a
0

) , p(Q1) = Q1(a
0

) and the corresponding 

o<.v~0 ) = o(~) - dQ' = o , 

thus o(ele ) = o • 
~-o 

On the other hand suppose o(y~0 ) = o , then 

With R = R+R1 E K~ie , 
o ~-o 

In particular there exists a deformation a of e , and one 

with 

Since 

p(Qo(a)) = o(Q~+Ro) = Qo(ao) 

p(Q1(a)) = p(Q1+R1) = Q1(ao) 

we find that the map 
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maps a onto a
0 
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__, Def(e ) -o 

We have thus proved the following result: 

Theorem (4.1,17) Given a deformation 

there is an obstruction 

of 

such that if and only if 

e , then -o 

Def(e le ;a ) :::.; -o o 

is nonempty, 

In this case Def(e le ;a ) 
:::.1 -o o is a principal homogeneous 

space over 
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(4.2) !ormal moduli 

Let V be any local ring with maximal ideal mv and residue field 

k = V l!f!v , and consider the category 1 of local V -algebras of 

finite length with residue field k • 

Given an object R of 1 we shall denote by mR the maximal ideal 

of R • Thus k = R/ • 
mH 

There is a filtration of the category 1. , the nth member of which 

is the ftlil subcategory ln of 1. defined by the objects R with 

mn 0 
-R = • Moreover there are functors 

,n+'l l l 
1\.n : -n+'l ... -n n > '1 

defined by 

Consider any pair of subcategories d c d of 
-'()--

2. k-alg • yfe shall 

have to divide the further discussion into t~m cases. 

Case '1. V is in this case supposed to be a k-algebra. 

Case 2, V is in this case arbitrary, but \ve shall require 

~ (and therefore ~ ) 

usually denoted £ . 

to be a subcategory of k-alg , 

Let R be any object of l • We shall consider the following sub-

ca·t;egories 

e R c eR -o --

of 3. V-alg. 

In case '1. the objects of eR (resp. 2oR) are the diagrams of the 

form 

RQA ... A ... B 
k 
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\vhere (A .... B) is an object of £!.. (resp. £!..o ) • 

The morphisms of eR (resp. ~R) are those induced by the moJ:'Phisms 

of d (resp, £!..o ) • 

In Case 2. the objects of eR resp. ~R) are the diagrams of the 

form 

where (k .... B) is an object of d (resp. £!..o ) (i.e, B is an 

object of c (resp • .9.o )) • The morphisms are those induced by the 

morphisms of d (resp. £!..o ) • 

With these notations, we shall define the functors 

by: 

Def(d) : 1 ... Sets 

Def C£!..o ) : 1. ... Sets 

Def(d)(R) = Def(eR) 

Def(£l..o)(R) = Def(~R) 

(IVe shall leave as an exercise the verifications needed to show 

that these objects are functors,) 

In Case 1. both functors are pointed, in fact R given there is a 

canonical trivial deformation of (resp. ~R) given by the 

diagrams 

.... • 

In Case 2. \Ve shall assume that the functor Def(£!..o) is pointed. 

• In bo·t;h cases 1ve shall denote the point of Def (£!..o) by * 

Let Def(d/3o) : 1. .... Sets 

be the functor defined by 
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The purpose of this paragraph is to prove that this functor has a 

hull, and moreover, to give the structure of this hull. 

We need some preparations. Let p : R --+ R 1 be any morphism of 1 

such that 

!I.!n • ker p = 0 • 

Notice that in this case there are canonical isomorphisms of 1 

R X R = R x R 1 [ker p] 
R 1 R 1 

= R x k[ker p] 
k 

mrucing the following diagrams commutative 

RxR 
Rl 

R 

= R x k[kerp] 
k 

.J,Pr1 

= R 

RxR 
Rl 

where 1.1 is defined by 

l.l(r,(cr.,x)) = r+x. 

= R x k[kerp] 
k 

= R 

In this situation v1e shall prove the following souped up version 

of (4.1.17). 

The_orem ( 4. 2.1) Given an element a E Def(d/d
0

)(R 1
) there is an 

obstruction 
2 o(cr,p) E Ad (d,Od 0 kerp) 
"'-0 -V 

such that o(a,p) = 0 if and only if 

o E im Def(.£/~)(p) • 

In any case the diagram above induces a commutative diagram 
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Def(£/S!o)(R xR) = Def (.Q./S!o) (R X R 1 [ker p]) 
R' R' 

~p II 
Def(d/S!o)(R) >( Def(d/S!o)(R) 

~1 Def(d/d )(R) xA~ (d,Od ®ker p) 
--o - v -o -

De:f(£/S!o)(R') 

~pr1 !pr1 

Def(£/S!o)(R) = Def(£/S!o) (R) 

in which the maps and 1 are surjections. p l.l 

Proof. Let cr E Def(d/d )(R') 
~ -o and pick a representative a of a • 

Consider the following subcategory 2. of 3.V-alg. 

In Case 1. the objects of e are the diagrams 

R ® A ~ R' ® A ~ a(R' ® A ~ A ~ B) 
k k k 

where A~ B is an object of d • The morphisms of 2. are those 

induced by the morphisms of d • Obviously S!o corresponds to a 

subcategory 2.o of e • 

In Case 2. the objects of e are the diagrams 

R ~ R' ~ a(R' ~ S ~ B) 

v1here S ~ B is an object of d (i.e. Bis an object of c ) • The 

morphisms of e are those induced by the morphisms of .£ (i.e • .£ ). 

