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Introduction

Enamel matrix derivative (EMD) was introduced commer-
cially in 1996 as a product (Emdogain; Straumann, Basel, 
Switzerland) for promoting oral soft and hard tissue regen-
eration. EMD applied to the root surface during periodontal 
surgery has been shown to promote periodontal regeneration 
in experimental1,2 and in clinical studies.3–6 The mechanism 
of action of EMD is still poorly understood. It is not known 
whether there are specific components in EMD that promote 
wound healing or whether the effect is caused by its compo-
sition as a whole. EMD contains a complex mixture of pro-
teins generated by the proteolytic processing of a range of 
alternatively spliced amelogenin gene products. It has also 
been proposed that EMD also contains growth factors that 
might be responsible for bioactive effects.7–12 However, 

Gestrelius et al.13 reported negative results when they 
screened EMD using immunoassays for the presence of epi-
dermal growth factor, basic fibroblast growth factor, insulin 
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like growth factor, platelet-derived growth factor, nerve 
growth factor, and transforming growth factor-β (TGF-β). 
This issue is further complicated by the fact that EMD stimu-
lates endogenous production of growth factors in different 
cell lines.14 Moreover, it has been suggested that specific 
alternatively spliced gene products or their degradation prod-
ucts in EMD might activate bone morphogenetic protein 
(BMP) or TGF signaling pathways15–18 and thus mimic the 
action of certain growth factors.

Some studies have analyzed the effect of different com-
ponents of EMD on several cell lines. Riksen et al.19 showed 
that two isoforms of amelogenin had different effects on 
messenger RNA (mRNA) expression and protein secretion 
from osteoblasts. A proteolytic processing product of 
amelogenin, the tyrosine-rich amelogenin peptide (TRAP), 
down-regulated osteocalcin while up-regulated osteopontin 
expression and decreased mineral nodule formation by 
cementoblasts.20 Obregon-Whittle et al.21 found no differ-
ences in alkaline phosphatase (ALP) activity in primary 
human osteoblasts treated with EMD or various fractions of 
EMD.

The periodontal ligament (PDL) fibroblast has a pre-
dominant role in tissue homeostasis, wound healing, and 
periodontal regeneration.22,23 Cells isolated from the PDL 
present osteoblast-like properties as evidenced by their 
capacity to induce mineralization in vitro, express bone 
sialoprotein, osteocalcin, and ALP.24,25 Fibroblasts contrib-
ute to the formation of the extracellular matrix during 
wound healing through the production of collagen that sup-
ports later cell ingrowth.26 Early in the repair process, 
cytokines and growth factors secreted by macrophage and 
fibroblasts initiate a complex signaling network and act as 
regulators of the inflammatory, proliferative, and remode-
ling phases of wound healing.27 Further studies are needed 
to clarify the complex events underlying periodontal regen-
eration and especially with regard to the influence of EMD 
on these events and subsequent PDL fibroblast behavior.

The aim of the present study was to analyze the effect of 
different molecular weight fractions of EMD on cytokine 
secretion by periodontal ligament fibroblasts (PDLF).

Materials and methods

EMD fractions

Twenty milligrams of EMD were dissolved in 0.75 mL of 
0.125 M formic acid and subjected to size-exclusion chro-
matography using a 90 × 1.6-cm column of Bio Gel P10 
(Bio-Rad, Hemel Hempstead, UK). The column was 
eluted with 0.125 M formic acid at a flow rate of 
0.3 mL min−1. The column eluent was monitored at 
280 nm, and 5-mL fractions were collected and lyophi-
lized. A total of 13 fractions (F1–F13) were obtained. F1 
was the first fraction to elute and contained the highest 
molecular weight proteins. Thus, the fractions obtained 

later had decreasing molecular weights, and F13 was the 
last fraction to elute and contained the lowest molecular 
weight proteins or peptides.

Sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis

Fractions were characterized by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) as 
described by Laemmli.28 Samples were diluted 1:3 with 
four times concentrated SDS-PAGE sample loading buffer, 
heated at 90°C for 2 min and loaded at 10 µL per lane on 
handcast 15% Tris-HCl gels (Mini-Protean Tetra Cell; 
Bio-Rad Laboratories, Richmond, CA, USA). Gels were 
calibrated for molecular weight using 5 µL molecular 
weight standards diluted 40 times in SDS-PAGE loading 
buffer (Broad range pre-stained markers; Bio-Rad). After 
electrophoresis at 200 V, the gels were silver stained and 
images were taken.

