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1o Introduction 

~ne spectral theory of positive maps has its origin in the 

classical work of Perron [1] and Frobenius [2], who considered the 

case of matrices with positive entries on finite dimensional vector 

spaces. For a compact exposition of Perron-Frobenius results see 

[3]o Let us distinguish two types of results in this theory. The 

first, due to Perron [1], is concerned with the existence and unique­

ness of the maximal eigenvalue, the second, due to Frobenius [2], is 

concerned with the cyclic structure of the spectrum.Frobenius showed 

more particularly that a non negativeir,reducibLe matrix has always a 

simple eigenvalue r such that all other eigenvalues are contained 

in a circle of radius r around the origino If tha matrix is normal­

ized such that r = 1 then the eigenvalues on the unit circle form 

a finite subgroup of the circle group which maps the system of all 

eigenvalues into itself. 

In this paper we extend Frobenius resultsto the case of positive 

maps of von Neumann algebras. Let us first give some references to 

previous work. As the literature is quite extensive, especially con­

cerning extensions of Perron's results, we shall mainly mention work 

related to Frobenius results (for additional references see [4])e 

Frobenius type of results for compact operators on commutative 

C* algebras and ordered vector spaces can be found in Krein and Rutman 

[5], who also extended Jentsch's work [6] on Perron type of resultso 

For other extensions in the case of ordered vector spaces see e.g. 

[7] - [9] 0 

Automorphisms of commutative C*-algebras have been studied par­

ticularly in connection with ergodic theory, originating from classi­

cal work by Koopman [10], Carleman [11] and von Neumann [12], see [13]. 



Results of Frobenius type for groups of automorphisms in the general 

case of non commutative C*-algebras have been obtained by St0rmer 

[14]. 

For some particular spectral results which appeared in different 

contexts see the references in [14] and for recent related results see 

[15] - [17.] .. 

The extension of the entire Perron-Frobenius theory to the case 

of positive maps on finite-dimensional C*-algebras has been obtained 

by Evans and H0egh-Krohn [ 4] .. 

We shall now briefly discuss our results. 

We consider a von Neumann algebra M and positive linear nor-

malized maps ~ of M into itself, satisfying the Kadison-Schwarz 

inequality ~(a*a) .~ ~(a)* ~(a) for any a E M. Maps satisfying 

this inequality are well knovm. (see e.g .. [18]- !21]), in particular any 

2-positive linear normalized map ~ satisfies the inequality ([18], 

~~). We recall that a map ~ is called 2-positive if ~ ® 1 is 

positive on M ® 1'12 , where 1 is the unit matrix in the space 1'12 

of 2 x 2 matrices, so that in particular completely positive maps 

are 2-positive, hence satisfy the inequality. Such maps have found 

several applications recently, see e .. g .. ~2]- ~6.1 .. 

Consider now a state invariant·under ~ and extend ~ to the 

Hilbert space Je generated by applying 1'1 to the cyclic separating 

vector given by the state.. Let ~ be ergodic in the sense that no 

non-trivial projection is invariant under ~ o Then we show that the 

set of eigenvalues on the unit circle for ~ in M and for ~ in 

de is the same, it consists of simple eigenvalues ("roots") a which 

form a subgroup of the circle group acting by complex multiplication 

on the spectrum of ~ as an operator in JC .. The corresponding 

eigenvectors give unitary operators and the map a ... u a is a 



unitary multiplier representation of the group r(~) of rootso The 

restriction of ~ to the subalgebra Mr of M generated by the 

operators ua is an ergodic automorphism and the restriction of the 

state to Mr is a trace. We give also more detailed results for the 

cases where r(~) is cycl~c or finiteo 

We then extend (Th. 2 .. 8- 2.10) the considerations to the case 

of semigroups ~t , t > 0 obtaining Frobenius type of results for 

their infinitesimal generatorso Ergodic properties are also dis­

cussed. 



2. Dynamical Systems 

Let M be a von Neumann algebra and ~ a positive linear 

normalized map of M 

cone in M and ~ ( 1) = ·1 , such that ~ satisfies the Schwarz in­

equality 
~(a*a) ~ ~(a)*~(a) 

for any a E M , which is the case (as remarked in Sect. 1) if 
~ is e .. g.. 2-positive. 