Obviously S!o corresponds to a subcategory 2.o of e • 

By (4.1.17) there is an obstruction 

o(Ei/2-o; * ) E A; (!,0) 
-o 

such that o(e/~; * ) = 0 if and only if there is a deformation of 

e reducing to * on 2.o • The first part of the theorem then 
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follo~rs from the existence of canonical isomorphisms: 

n > 0 

The cohomology on the left side is given by the double complex 

In Case 1. let 

flo .... 

!32 ... 

be an object of Mor !!_ , then 

c• ( -,Der_ (-,OG lrer ~ 1 , 2 )) (f3
0

, f31 , !32 ) 

c•((R' GA1 )-free/o(R'GA.1->A1 ... B 1 )0
, 

DerR'GA (-,o(R'GA2 ->A2 ->B2 ) ® ker11;!) 
1 R' ~A2 

Nmv ker 112 = A2 ® ker p , therefore 
k 

o (R' ® A2 _, A2 _, B2 ) ® ker 112 = B
2 

G ker p • 
R1®A2 

There exists a canonical functor 

defined by tensorization \vith A1 over R' GA1 • This functor 

incuces a morphism of complexes: 
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Notice that e (resp. ~ ) is, in a natural way, isomorphic to d 

(resp. £a ) • Thus the morphism above induces a morphism of double 

complexes 

Kd_i.\!o (Od 0 leer p) ... IC§_i~ • 

Due to a result of Andre (see (An)p. ) the corresopnding mor-

phism of the first spectral sequences is an isomorphism. This ends 

the proof of the first part of the theorem. 

The only remaining difficulty is the following. Suppose (cr1 ,a2 ) 

is an element of 

Def(d/g'())(R) X Def(£/.\!o)(R) 
Def(d/d )(R') 

- -o 

then by definition the map 

Def (Q/£1:-<:) ( p) : Def ( d/£o) (.R) ... Def ( d/.\!o) (R' ) 

maps a1 and a2 onto the same element. But remember that \ve 

are talking about classes of deformations. This implies that if 

and a' 2 

then a" 0 R' 
'R 

are representatives of and respectively, 

and a• 0 R' 
2 R 

are equivalent deformations of~· , but 

they need not be equal. 

However, if 

9 ' : a 1 0 R' C: a
2
• 0 R' 

R R 

is an equivalence vre easily prove (see the Appendix (2.1) that 

there is a third deformation a2 of eR and an equivalence 
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e 0 R' ~ e• 
R 

Therefore a2 is another representative of a2 and this time 1ve 

have 

a1 0 R' ~ a 0 R' 
R 2 R 

iolith these notations vre have to construct a deformation a 
0 

of 

eRxR 
R' 

such that 

~ (J. 
l 

i~1,2. 

This construction is, in full generality, both lengthy and dull. 

The point will be equally well understood res·t;ricting our situation 

to the follm-Ting simple one: 

d ~ (S _, A} 

R' "' S • 

Then the liftings a 1 and a2 corresponds to the commutative 

diagram 

s -> A 

\ole knovr that 

lim a'(A.) 
.... l 

S-free/A 

(see the proof of (2.2.5)) where 

corresponding to the liftings Ai 

• 

i "'1 ,2 

a'(A.) 
l 

are the f-quasisections 

i ~ 1,2 • 
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Let for any ring T , T[X] denote the polynomial algebra on nne 

variable. Then since 

R[X] X R[X] = R X R [X] 
R' [X] R' 

the t\·IO f-quasisections o'~) and o•()\.2) fuse to give an £-quasi

section 

of the functor 

(R x H) - free .... S- free • 
R' -

Since the obstruction cocycles of o'(A1 ) and o'(A2 ) both are 

zero, the obstruction cocycle of o'(A1 ) x o'(A2 ) is also zero, 
R' 

therefore 

l~m o'(A1 ) x,o'(A2 ) 
S-fre2JA R 

is a lifting of A to R x R , which, by construction has the pro
R' 

perties required. 

Moreover, via the canonical isomorphisms 

Def(Q/£o)(R~R)::;:: Def(d/£o)(R) xDef(d/S!o)(S[ker p]) 

Def(9/.£o)(Rg R)::;:: Def(d/.£o)(H) xAL (d,Od 0ker p) 

induced by the canonical isomoL~hisms 

R X R ~ R X S(ker p] 
s - s 

This lifting A
0 

corresponds to the pairs (A1 ,A21 ) and 

(A1 ,A(A2 ,A1 )) respectively, where 

A21 - l~m o21 
S-freefA 
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'vith the f-quasisection o21 of 

S[ker p] -~ ... S-~ 

defined by 

~there for x E F
0

, 

a ($) 
F 0 S[ker p] (j_> 

Og 
F1 ® S(ker p] 

s 

vlhich is meaningfull since all coefficients of the polynomial 

sits in ker p • 

This ends the proof of (L~. 2.1). 

Q.E.D. 

Rem.ark _llj-.2.2) vle have tacitely used the fact that a deformation 

of a deformation is a deformation. This follows from elemen-

tary diagram chasing. 

Coroll!'gX (4.2.3) Consider a commutative diagram of l of the 

form 

R1 
p 

R2 ... 
P1t tP2 

R' 1 
p' ... R' 2 

and suppose 

mR • ker p1 = mn2· ker p2 = 0 • 
- 1 

Let 01 be an element of Def(£/£o) (Ri) and put 
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o2 = Def(£/~)(p')(o1 ) • 

Consider the homomorphisms induced by p , 

Then 

Moreover there is a commutative diagram 

Def(£/~)(R1 ) X A~ (d,Od ® ker p1 ) __, Def(£/~)~2 ) xA~- (d,Od ® ker p2 ) 
-o - ""() -

~J.l1 .}i-!1 

Def(d/.£o) (R1 ) X Def(£/~) (R1 ) 

Def(£/£o)(R1) 
__, Def(d/~)(R2 ) X Def(£/~)(R2 ) 

Def(£/.2:o)(R2) 

Proof. This follows immediately from the definitions. 