Mass spectrometry

Aliquots of the F3–F12 containing lower molecular weight 
components identified by SDS-PAGE were subjected to liq-
uid chromatography–electrospray ionization–tandem mass 
spectrometry (LC-ESI-MS/MS) as previously described.29 
Samples were injected into a nano-ultra high performance 
liquid chromatography (UHPLC) system (Ultimate 3000 
RSLC; Dionex, Sunnyvale, CA, USA) coupled to an ESI-ion 
trap/Orbitrap (LTQ Orbitrap XL; Thermo Scientific, Bremen, 
Germany) mass spectrometer. For peptide separation, an 
Acclaim PepMap 100 column (50 cm × 75 µm) packed with 
100 Å C18 3 µm particles (Dionex) was used with a flow rate 
of 300 nL min−1 and a solvent gradient of 3% B to 35% B in 
20 min. Solvent A was 0.1% formic acid, and solvent B was 
0.1% formic acid/90% acetonitrile. Survey full scan MS 
spectra (from m/z 300 to 2000) were acquired in the Orbitrap 
with the resolution R = 60,000 at m/z 400 after accumulation 
to a target of 1,000,000 charges in the LTQ. The method used 
allowed sequential isolation of up to the seven most intense 
ions for fragmentation on the linear ion trap using collision 
induced dissociation (CID) at a target value of 10,000 
charges. Target ions already selected for MS/MS were 
dynamically excluded for 60 s. Data were acquired using 
Xcalibur v2.5.5, and raw files were processed to generate 
peak list in Mascot generic format (*.mgf) using ProteoWizard 
release version 3.0.331. Database searches were performed 
using Mascot in-house version 2.4. to search the following 
peptides: porcine P173 amelogenin,30 porcine P56 leucine-
rich amelogenin peptide (LRAP),30 and porcine P73 contain-
ing exon 4,31 assuming the digestion enzyme non-specific, 
fragment ion mass tolerance of 0.60 Da, parent ion tolerance 
of 10 ppm and oxidation of methionines, propionamide of 
cysteines, and acetylation of the protein N-terminus as  
variable modifications. Scaffold (version Scaffold 4.3.4; 
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Proteome Software Inc., Portland, OR, USA) was used to 
validate MS/MS-based peptide, and protein identifications 
were accepted if they could be established at greater than 
95.0% probability by the Peptide Prophet algorithm32 with 
Scaffold delta-mass correction. Protein identifications were 
accepted if they could be established at greater than 98.0% 
probability to achieve a false discovery rate (FDR) less than 
1.0%.

Cell cultures

Commercially available human PDL fibroblasts (Catalog 
number CC-7049, Lonza, Walkersville, MD, USA)21 were 
cultured in media (fibroblast growth medium-2 (FGM-2); 
Lonza, Basel, Switzerland) containing insulin, fibroblast 
growth factor, gentamicin/amphotericin-B, fetal calf serum 
and ascorbic acid. Cells were subcultured at 37°C in a 
humidified atmosphere of 5% CO2 prior to confluence, 
according to the manufacturer’s instructions. Cells at pas-
sage 8 were used for this experiment.

The cultured cells were treated with either EMD (Biora, 
Malmö, Sweden) (10 µg mL−1) or the various EMD frac-
tions in molar concentrations equivalent to their content in 
10 µg mL−1 of whole EMD. Untreated cells were used as 
controls. Three replicate experiments were conducted for 
every fraction, EMD, and the controls. Cell culture media 
were harvested after 1, 3, 7, and 14 days.

Proliferation assay

Cell proliferation was measured using [3H]-thymidine 
incorporation. Subconfluent cells were treated with either 
EMD (Biora, Malmö, Sweden) (10 µg mL−1) or the vari-
ous EMD fractions in molar concentrations equivalent to 
their content in 10 µg mL−1 of whole EMD. Untreated 
cells were used as controls. The cells were pulsed with 
1 µCi/well of [3H]-thymidine 12 h prior to harvest at 1 and 
3 days. The medium was removed and the cells were 
washed twice with ice-cold phosphate-buffered saline 
(PBS) and twice with ice-cold 5% trichloroacetic acid to 
remove unincorporated [3H]-thymidine. The cells were 
solubilized in 500 µL of 1 M sodium hydroxide, and 
400 µL of the solubilized cell solution was transferred to 
4 mL of Instagel II Plus liquid scintillation fluid (Perkin 
Elmer, Applied Biosystems, Foster City, CA, USA) and 
measured for 3 min in a liquid scintillation counter 
(Packard 1900 TR).