Moreover, let s be a ~-invariant, so~ = S , 

cyclic and separating normal state on M • Then the triplet (M, 12, s) 

is called a dynamical system. Any *-automorphism 8 of M satis­

fies (2.1) so if 8 is a *-automorphism which leaves s invariant 

then (M,e,s) is a dynamical system and we call this a closed dyna­

mical system.. By the GNS construction we may assume that s is a 

vector state 

S ( a) = ( 0 , aO ) • (2.2) 

Let de = MO be the Hilbert space generated by M on the cyclic 

vector 0. From (2.1) it follows that ~ is a densely defined 

contraction (it is defined on MO ) hence it extends uniquely to a 

contraction on Je which we also denote by ~ • 

By the Tomita-Takesaki theor;)~e have that the mapping aO ~ a*O 

defined on MO extends uniquely to a closed antilinear map S of 

Je such that the modular operator of Tomita is given by b. = S*S , 
..1.. 

where S* is the adjoint of S • Moreover, if S = J b. 2 is the 

polar decomposition of S then J is an anti isometry of Jt. such 

that a ~ Ja J is an anti isomorphism of M with its commutant M'. 

Moreover J 2 = 1 and JO = 0 .. 

Since ~ is a positive map of M it must commute with the 

*-map i.e. ~(a*) =~(a)* for any a EM. Since so~ = s we get 

"') [27] 



that ~ leaves the domain of S in de invariant and 

~s = s~. (2.3) 

From this it follows that ~ leaves the domain of ~ invariant 

and 

(2.4) 

as well as 

~ J = J ~ (2.5) 

since the polar decomposition of S is unique. 

A consequence of (2.4) is that i commutes with Tomita's modular 

automorphism crt on I1 • 

Since s is separating we have that I1' 0 is dense in dl , 

where M' is the commutant of M. 

Let us now recall a construction from Tomita-Takesaki theory. 

To any x E Je we may associate a densely defined operator x on 

de with dense domain M'O defined for any b' EM' as 

Xb 1 0 = b I X • 

Let now c E M then with a' and b' in M' we have 

(a'O, b'c 0) = (a'c* 0, b' 0). (2 .. 7) 

Since MO is dense in de we therefore get by continuity for 

any x E D(S) that 

(a' 0, b' x) = (a' Sx, b' 0) • (2.8) 

By (2.6) this gives us however that 

(a I 0 ' X b I 0 ) = clli a I 0 ' b I 0) • (2.9) 

Using now that M'O is dense in Je we get that, for any 
1 A 

X E D(S) = D(~ 2) ' X has a densely defined adjoint the restriction 
A .... Bit of which to M'O is equal to Sx o Therefore both X and are 



closable with the closure of 
,.. 
X equal to 

L'-.* Sx and the closure of 
~* 1 

equal to x • For this reason we shall, for any x E D( ~ 2 ") , 

let x and ~ also denote the corresponding closed operators. 
1 

In particular we have for any x E D(~2 ) that 

"" * ~ L.".x x"· X X = oJl (2.10) 

is a positive self-adjoint operator affiliated with the von Neumann 

algebra M. 

Let now A .:::, 0 be a bounded positive symmetric operator in M .. 

Then ~(A) = a2 for some symmetric operator a in M and we have 

for y = b 1 0 E M 1 0 

0 < (y,g?(A)y) = s(b 1 *a2b') = s(ab'*b'a)_:: \\b'*b'!ls(a2 ) = 

= llb'l\ 2 sc~cA)). 

By the invariance of s under ~ we then get 

and in particular 

for any a E M o Using now (2o 1) we have from (2.12) 

Thus for fixed y = b'O E M'O both sides of the inequality 

define positive bilinear forms on de by the identification 

a <-> a 0 of M with a dense subspace of de o 

(2o12) 

(2.13) 

(2.14) 

Let now A .:::. 0 be a positive self-adjoint (not necessarily 
.1.. 

bounded) operator affiliated with M , such that 0 E D(A 2 ) • Let 

f E C(R) then we have from (2o11) that 
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(2.15) 

where y = b'O E !'1'0. This shows that f _,. (y,~(f(A))y) is a con-

tinuous positive linear functional on C(R) i.e. an integral on 

C(R) with respect to a bou_~ded measure with finite first moment, 

and denoting its first moment by (y,~(A)y) we then have 

(2.16) 

The first moment (y,~(A)y) is then just the extension by positivity 

in A of the corresponding function defined on !'1+ , the positive 

cone in I'1. 

Since a 0 = a for a E I'1 we have from (2 .13) that if x E !'10 

then for any y = b'O E M'O 

...-.... 
where i (x) = ~ (x) • 

If x E D(D.t) we have that n E D((x*•x)t), in fact 

(2.17) 

(2.18) 

Hence the first moment ~y(x,x) of the bounded positive measure 

corresponding to the integral 

(2.19) 

exists. If x = an, a EM then obviously ~y(x,x) = (y,~(a*a)y). 