Q.E.D. 

Consider the category of k-vector spaces, k-mod • Let V be any 

object of k-mod • Pick a basis (vi}iEI for V end put the topo

logy on V in which a basis for the neighbourhoods of the neutral 

element consists of the subspaces containing all but a finite number 

of the elements vi • Consider the corresponding category of topo

logical k-vector spaces, k-top.~. • Let Hom~ denote the Hom 

functor in this category. Obviously all finite dimensional vector

spaces will be discrete. Moreover, there is a natural topology, 

defined by the dual basis, on the topological dual V* = Hom~(V 1 k) 
of any object V of k-top.mod. 

is a canonical isomorphism 

V ~ V** • 

And one easily checks that there 
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\ve shall nm·T use these generalities in the construction of a hull 

for Def (Q/ .9:o ) • 

Fix a basis for A~(g,Od) i = 1,2 ' 
and consider the symmetric V-algebra 

Symv(A~ (d,Od)*) 
-Q -

i = 1,2 • 

on the topological dual of A~ (d,Od) • 
"-'() -

Let 

i "'1 ,2 

containing some po11er of the ideal defined by A~ (d,Od)* 
-Q -

secting Ai (d 0 )* .9:o _, d in an open subspace • 

Notice, that if 

of A~ (d,Od)* 

A~ (d,Od) has finite dimension, then the topology 
'""() 

is discrete and 'l'i , i = 1 , 2 is a convergent pm·Ter 
-Q -

series algebra on ~ • 

Moreover, if A~ (d,Od) has a countable basis, then in the corres-
-""() ......... 

ponding topology on 'l'i there is a countable basis for the system 

of neighbourhoods of the neutral element. 

Theorem (4,2,lJ·) Suppose A1 (d,Od) has a countable basis as a 
-o -

It-vector space, Pick such a basis, then there exists a mor-

phism of complete local rings 

0: '1'2 .... '1'1 

such that 

H(§/d ) = '1'1 ®
2 

k 
-Q 'I' 

is a hull for the functor Def(£/.9:o ). 
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Proof. For each n E :W let's put Ti = Ti 1 n • Ti has a natural 
n !!!r_ei n 

topology, the quotient of the topology of Ti • 

Our first step will be to prove that in Case 1. T~ prorepresent 

the functor De±(§/.d ) restricted to 12 • This is rather easy. In 
. ""<J 

fact let R be any object of 12 By definition 2 imply-• mR = 0 

ing that R as a commutative ring (k-algebra) is equal to k[mR] , 

the Nagata ring of the k-vectorspace mR • 

No~r let denote the set of continuous morphisms in ·t;he cate-

gory of topological local rings and consider the canonical isomor

phisms: 

Since in Case 1 every object R of l is a k-algebra and all 

morphisms are k-algebra morphisms there is a canonical element cr 
0 

in Def(_gj_gJ (R) namely the trivial deformation ( * = Def@/ ;:: Def(_g/slo). 

By (4.2.1) this implies that there is a canonical isomorphism 

proving what we wanted to prove. 

In Case 2. there is, as in Case 1 , an initial object of 12 , namely 

VI~ and by (4 .2.1) there is an obstruction 

o1 E A
2

(£,0d ® mvlm 2) 
-k -v 

vrhich is zero if and only if Def<gXfmJ) is non empty. 
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Now ~~e have canonical isomorphisms and a canonical inclusion 

A
2

(d,Od ®m:vlm 2) = Hom~(A2 (d,Od)* ,m:vlm 2) 
-k -'V - -'V 

= Mor~((VImJ) [A2 (d,Od)*),VI~) = Mor~(T~,VI~) 

cc 2 1) ;:: Morv T2 ,T2 • 

Let R be any object of 12 and consider the canonical morphism 

v : V 1m2 .... R • 
-v 

Vle know (see (4. 2. 3)) that the image of 

ment of Mor~(T~,VIm2) in Mor~(T~,R) 
--'V 

map induced by v is zero if and only 

o1 considered as an ele-

2 =A (£,0d®mR) under the 

Def~XR) is non empty. Let 

V 1~ and T~ being considered as T~- modules via the morphism 

c( 2 2 ) c c( 2 1) o1 E l1orv T2 , V lmv _ Morv T2 , T2 • V 2 is the largest quotient of 

V 1m2 to which d may be lifted • 
...:.v 

Since we lmow that Def(gJ(V2 ) is non-empty we may pick an 

element cr1 in De~<V2 ) • This element will take the place of 

the trivial deformation in Case 1. 

For any object R of 12 we have canonical isomorphisms 

Mor~(H2 ,R) = Mor~(V2 [A1 (d,Od)* ],R) 

factor through 

v2 • 

Using the element cr1 E De~XV2 ) we find functorial isomorphisms 

1 
A (d,Od ®mR) ,:::: Def(£)(R) 
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whenever the latter is non empty, thus proving the existence of a 

natural isomorphism 

on the category 12 • 

Let in Case 1. • 2 .... '[11 be the trivial morphism 01 • '[12 2 

composition of '[12 
2 

.... k ... 'I'~ ) • We have then, 

the follo1ving statement: 

There exists a continuous morphism 

• m2 0 1 • "-2 

such that the corresponding closed fiber, 

in both 

(i.e. the 

cases, proved 

prorepresents the functor Def(d/d ) 
--'() 

restricted to 12 • 

In order to extend this result to all subcategories ln of 1 we 

shall have to make the isomorphism 

more explicite. 