Protein quantification in cell culture medium

Aliquots of the cell culture medium were concentrated 
5-fold using centrifugation filters with 3 kDa nominal cut-
off (VWR International, Radnor, PA, USA) according to the 
manufacturer’s instructions. Multianalyte profiling of the 
level of cytokines in the concentrated cell culture medium of 

PDFL was performed on the Luminex-200 system (Luminex 
Corp., Austin, TX, USA). Acquired fluorescence data were 
analyzed using the 3.1 xPONENT software (Luminex). The 
amount of eotaxin, granulocyte colony-stimulating factor 
(G-CSF), interferon-α2 (IFN-α2), interferon-γ (IFN-γ), 
interleukin-1β (IL-1β), interleukin-1 receptor antagonist 
(IL-1ra), interleukin-2 (IL-2), interleukin-4 (IL-4), interleu-
kin-5 (IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), 
interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-
12p40 (IL-12p40), interleukin-13 (IL-13), interleukin-15 
(IL-15), interleukin-17 (IL-17), interferon-γ induced protein 
(IP-10), monocyte chemoattractant protein-1 (MCP-1), 
macrophage inflammatory protein-1α (MIP-1α), mac-
rophage inflammatory protein-1β (MIP-1β), regulated upon 
activation of normal T-cell expressed and secreted 
(RANTES), soluble interleukin-2 receptor-α (sIL-2Rα), 
tumor necrosis factor-α (TNF-α), and vascular endothelial 
growth factor (VEGF) secreted into the culture medium was 
measured using the human cytokine/chemokine kit 
(Milliplex human cytokine MPXHCYTO-60k; Millipore 
Corp., Billerica, MA, USA). All analyses were performed 
according to the manufacturers’ protocols. The intra-assay 
and interassay variation for the cytokines analyzed ranged 
between 3.7 and 15.7%.

Values below the detection limit were set to half of the 
detection limit. This was done to include these values in 
further statistical analyses.

Statistical analysis

Statistical comparison between groups and controls was 
performed using parametric one-way analysis of variance 
(ANOVA) and post hoc Dunnett’s test with multiple com-
parisons against the untreated control group. When the 
normality test was not passed, ANOVA on ranks (Kruskal–
Wallis test) and post hoc Dunn’s test were performed 
(SigmaStat software; Systat, San Jose, CA, USA); p ⩽ 0.05 
was considered significant.

Results

Characterization of EMD fractions

The SDS-PAGE showed that the most prominent bands 
were found between 38 kDa and 5 kDa in the unfractionated 
EMD (Figure 1). The most intense band found in EMD at 
20 kDa corresponded to the well-documented proteolytic 
processing product comprising residues 1–148 of P173 
amelogenin. The fractions F1 and F2 presented a similar 
protein profile to EMD, although F2 had less stained bands 
over 38 kDa. F3–F6 had a weaker protein band around 
20 kDa, did not contain some of the proteins between 20 
and 10 kDa, and contained a band around 5 kDa. F3 had an 
additional component of 8.8 kDa, which was not observed 
in F4 and F5. The findings of the mass spectrometric 
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analyses are shown in Figure 2, Table 1, and Supplementary 
Table S1. Amelogenin P173-related peptides were more 
predominant in F3–F7 (Figure 2). Fractions F5–F8 pre-
sented a higher number of peptides exclusive to amelo-
genin P173 (Table 1). The quantitative analyses revealed 
that LRAP related peptides were more abundant in F9–F13 
(Figure 2). However, the quantitative analyses of these 
fractions have to be interpreted cautiously since many 
sequences attributed to LRAP were also shared with amelo-
genin P173 (Supplementary Table S1, column labeled 
“other proteins”). More peptides exclusive to LRAP were 
found in F5, F6, and F8 (Table 1). LRAP containing exon 4 
was not found in any of the fractions analyzed (Table 1 and 
Figure 2). A shorter TRAP was found in F9 (comprising 
residues 3–43) and F10 (comprising residues 1–43) 
(Supplementary Table S1). An interesting finding is that 

amelogenin is processed into many different peptides, and 
there is a high variation in cleavage sites (Supplementary 
Table S1).