So that ~y(x,x) 

defined on I'1 to 

is an extension of the bilinear form (y,~(a*a)y) 
1 ~ 

D( .6 2 ) , where I'1 is imbedded into D( D. 2 ) by 

a_,. an. (2.17) shows that this first moment ~y(x,x) is contin­

uous in x in the strong topology in de hence extends uniquely to 

a bounded bilinear form on d£. Furhermore, also by (2.17), we have 

~ A A 2 2 
(y,~(x)*~(x)y) = l\~(x)yll = \lb'~(x)\1 ~ ~y(x,x) 

We have thus proved the following theorem. 

~ 1\b'l\ 2 1\xll~ 
(2.20) 



Theorem 2.1 

Let (M,~,s) be a dynamical system. Let ~ be the modular 
_j_ 

Then for any x E D(~ 2 ) 
,., 

operator given by s . we have that X 

,.. 
defined on M 1 0 by x b 1 0 = b' x extends uniquely to a closed 

operator affiliated with M with densely defined adjoint x* = ~. 

The extension of ~ to de is a contraction which commutes 
1 

with the modular automorphism, thus leaving D(~2 ) invariant. For 

a fixed y = b 1 0 E M'O the bilinear form (y,~(x)*~(x)y) = lliCx)y\1 2 
1 

is, as a fw:ction of x E D(t. 2 ) , strongly continuous on de and 

extends to a boundeC. form on de o For y = b 1 0 E M1 0 let ~y(x,x) 

be thE? .first moment of the bounded positive measure given by the inte-
1 

gral f ... (y,i(f(x*·x)y). Then for any x E D(~2) the first moment 

~y(x,x) is bounded and defines a positive bilinear form which is 

bounded on d£ hence extends to a positive bilinear form on Je • 
1 

Moreover we have the following inequalities for x E D(~2) and 

y = b 1 0 E M1 0: 

_j_ 

For fixed x E D(~ 2 ) we see that ~y(x,x) is a positive 

quadratic form in y hence we write for :y E M1 0 

It follows then from the definition that ~x(y,b 1 z) = ~x(b 1 *y,z) 

for any b 1 E M' and y,z E M1 0. This gives that if y = b 1 0 

then 

I 

~x(y,y) = w (b' *b 1 ) 
X 

(2 .. 22) 

wheee wx(b') = ~x(1,y) is a positive bounded function on M' i.e. 

a state (not normalized) on M1 , in fact we have by the invariance 

of S under i that 
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Now 

where y = b '0 , b' E 11 1 • Hence by the inequality of theorem 2 o '1 

we have that for any b 1 E M1 

W (b I *b I) ;: W (b I *b I ) - (~(X) 7 b I *b I~ (X)) _> 0 , 
X X 

(2.25) 

Hence wx defines a state on M1 which obviously is dominated by 

wx so that wx(1) ~ llx\1 2 , and more precisely we have 

wx(1) = llxl\ 2 -\\~(x)\\ 2 • (2 .. 26) 

Let us now assume that there is an eigenvalue a with lal = 1 of 

the mapping ~ of .Je , i.e .. there is an xa E Je such that 

Since ~ commutes with the modular automorphism we have that the 

eigenspace Ea. of ~ corresponding to the eigenvalue a is invari­

ant under 1::. , and since 1::. is self-adjoint its restriction to the 

invariant subspace Ea. is also self-adjoint. From this it follows 
1 1 

that D(t:. 2 ") n Ea. is dense in Ea.' since D(t:.2 ) n Ea. is the domain 
1 

of the restriction of 1::.2 to Ea. o Hence we may take the eigenvec-
1 

tor xa. in (2 .. 27) to be in D(t:. 2 ) • With this xa. we get from 

(2.26) that and since is a state, we have that 

wXa. = 0 • But this is to say that 

wx (b'*b') = ~y(xa.,x0)-(y,$(xa.)*i(xa)y) = 0 
a. 

with y = b 1 0 , b' E M' .. By the inequality of theorem 2.1 we 

have that 
,.. ,.. 

1-Ly(x,x) - (y, ~ (x) *~ (x)y) > 0 (2.29) 
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1 1 

for all x E D(62 ), i.e. (2.29) is a positive form on D(62 ) which 

is zero for x = xa. By Schwarz inequality we then have for any 
.1. 

x E D(6 2 ) that 

From the definition of ~y and (2.28) we get that the first moment 

of the integral 

(2.32) 

A 

is equal to (y,~(xa)*~(xa)y). But by (2.24) we have 

( y' i ( xa) * i ( xa) y) = II b I i ( xa) 11 2 = II b I xa 11 2 = ( y' xa* xa y) (2.33) 

where in the second equality we have used (2.27). 