'I'his can be done in the following r,my. Let I 2 denote the set of 

open ideals of H2 and consider the follo1ving subcategory 2_2 of 

3. V-£l.lg • An object of e2 is in Case 1. a diagram 

A 0 H
2

/m.. .... A .... B 
k -

where A .... B is an object of d and OC E I 2 • 'I'he morphisms of 

2.2 are those induced by the morphisms of d and by the morphisms 

• 

Obviously the subcategory 2o of d corresponds to a subcategory 
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~2 of e2 • 

In Case 2. the objects of ~2 are the diagrams 

H
2

/or.. ... k ... B 

where k ... B is an object of d (i.e. A is an object of 9. ) 

and OL, E r 2 • The morphisms of f.
2 

being those induced by the 

morphisms of d (i.e. .£) and the morphisms 

above. Obviously ~ corresponds to a subcategory ~2 of f.2 • 

If ;~e consider r2 as an ordered set ~y inclusion), therefore as 

a category, vie find 

e 2 ~dxi2 -o - -o 

No>v 1ve apply (4.2.'1). There is an obstruction 

2 . 
Q E A (e2 ,o) 

~2-

such that Q = 0 if and only if e2 admits a deformation trivial 

on ~2 • In that case the set of such deformations modulo isomorph~ 

1 isms is a principal homogenous space over A (e2 ,o) • Using 
~2 

((La:1)(5.3)) and the isomorphisms e2 :::.. d x r 2 ~2 :::: ~ x r 2 , \'Te find 

a spectral sequence given by the term 

Ep,q = lim(p) Aq (d,O ® (m.. /oc..)) 
2 ... ~- dk -J:i2 

I2 

converging to A~~C~.2 , 0) • 

Using the fact that r2 contains a countable co final subset, >Ve 

find isomorphisms: 

= lim A~ (d,Od) ® (!!/:rr /ov) • 
:[ -o - 2 

2 
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Notice that for each OtE r2 the category ~(H2/~) is a sub

category of ~2 . The obstruction for deforming ~(H2/IX.) rela

tive to ~(H2/0t.) sits in AL (d,Od) ~ (mH2;od . 

We already know that this obstruction is zero. Using this v1e find 

0 = 0 • 

Moreover, there is a nice canonical element of '1 A ( e,, 0) • 
e 2 -c. 

In 
--o 

fact we observe that 

The converging sum 

then defines an element of '1 A (e2 , 0) • 
~2-

'1 Since 1ve may, exactly as above, identify A ( e2 , 0) with the set 
~2 . 

of isomox~hism classes of deformations of e2 relative to ~2 , 

cr2 correspond to an isomorphism class of deformations of e2 rela

tive to ~2 • We shall pick a representative of this class and, 

abusing the language, 1ve shall let cr2 denote this representative. 

Thus we find an element 

a 2 E l~m Def(d/ic)(H2/~) 
I2 

and we may convince ourselves about the fact that cr2 determines 

the isomorphism of functors on L, : 
-.:. 

No1v let Hm for any m be a topological quotient of 

Im denote the ordered set of open ideals of ~ • 

Let 

(resp. ~m) m < n 

T1 and let m 
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denote the following subcategory of 3.V-alg. An object of ~ 

(resp. ~m) is in Case 1. a diagram of the form 

(H /OL) 0 A -+ 
m k 

A ... B 

1~here A -+ B is an object of d (resp. Il.o) and OC..E Im • The 

morphisms of ~ (resp, 2.om) are those induced by the morphisms 

of d (resp. i\o ) and by inclusions among the OG' s • In Case 2. 

the objects of ~ (resp, ~m) are the diagrams of the form 

~/ot. -+ k _, B 

1vhere k _, B is an object of d (resp. i\o ) • The mo:ephisms are 

those induced by the morphisms of cl (resp. i\o ) and by the inclu

sions among the 0L's , 

By induction on m we shall 

a topological quotient Hm 

such that the restriction of 

follovling conditions: 

prove that there exists for every m 

of T1 and a deformation om of e m "'ill 

om to ~m is * , satisfying the 

1) The canonical morphism of topological rings 

t • T1 _, 
m· m 

induces a morphism of topological rings 

2) The corresponding m~p 

l~m Def(Q/It.o)(Hm/01:..) _, 1~ Def(d/£o)(Hm_1/od 
1m 1m-/l 

maps om onto a "' • m-o 

3) om determines a smooth morphism of functors on 1m 



- 108 -

Assume such ~ and am exist for m _:: n , and put 

Let 

Cl 
m 

m<n 

m < n 

m_::n. 

m < n 

be the canonical morphism of topological rings. Obviously 

m<n. 

Let I~ be the ordered set of open ideals of ~ , and let 

e~ (resp. ~n ) 

be the following subcategory of 3.V-alg. In Case 1. the objects 

of e~ (resp. ~n) are the diagrams of the form 

(H 1 /(](.)®A .... (H /h 1 _,(o<))®A.., cr ((H /h 1 _,(OL))®A..., A-+ B) 
-"h k n n+ 1 k n n n+ 1 k 

\'lith o-c E I 1 and A .., B 
n an object of .£ (resp. £c) . In Case2. 

the objects are the diagrams of the form 

where OC. E I~ , and k .., B is an object of d (resp. £a ) • 

The morphisms being defined accordingly. 

