
n 
l: 

i=2 
a. = k , else 

l 

- 1 -

Abstract .. 

Vie determine the 

periods of the sequences generated by the shift register with 

the feedback function x1 + Ek(x2 , ••• ,xn) + Ek+ 1(x2, ••• ,xn) 

+ Ek+2(x2,.,.,xn) over the field GF(2) • We indicate also 

how to find the periods when the feedback function is 

x1 + Ek(x2 , ••• ,xn) + ••• + E1c+p(x2, ••• ,xn) where p > 2 • 
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1...s Introct!ctio.n. 

In this paper we study only shift registers over the 

field GF(2) = {o,1l characterized by 1 + 1 = 0 + 0 = 0 

and 1 + 0 = 1 • Let S(x2 , ••• ,xn) be a symmetric polynomial. 

A symmetric shift register of n stages with feedback function 

x1 + S(x2, ••• ,xn) is the function 8 : {o,1ln ~ lo,1ln 

defined by 

If es(a1, ••• ,an) = (a 1 , ••• ,an) , s is a period of 

(a1, ••• ,an) with respect to 9 • These periods are equal 

to the periods of the sequences satisfying the non-

linear difference equation 

For a general treatment of nonlinear shift registers see [1]. 

We shall in this paper extend the results of Kjeldsen 

[2] and S0reng [3]. I am grateful to K. Kjeldsen who inspired 

me to study symmetric shift registers. 

The weight w(~) of a vector 
~ n 

defined by w(a) = i:1ai We define 

-+ 
a= (a1 , ••• ,an) 

Ek(x2, ••• ,xn) 

k E l 0, 1, ••• , n-1} by 

Ek(a2 , ••• ,an) = 1 if w(a2 , ••• ,an) = k, else 

Ek(a2 , ••• ,an)·- 0. 

is 

for 

The polynomials Ek are very important. In [3] we showed 

that all s~netric pol~1omials are of the form 

some 6 c::: {2, ••• ,nl • Besides, 

for 
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if the periods of ~ + ••• + ~+p for p ~ 0 are known, the 

periods of all symmetric shift registers can be determined. 

In this paper we determine the periods when S = Ek + ~+ 1 

+ ~+2 • In [3] we determined the periods when S = Ek and 

By using Thm. 2.2 in [3] we therefore know 

the periods of all S of the form 

.6. c {2, ••• ,n! has the property 

k,k+1 ,k+2 E .6. ~ k-1 ,k+3 ~ .6. • 

3 = ~ E 
kE.6. k ' 

where 

Besides this paper gives probably all ideas needed to solve 

the general case S-= Ek + ••• + Ek+p for p > 2 • In Section 

4 we will indicate how to treat the general case. 

In Section 2 we state the results. In Section 3 and 5 

we prove them. Section 3 contains the main lines of the 

proofs and Section 5 contains the tecnical lemmas which are 

needed. In section 4 we indicate the general situation by an 

example. 

We denote ~ = (a 1 , ••• , an) E l 0 , 1 I n also by 

We denote finite sequences of numbers by capitol letters 

(also the empty sequence). For sE {0,1, ••• } we define 

s(A) = A ••• A where A appears s times. We let 

1t = 1 ••• 1 (resp. Ot = 0 ••• 0) denotes a string of t 

consecutive 1's (resp. O's). Werefer to the index of nota

tion in the end of this paper. 

~JI,&~ltS.· 

In this section we introduce the concept of blocks and 
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the main results. In the proofs we show how the blocks of 

a vector A= a 1 ••• a11 moves by using 8 • 

Definition 2.1. 

Let A = a 1 • • • an E f 0, 1 ! n 

hence a1 -... an+3 = AOOO . We define the 3-J21-_g.cks in A 

the following inductive procedure: 

Suppose i=O or that the 3-blocks in a1 ... a. 
l 

are 

defined. 

by 

Let j be the least number >i such that aj ••• an+3 

starts with 11s{01)1 for some s > 0 If such a j does 

not exist, we stop the procedure. 

Let p be the least number >j such that 

starts with 00s(10)0 for some s > 0 • 

By definition a .••• a 1 J p- is a 3-block in A • We have 

now defined the 3-blocks in a 1 ••• ap_ 1 , and we continue 

the procedure. 

Definition 2.2. 

Let A= a 1 ••• anE Io,1!n. Isolated 1's outside 3-

blocks and isolated O's inside 3-blocks are called j~block~. 

11 outside 3-blocks and 00 inside 3-blocks are called 

2-blocks. 

Vve illu.stra te the definitions by tv10 examples. We put 

one * above the 1-blocks, one line above the 2-blocks and 

one line below the 3-blocks. 

- * * * * * 
(2. 1) 01101001101101011000100110001110 • 

* * * * (2.2) 1 10101000110001.11001001110011001 
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The next theorem is the main result of this paper. 

Theorem 2.3. ____ ,_ _____ _ 
Suppose n and k are positive integers such that 

0 < k ~ n-3 • Suppose 9: !o,1ln ~ !o,1ln is defiLed by 

8(x1, ••• ,x) = (x2, ••• ,x ,x 1) where n n n+ 

xn+1 = x1 + Ek(x2, ••• ,~) + Ek+1(x2, ••• ,~) + Ek+2(x2, ••• ,xn) • 

We suppose A = a 1 ••• an is such that w(A) = k+3 

and A contains both 1- 2- and 3-blocks. 

We let y. 
l 

be equal to the number of i-blocks in A 

for i = 1,2,3. We let a and b be the minimal positive 

integers such that 

(2.3) 

Then p defined by 

p = a (n+2-2y 2-4y 2-4y 3 ) (n+ 3) +4ay 2+2by 1 

is a· period for A • That means eP(A) = A • 

The next theorem treats the situation that A = a 1 ••• an 

does not contain 3 different types of blocks. 

Theorem 2.4. -----------
e is defined 

satisfies w(A) = 
of i-blocks of A 

as in 

k+3 

for i 

Thm. 2.3. 

We let Y· l 

= 1 '2' 3 . 

We suppose A= a 1 ••• an 

be equal to the number 

a) A contains only 1- and 2-blocks. Then the following 

is a period 

( n + 1-2y 1 - 2y 2 ) ( n + 2 ) + 2y 1 • 
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b) A contains only 1- and 3-blocks. Then the following 

is a period 

c) A contains only 2- and 3-blocks. Then the following 

is a period 

d) If A contains only i-blocks, n+i is a period for 

i = 1,2,3 • 

We do not prove Thm. 2.4. It can be proved by using the 

distance functions defined in Def. 3.13 and the same ideas as 

in the proof of Lemma 3.15. Besides, the proof is similar to 

the proof of Thm. 4.4 in [3]. 

If w(A)E !k,k+1,k+2,k+3} , there exist in almost all 

cases an integer q such that w(9q(A)) = k+3 ~ Then we use 

Thm. 2.3 or Thm. 2.4 to find a period of eq(A) • If W(A) < k 

or w(A) > k+3 , we prove easily that en(A) = A • 

Now we illustrate by three examples how Thm. 2.3 is 

used. 

Let n = 12, k = 3 and A = 0 00000101100. We use 

Thm. 2.3 on e 3(A) = 000101100111. Since y 1 = y 2 = y 3 = 1, 

(2.3) implies 10a = 7b • We get a=7, b=10 and the period 

equal to 

The example (2.1) satisfies the hypothesis of the 

theorem \vith k = 13 • In this example n = 32, y 1 = 5, 
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v2 = 2 and y3 = 2 • (2.3) implies 20a = 15b • We get 

a = 3, b = 4 and the period equal to 904 • 

The example (2.2) satisfies the hypothesis of the theorem 

with k = 13 • In this example n = 32, y 1 = 4, y 2 = 3 and 

Y3 = 2 • (2.3) implies 18a = 15b We get a = 5, b = 6 

and the period equal to 1158 • 

2S?ES?~~~El-~:.2· 
8 is as in T:b.m. 2.3. 1de suppose A = a 1 ••• an satisfies 

w(A) = k+3 • 

Then the minimal period of A with respect to e is 

less than n3 • 

We prove Cor. 2.5 in the end of Section 5. 

Quite often the periods we find in Thm. 2.3 and Thm. 2.4 

are the minimal periods. However, we have not found any good 

hyphothesiswhichimplies minimality. By studying the proofs 

we think it is possible to find such a hypothesis. The next 

corollary is a simple example. 

2~ES?~~~El-g:.§• 
8 is as in Thm. 2. 3. We suppose A = a 1 ••• an satisfies 

w(A) = k+3, and A contains 1 i-block for i = 1,2,3 • 

Then the period we find in Thm. 2.3 is the minimal period 

of A • 

We prove Cor. 2.6 in the end of Section 5. 

;3. Main l~_of the _p_r_£o_:(~. 

In this section we prove Thm. 2.3. The proofs of the 

lemmas in this section are done in Section .s. ·We suppose. 
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n and k are positive integers such that k < n - 3 • The 

proof of Thm. 2.3 is easier if we suppose A= a 1 ••• an 

satisfies the next condition. 

Condition 3.1. --------------
Let A= a 1 ••• anE lo,1ln. A satif.fies ~ondition 

1) w(A) = k+3 

2) A contains 1-, 2- and 3-blocks. 

3) A does not start with a 1-block or a 2-block. 

4) A ends with a 3-block. 

Lemma 3.2. ---------
If A= a 1 ••• an satiefies 1) and 2) in Cond. 3.1, 

there exists an integer q such that 9q(A) satisfies 

Cond. 3.1. 