" * .... Consider now the self-adjoint operator A = xa xa with spectral 

resolution 
ro 

A = J A dEA • 
0 

We have 
ro 

~y(xa,xa) = J
0 

A d(y,~(EA.)y). 

By (2.33) we then get 

co ro 

= J A. d(y,EA. y) • 

This implies however that 

N 

and 

s Ad ~(EA.) < A 
0 

N 

lim s A d ~(EA.) = A 
N ... ro o 

0 

(2.34) 

(2.35) 

(2.37) 
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in the sense of positive bilinear forms on M 1 0 
' 

and hence by 
1 

uniform boundedness from (2.36) as bilinear form on D(A2 ) • 

Let us call the eigenvalues of ~ on de on the unit circle 

the roots of ~ and denote the set of all roots by r( <R) o We shall 

call the corresponding eigenvectors and eigenspaces EQQ~ vectors and 

£22i spaces respectively. 

Now (2.37) is a consequence of (2.31) in the special case where 

x = xa. o It follows more generally from (2.31) that if 

z E M 1 0 c nrx ) then " a. 

Remark that since ~ : MO .... MO and commutes wi tlJ. J it also maps 

I1 1 0 into M 1 0 • ~ is therefore a bounded operator thatintertwines 

between the closed operators This follows from 

(2.38) since M1 0 is dense in the graph norm of the closed operator 

Since ~ commutes with S and S is antilinear, we get that 

Sxa. is a root vector for ~ corresponding to th6 root ii • Especi­

ally we get that r(~) is invariant under complex conjugation 

rnJ = r C \P ) • C 2. 39) 

But we get also that, for z E M1 0 , 

since 

~ex* z) = ax * ~ c z) a a 

Sx =X:* a a. • Hence we have that 

and ~ :X* = (ax ) * ~ a a 

(2.40) 

(2.41) 

in the sense that the contraction ~ is an intertwining operator 

for the two pairs [xa,a.xa} and £x;,caxa)*} of closed operators. 

From this it follows that <R intertwines the self-adjoint operator 
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A~ = ~A. (2.42) 

Hence w is a bounded operator on de commuting with A , and it 

is then well known that this implies that ~ commutes with its 

spectral projections 

'PEA. = EA. • ip • (2.43) 

Applying now both sides o:f (2~43) to 0 we get 

ip(EA.) = EA. (2.44) 

:for the action o:f ip in M .. 

We shall say that ip is ergodic if there is no projection in 

1'1 different :from 0 or 1 which is invariant under ip • I:f ip 

ergodic, we shall also say that the dynamical system (M,~,s) is 

ergodic. Let now a E r(~) and a normalized root vector, 

i .. e. \\xa\1 = 1, and let us assume that the dynamical system (M,ip,s) 

is ergodic. In this case :from (2.44) we have that A= x*x 1 a a = ' 
and i:f we consider the root vector Sxa :for the root a we get in 

the same manner f' * &;r xa a = " " * xa xa = 1 so that 

" * " xa xa = " " * xaxa = 1 

" :for any normalized root vector xa , i.e. xa is a unitary element 

of M,. Hence the eigenvalues on tbe unit circle are the same for 

in de as :for ~ in l"I.. Using now that is unitary, (2.41) 

may be written as 

(2.46) 

so that :for a E r( ip) we have that ip and a cp are unitarily equi­

valent. This gives us that r(ip) is a subgroup of the unit circle 
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(looked upon as a group, the circle group) and that the group r(~) 

acts by complex multiplication on Sp( ~) , the spectrum of ~ • 

Moreover if a and ~ are two roots, then x;x~ is a root vector 

corresponding to the root a~. By the ergodicity we then have that 

then 

and x' a 

x* 0 = 1 a a o 

are two normalized root vectors for the root a ' 

We also observe that if a,~ E~) with root 

operators ua and u 13 , then both ua u~ and u~ ua are root oper­

ators for the root a~ and u~ is a root operator of Ci o This gives 

us by the e1.•godici ty that ua u~ = y (a, f3) u~ ua , where y is a mul-

tiplier, so that a .... u 
a is a multiplier unitary representation of 

the group r(~), with multiplier y(a,i3). If r(~) is cyclic, 

i.e. has a simple generator, then the multiplier is trivial, hence 

a .... ua is a unitary representation of the abelian group r(~), 

hence in this case the algebra generated by the root operators is 

abelian. We have thus proven the following theorem. 