We observe that 

e' ~ dxi' -n-- n (resp. ~n :::: £ax I~ ) 

The obstruction for deforming 

that the restriction to el 
-on 

e' -n 
is 

relative to I 

~n' 
* , is an element 

i.e. such 
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Given any O<..E I~, let on(()'{.) be the pro,jection of 

Hom~(A~ (O.,Od)*, ( (ker h' n+1+ ot) I c>t-)) 
-o -

on 

and let Ot' be the ideal of H' n 
containing ex and such that as 

an ideal of ~/()(. o!.lo-t. is generated by the image of on (eX.) 

in (ker h' n+1 +(1(.); <X • Obviously (){. <;:_ /; . 1' ,.... c::: L I 0 1mp 1es v.._ _ N 

Put 

H "' lim H'/01:.' n+1 ... n 
I' n 

hn+1 : Hn+1 .... Hn o 

Let 

(resp. 

denote the subcategory of 3.V-alg. analoguous to the subcategory 

e~ (resp. ~n) defined above, with ~ and h~+'1 replaced by 

Hh+1 and hn+'1 respectively. 

n+1 By construction the obstruction for deforming .£n 

n+1 eon vanish, therefore there exists a deformation 

relative to 

of en+1 
-n 

n+1 relative to .£on • Obviously an+'1 .is a deformation of e -n+1 re-

lative to 2o n+'1 • Noreover, by construction I~ and am have the 

prope1'ties 1) ano. 2) for m .:::_ n+1 • 
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Before '"e prove 3) for m < n+1 , vre shall study the ideals Om 

and 0~, and their relations to the family of homomorphism om(()(,), 

OLE Im • 

By construction we have: 

These relations imply: 

m1 ·0 1 c0
1 

..,l'n+1 n+ n 

vrhich again implies that the morphism 

I I 

maps 0 n+'1 into On • 

There follm'ls a commutative diagram 

• • • 
~ .. . . 
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Denote by Jm the ordered set of open ideals of T~ • Using (4,2,3) 

on the parallellograms vTith tvm vertical edges, we find that the 

homom01.•phism 

c 2 (t~1'1cc n)+o<-) 
l;im Homk(Ad (g_, od) *, /( c~ + Ot)) 
Jn+'1 --o -

c )+ot) 
n-'1 /(C' +IX) 

n-'1 

maps 2n onto 2n_1 • 

Notice that we knovl already that c2 is generated as ideal by the 

image of ~1 considered as an element of 

l!m Hom~(A~ Ci,Od)*,m 1/~) 
J ""() - ,2 

2 

= Hom~(A~ (d,Od)*,m 1) • 
"-() - -<r2 

Put 

and consider the commutative diagram: 

0 

-1-

l!m Hom~(tT2 ,( ~ +O'G)/Ot) 

Jn+1 

{, 
l!m Hom~~T2 , (t~11 (C n)+~)/(J(.) 
Jn+1 

~rn+1 
lim Hom0tT2,~~2t cJ +at.)/ ( c ~+IX)) 
Jn+1 

0 0 
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All seq_uences in this diagram are exact. In fact, since J n+1 
and Jn contain countable cofinal subsets, the only point to prove 

is that the upper horizontal seq_uence is exact, Now this is a con-

seq_uence of a lemma of !VIi ttag-Leffler type (see (La 2) ( 1. )) and the 

following eq_uality: 

t (c')= c' n+1 n n-1 ' 

which easily is seen to follow from the corresponding eq_uality 

We shall prove this by induction on n , knowing, of course, that 

it is true for n = 2 • 

Suppose there exists elements 

such that 

km(Om) = Om_ 1 , m < n 

r (0 ) = 0 1 , m < n n m -m-

and such that C m is generated by the image of Om for m < n , 

then obviously 

In particular, therefore, the upper horizontal seq_uence in the 

diagram above is exact. 

But then, by elementary diagram chasing, we find an element 

lim Hom
1
c(t 2 ,(t-1

1( On) +ot.)/OL) 
J- c -T n+ 

n+1 
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Knowing, as we do, that 

2.n in t~! 1 ( en)/ C~ , 
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0 -n 

Cn+1j c • is generated by the image of 
n 

and recalling that 

we conclude that 0 n+ 1 is generated by the image of On+ 1 , 

Then go on, We have proved that there exists an element 

0 = [On}n>1 E lim Hom~ (1:, 2 , T!) 
~ 

n T 

= Hom~(,!;. 2 , T 
1 

) 
T 

= Morc(T2 ,T1) 

such that 

H = lim Hn = T1 ®k 
~ T2 n 

Moreover, in the process, we have proved that 

To complete the proof of the theorem, we have to prove that 

(Hm,om) has the property 3). 

Take any object R of 1 -n+1 and consider the commutative diagram 
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which ex1· s ts since we have proved that H /m n - H n+1 -H - n ' n+1 

Now, use (4.2.1) to see that this diagram may be completed by the 

following commutative diagram: 

!I I! 
Morc(Hn+i ,R) x Morc(Hn+i'k[!!!~]) ... Def(Q/g_

0
) (R) x Def(Q/Q.

0
)(k (m~]) 

J~1 ,}~2 

Morc(Hn+1 ,R) x Morc(Hn+i'R) 

lilorc(Hn+i'R/!!ill) 

... Def(d/d
0

)(R) >< Def(Q/£
0

) (R) 

Def(Q/£0 )(R/!!!~) 

in which the dotted arrow is an isomorphism, since H2 prorepre

sents Def(£/£
0

) on 12 • 

We know by the induction hypotheses that $n(R/!!!.~) is surjective, 

Let us prove that this implies that $n+1(R) is surjective. 

Let, to that end, crR be any element of 

0 R/mn = 0 

-R 

be the image of aR in Def(£/Q_0 )(R/~) 
ism of topological rings 

cp • H ... Rj n • n !!lR 

D(d,d )(R) - -o and let 

There exists a morph-

such that * (R/mn)(cp) = (j , This of course means that 
n -R 

o = Def(£/£0 )(cp)(crn) 

Consider the diagram 
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----> 

We may clearly find a morphism (p making the completed diagram 

co~nutative. Since (p maps ker(T~+ 1 .... Hn} • !!! 1 onto zero, 
Tn+1 -~ factors through H' n Finally, since by (4,2,3) the induced 

morphism in cohomology maps the obstruction 

o =o(ah') -n n' n 

to zero as may be lifted to R 

Hn+ 1 , and we obtain a commutative diagram 

-> 
q>' 

-> q> 

R 

factors through 

This together with the nice diagram above, in which !l1 and J.l 2 
are surjective, completes the proof of the theorem. 

