Abstract.

Ek(x2""’xn) is defined by Ek(az,...,an) =1 if
n
£ a, =k, else Ek(aZ""’an) = 0 . We determine the

periods of the sequences generated by the shift register with

the feedback function x, + Ek(XZ""'Xn) + Ek+1(X2""’Xn)

+ Ek+2(X2""’Xn) over the field GF(2) ., We indicate also
how to find the periods when the feedback function is

xq + Ek(XZ”"’Xn) + eee + Ek+P(x2,...,xn) where p > 2 .
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e Introduction.
In this paper we study only shift registers over the

field GF(2) = {0,1} characterized by 1+ 1 =0+ 0 =0

and 1 +0 =1, ILet S(XZ"“’xn) be a symmetric polynomial.
A symmetric shift register of n stages with feedback function
Xy o+ S(xz,...,xn) is the function 6 : {0,11% - {o,11®

defined by
e(X1,"'9Xn) = (XZ,...,Xn,X.] + S(XZ,-.',Xl,l)) '3

If es(a1,...,an) = (a1,...,an) , S 1is a period of
(asyee.,a_) with respect to 6 . These periods are equal
17 n
to the periods of the sequences (at){zy satisfying the non-

linear difference equation

a’n+t = a-t + S(at+1"--:at+n_1) for t >0 .

For a general treatment of nonlinear shift registers see [1].
We shall in this paper extend the results of Kjeldsen
[2] and Sereng [3]. 1 am grgteful to K. Kjeldsen who inspired
me to study symmetric shift registers.
The weight w(a) of a vector a = (a1,...,an) is
defined by w(a) = g

i
xe {o,1,...,n-11 by

a; . We define E (x,,...,x,) for
P}

Ek(aZ”"’an) 1 if w(az,...,an) =k , else

Ek(az’...’an)'= O Y

The polynomials E, are very important. In [3] we showed

that all symmetric polynomials are of the form z Ek for
k€A
some A< {2,...,nl . Besides,



if the periods of E +...4 Ek+p for p 2 0 are known, the
periods of all symmetric shift registers can be determined.
In this paper we determine the periods when S = Ek + Ek+1

+ B In [3] we determined the periods when S = E, and

k+2 °
S=E, + L , . By using Thm. 2.2 in [3] we therefore know
the periods of all § of the form § = X E_ , where

k€A
A C {2,...,nf has the property

k,k+1,k+2€ A => k-1,k+3¢ A .

Besides this paper gives probably all ideas needed to solve

the general case §.= Ek teset B for p>2 . In Section

k+
4 we will indicate how to treat thz general case.

In Section 2 we state the results. In Section 3 and 5
we prove them. Section 3 contains the main lines of the
proofs and Section 5 contains the tecnical lemmas which are
needed, In section 4 we indicate the general situvation by an
example,

We denote a = (a1,...,an)€ {0,11™ also by 2 = Bqeesly
We denote finite sequences of numbers by capitol letters
(also the empty sequence). For s€ {0,1,...,} we define
s(A) = A ... A where A appears s times., We let

1. =1 ... 1 (resp. 0, =0 ... 0) denotes a string of t

t
consecutive 1's (resp. 0's). Werefer to the index of nota-

tion in the end of this paper,

2, Main results.

In this section we introduce the concept of blocks and



the main results, In the proofs we show how the blocks of

a vector A =a, ... a, moves by using 0 .

Definition 2.1.

.t @t - — S —— S

=a = 8043

n+2

n .
Let A =a, ... a € {o, 1% . Wwe put a1

hence By wee By,z = AOOO . We define the 3-blocks in A by

the following inductive procedure:

Suppose 1i=0 or that the 3-blocks in a4 ... a; are

defined.

Let j be the least number >i such that By eee Bpi3

starts with 11s(01)1 for some s >0 . If such a j does
not exist, we stop the procedure.

Let p De the least number >j such that ap cee Bz

starts with 00=(10)0 for some s >0 .

By definition aj cee & is a 3-block in A . We have

p-1

now defined the 3-blocks in 84 e ap_1 , and we continue

the procedure,

Definition 2.2.

Let A =a, ...a € {0,1}" . Isolated 1's outside 3-
blocks and isolated O's inside 3-blocks are called 1-blocks,

11 outside 3-blocks and 00 inside 3-blocks are called

2-blocks.

We illustrate the definitions by two examples. We put
one * above the 1-blocks, one line above the 2-blocks and

one line below the 3-blocks.