Theorem 2.2. 

Let (M,~,~) be an ergodic dynamical system, where ~ is a 

cyclic separating vector state for M invariant under ~ • Let Jt 

be the corresponding Hilbert space. Then the discrete eigenvalues 

on the unit circle for ~ as an operator in dB coincide with the 

discrete eigenvalues on the unit circle for ~ in M. Let r(~) 

be the set of all roots of ~ , i.e.. the discrete eigenvalues on 

the unit circle. r(~) is a subgroup of the circle group which acts 

by complex multiplication on the spectrum Sp(Q) of ~ in Je • 

If a E r(~) then a is a simple eigenvalue of ~ and the corres­

ponding root operator ua in M is proportional to a unitary oper­

ator in M and xa. = ua 0 is the corresponding root vector in Je , 

where 0 is the vector corresponding to the vector state s. The 



invariance of Sp(~) under multiplication by the root a is given 

by the unitary equivalence 

if the root operator ua is normalized so that it is unitary. If 

a and ~ are in r( ~) with root operators ua and u~ , then 

ua. u 13 is a root operator for the root a !3 and ua* is a root ope-

rat or for a • Hence if we select for each a E r(~) a unitary 

operator uo. then ua. u 13 = y (a., f3) u 13 ua. , where y(a,!3) is a multi-

plier for the group r(~) and a. .... u a. is a unitary multiplier re-

presentation of the group r(~) with multiplier y(a.,~) Q If r( ~) 

is cyclic, i.e. has a single generator, then a. .... u 
a. is a unitary 

representation of the abelian group r(~) and therefore the algebra 

generated by the root operators is abeliano I 

Remark: Results of this type were proven by Frobenius [2] for 

commuta,tive, finite-dimensional von Neumann algebras. For the com­

mutative infinite dimensional case with ~ compact, results were 

given by Krein and Rutman [5] and for the commutative infinite 

dimensional case with ~ an automorphism by Koopman [10 ] and 

von Neumann [12]. In the infinite dimensional non-commutative 

case with ~ an automorphism results of this type were obtained by 

St0rmer [14] and in the finite dimensional non-commutative case 

with general ~ by Evans and H0egh-Krohn [4] o 

If ~ is compact in ~~ r(~) must be a finite subgroup of the 

unit circle and since any such group has the form 

~ 
r m = ( e m , k = 0 , 1 , • o • , m-1 } (2.47) 

we have that r(~) = rm where m = lr(~)j is the order of r(i). 



We shall say that i is primitive if lr(~)l = 1 i.e. r(~) = {1) 

and imprimitive if not, and following Frobenius we call lr(~)l the 

imprimi ti vi ty of ~ • Especially we have that if i is compact in 

~ then it has finite imprimitivity. If i is of trace class in 

d(, then the Fredholm determinant 11- zi I of 1- zi exists and 

defines an entire function 

such that f~(z0 ) = 0 if and only if z-1 is an eigenvalue for i • 
0 

Especially we get that the set of zeros of f on the unit circle 

is r( 4\) • Recalling now that for a E r( ~) 

(2.49) 

by the unitary equivalence of a i2 and ~ , we get then 

(2.50) 

because the Fredholm determinant is a unitary invariant. Since a 

in (2.50) is any m-th root of the unit and f is entire, we have 

that there exists an entire function g(z) such that f~(z) = g(zm). 

Let us also remark that since r(i) = rm is cyclic, we have that 

the algebra generated by the root operators is commutative. Let now 
2ni 

y = e-m and u' be a root operator corresponding to y then 

u'm = Co1 where I cl = 1 • Let now u = c '1/mu' then um = 1 .. 

Since u is unitary and um = 1 we have the spectral decomposition 

m-1 k 
u = :E y p 

k=o k 

where Pk are the spectral projections for u. 

Since cp ( u) = y u we see that 

and P , , k = 1 , ••• , m-1 • m-1 

(2. 51) 

(2.52) 
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Especially we have that 

(2.53) 

so that ~m is not ergodic. It is easy to see that the restriction 

of ~m to the algebra Mk = PkM Pk is ergodic and in fact primitive,. 