Q.E.D. 
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Chapter 5. Some applications 

(5.1) I~cal structure of moduli schemes 

Let k be any field and consider a morphism of algebraic k-schemes 

f :X ... Y • 

Denote by k/sch/k the category of pointed k-schemes, and let the 

functor 

... 

be defined by { f' 
X' ... Y X T 
/1.. /1.. s 

Df(Spec(k) ~ T) = I !1yxcp 
X ... y 

X' flat over T 

and the diagram being cartesian}~~ 

here ~ denotes the equivalence relation defined by 

if and only if there is an isomorphism X' _, X" making all dia

grams commute. 

Suppose D~ 
.L 

is representable, and let 

h 
Spec(k) ... H 

be the repl'esenting object of k/sch/k • 

Then for every object Spec(k) ... T of k/sch/k, 

where Morpt denotes morphisms respecting the base points. 
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'1 
Obviously f E Df(Spec(k) _, Spec(k)) corresponds to 

hE Morpt(Spec(k),H), i.e. to the base point of H. 

Let 1° be the subcategory of k/sch/k whose objects Spec(k) _, T -
are such that T = Spec(R) with R a local artinian k-algebra 

with residue field k , 

The restriction of Df to 1° is given by 

Df(Spec(k) _, Spec(R)) = Morpt(Spec(R),H) 

= Mor(OH 11 ,R) = Mor(OH h,R) 
' , 

where the last morphism set is the set of homomorphisms of local 

k-algebras. 
A 

It follovTS that O:t!,h prorepresents the functor Df restricted 

to 1°. 

Thus vre have the following result: 

Th.e.2_Eem (5. '1. '1.2_ Hi th the above notations, 

= Sym(A1 (f;Ox)*)A ® k 

Sym(A2 (f; Ox)*f 
• 

In particular the imbedding dimension of OH,h is equal to 

. 1 dJ.mkA (f ;OX) , and oH,h is regula.r if and only if 

0 : Sym(A2 (f;Ox)'''f-+ Sym(A1 (f,Ox)*)A 

is trivial 

Proof. This follo\'ls immediately from ( LJ .• 2.4), and ( 4.1 .9). 

Let us consider the special case where f : X .... Y is a closed em

bedding. Using (3. '1. "Jll,) we find a spectral sequence with 
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1·1here Aj(oX) is the quasicoherent sheaf on Y defined by 

Aj(OX)(Spec(A)) = Aq(A,f-'1(Spec(A));OX) 

converging to A"(f;OX). 

Let J be the ideal of Oy vanishing on X • Then f-1 (Spec(A)) 

= Spec(B) with B = AjJ(Spec(A)). Thus 

Aj(oX)(Spec(A)) = Hq(A,B;A). 

In particular A~(Ox) = 0 and : 

'1 2 
Af(OX) = Hom(J/J ,OX) = NX/Y 

is the normal bundle of X in Y • 

Theorem (5.1.2) (Severi-Kodaira-Spencer) Let X be any closed 

subscheme of the algebraic k scheme Y • Suppose X is 

locally a complete intersection of Y , then if f : X ... Y is 

the imbedding of X in Y , we have 

An(f ,OX) = Hn-1 (X,NX/Y) n:::, 0, 

where NX/Y is the normal bundle of X in Y • 

Proof. This follovJS from the fact that Hn(A,B;-) = 0 for n > 2 

1qhenever B is a complete intersection of A • 

Q.E.D. 

Suppose the Hilbert scheme Hilby of Y exists. Let (X} be the 

point of Hilby corresponding to the imbedding f • Then 
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Theorem (5.1.2) Vlith the assumptions of (5.1.2) there is a 

morphism of complete local rings 

such that 

In particular Hilby is nonsingular at the point {X} if and 

only if 0 is trivial, 

~~· This is a simple consequence of (5.1.1) and (5.1.2). 

Q.E.D. 

Remark (5.1.4) The above theorem generalizes a theorem of Kodaira 

and Spencer, see (Ko1,2)and ((Mu), p. 157.). In ( the 

theorem is stated in the following form: Let X be a curve 

on the surface Y • Say that X is semi-regular if 

H'l(Y,Oy(X)) _, H1 (X,NX/Y) is the zero map. Then u·char(k) =0 

and X is semi-regular the scheme classifying all curves on X 

is nonsingular at the point X. 

This foll01vs from (5.1.1) and (5,1.2) since an easy computation 

shows that in this case the morphism 0 restricted to 

H1(X,NX/Y)* factors via H1(Y,Oy(X))* • 

Another special case to consider is the case where f :X _, SpecQI) 

is the structure morphism of an algebraic scheme X • 

Using (3.1.12) we find a spectral sequence given by 

E~,q = HP(x,Aq(OX)) 

where Aq(OX) is the g_uasicoherent sheaf given by 
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whenever Spec(A) is an open subset of X, converging to 

Put 

then ~1e have the follovling result: 

Theorem (5.1.52 Suppose X is nonsingular, then there exists a 

morphism of complete local rings 

such that 

H = Sym(H1 (X,ex)*)h ® k 
sym(H2 (x, ex)* f 

is the hull of the deformation functor of X • 

Proof. Since X is nonsingular, Aq(OX) = 0 for q =: 1. 

Q.E.D. 