Cell proliferation

The proliferation rate was increased 2- to 5-fold by lower 
molecular weight fractions (F8, F9, F10, and F11) at day 1, 
whereas no changes were found at day 3 (Figure 3).

Effects of EMD and fractions on cytokine 
secretion

An overview of changes in cytokine levels for the different 
fractions is given in Table 2. EMD stimulated a 3-fold 
increase in the concentration of VEGF in cell culture medium 

Figure 1.  SDS-PAGE of EMD and of the different fractions obtained after size-exclusion chromatography. Lane M represents the 
molecular weight standards with sizes marked on the left (in kDa); Lane EMD represents enamel matrix derivative; Lanes F1–F13 
represent EMD fractions, where F1 is the first eluate. Arrows point to different molecular weights.
P173—porcine amelogenin sequence of 173 residues; LRAP: porcine leucine-rich amelogenin peptide of 56 residues.

Figure 2.  Quantitative analyses by mass spectrometry (LC-ESI-MS/MS)—normalized spectrum count.
P173—porcine amelogenin sequence of 173 residues; LRAP: porcine leucine-rich amelogenin peptide of 56 residues.
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at day 1 compared to the control group (p < 0.001) (Figure 
4). By day 3, the concentration of VEGF was still elevated 
(2.5-fold) and by day 7 had increased 660-fold (although not 
reaching statistical significance) (Figure 4). At day 3, EMD 
stimulated a 4-fold increase in IL-6 (p < 0.001) secretion and 
induced a 30% reduction in IL-4 (p = 0.045) secretion com-
pared to the control group (Figures 5 and 6). EMD promoted 
the secretion of MCP-1 (around 80-fold, p < 0.001) at day 7, 
although this effect was reversed toward the end of the 
experiment (Figure 7). EMD also down-regulated IL-8 
secretion at day 14 (p = 0.011) (Figure 8).

F1 and F2 down-regulated IL-4 secretion during the 
first week (p < 0.05), but by the end of the experiment, F2 
increased the release of IL-4 compared to the control group 

(p  =  0.032) (Figure 6). F2 also increased the release of 
VEGF at day 3 (4-fold, p < 0.001) and IL-6 at day 7 (1500-
fold, p = 0.033) (Figures 4 and 5).

F3 stimulated the release of VEGF at day 3 (around 
7-fold, p < 0.001), and later, it sharply increased VEGF 
release by 2400-fold at day 7 (p < 0.001) (Figure 4). This 
effect on VEGF secretion was not seen in lower molecular 
weight fractions.

At day 7, F5 stimulated the release of MCP-1 80-fold 
(p = 0.001) and IL-6 1500-fold (p = 0.036) compared to 
the control group (Figures 5 and 7).

As was the case with EMD and F2, lower molecular 
weight fractions F7–F13 had an influence on the secretion 
of chemoattractant cytokines belonging to the chemokine 

Table 1.  Mass spectrometric analysis of fractions 3–7.

Exclusive unique 
peptides

Exclusive unique 
spectra

Sequence coverage 
(%)

Protein identification 
probability (%)

P173 LRAP P173 LRAP P173 LRAP P173 LRAP
F3 75 2 106 2 84 68 100 100
F4 45 1 67 1 71 50 100 95
F5 102 10 145 17 99 96 100 100
F6 107 11 159 15 99 96 100 100
F7 109 4 182 4 99 96 100 100
F8 122 10 185 13 99 96 100 100
F9 99 5 143 7 99 96 100 100
F10 85 1 113 1 73 96 100 100
F11 45 1 50 1 61 77 100 88
F12 31 1 37 1 68 77 100 93
F13 42 2 53 2 67 79 100 100