These results depend obviously only on the fact that r(~) is of 

finite order. We have thus the following theorem 

Theorem 2.3 

Let (M,~,s) be as in theorem 2.2. Then if ~ has finite im-

primitivity we have 

of the unit. Let 

r( ~) = r , where rm is the group of m-th roots 
2 .m 
TT~ 

Y = e-m- then a root operator u corresponding 

to y 

that 

m may be normalixed so that u = 1 • For this u we have 
m-1 k 

u = kEo Y Pk is the spectral resolution of the unitary ope-

rater u. Hence {Pk} is a resolution of the identity im M and 

the algebra generated by the root operators is the abelian algebra 

generated by {Pk}. Moreover ~(Pk) = Pk_1 and ~(P0 ) = Pm_1 • 

Especially ~m(Pk) = Pk , so that ~m is not ergodic. However the 

restriction of ~m to the algebra Mk = Pk M Pk is ergodic and pri­

mitive. In fact jr(~)l = m if and only if ~m is not ergodic. 

If ~ is compact, then ~ has finite imprimitivity. If in addition 

~ is of trace class in B(Je) , then there is an entire function 

g(z) such that 

where 11-z~l is the Fredholm determinant of ~. 

Let now r(~) be cyclic but not finite. Then for any root 

y E f(~) we have that Y/2n is irrational and that y generates 

f(gj), i.e. 

r ( ~ ) = { yn; n = 0 ' ±1 ' 0 • • } • (2.54) 
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Let now u be a root operator corresponding to y , normalized 

so that u is unitary. A root operator corresponding to yn is 

then given by -n u • Let \) be the spectral measure on the unit 

circle for the unitary operator u. Since obviously ~ restricted 

to the subalgebra generated by u is an automorphism, we have that 

~ induces a transformation of the spectrum of u, and since ~(un) 

= ynun it follows that this transformation coincides with the re-

striction to the spectrum of u of the transformation z - yz. 

Hence if 

u = J z d Ez 
I zl =1 

(2.55) 

is the spectral resolution of u , we must have that 

(2.56) 

for v- almost all z in the unit circle. Since there are no other 

root operators than the n u , n = 0 , ±1 , ••• , it follows that v 

ergodic with respect to the transformation z - yz of the unit 

circle. That v is invariant under this transformation follows 

is 

from ~ = ~o~ and ~(un) = ynun for all n E ~. 

have proved the following theorem. 

Hence we 

Theorem 2.4 

Let (M,t,s) be an ergodic dynamical system, such that r(~) 

is cyclic but not finite. Then for any yE r(~) we have that Y/2rr 

is irrational and that y generates r(~)' i.e. r(~) = 

(Yn; n = o, ±1, ±2, ••• } • Let now u be the rcot operator corresponding 

to y normalized so that u is unitary. 

Let v be the spectral measure on the unit circle for the 

unitary operator u corresponding to the state s , i.e. 



- 2 .. 15-

s(un) = s zn d v(z) ' and let 

I zl =1 

u = J z d Ez be the spectral re­

I zl =1 

solution of u. Then the projection valued measure d Ez is abso­

lutely continuous with respect to v. v is an invariant ergodic 

measure with respect to the transformation z = yz of the unit 

circle and 

~ (E ) = E z yz 

for v - almost all z on the unit circle .. 

Let now a and ~ ~e two roots of the ergodic dynamical 

system with corresponding root operators and 

Since then is a root operator for the root we have 

(2.57) 

Hence if Mr is the strongly closed subalgebra of M generated by 

the root operators ua , a E r = r( ~) , then 2 maps Mr and the 

restriction of <p to Mr is an automorphism.. Let Jer = Mr 0 

then Jer is a <p invariant subspace of Je and the restriction 

of ~ to Jer is obviously unitary with discrete spectrum equal 

to r, and ua 0 , a E r is a complete set of orthogonal eigen­

vectors for <p in der.. Hence 0 is the only invariant eigen­

vector and from this we also get that the restriction of <p to Mr 

is ergodic.. From the orthogonality of 0 and ua 0 for a -/; 1 we 

have that s(ua) = 0 for a -/; 1 • But then ; ( ua ~ ) = s ( u~ ua) = 0 

for a -/; ~ and if 13 = a then u~ = cu* a where c is an element 

in the unit circle, and since ua is unitary we have that if ~=a 

then ua uS = uS ua so that s(ua u~) = s(us ua) in any case .. This 

shows that for a and b in Mr then s(a b) = s(b a) i.e. the 

restriction of s to Mr is a trace. That the restriction of an 

ergodic state to the root algebra Mr is a trace was observed by 
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St0rmer [14] in the case where ~ is an automorphism. We have 

thus proven the following theorem. 

Theorem 2 .. 5 

Let (M,~,s) be an ergodic dynamical system with root system 

r. Let Hr be the root algebra, i.e .. the strongly closed subalge­

bra of M generated by the root operators and let ~r be the re­

striction of ~ to Mr • Then ~r is an automorphisiJ. of Mr and 

(Mr, ~r' sr) , where sr is the restriction of s to Hr , is an 

ergodic dynamical system~ Moreover sr is a trace on Mr. I 

One could now ask if it is so that Mr is always commutative 

for an ergodic dynamical system. The following example ahows that 

this is not the case. 