Remark(5.1.6} With the assumptions of (5.1.5) the obstruction 

morphism 0 has a first approximation given by a homomorphism 

1 1 2 H (x, ex> o H ex, ex> ... H (x, ex) . 
Sym 

This is a graded Lie product and must coincide \d th ·t;he product of 

Kodaira-Spencer ( Ko 1) . 

The later approximations of 0 will give rise to cohomology 
1 operations on H (X, ex) , the nature of which v1e do not fully 

underst8lld. 

The computation of 0 and the corresponding study of these 

cohomology operations will be treated in a later paper. 
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Let us end this paragraph by writing up a couple of easy consequences 

of (3,1,16.). 

Theorem (5.1.7) Let Z be a closed subscheme of the S-scheme X • 

Consider any Ox-Module M • Then the canonical morphism 

is injective for p _::: inf depth Mx + 1 and bijective for 
xE Z 

p < inf depth.M + 2 , 
- xE Z X 

Proof. This follows from the fact that 

for p < inf depth M + 1 , 
- xE Z X 

and from the exact sequence following (3.1.15). 

~ollaEY (5.1.8) (Schlessingers comparison theorem) If A is 

any S-algebra, M an A-module and J an ideal of A , then 

the canonical homomorphism 

is injective for p _::: depthrM + 1 and an isomorphism for 

p .:::_ depthrM + 2 • 

Remark(5.1.9) 

see (Sch) 1 

Schlessinger proved this theorem for the case p = 1, 

Svaenres (Sv) has proved a theorem related to 

(5,1.8) in the general case. 

There are many applications of the general theory. In this 

chapter we have mentioned only a few. As an easy consequence 
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of (5.'1.'1) one may prove that the Hilbert scheme is nonsingular 

at all points corresponding to zero dimensional subschemas X of 

~ provided X is locally a complete intersection (a sufficient 

condition is local.liftability,thus codimension 2 Cohen Macaulay 

vlill do). This is a theorem of Fogarty (Fo). For results refining 

(5.'1.'1) see the paper of Ellingsrud (El), The graded theory has 

been studied by Kleppe (Kl). His results generalize results of 

Pinkham (Pi) and others. 

lve shall, in a later paper study subjects like secant bundles, dual 

schemes and equisingular deformations. Finally 1ve hope to be able 

to use the above machinery in the study of non-flat descent. 
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!Jreendix (1.3) Let be a:ny subcategory of the category £ , 

a:nd let 

be a functor. 

Given a:ny object c of c we may consider the simplicial set 

defined by: 

J\~(£o) = ((cp co lli1 c1 ..... $~ cp)/ *i 

for p ~ i ~ 1 J 1 

the face morphisms 

o. • J\P(c ) ... J\p-1(c ) 
~ • c ""' c ""' 

being defined by 

o. ( c,\* c ... , c1 .... • • ... c ) = 
~ I' 0 lj11 ,,p p 

morphisms of £a 

for i = 0 

Let C.(c) = c.(J\c(£o);LZ) be the simplicial chain complex associ

ated to J\c C£o). One checks that c ... C. (c) is a functor 

C. : c 0 
.... Compl. ab • gr. 

Moreover if all J\c C£o) are nonempty there is an augmentation 

morphism 

c. .... 2Z 

v1here iZ is the constant functor. 

Now it follows from (La 1) that cP is a projective object of the 

category of abelian functors on c 0 
• Therefore if for every object 

c of .£ 1 J\c(.£o) is ascyclic, 
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c .... ?Z 

is a projective resolution of ?Z in the category of abelian func-

tors on 0 
.£ • This is obviously the case >'lhen .2.o = .£. 

Theo~ (see (La '1) ,(La 2)) • Consider any functor F : c0 
... Ab • 

Suppose for every object c of .£ , Ac(£o) is ascyclic, then 

the canonical morphism of complexes 

c• (c° F) _, c· (c° F) 
. - ' ~' 

induces isomo~~hisms in cohomology 

n,::o. 

Proof. This is a simple consequence of the identities: 

Q.E.D. 

Coroll~ Suppose £a is a subcategory of c satisfying the 

following conditions, 

('1) given any object c of c there is a morphism p : c ... c
0 

of c vrith c
0 

an object of £a, 

(2) given any diagram 

(resp. 
cpo 

c ---> u) 
0 

of c with c1 and c2 (resp. c
0

) objects of .£o there 

exist cp1 , cp2 (resp. cp
0 

) of £a such that 
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Then for every object c of .£, Ac(.£o) is ascyclic. 

Proof. Let A
0 

be any finite simplicial subset of Ac(.£o). Then 

the condition (2) implies that A
0 

is contractible in· Ac(.£o). 

Q.E.D. 
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If S[X] -: A is a surjective homomor-phism of 
J 

S-algebras then we know that 

1 HomS[X] (ker j, B 0 I); 
H (S,A;B0 I) :::::. Derivations 

Let R[X] j• A' be a lifting of j to R and observe that 

Ker j' 0 A ~ ker j 
R 

since Tor~(A' , S) "' 0 • 

Let v' : R[X] .... B' be a lifting of j • 1JI 1 then v' defines an 

R[X]-module homomorphism 

Ker j' _, B' 0 I 
R 

vanishing on leer j' 0 I. 
R 

Therefore v' induces a homomorphism 

v : ker j _, B' 0 I ~ B 0 I • 
R s 

One may check that v represents the class 

o (tb•A' B') 
TT Y7 ' • 

Le-t; A' and B' be liftings of A and B respectively and con

sider the map 

'!' * : H \s,A;A 0 I) _, n1 (S,A;A 0 I) 

defined by 

'!'*()..) "'o ($;A',B')-o (IJIA",B') 
1T TT 

1·1here ).. corresponds to the difference A' - A 11 
, 

Theorem '!'* is induced by 1J101I: A0I _, B0I. 