F3–F13: fractions 3 to 13. P173: porcine amelogenin sequence of 173 residues; LRAP: porcine leucine-rich amelogenin peptide of 56 residues.
Exclusive unique peptides: number of amino-acid sequences, regardless of any modification that are associated with a protein. Exclusive unique spec-
tra: number of specific spectra associated with a single protein. Sequence coverage (%): percentage of all the amino-acids in the protein sequence 
that were detected in the sample. Protein identification probability: calculated probability for the protein identification.33

Figure 3.  Effect of EMD and F1–F13 on proliferation of periodontal ligament fibroblasts at day 1 and 3. Cell proliferation was 
measured as [3H]-thymidine incorporation in counts per minute (CPM). Data presented as median with interquartile ranges (SD) 
(n = 3).
EMD: Emdogain; F1 to F13: Fractions 1 to 13.
*p < 0.05.
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family, such as MCP-1 and IL-8 (Figures 7 and 8). During 
the first week, lower molecular fractions up-regulated 
chemokine secretion (F5–F9 and F11) by a similar magni-
tude as higher molecular fractions: close to an 80-fold 
increase for MCP-1 and a 500-fold increase for IL-8 (Figures 
7 and 8). In contrast, there was a down-regulation of IL-8 
and MCP-1 secretion by F5 at day 1 (p  =  0.025) and by 
F4–F7 at day 14 (Figures 7 and 8). The down-regulation of 
IL-4 seen in higher molecular weight fractions was also 
observed in lower molecular weights at day 3 (Figure 6).

The secretion of 20 cytokines (eotaxin, G-CSF, IFN-α2, 
IFN-γ, IL-1β, IL-1ra, IL-2, IL-5, IL-7, IL-10, IL-12p40, 
IL-13, IL-15, IL-17, IP-10, MIP-1α, MIP-1β, RANTES, sIL-
2Ra, TNF-α) out of the 25 cytokines analyzed were consist-
ently below the detection limit for the assay for all treatment 
groups.

To sum up, the effect on proliferation and the cytokine 
secretion study cannot be related to any of the specific pro-
teins analyzed in LC-ESI-MS/MS as LRAP- and P173-
related peptides were found in all fractions. However, by 

Table 2.  Cytokine levels in cell culture medium relative to control.

PDL cells Day 1 Day 3 Day 7 Day 14

EMD ↑VEGF*** ↑IL-6***
↓IL-4**

↑MCP-1*** ↓IL-8*, MCP-1*

F1 ↓IL-4* ↑IL-8*, MCP-1**  
F2 ↑VEGF** ↑IL-6*

↓IL-4*
↑IL-4*

F3 ↑IL-6*, VEGF***
↓IL-4*

↑VEGF***
↓IL-4*

 

F4 ↓IL-4*** ↓IL-8*
F5 ↓IL-8* ↓IL-4*** ↑IL-6*, IL-8*, MCP-1*** ↓IL-8*
F6 ↓IL-4*** ↑IL-8**, MCP-1** ↓IL-8**, MCP-1**
F7 ↓IL-4*** ↑IL-8*, MCP-1** ↓IL-8*, MCP-1*
F8 ↑MCP-1* ↓IL-4*** ↑MCP-1*  
F9 ↓IL-4*** ↑IL-8**, MCP-1**  
F10 ↓IL-4***  
F11 ↑MCP-1***  
F12  
F13 ↓IL-4*  

PDL: periodontal ligament; EMD: enamel matrix derivative Emdogain; VEGF: vascular endothelial growth factor; IL-4: interleukin-4; IL-6: interleu-
kin-6; IL-8: interleukin-8; MCP-1: monocyte chemoattractant protein-1.
Cytokines after symbol ↑ mean that they are significantly increased compared to the control group. Cytokines after symbol ↓ mean that they are 
significantly decreased compared to the control group.
*p < 0.05; **p < 0.01; ***p < 0.001.

Figure 4.  Mean VEGF concentration (pg mL−1) in cell culture medium from periodontal ligament fibroblasts at day 1, 3, 7, and 14. 
Data are presented as mean ± standard deviation (SD) (n = 3).
VEGF: vascular endothelial growth factor; EMD: Emdogain; F1–F13: fractions 1–13
*p < 0.05; **p < 0.01; ***p < 0.001.
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comparing to the SDS-PAGE gel, it appears that VEGF 
and IL-6 release was related to EMD components above 
20 kDa, since their secretion was only stimulated by frac-
tions containing these molecular weights. On the other 
hand, lower molecular weight components appear to 
enhance cell proliferation and secretion of MCP-1 and 
IL-8 and reduce IL-4 release. Fractions F9 and F10, con-
taining LRAP and truncated forms of TRAP, promoted 
enhanced proliferation of PDL cells.