Example 2 .. 6 

Let Je = L2(R) and set (V(x)f)(y) = f(y-x) and (U(x)f)(y) 

= eixy f(y) • Then V and U are both strongly continuous unitary 

representations of the abelian group R on L2(R) • Moreover 

U(x) V(y) = eixy V(y) U(x) • 

Let A. > 0 and u and m in Z then 

").2 
U(A.n)V(A.m) = el. nmV(A.m)U(A.n). 

Let M be the strongly closed suba~gebra of B(Je) generated by 

U(A. n) and V(A. m) for n and m in Z o Then M is noncommu­

tative if and only if A. 2 is not an integral multiple of 2n. 

Define a state s on M by s(U( A. n)) = s(V( A. n)) = 0 for n ;i 0 

and t;(1) = 1. Let now a and 13 be two real numbers and set 

W = U(a) V(l3) o Then 
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W*U(An)W = V*(~)U(A.n)V(~) = eiA.~nU(A.n) 

and 

W*V(An)W = V*(S)U*(a.)V(An)U(a.)V(~) = eiA.a.nV(A.n). 

Set now for a E M, e(a) = W* a W, then e is an automorphism of 

M and (M,e,s) is a dynamical system. Moreover it follows from 

the above equations that if a., S and 2n;A. are independent over 

~ (the ring of integers) then (M,e,s) is an ergodic dynamical 

system. We have from the equation above that the root system 

r = r(e) is given by 

r = [eiA.(am+Sn) ; (m,n) E ZxZ} 

and a root operator corresponding to eiA(a.m+Sn) is given by 

U( Am) V( An) • M is noncommutati ve if A 2 is not an integral 

multiple of 2n , and M = I'1r • 

If ~ is primitive, then 1 is the only eigenvalue on the unit 

circle and it is also a simple eigenvalue. This gives us that ~n 

converges weakly in de to the projection with range the subspace 

generated by 1 • Hence for any a and b in M we have 

lim s(a ~n (b)) = s(a) s(b) (2.58) 
n-co 

i.e. the dynamical system is strongly mixing. Conversely strong 

mixing implies that 1 is the only eigenvalue of ~ , as seen by 

taking a = b to be an eigenvector in (2.58). Moreover we observe 

that if ~ is ergodic but not necessarily primitive, then we still 

have, 1 being a simple eigenvalue, that 

1 n k 
l:i.m - L: s(a~ (b)) = s(a) s(b) 

n-co n k=1 

i.e. that the mean ergodic theorem holds. 

We have thus proven the following theorem. 
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Theorem 2.7 

If the dynamical system (M,~,s) is ergodic, then the mean 

ergodic theorem (2o59) holds. Moreover ~ is primitive, i.e. 

r(~) = {1], if and only if the dynamical system (M,~,;) is stro~g­

ly mixing i.e. (2.58) holds for arbitrary a and b in M. I 

We shall now consider the case of semigroups of positive maps, 

instead of the iterates of a single positive map ~ • 

Let M be a von Neumann algebra and ~t , t ~ 0 a semigroup 

of positive normalized maps of M i o eo ~ o = 1 ' ~ t o ~ s = ~ t +s ' 

~ (M+) c M+ and 
t -

inequality 

such that the 

~t(a* a) ~ ~t (a)* ~t (a) 

satisfy the Schwarz 

(2.60) 

for any a E M and all t. Moreover if s is a cyclic and separ-

ating normal state on M such that s(a ~t(b)) 

function of t , and s is invariant under i2 t 

is measurable as a 

we say that (M,~t,s) is a ~ynamical system with continuous time 

or a dynamical flow. We say that the dynamical flow is ergodic iff 

i2t(a) =a for all t implies that a= A1. As for the discrete 

dynamical systems (M,~,~) considered before,(2.58) implies that 

~t extends to a measurable, hence strongly continuous, contraction 

semigroup on Je , where oil is the Hilbert space obtained by the GNS 

construction from the state s • We denote the continuous extension 

to Je also by ~t' and we let iA be the infinitesimal generator 

of ~t in de i.e. 
'tA 

~t = e~ t > 0 • (2.61) 

Since ~t ~s a contraction, we have that i(A- A*) ~ 0 so that the 

spectrum of A is confined to the closed upper half plane. Let r 
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be the discrete part o~ the spectrum o~ A on the real line. Then 

o~ course ~or any t ~ 0 we have that ·tr e~ is the discrete spec-

trum o~ it on the unit circle. Let now a E r and xa be a 

corresponding normalized eigenvector. As in the proo~ of theorem 
1 

2.2 we may choose xa E D(~2) and then we find that (2 .. 44) holds 

with it replacing ~ ' for t arbitrary positive. This then im-

plies (2.45) by the ergodicity of the flow, and then also (2.46) 

for all t ~ 0. In this way we prove the following theorem. 