Later in this section we define an integer k(A) which 

is dependent of A If A satisfies Cond. 3.1, we prove that 

en+3+k(A)(A) satisfies Cond. 3.1. In the proof of Thm. 2.3 

we regard A0 = A, A1 = an+3+k(A) (_1\.), A2 = en+3+k(A1) (A 1), 

etc. At last we find an integer s such that A = AS+1 • 

Then the following is a period for A : 

s s 
L: n+3+k(Ai) = {s+1)(n+3) + L: k(Ai) . 

i=O i=O 
s 

We calculate s and E k(Ai) and get the wanted period. 
i=O 

The idea of the proof is to examine the blocks of 

en+3+k(A)(A) when we know the blocks of A • Usually an 
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i-block moves k(A)+3-i places to the left by applying 

en+3+k(A) on A • Because the blocks move with different 

velocities, they will meet sometimes. Therefore we must 

examine what happens when the blocks meet. In addition 

we must examine what happens when 1-blocks and 2-blocks 

inside a 3-block.:-reach the left endpoint of the 3-block. vre 

must also examine what happens when a block reaches the first 

place in A • In that case the block cannot move to the left. 

Besides, we will prove that a 3-block does not change size by 

applying en+3+k(A) on A • As a measure of the size of a 

3-block B we will define the mass m(B) of B • 

First we study hovr the blocks move by applying 

Before we formulate the next lemma we need some definitions. 

A • 

Definition 3.3. 

Let A= a 1 ••• an and B =a ••• at s 

We define .~J:..ndpoint of r~ by 

be a piece of 

l(B) = l(A,B) = s 

and t~righ~dpoipt of B by r(B) = r(A,B) = t • 

form 

where 

;Q~!!!!!~!~!!-~!.1• 

Let B be a 3-block. We define the ~~~~~] by 

m(B) = (the number of 1's in B) - (the number of a's in B) • 

Definition 3.5. --------------
a) Let B3 be a 3-block in A • Suppose A is of the 

s > 0 , and C-. = 10 
l 

or ci = 11t(01)00 for some 

t > 0 . 
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By definition the 1- and 2-blocks in 00s(10)0C 1 ••• Cp 

meet B3 

b) 

fonn 

by applying 
I") en+.:.. . 

Let B3 be a 3-block. 

. . . C D p 

where s ?: 0 , and c. = 01 
l 

or 

t > 0 • 

We suppose 

C . = OOt ( 1 0) 11 
l 

is of the 

for some 

By definition the 1- and 2-blocks in 11s(01)1C 1 ••• Cp 

jump out of B3 by applying 

c) Suppose B2 is a 2-block in A which does not meet 

or jump out of a 3-block by applying en+2 • Suppose r(A,B2) = s • 

If there are 1-blocks on the places s+2, S+4, ••• ,s+2t, we say 

t~~t these 1-blocks meet B2 • 

Lemma 3.6. ---------
Suppose A satisfies Cond •. 3.1~ and let.· A*=en+2 (A)1 .. E lo,1fn+1 • 

a) Suppose B1 is a 1-block in A • Then there exists 

a 1-block B ~' ,, 
1 in A* such that 

where y = 1 if B1 meets or jumps out of a 3-block by 

applying en+2 , y = 0 otherwise, and z = 1 if B1 meets 

a 2-block by applying en+2 z = 0 , otherwise. 

b) Suppose B2 is a 2-block in A • Then there exists 

a 2-block B * in A* 2 such that 

where y = 1 if B2 meets or jumps out of a 3-block by applying 
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en+2 , y = 0 otherwise, and z is equal to the number of 

1-blocks which meet B2 by applying en+2 

c) Suppose B3 is a 3-block in A • Then there exists 

a 3-block B -?:- in A o* 
3 such that 

where ~i = the number of i-blocks which meet B3 by applying 

en+2 • 

where ~- --the number of i-blocks which jump out of 
l 

applying Besides 

·d) w (A*) ~ k+·3, .< · All the blocks in A* arise from 

one of the blocks in A as in a), b) and c). 

e) A* is of the form 

by 

where s > 0 ci = 10 or Ci = 11t(01)00 for some t > 0 

and D starts vri th 0 or a 3-block. 

Definition 3.7 

Let A and A*= en+2 (A)1 be as in the previous lemma. 

Suppose A*= s(10)0C 1 ••o CPD is as in Lemma 3.6.e. 

a) We define k(A) = r(A*,Cp)-1 • 

b) We define ~(A) = en+3+k(A)(A) 

c) By definition the 1-blocks and 2-blocks in A , which 

correspond to blocks in s(10)oc 1 ••• CP , circle 
h 

around by applying ~ , and meet n3 by applying ~ , 
..... 

where B3 is the last 3-block in A • 
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We observe that k(A) = 2y1 + 4y2 where yi = the number 

of i-blocks which circle around by applying ~ • Besides, 

k(A) is theleast integer s such that en+3+s(A) satisfies 

Cond. 3.1. 

The next definitions and lemma describe what happens to 

the blocks in A when we apply ~ = en+3+k(A) in case A 

satisfies Cond. 3.1. 

Definition 3.8. 

Suppose A= a 1 ••• an satisfies Cond. 3.1, and let 

~ = 8n+3+k(A) • 

If two blocks in A meet by applying en+ 2 , we also say 

that the two block~ ~eet by applying ~ • 

If a 1-block or a 2-block B jumps out of a 3-block 

by applying en+2 , we say that B jumps o~~ by applying 

~ . 
Before the lemma we must define precisely the concept 

that a block moves (to the left). We calculate modulo n 

therefore place 0 =place n , place (-1) =place (n-1) , 

etc. 

~~f!!!!!!~!!-2.:.2· 
Suppose A= a 1 ••• an satisfies Cond. 3.1, and B 

is mi-block in A(i=1,2,3). 

Then B moves q places (to the left) by applying 

means: There exists an i-block B** in ~(A) such that 

r(~(A),B**) = r(A,B) - q (mod n) • 

Lemma 3. 10. 

Suppose A= a 1 ••• an satisfies Cond. 3.1. 
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a) Let B1 be a 1-block in A • As the main rule B1 

moves k(A)+2 places by applying ~ • In addition we have: 

If B1 meets a 3-block, it moves 1 place extra. 

If B1 jumps out of a 3-block, it moves 1 place extra. 

If B1 meets a 2-block, it moves 2 places extra. 

If B1 circles around, it moves -1 place extra. 

b) Let B2 be a 2-block in A • As a main rule B2 

moves k(A)+1 places by applying cp . In addition we have: 

If B2 meets a 3-block, it moves 2 places extra. 

If B2 jumps out of a 3-block, it moves 2 places extra. 

B2 moves -2 places for each 1-block which meets B2 by 

applying cp • 

If B2 circle around, it moves -2 places extra. 

c) Let B3 be a 3-block in A • As a main rule B3 

moves k(A) places by applying cp • In addition we have: 

B3 moves -4 places for each 2-block \'lhich meets B3 by 

applying cp • 

B3 moves -2 places for each 1-block which meets B3 by 

applying cp • 

d) Again let B3 be a 3-block in A • B3 corresponds 

to a 3-block B..,.** 
:; in c~(A) as in c). Then 

l(cp(A),B**) = l(A,B) - k(A) + 2y1 + 4y2 

where yi = the number of i-blocks which jump out of B3 by 

applying cp • 

Definition 3.11. 

Suppose A satisfies Cond. 3.1. By lemma 3.10 a block 
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B in A corresponds to a block B** in ~(A) • We denote 

B** by ~(B) • 

Lemma 3.12. ----------
Suppose A satisfies Cond. 3.1. Then cp(A) satisfies 

Cond. 3.1, and all blocks in cp(A) are equal to ~(B) for 

some block B in A • 

If B3 is a 3-block in A , then m(B3 ) = m(~(B3 )) 

We illustrate lemma 3.10 by seven exampl·es. we put an 

asterisk above the 1-blocks, a line above the 2-blocks, and 

a line below the 3-blocks. 