Discussion

A systematic analysis of the level of 25 cytokines secreted to 
the cell culture medium from PDFL after the administration 

of different fractions of EMD showed that both high and 
low molecular weight proteins contribute to the bioactive 
effect of EMD.

Primary human PDL cells were chosen as a model to 
study the effect of molecular weight fractions of EMD on 
cytokine secretion as primary cells are more representative 
of PDL cells in vivo compared to transformed cell lines.34 
The use of cells from one donor allows experimental repeat-
ability since the inclusion of cells from several donors would 
incur individual variations that might mask any potential 
effects. Donor variability can explain differential cell behav-
ior in culture conditions.35–37 This issue is further compli-
cated in the study of pleiotropic cytokines with multiple 
biological activities. Nonetheless, the results of this study 

Figure 5.  Mean IL-6 concentration (pg mL−1) in cell culture medium from periodontal ligament fibroblasts at day 1, 3, 7, and 14. 
Data are presented as mean ± standard deviation (SD) (n = 3).
IL-6: interleukin-6; EMD: Emdogain; F1–F13: fractions 1–13
*p < 0.05; **p < 0.01; ***p < 0.001.

Figure 6.  Mean IL-4 concentration (pg mL−1) in cell culture medium from periodontal ligament fibroblasts at day 1, 3, 7, and 14. 
Data are presented as mean ± standard deviation (SD) (n = 3).
IL-4: interleukin-4; EMD: Emdogain; F1–F13: fractions 1–13.
*p < 0.05; **p < 0.01; ***p < 0.001.
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should be interpreted with the caveat that they are based on 
cells provided by one donor. Moreover, in vitro studies lack 
the complex environment of living tissues.

The SDS-PAGE analyses showed that most proteins 
contained in the EMD preparation comprised molecular 
weights between 5 and 25 kDa. This is in agreement with 
Maycock et al.38 who also separated EMD using SDS-
PAGE. The mass spectrometric analyses revealed the 
presence of P173- and LRAP-derived peptides in frac-
tions F3–F13. The smaller P56 LRAP and TRAP 
sequences were, as expected, more frequently found  
in lower molecular weight fractions. The finding that 

proteolytic enzymes cleave amelogenin-derived peptides 
in a wide range of amino-acid sequences (Supplementary 
Table S1) is in accordance with data presented by Nagano 
et al.39 and Ryu et al.40

Lower molecular fractions (F8, F9, F10, and F11) stimu-
lated cell proliferation, in line with the results from Johnson 
et al.,7 who found that lower molecular weight EMD com-
ponents enhanced proliferation of endothelial cells. This 
effect might be mediated through stimulation of local 
growth factor secretion14 or biologically active component(s) 
in EMD fractions: for example, LRAP whose presence and 
bioactivity in EMD was demonstrated by Stout et al.18 EMD 

Figure 8.  Mean IL-8 concentration (pg mL−1) in cell culture medium from periodontal ligament fibroblasts at day 1, 3, 7, and 14. 
Data are presented as mean ± standard deviation (SD) (n = 3).
IL-8: Interleukin-8; EMD: Emdogain; F1–F13: fractions 1–13.
*p < 0.05; **p < 0.01; ***p < 0.001.

Figure 7.  Mean MCP-1 concentration (pg mL−1) in cell culture medium from periodontal ligament fibroblasts at day 1, 3, 7, and 14. 
Data are presented as mean ± standard deviation (SD) (n = 3).
MCP-1: monocyte chemoattractant protein-1; EMD: Emdogain; F1–F13: fractions 1–13.
*p < 0.05; **p < 0.01; ***p < 0.001.
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did not induce proliferation in the present study. However, 
the proliferative effect of EMD might manifest at later time 
points following its administration.41,42