Theorem 2.8 

Let (M,~t,s) be an ergodic dynamical flow. Then the discrete 

eigenvalues on the real line for the infinitesimal generator of ~t 

in Je coincide with the discrete eigenvalues on the real line for 

the infinitesimal generator o~ ~ t in M • Let tha set of these 

discrete eigenvalues on the real line be denoted by r , the root 

system of the flow, then r is a subgroup of the additive group o~ 

the real line. Moreover the spectrum of the semigroup ~t in de 

is invariant under this additive group. Moreover,for any a E r, 

e2nia is a simple eigenvalue of the semigroup ~t and a correspon-

ding root operator EM is proportional to a unitary operator 

in M • The invariance of the spectrum of the semi group ~ t is 

given by the unitary equivalence 

u * ~ u = e2rria ~t 
a t a 

where ua is a normalized root operator corresponding to a E r. 

If a and are in r with root operators and u~ then 

is a root operator ~or and u * is a root operator a 

for -a • Hence if 1.ve select for each a E r a unitary root oper­

ator ua then ua uf' = y(a, S )u13 ua, where y(a, 13) is a multiplier 

for r, and a. - u a is a unitary multiplier representation with 
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multiplier y • r is either a dense subgroup of R or discrete 

i.e. r = (na, nE?l}. If r is discrete, then the strongly closed 

subalgebra Mr generated by the root operators is abelian. I 

The restriction of ~t to Mr is obviously an automorphism 

and as in the discrete case we get that the restriction of ; to 

Mr is a trace. In the special case where r is discrete, so that 

r = (n a, n E 7l} , Mr is abelian and generated by the root operator 

u corresponding to a. Let u be normalized to be unitary, then 

Mr is simply the von Neumann algebra generated by u. Since ~t 

restricted to Mr is a one parameter group of automorphism, it is 

induced by a one parameter flow on the spectrum of u. Since 

~t(un) = eitanun this flow on the spectrum of u must coincide 

with the flow eicp ... ei(cpwt) on the spectrum of u. From the 

fact that 1 is an eigenvalue of multiplicity one for the semigroup 

~t restricted to Mr it follows that (Mr,~t,s) is an ergodic dy­

namical flow so that the flow eicp ... ei(cp+at) is ergodic with re-

spect to the spectral measure ~ for u in s , i.e. the measure ~ 

such that 

r; ( f ( u) ) = s f ( z) d!-l ( z ) • 

I zl =1 

(2.62) 

Hence ~ is an invariant and ergodic measure with respect to the 

flow induced by the rotation of the unit circle. Hence since ~t 

is also strongly continuous, we have that d~ is the Haar measure 

on the unit circle, and that u has constant spectral multipli-

city. We have thus the following theorem. 

Theorem 2.9 

Let (M,~t,s) be an ergodic dynamical flow, and let r be its 

root system. Then the restriction of ; to the von Neumann algebra 
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Mr generated by the root operators is a trace, ~t leaves Mr 

invariru1t and the restriction of ~t to Mr is a one parameter 

group of automorphisms. Moreover (Mr,~t,s) is an ergodic dynami-

cal flow. r consists either of one point, or is discrete or is 

dense. In the first case (M, 12t, s) is strongly mixing. In the 

discrete case we have r = [n a ; n E ?l) .. Let in this case u be a 

normalized root operator corresponding to a • Then u has Lebesgue 

spectrum and in fact the spectral measure for u in the state s is 

the Haar measure on the unit circle and u has constant spectral 

multiplicity. Moreover the flow (Mr,~t,s) is induced by rotating 

the spectrum of u at the constant speed a. I 

From the spectrum of the strongly continuous contraction semi­

group ~ t in d(, we also have the following theoram. 

Theorem 2.,10 

If the dynamical flow (M,~t,s) is ergodic, then the mean 

ergodic theorem holds i .. e. 
T 

lim ; s s(a~t(b)) = s(a) s(b) 
T ... cc 

0 

for all a and b in M. Moreover if r = {1) then the dynami­

cal flow (M,~t,s) is strongly mixing. 
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