Example 1 • (k=10,k(A)=0) A = o o o to ·r-:r o o 1 1 1 1 oo·1 1 1 o 1 1 1 
C<:.---.-.~ 

cp(A) = en+3. (A) = o too Tro o o 1 1 1 001 1 ~ 1 1 1 1 1 • c.;rc_________ ----- ew "ll' -~ 

Example 2. (k=7,k(A)=0) A = o o TTo t o o o 1 1 1 1 '00 1 5 1 1 
~~---

cp(A) = en+3 (A) * * = 01 OT1'0000111 010"011 1 

* ·~ 
(k=8,k(A)=0) 

7• 

Example 3. A = 111001001110001011 1 

* * ~?(A) = on+3 (A) = 1101100011101000111 
----~- ...-~---~-.. --~"'"'"" 

Example 4. (k=5,k(A)=0) A= 00111000TI000111 
~-- ... ~-

cp(A) = en+3 (A) = 0 0 .U} Q_O_lJ. 0 0 0 0 _Ll.L • 

Example 5. (k=7,k(A)=0) A = 0 0 j_j_j_Q_u 0 0 0 l .. :LJ.liO 1 1 

cp(A) = en+3 (A) * = 00100111 ooonoo111 _.,__,. ---~ 

* Example 6. (k=1,k(A)=2) A=00100000111 

n+2 e (A) 1 = 
cp(A).:: 8n+3+k(A) (A) = 

---
* 010000000111 

~-~~ 

* 00000011101 
_._._,.._.,..,.~ • 

. 
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Example 7. (k=2,k(A)=4) A = oT·~rooooo 111 

on·oooooo 111 
~ 

en+2(A)1 = 

cp.(4) = eP,+3+k(A) (A) = 0000 111'0'011 

We also illustrate the proof of Tl~. 2.3 by an example 

with k=3 • 

A= oo-r1 ofoooo 111 
~· 

cp(A) = 0 f o·:rTo 0 0 0 0 11 1 = en+3(A) 

en+2 (~(A))1 = 1001100000o111 

cp2 (A) = 0 0 0 0 j_1 5 1._1 '01J 1_1 = 8 2 (n+3 )+6 (A) 

~3 (A) = 0 0 0 f 0 0 TI 0 0 ~~_u = e3(n+3)+6 (A) 

cp4 (A) = 0 f 0 0 0 T1 0 0 0 .LL~ = e4{n+3)+6 (A) 

en+2 (cp4(A))1 = ·1 o oo o 1 1 o oo o 1 11 

cp5 (A) = 0 0 n· 0 0 0 0 1 1 d1.J_ = a5(n+3)+B(A) 

~6 (A) = o·1-TO 0 0 0 f 0 0 1 1 1 = e6 (n+3)+B(A) 

e n+2 ( c,o6 (A)) 1 = o 1 1 o o o 1 o o o o 1 1 1 

cp 7 (A) = 0 f 0 0 0 0 1 1 (QO 1 1 = e 7 (n+ 3) + 12 (A) 

8 n+2 ( cp 7 (A)) 1 = 1 0 0 0 0 0 0 1 1 0 0 1 1 1 

crP (A) = o o o o TI o o _1_j d 1 1 = e 8 (n+ 3) + 14 (A) 

cp9(A) = ooorrootoo~UJ. = e9(n+3)+ 14(A) 

cp 10 (A) = o o T1 of o o o o .LL1. = e 10 (n+3)+ 14(A) • 

Putting n=13 and y 1 = y 2 = y3 = 1 in (2.3) we get 

12a = 8b , and hence a=2 and b=3 • By Thm. 2.3 the period 

is 

2(13+2-2-4-4)(n+3)+4•2+2·3 = 10(n+3)+14 

This is in accordance with the calculations in the example. 
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Part 1 of thEL.E,_r_2_0f _q£~,.!_2.].~ 

We prove in this first part the existence of two integers 

a and b satisfying (2.3) such that 

a (n+2-2y 1-4y 2-4Y 3 ) (n+ 3) + 4ay 2 + 2by 1 

is a period. 

In the second part we prove that a and b can be chosen 

minimal. 

Because of Lemma 3.2 we can suppose that A satisfies 

Cond. 3.1. 

We consider 2 A , Cfl (A ) , cp (A ) , • • • • • 

integers s 1 < s 2 such that Cfls1(A) = 

s = s 2 - s 1 , we get Cfls(A) =A • 

There clearly exist 

cps 2(A) • Putting 

We suppose A contains the blocks E1, ••• ,Ex , numbered 

from left to right, that is r(A,Ei) < r(A,Ei+ 1) for 

i = 1, ••• , x-1 

Consider . . . . Because of the 

finiteness there exist p < q such that 

Putting t = qs-ps , we get 

t t r(cp (A),cp (Ei)) = r(A,Ei) for i=1, ••• ,x • 

This means that every 1-block (2-block) circles exactly 

the same number of times around by applying cpt • Let b 

(a) be the number of times every 1-block (2-block) circles 

around by applying cpt • By Lemma 3.10 the 3-block do not 

circle around at all. Therefore we get that every 1-block, 
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2-block and 3-block moves respectively nb , na and 0 

places by applying ~t • 

Using Lemma 3,10 we get by applying ~t 

Each 1-blocks B1 moves (the number of places) 

t-1 . 
L: (2+k(~1 (A)) 

i=O 
(the main rule) 

+ by3 (B1 meets every 3-block b times) 

+ by3 (B1 jumps out of every 3-block b times) 

+ 2(b-a)y 2 (B1 meets every 2-block (b-a) times) 

(3.1) 

- b (B1 moves -1 place every time 

around). 

Hence, 

t-1 . 
nb = 2t + E k(cp1 (A)) + 2by 3 + 2(b-a)y 2-b • 

i=O 

Each 2-block B2 moves (the number of places) 

t-1 . 
L: (1+k(~1 (A)) (the main rule) 

i=O 

B1 circles 

+ 2ay 3 (B2 meets every 3-block a times) 

+ 2ay 3 (B2 jumps out of every 3-block a times) 

- 2(b-a)y 2 (B2 meets every 1-block (b-a) times) 

- 2a (B2 moves -2 places every time B2 circles 

arour1d). 

Hence, 
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t-1 . 
na = t + E k(~1 (A)) + 4ay 3 - 2(b-a)y 1-2a • 

i=O 

Each 3-block B3 moves (the number of places) 

t-1 . 
E k(~1 (A)) (the main rule) 

i=O 

- 2by 1 (B3 meets every 1-block b times) 

-4ay 2 (B3 meets every 2-block a times) • 

Hence 1 

t-1 . 
0 = E k(~1 (A)) - 2by 1 - 4ay2 • 

i=O 

Hence, 

(3.3) 
t-1 . 
E k(~1 (A)) = 2by 1 + 4ay 2 • 

i=O 

(This follows also from the definition of k(eri(A)) , which 

implies that k(cpi(A)) = 2y1 + 4y2 where yj = the number of 

j-blocks in cpi(A) circling around by applying ~ .) 

(3.1) and (3.3) imply 

nb = 2t + 2by 1 + 4ay 2 + 2by 3 + 2by 2 - 2aY2 - b • 

Hence 

(3.4) 

(3.2) and 3.3) imply 

Hence 
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(3.5) 

(3.4) and (3.5) imply (2.3)~ 

Hence is equal 

to e applied 

t-1 . t-1 . 
z:: (n+3+k(ql(A) )) = t(n+3) + L: k(q?(A)) times. 

i=O i=O 

(3.3) and (3.5) imply that ~t is equal to 8 applied 

which is a period for A • The proof of the first part is 

complete. 

The main concept of the second part of the proof is the 

defintions of distances between blocks. We calculate modulo 

n • We write card ~ to denote the number of elements 

in m where m is a set. 

Definition 3.13. ----------------
Suppose B and C are two blocks in A= a 1 ••• an • If 

B is to the left of C , we define 

?n(B,C) = 112 = lar(c)+ 1, ••• ,an! U {a1, ••• ,ar(B)-1! and 

z(B,C) = z = 1 , else 

7n ( B, C ) = ?n = { ar ( C ) + 1 , ••• , ar (B) _ 1 ! and z ( B, C) = z = 0 • 

If ai E ~ , we say that a. 
l 

is between B and c • 
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If B is a 1-block we define 

X(B,C) =X = 2· (the number of 1-blocks between B and c ) 

+ 2•(the number of .. 2""!b~ocks .between B and c ) 

+ (the number of endpoints a. 
1 

between B and c, of 3-blocks)-z • 

If B is a 2-block or 3-block we define 

X(B,C) =X = 2•(the number of 1-blocks between B and c ) 

+ 4·(the number of 2-blocks between B and c ) 

+ 2·(the nwnber of endpoints a. between 
1 

B and c 
' 

of 3-blocks)-2z 

Vfe define d (B, c) = card ?'rt.- -X . 

Before proving the second part of Thm. 2.3 we need 5 

lemmas concerning distances between blocks. 

~~~~-~:.21· 
Suppose A satisfies Cond. 3.1. and contains y. i-blocks 

1 

for i=1,2,3. 

in A , and 

otherwise 

Suppose further that 
r. 

B. and 
1 

B3 is the last 3-block in A • 

C. are i-blocks 
1 

B1 and B2 meet by applying ~ , we have 

and d(~(B 1 ),~(B2 )) = n+1 - 2y 1-2y 2-2y 3 , 

.... 
where z=1 if B2 jumps out of a 3-block or meet a 3-block ~ B3 

by applying ~ • 

b) B2 and B3 meet by applying ~ if and only if 

d(B2,B3 ) = 4 • In this case 
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otherwise 

d(~(B2 ),~(B3 )) = d(B2,B3 ) - 1 • 

c) d(~(B 1 ),~(C 1 )) = d(B1,c1) • 

d) d(~(B2 ),~(C2 )) = d(B2,c2) 

e) d(~(B3 ),~(c3 )) = d(B3,c3) 

~~~e-~:.12:. 
We suppose A satisfies Cond. 3.1, and B. 

l 
is ani-block 

for i= 1 , 2. If 

d(~t(B1),~t(B2)) 

Lemma 3.16. 