Q2.!'._ollary Suppose A and B can be lifted to R and suppose 
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o(IJ! :A',B') E im ** for some A' and B' lifting A and B re

spectively, Then there exists an A" lifting A and a 

•'•" •, A" .... B' 1-lft-lng ,,, y ~ ~ y • 

_92rollacy Let {; : A .... B be an isomorphism and suppose A and B 

can be lifted to R. Then there exists for every lifting B' of B 

a unique lifting A' of A and a morphism 

{;':A' .... B' 

lifting {; • 

Consider the map 

'i'*: H1 (S,B;B® I) .... H1 (S,A; ®I) 

defined by 

where 1-1 corresponds to the difference B" - B' , 

Theorem 'i''' is induced by tjl : A .... B • 

Proof. See (Lal/.) (3.1.6). 

Coroll.§:!X Suppose A and B can be lifted to R and suppose 

o(~ ;A' ,B') E im o/* for some A' B' 
' lifting A and B respectively. 

Then there exists an B" lifting B and a tjt": A' .... B" lifting tjl. 

Corollary Let lJi : A .... B be an isomorphism and suppose A and B 

can be lifted to R • Then there exists for every lifting A' and A 

a unique lifting B' of B and a morphism \1 ' : A 1 
.... B' lifting 1j1 • 

Corollary Let 1-1 E H'(S,A;A®I) correspond to A' -A" where A' 

an.d A" are two liftings of A to R • Then 1-1 = orr(1A,A' ,A") • 
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- (0 
0 

R 

~n 
A 

~ll 
B 
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K" • we find, 

R -e> R' 
n~ ~o ~n' 
A-> A' 

ll ~ 13
1 ,J,Il' 

B -> B' 
fl2 

R' 
{,n' 
A' 
~ll' 
B' 

) 

1vhere ({3 ,{3_.,{3 2 )*: c•(A'-free/B'
0

,DerA 1 (-,B'® kern')) 
0 I ---- A' 

= u ' 

_, c•(A-free/B,DerA(-,B' ®kern')) is the canonical morphism 
- A' 

induced by 

and 

and where ( {3
0

, {3 1 , {3 2 ),, : c· (A-free/B,DerA (- ,B 0 kern ) ) 
A 

.... c•(A-free/B,DerA(-,B' 0 kern')) is the morphism induced by 
- A' 

fl2 0 {3
0

lkern : B®kern .... B'® kern' • 
[31 A A I 



We find., 

u = (j3101F )Oo 

-0 
0 

0 
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R' A' 0F > 

t' A'~ A' 

~~· 
B' 

11'0F 
A 1 

> 11'0F 
A 2 

t 6' 11'0B 2 
~A 
B' 

= ( (3 1 01F )( 0"~ 1 ( ( 1fl' 0 et.1 ) ( 1fl' 0et.2 )) - ()"~ 1 ( 111'0 et.1 )a~ 1 ( 1J\'0~) (o1

20 1ker ~ 
0 

- ( a~(a.1a.2) - 0~ ( a.1 )a~(a.2)) ( 02 f 1ker n ) ( 132: i3o lker n ) • 
'1 

= (131 01F )(o-~ 1 ((111' 0 a.1 )(111' 0a.2 )) -o-~ 1 (111' 0et.1)a' ,(111' 0a.2 ) 
Ao A A An A 

- a~(a.1a.2)~ 1R• + (a~(a.1)~ 1R')(a~(a.2)~ 1R'))(o2A~ 1kern') • 

On the other hand. 

RT> R' 

n~ 0 ~n' 
A->A' 
~t (31 ..!-~' 
B->B' 

f32 

RT> R' 
n,J, 0 -}n' 
A->A' 
~~ (31 ~~· 
B -> B' 

f32 

= v 



\·rhere is the map induced by 

o;1 : DerA(F..,,B' 0kerrr' ) _, DerA(F ,B' 0kerrr'). 
I A' 0 A' 

V = "1(~1° 1F )(o~,(o.2° 1A,)-o~(o;2) 01n•)(li2 ° 1kerrr') 
A 1 A R A' 

- (131° 1F )(o~,(o.1o.2° 1A')-o~(a.1<X.2) 01R 1 )(1i2 ° 1kerrr') 
A o A R A' 

+ ( [31 ! 1 F o) ( o ~ ' ( "'1 ! 1 A ' ) - o ~ ( <X.1 ) ~ 1 R I ) ( li 1 A~ 1 ker rr I ) • 

and 

therefore 

v = ( !31 ! 1 F 0 ) ( 0 ~ I ( IX-1 ! 1 A I ) ( 0 ~ I ( "'2 ! 1 A I ) - 0 ~ ( 0.2) ~ 1 R I ) ) 

- 0~ 1 (<X.1"'2! 1A 1 ) + o~(a.1a.2) ~ 1n• 

+ (o~, (a.1! 1A 1 )- o~(a.1) ~ 1R1 )(o~(a.2) ~ 1n• ))(li2!i1kerrr 1 ) 

= - u ' 

thus proving 

No\1, in the same 1vay we find, 
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R ~ R' -;;-r> R'' 
n~ (lo t' ~o ,vr11 F -> "') 0 ((.'1 

d'1(0'1) A --·-> A I ....,.,> A II 60 6'1 
IJ. ~ j31 ~~-~~ ~1 ~~-~II B 

B --> 
132 

B' > n~~ 
"131 

+ (~ 1 ®1F)(o',(ll1 ®1.,)-o'(C(.1)®'1R,)(oJ1 ®11 ,)(1321 ®~' /kern') 
A 0 n A .... rr R ~ cer rr f3' 

1 
o 

= 0 • 
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