— % % ¥ ¥ *
(2.1) 011010011011010711000100110001110 .

% * * . *
(2.2) 11010100011000111001001110011001 .

=0



The next theorem is the main result of this paper.

Theorenm 2,3,

T ettt e e 2o S s g

Suppose n and k are positive integers such that
0<k<n-3. Suppose 0:{0,11" > {0,11" is defined by
9(X1,...,Xn) = (XZ""’Xn’Xn+1) where
a1 = X+ Be(preenx)) + By g Opseen X)) + By p00,000,3)
We suppose A =a, ... a, is such that w(A) = k+3
and A contains both 1~ , 2- and 3-blocks.
We let ' be equal to the number of i-blocks in A

for i =1,2,3., We let a and b be the minimal positive

integers such that

(2.3) a(2n+4-4y1-6y2—8y3) = b(n+1-2y -2y ,=2y3) .
Then p defined by
D = a(n+2-—2y2—4y2-—4y3)(n+3)+4ay2+2by1

is a period for A . That means 6P(A) =4 .

The next theorem treats the situation that A

it

ar1 LN BN ] a

does not contain 3 different types of blocks.

Theorem 2.4.

© 1is defined as in Thm. 2.3. We suppose A =a, ... a,
satisfies w(d) = k+3 . We let y; Dbe equal to the number
of i~blocks of A for 1= 1,2,3.

a) A contains only 1- and 2-blocks. Then the following

is a period

(n+1-—2y1-—2Y2)(n+2)+2y1 .



b) A contains only 1- and 3-blocks. Then the following

is a period

(n+1-2y1-2y3)(n+3)+4y1 .

c) A contains only 2- and 3-blocks. Then the following

is a period
(n+2-4Y2~4Y3)(n+3)+4Y2 .

d) If A contains only i-blocks, n+i is a period for

i=1,2,3.

We do not prove Thm. 2.4, It can be proved by using the
distance functions defined in Def., 3.13 and the same ideas as
in the proof of Lemma 3.15. DBesides, the proof is simila;vto
the proof of Thm. 4.4 in [3].

I w(a)€ {k,k+1,k+2,k+3} , there exist in almost all
cases an integer q such that w(8%(a)) = k+3 . Then we use
Thm. 2.3 or Thm, 2.4 to £ind a period of 6%(a) . If w(A) <
or w(A) > k+3 , we prove easily that ©67(a) =4 .

Now we illustrate by three examples how Thm. 2.3 is
used.

" Let n=12, X=3% and A = 000000101100 . We use

Thm, 2.3 on 6°(A) = 000101100111, Since Y= Yo = Y3

(2.3) implies 10a = 7b . We get a=7, b=10 and the period

equal to
T+ (12+42=2=4=4)+15+4°7+2+10 = 468 .

The example (2.1) satisfies the hypothesis of the

theorem with kX = 13 . In this example n = 32, Yq = 5,
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Yo = 2and y; = 2 . (2.3) implies 20a = 15b . We get
a =3, b=4 and the period equal to‘904 .

The example (2.2) satisfies the hypothesis of the theorem
with k = 15 . In this example n = 32, v, = 4, Y, =3 and
Yz =2 . (2.3) implies 18a = 15b . We get a =5, b = 6

and the period equal to 1158 .

0 is as in Thm, 2.3. Ve suppose A = By eee By satisfies
W(A) = k+3 .
Then the minimal period of A with respect to 06 is

less than n3 .

We prove Cor., 2.5 in the end of Section 5.

Quite often the periods we find in Thm, 2.3 and Thm. 2.4
are the minimal periods., However, we have not found any good
hyphothesiswhich implies minimality. By studying the proofs
we think it is possible to find such a hypothesis. The next

corollary is a simple example.

—— g - St o -

® is as in Thm, 2,3, We suppose A = &y ... a, satisfies
w(A) = k+3, and A contains 1 i-block for i = 1,2,3 .
Then the period we find in Thm, 2.3 is the minimal period

of A .
We prove Cor. 2.6 in the end of Section 5.

3, Main lines of the proofs.

In this section we prove Thm. 2.3. The proofs of the

lemmas in this section are done in Section 5. - We suppose.



n and k are positive integers such that k< n - 3 . The
proof of Thm, 2.3 is easier if we suppose A = 84 eee By

satisfies the next condition.

Condition 3.1.

Tet A =a, ...a € {0,117 . A satiefies Condition

3,1, if
1) w(A) = k+3
2) A contains 1-, 2- and 3-blocks.
3) A does not start with a 1-block or a 2-block.