t is a multiple of n+2 - 2y 1-4v 2-4v 3 

= d(B1,B2 ) , then ~t(A) =A • 

and 

We suppose A satisfies Cond. 3.1, and B. 
l 

is an i-block 

in A for i=1,2. Moreover, we suppose that r and s are 

If B1 and B2 meet < c times by applying cpt on 

cpr (A) 
' 

then B1 and B2 meet < c times by applying cpt 

on cps (A) . 

~~~e-~:.11· 
Suppose A satisfies the hyphotesis of Thm. 2.3, and let 

S= n+2 - 4y 1-4Y 2-2y 3 Moreover, Bi is an i-block for i=2,3 • 

Then B2 meets B3 once, and jumps out of B3 once, 

by applying cps on A • 

Lemma 3.18. ----------
We suppose A satisfies Cond. 3.1, and that each 1-block 

B1 meets each 2-block c times, and each 2-block B2 meets 

each 3-block B 
3 

a times by applying ~s • We also suppose 
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Then each 1-block B1 circles around c+a times by 

applying cps • 

Part 2 of th.e__E.,r_o_of C2.f.._.,_Thm. ~~1: 

We suppose A satisfies Cond. 3.1, and that a,b are 

the minimal n1.mibers which satisfies (2.3). 

From the first part of the proof where exist integers 

a',b' which satisfies (2.3), and if t = a'(n+2-2y 1-4y 2-4y 3) 

(See (3.5)), then cpt(A) =A • Moreover, each 1-block meets 

each 2-block in A c' = b' - a' times by applying cpt 

There exists a q > 0 such that a' = aq and b' = bq • 

We define 

Hence, 

(3.6) 

(3 .. 7) 

•t .. 
cp q(A) = A • 

Each 1-blockmeets each 2-block qc = qb - qa times 

by applying cptq on A • 

We prove 

(3 .. 8) Each 1-block meets each 2-block c=b-a times by 

applying cpt1 on A • 

Suppose (3.8) is not true. By (3.7) there exist a 1-

block B1' a 2-block B2 and i, j E {o, ••• ,q-1} such that 

cpti(B1) meets cpti(B2) < c times by applying cpt1 
' 

and 

cptj(B1) meets cptj(B2) > c times by applying cpt1 
• Lemma 
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3.16 with t = t 1 gives a contradiction. 

Next we show that d(B1,B2) = d(~t1(B 1 ),~t1(B2 )) where 

B. is ani-block. Lemma 3.17 implies 
l 

(3.9) Each 2-block meets each 3-block a times and jumps 

out of each 3-block a times by applying ~t1 on A 

Let n = {o, ••• ,t 1-1l. Then (3.9) and Lemma 3.14.a) imply 

(3.10) There exist (y 3-1 )a+y 3a numbers iE 0 such that 

d(~i+1(B1),~i+1(B2)) = d(~i(B1),~i(B2)) • 

(3.8) and Lemma 3.14a) imply 

(3. 11) ':rhere exist c=b-a numbers i E 0 such that 

d(~i(B 1 ),~i(B2 )) = 1 and d(~i+ 1 (B 1 ),~i+ 1 (B2 )) = n+1 -

2y 1-2y 2-2y 3 • In this case ~i(B 1 ) meets ~i(B2 ) 

by applying ~ • 

(3.10), (3.11) and Lemma 3.14a) imply 

(3.12) There exist t 1-c-2y 3a+a n~bers iE 0 such that 

d(~i+1(B1),~i+1(B2)) = d(~i(B1),~i(B2))-1 • 

By (3.11) d(cpi(B 1 ),~i(B2 )) changes first from d(B1,B2) 

to 1 , then (c-1) times from n+1-2y 1-2y 2-2y 3 to 1 , and 

finally from n+1-2y-2y 2-2Y 3 to d(cot1(B 1 ),~t1(B2 )) • 

Hence by (3.12) 

t 1-c-2y 3a+a = (d(B1,B2)-1)+(c-1)(n+1-2y 1-2y 2-2y 3-1) 

+ (n+1-2y 1 -2y 2-2y 3-d(~t1(B2 ),~t1(B2 )) • 
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d(B1 ,B2 )-d(~t1(B 1 ),~t1(B2 )) = a(n+3-2y 1-4y 2-6y 3)-(b-a) 

- ( b-a) (n-2y 1-2y 2-2y 3) 

= a(2n+4-4y 1-6y 2-sy 3 ) - b(n+1-2y 1-2y 2-2y 3) = 0 

by (2.3). Hence, 

t (3.13) and Lemma 3.15 imply that A=~ 1(A) • By Lemma 

3.18 each 1-block circles around b=a+c times by applying 

t1 2 1 ~ • Besides, each -block eire es around a times by 

applying ~t1 • Hence, 

t1-1 
!: k(~i(A)) = 2by 1+4ay 2 

i=O 

As in the end of the first part of the proof we get that 

a(n+2-2y 1-4y 2-4y 3)(n+3)+2by 1+4ay 2 is a period. The proof is 

complete. 

Proof of Cor. 2.5.: 

In the case that A contains only two different types 

of blocks, the proof is easy by using Thm. 2.4. 

Suppose A contains 3 different types of blocks, there

fore n ~ 9 • We suppose that a,b are the minimal positive 

integers which satisfy (2.3). We have 

and 

The period p in Thm. 2.3 satisfies 
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p = a(n+2-2y 1-4Y 2-4Y 3 ) (n+3) + 4ay 2 + 2by 1 

~ (n-5)(n-8)(n+3) + 4(n-5)4 + 2(2n-14)~ 

= n3-7n2-18n+120 < n3 since n ~ 9 • 

We have used the fact that n y 1 ~ 2 and 

• l. ·'''' • 

Proof ·ot·cor. 2.6: 

We suppose A satisfies Cond. 3.1. Then t:pi(A) satis

fies Cond. 3.1. for all i • 

It is easy to see that e(~i(A)), ••• ,en+3+k(t:pi(A))-~(A) 

do not satisfy Cond. 3.1. Therefore the minimal period p 

satisfies eP = t:pq for some q; that is, eP(A) = t:pq(A) = A 

for some q • 

We suppose tLe 1-block and the 2-block circles respectively 

b and a times around by applying t:pq on A • Then it is 

easy to see that the 1-block meets the 2-block c = b-a times 

by applying cpq on A • As in the first part of the proof of 

Thm. 2.3 we see that p is as in the theorem. 

4. The general sit~tion. 

In this section we will indicate by an example how to 

treat the general situation Ek + ••• + Ek+p for p > 2 • 

We suppose p=3 • As in the case p=2 we must define the 

concepts: i-block (for i=1,2,3,4) , 8 , t:fJ , k(A) , meet, jump 

out, circle around, and 11 Cond. 3.1." Specially, cp(A)=en+4+k(A~(.~) 

We suppose AE {o,1!n satisfies 11 Cond. 3.1 11 , and contains 

1 i-block Bi for i=1,2,3,4 • Then we can show the following: 

As a main rule B1 moves 3+k(A) places by applying cp • 

B1 moves in addition: 
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2 places if B1 meets B2 , 
1 place if B1 meets B3 or B4 ' 
1 place if B1 jumps out of B3 or B4 ' 

-1 place if B1 circles around • 

As a main rule B2 moves 2+k(A) places by applying cp • 

B2 moves in addition: 

-2 places if B1 meets B2 , 
2 places if B2 meets or jumps out of B3 1 

2 places if B2 meets or jumps out of B4 ' 
-2 places if B2 circles around. 

As a main rule B3 moves 1+k(A) places by applying cp • 

B3 moves in addition: 

-2 places if B1 meets B3 ' 
-4 places if B2 meets B3 1 

3 places if B3 meets or jumps out of B4 , 

-3 places if B3 circles around. 

As a main rule B4 moves k(A) places by applying cp • 

B4 moves in addition~ 

-2 places if B1 meets B4 ' 

-4 places if B2 meets B4 ' 

-6 places ·.p l_._ B3 meets B4 • 

We suppose next that A = cps(A) 
' 

and that the 1-block, 

2-block and 3-block respectively circles around a,b and c 
s-1 

k(cpi(A)) cps times. Let K = L: • By applying to A , B1 
i=O 

moves the following number of places: 
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3s+K (the main rule) 

-a (B1 circles around a times) 

+2(a-b) (B1 meets B2 (a-b) times) 

+2 (a-c) (B1 meets and jumps out of B3 2(a-c) times) 

+2a (B1 meets and jumps out of B4 2a times). 

Hence 

(4.1) na = 3s+K-a + 2(a-b) + 2(a-c) + 2a . 

In the same way, by studying B2, B3 and B4 we get the 

equations~ 

(4.2) nb = 2s+K- 2b - 2(a-b) + 4(b-c) + 4b 

(4~3) nc = s+K - 3c - 2(a-c) - 4(b-c) + 6c . 

(4 4) 0 = K - 2a - 4b - 6c o 

From (4 4-) we see that K = 2a + 4b + 6c • Putting this into 

(4.1), (4.2) and (4.3), we get 

(4.5) 3s = a(n-7) - 2b - 4c • 

(4.6) 2s = b(n-12) - 2c • 

(4.7) s = c(n-15) • 

Hence, 

(4~8) a(n-7) - 2b - 4c = 3c(n-15) • 

(4.9) b(n-12) - 2c = 2c(n-15). 

As in the end of the first part of the proof of Thm. 2.3 
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s we can show that ~ is equal to 9 applied 

(4.10) p = s(n+4) + K = c{n-15)(n+4) + 2a + 4b + 6c 

times {We use (4.4) and (4.7)). p is therefore a period 

for A • 

Let us check the above result on the following example: 

n= 19 , k= 7 and A = 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 • Calculations 

show that the period of A is p = 748 • 

Putting n•19 into (4.8) and (4.9) we then get 

( 4. 11 ) 12a - 2b - 4c = 12c , 

(4.12) 7b - 2c = 8c • 

The smallest integers satisfying (4.11) and (4.12) are 

a=11, b=10, c=7 • We put these into (4.10), and again obtain 

p = 7 • 4 • 23 + 2 • 11 + 4 • 10 + 6 • 7 = 748 as a period. 

5. Proofs of Lemmas from Section 3. 

Throughout this section, k,n and e are as in Thm. 2.3. 

Definition 5.1. _____ .,.. _______ _ 
If a=1 , then a'=O • If a=O , then a'=1 • Moreover, 

for every C = c1 ••• ctE {0,1}t , we define C' = c1 ' ••• ct' 

~~~~-2:.~· 
If A= a 1 ••• an, then 9(A) = a 2 ••• ana1 ' whenever 

w{a2 ••• an) E {k,k+1 ,k+2} , 8 (A) = a 2 ••• ana1 otherwise. 