In the present study, higher molecular weight fractions 
induced a different cytokine secretion profile compared to 
lower molecular weight proteins. Thus, fractions containing 
a 20 kDa component enhanced the release of VEGF and 
IL-6. F5, with relatively few components compared to 
higher molecular weight fractions, also promoted the secre-
tion of IL-6. Mass spectrometry revealed that this fraction 
contained peptides related to the P173 amelogenin and 
LRAP. Therefore, it is not possible to establish which spe-
cific component induced IL-6 secretion. On the other hand, 
this effect was not found with lower molecular weight frac-
tions. Parkar and Tonetti43 found that EMD administration 
down-regulated the IL-6 gene, whereas IL-6 production was 
stimulated in the present study. By contrast, this enhance-
ment of IL-6 secretion was also observed by Lyngstadaas et 
al.14 IL-6 is a pleiotropic cytokine that regulates immune 
response, inflammation, and hematopoiesis. Although IL-6 
has been considered a classic inflammatory cytokine, it has 
also many regenerative and anti-inflammatory activities.44 
IL-6 appears to have a crucial role during wound healing as 
demonstrated by the fact that IL-6 deficient mice have been 
shown a delayed skin-wound healing.45 In addition, F2 and 
F3 induced VEGF secretion. This is in line with other stud-
ies demonstrating an increase in VEGF gene expression43 or 
protein release.46 This observed effect might explain the 
proliferative activity of amelogenin on microvascular 
endothelial cells.7 Classical inflammatory cytokines, for 
example, IL-1β and IL-6, are released early during the 
inflammatory response of wound healing and stimulate the 
production of other cytokines and growth factors, such as 
VEGF, initiating a cascade of molecular events leading to 
inflammation, tissue formation, and remodelling.47

Lower molecular weight fractions (F7–F13) had an effect 
on IL-4 and chemotactic cytokines (i.e. IL-8 and MCP-1). The 
chemokines IL-8 and MCP-1 regulate leukocyte migration 
from blood to tissues and play an important role during wound 
healing. IL-8 was decreased at day 1 and day 14 by EMD and 
fractions F4–F8. IL-8 is decreased during wound healing in 
fetal tissues, and this suggests that the diminished inflamma-
tory response in fetal healing might contribute to a scarless 
wound healing and regeneration in some tissues.47,48 
Nonetheless, IL-8 and MCP-1 secretion were increased at day 
7 by several fractions in the present experiment. This increased 
pattern of MCP-1 and IL-8 expression during the first week 
has been correlated with leukocyte migration to the wound site 
in an in situ hybridization study.49 Early in the healing phase 
(day 1), IL-8 was correlated with neutrophil migration, but at 
day 4, IL-8 expression declined.49 In the same study, the 
migration of macrophages was observed after strong expres-
sion of MCP-1 from day 2 to day 7. Lymphocyte recruitment 
also correlated in the first 4 days with MCP-1 expression.49 
Therefore, the sequential cytokine expression, leading to acti-
vation and inhibition of cytokine release, seems to be 

an essential aspect of an improved wound healing. IL-4 is a 
pleiotropic cytokine with an important role in wound healing 
that induces the production of extracellular matrix compo-
nents such as type I and type III collagen50 and stimulates the 
proliferation of fibroblasts.51 Surprisingly, IL-4 was down-
regulated by almost all fractions. Parkar and Tonetti43 found 
that genes related to IL-4 were also down-regulated by the 
application of EMD to PDL fibroblasts. Further investigations 
are needed to clarify the relation between EMD and IL-4.

To our knowledge, this is the first report that systemati-
cally assesses the secretion of cytokines from primary 
human PDL fibroblasts after the administration of differ-
ent fractions of EMD. To try and better understand wound 
healing mechanisms associated with EMD treatment, it 
was decided to assess the cytokine expression over a 
14-day period since this is the period during which the 
most important events occur during the early wound heal-
ing phase. Furthermore, the retention of Emdogain on the 
root surface has been demonstrated during a period of 
2–4 weeks following its clinical application. This period of 
time seems to be enough to permit recruitment and recolo-
nization of PDFL over the root surface.2,52,53

Conclusion

Our results indicate that higher molecular components of 
EMD might be related to an angiogenic effect through the 
stimulation of VEGF release and modulate wound healing 
through the expression of IL-6, while lower molecular 
weights are related to the secretion of IL-4 and chemotac-
tic cytokines (IL-8 and MCP-1). LRAP and TRAP might 
be the active components of lower molecular weight frac-
tions as shown in the mass spectrometric analysis.
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