The proof is obvious. 
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;!2~f!~!~!~!!-2.:.~· 

Suppose A= a 1 ••• an and C =as ••• ar. 

If C is outside all the 3-blocks in A and 0=10 or 

11t(01)00 for some t ~ 0 , C is an B~bJ22k in A • 

If C is inside a 3-block in A and 0=01 or 00t(10)11 

for some t > 0 , C is a K-block in A • 

Lemma 5.4. ______ ... __ 
Suppose AE Io,1!n and w(A) = k+3. 

a) If A=100 , then e2 (A) = 001 . 

b) If A = 11t(01)00C , then e4+2t(A) = COOt(10)11 • 

c) Suppose 

G = 00f(10)0D1 ••• Dr and A = B3G E , 

where 

block and 

"" 

s.,f > 0. l ~ 

is a K-block, each D. is an H
l 

Furthermore, let 

G.,; 11f(01)1D1 ' ••• Dr'= G' 

y = r (A, B3 ) and z = r (A, G ) • 

Then we have 
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Proof. 

a) and b) follows from Lemma 5.2. 

c) Let ni = r(A,Ci) and mi = r(A,Di) • We use 

Lemma 5.2 many times. The vectors in the following equations 

have weight k • 

= c1 0 0 • EOOs 0 (10)0 

= c2 0 • • EOOs 0 (10)0C1 1 

• 

= 1s1 EOOs 0 (10)0C1 ' c I 
0 • • • • • p 

= cp+1 ... EOOs 0 (10)0C1 1 • •• cP I 1 s 1 

8~+1 (A) = 1s2 ••• EOOs0 ( 10 )OC1 ' cP I 1 s 1 cP~ 1 

= 

The vectors in the following equations have weight k+3 • 

eY+3-t>~f cA) 

em1 (A) 

= 

= 

Proof .J?f Lemma _2. 2: 

D1 • • 0 

D2 0 •• 

(5.1) If A = D01 and w(A) = k+3 , then e-2(A) = 10D • 

(5.2) If A = DOOs(10)11 and w(A) = k+3 where s > 0 

then e-( 4+2s)(A) = 11s(01)00D • 
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Suppose A satisfies 1) and 2) in Def. 3.1, and A= CD 

where C ends with a 3-block and D does not contain any 3-

block. We define p 1 = n-r(A,C) Then A1 = e-P1(A) 

with a 3-block. (5.1) and (5.2) implies that w(A 1) = 

Therefore A1 satisfies 1), 2) and 4) in Cond. 3.1. 

Suppose A1 = c1 ·~· CPEB3 where Ci = 10 or 

Ci = 11s(01)00,B3 is a 3-block and E starts with 0 

a 3-block. Let p 2 = r(A,Cp) • eP2(A 1 ) = EB3C1 ' ·~· 

Then B3C1 ' ••• Cp' becomes a 3-block in eP2(A 1) • 

fore eP2(A 1 ) satisfies Cond. 3.1. 

Proof.of Lemma 3~: 

We observe that A has the form 

ends 

k+3 • 

or 

Q I • p 

There-

where s. > 0 , and Q. has one of the following forms for 
l ~ l 

i < p 

(5.3) 

(5.4) 

(5.5) 

Q. = 10 where Q. is outside all the 3-blocks in 
l l 

A , and the 1-block in Q1 does not meet any block 

by applying 8 n+2 on A • 

Qi = 11t(01)00 where t > 0 , Qi is outside all 

the 3-blocks in A , and the blocks in Q. do not 
l 

meet any 3-block in A by applying en+2 on A • 

Qi = B3G where B3 and G are as in Lemma 5.4. c) • 

Furthermore, 
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If Q1 is of the form (5.3) or (5.4), then s1 > 0 

If Q. is of the form (5.5) and 0 < i < p 
' 

then l 
(5.6) 

Qi+1 is of the form (5.5) or s. 1 > 0 • Qp = B3 l+ 
where B3 is as in Lemma 5.4. c). 

By Lemma 5.4 
en(A) 

rv ,...., rv "' = 0s1Q10s2Q20s3 . . . OspQP where Qi is defined 

as follows: 
rv 

Case 1 : If Qi is as in (5.3), then Q. = 01 . l 
rv 

Case 2: If Qi is as in (5.4), then Q. = OOt( 10) 11 • l 
rv rv ,..,., 

Case 3~ If Q. = B3G is as in (5.5), then Qi = B3G l 
as in-Lemma 5.4. c). 

,...., rv 

Case 4: If i=p 
' Qp = B3 is as in Lemma 5.4. c) 

(see (5.6)). 

Furthermore, Lemma 5.4. c) implies w(en(A)) = k .- Since A 

starts with 01,11 or 00, on(A) starts with 00. Hence 

en+2(A) is of the form 

(5.7) 

Next, we prove 

(5.8) 
en+2(A)1 A 3-block in A-¥.- = 

,...., 
or Q. where Qi is as in 

Let Q. 
l 

be as 

l 

in (5.5). By (5. 6), A 

,...., 
is contained in Qp1 

(5.5). 

= HQiOt(10)M or 
,..., 

A = QiK where K starts with a 3-block. In both cases Q. 
l 

is followed by 00t(10)0 for some t > 0 • If Q. is as in 
l. 

(5.3) or (5.4), no 3-block in A* can start at any position 

• 
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in Qi • We conclude that (5.8) is true. 

Case 1: We denote the 1-block in Qi = 10 by B1 • The 

number 1 in Qi = 01 is in position r(A,B1)+1 in en(A), 

and is preceded and followed by 0 • Therefore, there 

is a 1-block Bt in position r(A,B1)-1 in A*= en+2(A)1. This 

is in accordance with a) since B1 do not meet any block 

by applying en+2 on A • 

Case 2: We denote the 2-block in Qi by B2 and the 1-blocks 
1 t 1 t by B1, ••• ,B1 , such that Qi = B20B10 ••• OB100 • Since 

Q. = 00t(10)11 is followed by 00 , there are 1-block in the 
J_ 

1 t positions r(A,B1)-1, ••. ,r(A,B1 )-1 and a 2-block in the posi-

tion r{A,B2) + 2t+2 in en(A) • Therefore, there are 1-
1 t blocks in the positions r{A,B1)-3, ••• ,r{A,B1)-3 in A*= 

en+2{A)1 • This is in accordance with a) since the 1-blocks 

meet B2 by applying en+2 • Furthermore, there is a 2-block 

in the position r(A,B2 )+2t • This is in accordance with 

b), since B2 meet t 1-blocks by applying en+2 on A • 

Case 3: Qi = B3G and Qi = B3G where 

where 

B3 = 11s0 (01)1C1 ••• Cp1s 1Cp+ 11s2 ••• Cp+q1sq+1 

G = 00f(10)0D1 ••• Dr 

,....., 
G = 11 f(01)1D 1 ' ••• Dr' 

s, > 0 , c. 
J_ 

is a K-block, Di is an H-block and 

s.,f > 0. 
J_ -

We divide Case 3 into 9 subcaaes. 
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Suppose 1 < i < p • 
---~ - Suppose 0. = 01 = B11 

~-

where B1 is a 1-block which jumps out of B3 • Then 

c1 • = 10,Ci' is preceded by a 0 and is outside all the 

3-blocks in en(A) • Therefore there is a 1-block in 9n(A) 

in position r(A,B1) , hence a 1-block in A* in position 

r(A,B1) - 2 • 

2~~~-~E: Suppose 1 ~ i ~ p and c1 = 
is outside all the 3-blocks in en(A) • 

blocks in c. 
1. 

do not move by applying 

OOt ( 10) 11 • C , I = 11 t ( 0 1 ) 00 
1. 

As in Case 3a , the 

Therefore if 

B is a block in Ci , there is a block B* of the same 

type in A* such that r(A*,B*) = r(A,B) - 2 • Since the 

block B jumps out of the 3-block B3 by applying en+2 , 

this is in accordance with Lemma 3.6 a) and b). 

2~~~-2£: The 1-blocks in s 0 (01) move as the 1-block in 

Case 3a. 

Case 3d: \ve define -------- B* 3 and F by 

B*3 = 181 C'p+ 1182 ••• 1sq+111f(01)1D 1 1 ••• D'r = 11F, 

~ ~-
hence Qi = OOs 0 (10)oc1 ••• C'pB*3 • First we prove that 

B*3 starts with 11t(01)1 for some t ~ 0 • If s 1 > 2 

C'p+1 = 11t(01)00 or Cp+1 •• 1sq+1 is the empty set, the claim 

is trivially true. Therefore, we suppose s 1 = 1 and 

C'p+1 = 10 • If we move from the left to the right in F , 

we reach two consecutive 1' s before we reach t\'ro consecutive 

O's. Hence, B·lf-3 starts with 11t(01)1 forsome t > 0 • 

Next we observe that B*3 does not contain any piece of the 

form 00s(10)0 • By (5.8) B*3 is a 3-block in A* • We 

now observe that: 
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m(B3 ) = 3 + s 1 + ••• + sq+1 = m(B*3 ) , 

r (A*, B * 3) = r (A , B) + 3 + 2 ~ 1 + 4 ~ 2 - 2 

where r.= the number of i-blocks in 
1 

= the number of i-blocks which meet 

11f(01) 1D' 1 

B3 by applying 

1 (A*, B* 3) = 1 (A , B) + 3 + 2 13 1 + 4 f3 2 - 2 

where ~i =the number of i-blocks in 00s 0 (10)0C' 1 ••• C'p 

= the number of i-blocks which jump out of B3 by applying 

8n+2 

Q~~~~~: Suppose p < i ~ p+q and 

B1 is a 1-block in A contained in 

ci = 01 = B1o 
B3 • Then 

where 

C! = 10 
1 

C! is followed by a 1 and C! is contained in B*3 • The 
1 1 

0 in C! 
1 

is a 1-block in A* Hence, there is a 1-block 

in A* in the position r(A,B1) - 1 • This is in accordance 

with the lemma since B1 does not meet or jump out of any 

block by applying en+2 • 

Case 3f: -------
1 2 B21B11B1 

1-blocks. 

Suppose p < i 5, p+q and c. = 00t(10)11 = 
1 

t ••• 1B111 where 

Ci = 11t(01)00 = 

B2 is a 2-block and B~ 

11B~*1B~* ••• 1Bi*1B*2 

are 

where 

Bt* are 1-blocks and B*2 is a 2-block in A* • r(A*,B~*) = 

r(A,B1) -3 and r(A*,B*2 ) = r(A,B2) + 2t • This is in 

accordance with the lemma, since B~ meets a 2-block and 

B2 meets t 1-blocks by applying an+2 

Suppose 

which meets 

Di = 10 = B10 

by applying an+2 

where is a 1-block 

D' = 01 = B*11 is 
i 

contained in B*3 , and B* 1 is a 1-block in A • r(A*,B*1) = 
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Case 3h: The 1-blocks in f(10) move as the 1-block in 

case 3g. 

Case 3i: ------- Suppose 

where B2 is a 2-block and B~ 

D~ = 00t(10)11 = B*2 1B~*1B~* ••• 

are 1-blocks in A • 

1 Bi*11 are 

1-blocks and B*2 is a 2-block in A* • 

and r(A*,B*2) = r(A,B2) - 2 • This is in accordance with 

the lemma, since by applying en+2 • 

Case 4: This case is treated like Case 3a , . . . ' Case 3f. 

Specially, there is a 3-block B*3 in A* such that 

r(A*,B*3) = n+1 • 

The proof of JJemma 3.6 a), b), c) and d) is now complete. 

"' Suppose Q1 is of the form (5.5). Then Q1 starts 

with 00s 0 (10)0 and e) is satisfied. 

Next, suppose Q1 is of the form (5.3) or (5.4). By 

(5.6) s 1 > 0 • .A 

D starts with 0 

is of the form Os 1c1 ••• CeD where 

or a 3-block, and C. = 10 or C. = 
1. 1. 

11t(01)00 for some 

D starts with OOs(10)0 for some s > 0 

fied. 

The proof of Lemma 3.6 is complete. 

,...., 
••• C1 D where e 

and e) is satis-

Proof of Lemma 3. 10. We denote the last 3-block in A 

by B3 • vfe let A*= en+2 (A)1 = s(10)0C1 ••• CPD be as in 

Lemma 3.6.e). Besides, we denote A* by A* - a* a* - 1 • • • n+ 1 

and put r = r(A*,Cp) • Then 

~(A) = en+3+k(A)(A) = a*r+ 1 ••• a~s(01)1C~ ••• c; = 
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a * a7~ a* ' r+ 1 • • • n 1 ... a* ' r • 

We suppose = a ~'f s . . . a* n+1 · From (5.7) in the proof of 

Lemma 3.6 we get that a~r -a*=1. n-1 - n Therefore, 

A l 

B3* = a*s ••• a*ns(01)1c 1 
f 

••• cp = a *s ... • a* a* 
n 1 

••• a* • . l' 

is a 3-block in ~(A) • 

Since (the number of 1 IS 
I 

in s(01)1C 1 . . . t 

Cp) (the number of 
t 

c;) 
""* A~L~!-

O's in s(01)1C1 . . . = 1 
' m(B3) = m(B3 ) • We observe 

that k(A) = r-1 = 2p 1 + 4~2 where (3. = 
l 

the number of 
,. 

i-blocks which meet B3 by applying ~. Hence, 

""** r(B3 ) = n = 
"" 

r ( B3 ) - ( k (A ) - 2~ 1- 48 2 ) • 

Next let Bi be an i-block in A which corresponds to 
..!<. 

* * a block B~ in a1 . . . ar • We prove that B. corresponds 
l 

cp(A) ** * (k(A)+1) to an i-block in such that r(Bi ) = n+r(Bi) -
* * ** *' cp(A) If B1 = a. = 1 

' 
then B1 = a. = 0 is a 1-block in 

J J 
and 

(5.9) ** * r(B1 ) = n-r+j = n+j-(k(A)+1) = n+r(B1)-(k(A)+1) 

** Analogously, there exists a 2-block B2 in cp(A) such 

that 

(5.10) 

By Lemma 3.6.a) and (5.9) (y,z are defined in Lemma 3.6.a)) 

(5.11) ** r(B1 ) = n+r(B1) - ([k(A)+2]+y+2z+1-1) • 

We add and subtract 1 to indicate that B1 both circles around 
A 

and meets B3 by applying c.o • (5. 11) is in accordance with 
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Lemma 3.10.a). By Lemma 3.6.b) and (5.10) (y,z are defined 

in Lemma 3.6.b)) 

(5.12) ** r(B2 ) = n+r(B2 ) - ([k(A)+1]+2y-2z+2-2) • 

We add and subtract 2 to indicate that B2 both circles 
A 

around and meets B3 by applying ~. (5.12) is in accor-

dance with Lemma 3.10.b). 
... 

Suppose B. 
J_ 

is an i-block in A different from B3 

which does not circle around by applying ~ , and corresponds 

to B: in A*. Since ep(A) = e(n+2)+( 1+k(A))(A), there 

exists an i-block in ep(A) such that 

(5.13) ( **) r Bi 

** m(B3 ) 

* ** * = +(B2.)- k(A)-1 , l(B. ) = l(B.)-k(A)-1 
J_ J_ 

-)(-

::= m(B3) • 

By (5.13) and Lemma 3.6 the Lemma is true for Bi • 

and 

"'** "'* Finally, l(B3 ) = l(B3) - k(A)-1 • Therefore, by Lemma 
A 

3.6 we get that d) in the Lemma is true for B3 = B3 • 

The proof of Lemma 3.12 follows easily from the proof of 

Lemma 3.10. 

~~~-~!.~· 

Suppose B and C are blocks in A= a 1 ••• an and 
... 

specially that B is a 2-block. Furthermore, suppose B3 

is the last 3-block in A • Let ~ = m(B,C) be as in Def. 

3.13.- We then define 

n = fl(B, C) = U {De m: D is an H-block or a K-block in A ! 
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u{{a. ,a. 11 c JlZ ~ a. ED is a left endpoint of a 3-block in A! 
l l+ l 

u{{a.~a. 1 !c?n~ a. ~ED is a right endpoint of a 3-block 
l l+ l-1 ,. 

~ B7 in A! • 
:; 

If C t B3 , then d(B,C) = card~ - card~ , while C = B3 
"" 

implies d (B, B3) = card m - card 1b +2 • Besides, all the sets 

in the union in this lemma are disjoint. 

Proof~ By studying the definitions of blocks we observe 

that all the sets in the union in the lemma are disjoint. 

Hence, 

card IZ = 2(the number of 1-blocks between B and C) 

+ 4(the number of 2-blocks between B and C) 

+ 2(the number of endpoint ai ~ an ' between B 

and c 
' 

of 3-blocks) . 
A 

If C ~ B3 , then T = (the number of endpoints, betvreen B 

and C , of 3-blocks)-2z is equal to (the number of endpoints 

ai ~ a11 , between B and C , of 3-blocks) , else T = (the 

number of endpoints ai * an , between B and C of 3-blocks) 

-2 , where z is as in Def. 3. 13. Therefore, X = card ?Z 

if C ~ :83 , and X = cardJZ. -2 otherwise. 

In this proof, B. and C. denote 
l l 

i-blocks. Furthermore, iim~~et u, "jump out 11 and 11move 11 mean 

meet by applying cp etc. 

a) Suppose B~ , • • • , 

3.8 we can suppose 

B t 
1 meet By Def. 3.5 and 
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(5.14) 

i h 

and that B1 and B2 cam1ot meet any 3-block t B3 • From 

Lemma 3.10~ if Bt meets B3 , then Bt moves 1 position in 

addition. Moreover, Bt also circles around, hence moves 

-1 position in addition. Analogously with B2 • Lemma 3.10 

implies 

r(~(Bt))=r(B~)-(k(A)+2+2)=r(B2 )+2i-k(A)-4 and r(~(B2 D =r(B2)

(k(A)+1-2t). 

Hence, 

(5.15) r(~(B~)) - r(ro(B2)) = 2i-3-2t 

By (5.14) and (5.15) we get 

d(Bt,B2) = (r(B~) - r(B2)-1) - 2(i-1) = r(B2)+2i-r(B2)-1-2i+2 = 1 • 

cardm (c~(B~) ,cp(B2)) = r(cp(Bt) )-1+n-r(cp(B2)) = n - 4+2i-2t • 

This is in accordance with the first part of a). 

Suppose B1 and Bi do not meet, and let 

~Z =Vl(B 1 ,B2 ),X=X(B 1 ,B2 ),z=z(B 1 ,B2 L??t~ =tn(cp(B1),cp(B2)), 

Xcp = x(cp(B1),c,o(B2 )),zcp=z(cp(B1),cp(B2)) • We calculate card%0cp 

and xcp by the following prodedure: First, put card?J2, = cp 

card 7n and Xcp = X • By Lemma 3. 10 we must decrease card~ 

and Xcp according to the following table~ 
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Decrease card(m cp) by Decrease Xcp 

The main rule 1 0 

B1 meets a 2-block 2 2 
"'· 

(5.16) B1 meets B3 0 0 
,. 

B1 meets a 3-block ~ B3 1 1 

B1 jumps out of a 3-block 1 1 

A 1-block meets B2 2 2 
" (5.17) B2 meets B3 0 0 

,. 

B2 meets a 3-block ~ B 3 -2 -1 

B2 jumps OUt 1 0f a 3-block -2 -1 

A 

( 5. 16) follows in this way~ If B1 meeia B3 , both 7/tcp 

and Xcp decrease by 1. However, B1 also circles around, 

hence 

since z = 1 

increases by.1 • 

and z = 0 cp 

Besides, Xcp increases by 1 

(5.17) follows in the same way. 

Conclusion: card mcp - Xcp = card?n-X if B2 meet a 3-block 

~ B7. or j~unps out of a 3-block, else 
:J 

Hence, a) is proved. 

(see Lemma 5.5). In the follmving and asterisk below a. 
l 

means: ai E m and ai $ ?'/...- • We observe 

(5.18) 

"'" First we suppose B3 :l= B3 , hence 

(5.19) A= DB3oos(10)oc 1 ••• CPE where E starts with 0 or 
** -)..~ 

a 3-block and~ Ci are H-blocks. 

by 
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If B2 meets B3 , then B2 is contained in c1 ••• Cp • 

(5.18) and (5.19) imply by Lemma 5.5 that d(B2 ,B3) = 4 • 

If B2 does not meet B3 , we have two cases 

(5.20) A= DB3oos(10)0C 1 ••• CPOF or A= DB3oos(10)0C 1 ••• Cp11t(01)1F 
** * * *~k * * 

Besides, B2 is contained in F or D 

imply by Lemma 5.5 that d(B2 ,B3) > 5 • 

(5.18) and (5.20) 

ft * Jnnally we suppose B3 = B3 • Noreover, we suppose B2 

and B; in A-)~= en+2(A)1 correspond to B2 and B3 • We 

now prove that 

(5.21) 

... .. I'}? * * '""'* Suppose 1?2 = ?lt(B2 ,B3) ,X='J~(B2 ,B3 ), ,n =~(B2 ,B3 ) ·and 

* * ·'* * * X = X (B2, B3 ) • We calculate card 1/Z. and X by the 
.;{-

following procedure: First put card /IZ = card 1Jz., and 

* * * X =X • By Lemma 3.6 we must decrease card~ and X 

according to the following table: 

* Decrease card 1/t. by 

A 1-block meet B2 by 
applying en+2 

B2 meet a 3-block by app-
1 . 8n+2 yl.ng 

B2 jumps out of a 3-block by 
applying e n+2 

-2 

2 

2 

Hence, * * = card 1'/u -X = card ?ll-x 

Next we prove 

~

Decrease X by 

-2 

2 

2 

(5.22) * * B2 in A circles around (this is equivalent to 
A * A* 

11 B2 me~a B3 11 ) if and only if d (B2, B3 ) = 4 • 
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* A has the following form as in Lemma 3.12.e. 

(5.23) s(10)oc1 ••• CD where D starts with a 0 or a 3-block 
-)(· p 

,. •* 
and Ci are H-blocks. If B2 meets B3, B2 is contained in 

* * ,.* c 1 ... Cp. Putting n = l2-(B2 ,B3) v:e get by (5.18), (5.23) 

and Lemma 5. 5 that card ?JZ--r.--card ~ ·* = 2 • If B2 does not 
ft A 

meet B3 , we .show as in the case B3 ~ B3 that 
-?,L .>L * A* m.* * cardm. -card;tz., ''?.: 3 • By Lemma 5.5 d(B2 ,B3) = cardN"' -card~ +2 

and the proof of (5.22) is complete. 
... 

Combining (5.21) and (5.22) we get~ B 2 meets B3 if 
... 

and only if d(B2 ,B3 ) = 4 . 
~ 

.... 
Suppose B2 meets B~ B3 (the case B3 = B3 is treated 

.; 

in the same way), and that there are T. i-blocks between l 

B2 and B 3 . Moreover, we suppose A = EB3oos(1o)oc 1 ••• cici+ 1F 

where cj are H-blocks and c. 1 = B2t(01)00 . Observing l+ 
that card(OOs(10)0c1 ••• ci) = 3+2T1+4T2 ' 

we get 

Supposing there are si i-blocks which meet B3 we get~ 

r(~(B2 )) = r(B2 ) - 1 - 2 ~ k(A) • 

r(~(B3 )) = r(B3 ) + 2s 1 + 4s2 - k(A) • 

card ?lZ{ cp(B2 ) ,~(B3 )) = [ r(cp(B2) )-1] + n-r( co(B3)) 

= n-4-2s 1-4s2+(r(B2)-r(B3)) 

= n+1+2(T1-s1)+4(T2-s2 ) 

X (cp(B2) ,~(B3 )) = 2(y 1-(s 1-T1) )+4(y 2-(s2-T2) )+2(2y 3-1 )-2 

= 2y 1+4Y 2+4Y 3-4-2(s 1-T.1 )-4(s2-T2) 

d(~(B2 ) 1 (P(B3 )) = card?lZ·(cp(B2 ) ,cp(B3 ) )-X (~(B2 ) ,CD(B3) )=n+5-2y 1:..:4y 2-

4Y3 • 
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The last part of b), and the parts c), d) and e) are 

proved by using a procedure and a t~ble as in the proof of a). 

~~!~g~!~£~_.2:.§ 

Suppose B and C are two blocks in A = a 1 ••• an • If 

B is to the left of C , we define 

PI(B,C) =P2 = lal(C)+ 1, ••• ,an!ula1, ••• ,a1 (B)- 1! and z(B,C)=z=1, 

else 

1J2 (B,C) = ?Jl::: {al(C)+ 1 , ••• ,al(B)-1! and z(B,C) = z = 0 • 

w·e define 11 between 11 , x(B,C) =X and d(B,C) as in Def. 3.13 

by using ?'It- instead of m. 

Lemma 5.7. ---------
Suppose Bi is an i-block for i = 2,3 Then B2 jumps 

out of B3 if and only if d(B2 ,B3 ) = 2 • In this case 

othei'l..Yise 

The proof of Lemma 5.7 is similar to the proof of Lemma 

3.14.b). We only indicate the proof on an example~ n =14, k = 3 

and 

* 
A= 00010001110011 

~~ -- ~ 

* 
cp(A) = 01000001100111 
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by B. we observe that 
~ 

card?.n(B2,B3) = 2 , z(B2,B3) = 0 ,){(B2,B3) = 0 

card1.n(~(B2 ),~(B3 )) = 9 = n-5, z(~(B2 ),~(B3 )) = 1 

i(~(B2 ),~(B3 )) = 2y 1 + 4(y 2-1) + 2(2y 3-1) -2 = 2+0+2-2 = 2 • 

Hence, d(B2,B3) = 2 and 

~~~~L2!.§ 

Suppose Bi is an i-block in A for i = 2,3 , A satis-

fies Cond. 3.1 and let s = n+2- 2y 1-4y 2-4v 2 . Then 

l~oo~: We show first that 

We choose p as the least integer such that ~-P(B2 ) meets 

<:p-P(B3) by applying ~ • By Lemma 3.14. b) 

d(~-(p- 1 )(B2 ),~-(p- 1 )(B3 )) = n+5-2y 1-4y 2-4y 3 . Hence, 

d(B2,B3) = (p-1)+(n+5-2y 1-4y 2-4y 3 ) ~ n+5-2y 1-4y 2-4y 3 • 

4 ~ d(B2 ,B3) is obvious. Putting T = d(B2,B3) we get 

d(~T-4(B2),~T-4(B3)) = 4 . 

d(~T-3(B2 ),~T-3 (B3 )) = n+5-2y 1-4y 2-4y 3 = s+3 • 

d(~s(B2 ),Qs(B3 )) = (s+3) - (s-T+3) = T = d(B2,B3) 

since cps= ~(s-T+3 )ocpT- 3 . d(B2,B3) = d(cps(B2 ),~s(B3 )) 

follows in the same way. 
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Definition 5.9. --------------
11 Betv1een 11 is used in the same way as in Def. 3.13. Suppose 

B and C are blocks in A Then 

yi(B,C) -the number of i-blocks between B and C (i=1,2), 

y 3 (B,C) = the number of endpoints between B and C , of 

3-blocks. 

~loreover, 1r1e order the positions in A relatively to B in 

this way: r(B) <r(B)+1 < •.• <:n<1< ••• <r(B)-1. 

~~~§!:_.2!.19 

Suppose A * satisfies Co.nd. 3. 1 • Moreover, let Bi be 

an i-block for 

Then d (B1, B;) 

i=1,2 and d(B7,B;) = d(~P(B;),~(B;)) 

= d(~(B 1 ),~P(B;)) for every 1-block B1 • 

Proof~ 
-),L -X. 

Suppose r(B2 ) < r(B1 ) < r(B1) relatively to 

* * * * * * * z(B1 ,B2 ) = z(B 1 ,B1 ) + z(B1 ,B2 ) , /Jt (B1 ,B2 ) = ?n(B1 ,B2 )+ * B2 • Then 

* ?J2;(B1 ,B1) + 1 and 

* * * * * * * X(B1,B2) = 2(y1(B1,B2)+y1(B1,B1)+1)+2(y2(B1,B2)+y2(B1,B1)) 

* * * * * * + (y3 (B1 ,B2 )+y3(B1 ,B1))+z(B.I'B2 ) = X(B1,B2 )+X(B1 ,B1)+2 • 

Hence, 

(5.26) d(B1 ,B;) = d(B 1 ,B~)+d(B~,B;)-1 • 

By Lemma 3 • 1 4 c) d ( ~p ( B _1 L ~ ( B ~)) = d ( B 1 , B ~) • Since 

* * * * * r(B2 ) < r(B1 ) < r(B1 ) , d(B1 ,B2 ) < d(B1 ,B1 ) • 

p * . p -¥-- < .. P * p Hence, d(cp (B_1),cp (B2 )) d(qr(B 1),cp (B1)) , which implies 

cpP(B;) < cPPCB~~) < cpP(B1 ) relatively to cpP(B;). Similar to 

( 5 • 2 6 ) , we get d ( cpP ( B) ,cpP ( B;) ) =d ( cpP ( B 1 ) , cpP ( B 7) ) + d ( cpP ( B ~) 2 cpP ( B;)) -1 
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* * Hence, d(B 1 ,B2 )=d(~(B 1 ),~(B2 )) • 

* * * If r(B2) < r(B1) < r(B1) relatively B2 , we show similar 

to (5.26) th~t 

* * * * d(B1,B2) = d(B1,B1) + d(B1,B2)-1 , 

d(~(B~),epP(B;)) = d(epP(B~),q}J(B 1 )) + d(cpP(B1),cpP{B;))-1. 

r:~~~-2.:.!!· 
Suppose A satisfies Cond. 3.1, and Bi is ani-block 

for i=1,2,3. Then 

d(B2 ,B3) + d(B3,B2) = (n-2)-[2y 1+4(y 2-1)+2(2y 3-1)+2] 

d(B2 ,B3) + d(B3,B2) = (n-2)-r2v 1+4(v 2-1)+2(2y 3-1)+2] 

d(B 1 ~B2 ) -:~ d(B2,J31) = (n-2)-[2(y 1-1)+2(y 2-1)+2y 3+1] . 

~rooL: We observe that ~(B2 ,B3 ) + ~(B3 ,B2 ) = n-2 and 

X(B2,B3) + X(B3,B2) = (2y 1+4(y 2-1)+2(2y 3-1)+2]. Hence, the 

first equality is true. The other equalities are proved in 

the same vJay. 

1rooz_p{~emm~ 3!1~. Ci denotes an arbitrary i-block. 

Lemmas 5.8, 5.11 and 3.13.d) imply 

- t t - t t ' ) ( ) d~~ (03),~ (B2)) = d(C3,B2),d{cp {C3 ),~ (:B2)· == d c3,B2 , 
(5.27) 

d(cpt(c2 ),~t(B2 )) = d(C2 ,B2 ),d(cpt(c 1 },~t(B2 )) = d(C1,B2) • 

, Let A = DB2E = a 1 ••• an, cpt(A) .. = Fcpt(B2)G = b1 ••• bn' i = r{B2) 

and j = r(~t(B2 )) We then get 

_____ I 
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B2 is contained in c3 ~ d(B2,c3) > d(B2,c3 ) 

(5.28) ~ d(~t(B2 ),~t(c3 )) > d(~t(B2 ),~t(c3 )) ~ ~t(B2 ) is 

contained in 

We suppose there exist a minimal integer q such that 

a ~ b Without loss of generality we can suppose i+q j+q • 

a~ = 1 Hence, l+q 

(5.29) 

(5.27), (5.28) and (5.29) impJ.y for 0 < q' :=:; q 

(5.30) 

l(C3) = i+q' _. l(~t(c3 )) = j+q' ,r(c3 ) = i+q' 

~ r(~t(c3 )) = j+q', r(c2) = i+q'~ r(~t(c2 )) = 

j+q' ,r(c1) = i+q'~ r(~t(c 1 )) = j+q', 

In particular, we have ai+q is contained in a 3-block if 

and only if bj+q contained in a 3-block. Thus (5.29) and 

(5.30) give a contradiction. For example, if a. = 1 = c 1 l+q 
t is a 1-block, then bj+q = ~ (c 1) = 0 is a 1-block. This 

gives a contradiction since b. is not contained in any J+q 
3-block. Without loss of generality we can suppose i ?. j • 

We have therefore proved that a. = b., ••• ,a =b. ( ·) 1 J n J+ n-1 • 
By (5.30) n = r(B3 ) = r(~t(B3 )) = j+n-i • Hence, j=i and 

D = F is proved in the same way by using d(B2,c3) = 
- t t t t 
d(~ (B2 ),~ (c3)),d(B2,c3 ) = d(~ (B2 ),~ (C3)),d(B2,c2 ) = 

d(~t(B2 ),~t(C2 )) and d(B2,c1) = d(~t(B2 ),~t(c 1 )) • 
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vial. We suppose cpr (A) =I= cps (A) . If there exists an i 

such that d(crr+i(B1),crr+i(B2)) = d(cpS+i(B1,cpS+i(B2)) , we 

get by Lemma 3.15 that cpr+i (A) = cpS+i (A) . Hence, cpr (A) 

cps(A) which is a contradiction. Therefore 

d(~r+i(B 1 ),cpr+i(B2 )) ~ d(cpS+i(B1),cpS+i(B2)) for all i • 

= 

We observe by Lemma 3.14 a): If cpi(B1) and cpi(B2) do not 

meet by applying cr , d(cpi(B1 ),cpi(B2)) 11decreases 11 by 0 or 

1 • Hence: 

cpr+i (B1) meets cpr+i(B2) 11before" cpS+i (B1) meets 
(5.31) 

cpS+i(B2), else cpS+i (B ) meets cpS+i(B0 ) 11before 11 
1 '-

cpr+i (B1) meets cpr+i(B2) 

We suppose t 1 , ••• ,tq(q <c) are the integers such that 
r+t r+t· 

cp i (B1) meets cp l (B2) by applying cp • We prove the 

following 3 claims by using (5.31): 

(5.32) 

(5.33) 

(5.34) 

cps+ti+ 1(B1) meets cps+ti+ 1 (B2) once by applying 

coti+1-ti 
' . 

cps+tq+ 1(B1) meets cps+tq+ 1 (B2) at most once by 

t-t -1 applying ~ q • 

lhe Lemma now follows easily from (5.32), (5.33) and (5.34). 

Proof. of (5~~21: If d(cps(B1),cps(B2)) > d(cpr(B1),cpr(B2)) , 

s s( ) . t1+1 then cp (B1) does not meet C() B2 by apply1ng cp • 

Other\visa, let y be the least integer such tr.Lat cps(B1) 

meets cps(B2) by applying cpy • Then 
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d(cps+y(B1),cps+y(B2)) > d(cpr+y(B.V,cpr+y(B2)), and cpr+y(B1) 

meets cpr+y (B2) 11before 11 cps+y (B1) meets cps+y (B2 ) • 

~roof of (2.3~): Let y be the least integer such that 

cps+ti+ 1(B1) meets cps+ti+ 1(B2) by applying cpY. Then 

d(cps+ti +1 +y (B1), COS+ti +1 +y (B2)) > d( cpr+ti +1 +y (B1) ,cpr+ti +1 +y (B2)) , 

and cpr+ti+1+Y(B1) meets cpr+ti+1+Y(B2 ) 11before 11 

cps+ti+1+y(B1) meets cps+ti+1+y(B2) • 

The proof of (5.34) is analogous. 

The proof of Lemma 3.17 follows from the proof of Lemma 

5.8. 

The proof of Lemma 3.18 is obvious since each 2-block 

meets each 3-block a times, each 1-block meets each 2-

block c times and A = cps(A) • 
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DIDEX OF NOTATION 

i-block 

e 

The introduction 

The introduction 

Def. 2. 1 , 2. 2. 

T:r..m. 2. 3. 

yi Tr..m. 2.3. 

l(B)=l(A,B) Def. 3.3. 

r(B)=r(A,B) Def. 3.3. 

m(B) Def. 3.4. 

move 

t:D(B) 

?JZ = 1Jt(B,C) 

X = X(B,C) 

z = z(B,C) 

d(B,C) 

C' 

H-block 

meet Def. 3.5, 3.7 and 3.8. K-block 

jump out 
.... 

B3 

k(A) 

cp(A) 

circle 
around 

Def. 3. 5, 3. 8. 

Def. 3.7. 

Def. 3.7. 

Def. 3. 7. 

Def. 3. 7. 

card = nthe number of elements 
in~~ 
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