4) A ends with a 3-block,

If A=a, ... a satisfies 1) and 2) in Cond. 3.1,
there exists an integer q such that 6%(A) satisfies

Cond. 3-1-

Later in this section we define an integer k(A) which
is dependent of A , If A satisfies Cond. 3.1, we prove that

6n+3+k(A)(A) satisfies Cond. 3.1. In the proof of Thm. 2.3

we regard A = A, Ay = 9n+3+k(A)(A), A, = 9n+3+k(A1)(A1),

etc. At last we find an integer s such that A = A

L]

s+1
Then the following is a period for A :
s s
b n+3+k(Ai) = (s+1)(n+3) + Z k(Ai) .
i=0 i=0
5
We calculate s and X k(Ai) and get the wanted period.
i=0
The idea of the proof is to examine the blocks of

9n+3+k(A)(A) when we know the blocks of A , Usually an



i-block moves k(A)+3-i places to the left by applying

9n+9+k(A) on A . Because the blocks move with different

velocities, they willeeet sometimes., Therefore we must
examine what happens when the blocks meet. In addition

we must examine what happens when 1-blocks and 2-blocks

inside a 3-block.reach the left endpoint of the 3-block. We
must also examine what happens when a block reaches the first
place in A . In that case the block cannot move to the left.

Besides, we will prove that a 3~block does not change size by

applying 9n+3+k(A) on A . As a measure of the size of a

3~-block B we will define the mass m(B) of 3B .
en+2

FPirst we study how the blocks move by applying

Before we formulate the next lemma we need some definitions.

Definition 3.3.

.t . A " - o - aa

Let A = 8y ees By and B = Bg eee By be a piece of

A . We define the left endpoint of B by 1(B) = 1(A,B) = s

and the right endpoint of B by r(B) = r(A,B) = t .

Definition 3.4.

Let B be a 3-block, We define the mass of B by

m(B) = (the number of 1's in B ) - (the number of Q's in

Definition %.5.

o — o —— ap o -

a) Let B3 be a 3-block in A . Suppose A is of the

form

where s >0, and C;, = 10 or C; = 11%(01)00 for some

t >0,

B) .
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By definition the 1- and 2-blocks in OOs(1O)OC1 oo Cp

]
en+t_

meet B3 by applying .
b) TLet Bz be a 3-block. Ve suppose Bz is of the

form

where s >0 , and C; =01 or C, = 00t(10)11 <for some
t>0.

By definition the 1~ and 2-blocks in 118(01)101 ees C
en+2

D

jump out of B5 by applying
c) Suppose 3B, is a 2-block in A which does not meet

gl+e Suppose r(4,B,) = s .

or jump out of a 3-block by applying
If there are 1-blocks on the places s+2, s+4,...,5+2%, we say

that these 1-blocks meet Bz .

—— e e v -

Suppose A satisfies Cond..3.1, and let- A*=9n+2(A)1E !0,1}n+1 .
a) Suppose B, 1is a 1-block in A . Then there exists

a 1-block 31* in A¥* such that

r(A*,B1*) = r(A,B1)-1~y—ZZ

where y =1 if B, meets or jumps out of a 3-block by

applying 9n+2, y = O otherwise, and 2z = 1 1if B1 meets

a 2-block by applying g+

y 2 =0 otherwise,
b) Suppose B, is a 2-block in A . Then there exists

a 2-block B2* in A* such that
r(A%,B5*) = r(A,B,)~2y+2z

where y = 1 if B2 meets or jumps out of a 3-block by applying
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en+2 _ . .
y ¥ =0 otherwise, and 2z is equal to the number of
1-blocks which meet B, by applying g+ .
c) Suppose By 1is a 3-block in A . Then there exists

a 3-block BB% in A% such that

r(A*,BB*) = r(A,B3)+1+261+482

where Bi = the number of i-blocks which meet B3 by applying
en+2

where Bi = the number of i-blocks which Jjump out of B3 by
applying 872 | Besides m(BB*) = m(BB) .

d) w(a®) = k+3“:¢‘ All the blocks in A* arise from
one of the blocks in A as in a), b) and c).

e) A¥* is of the form
A¥ = S(1O)OC1 ces CPD

~where s >0, C, =10 or C; = 11%(01)00 for some +t >0 ,

and D starts with O or a 3-block.

Definition 3.7

Let A and A¥ = 9n+2(A)1 be as in the previous lemma.
Suppose A% = s(1O)OC1 ces CpD is as in Lemma 3.6.e.
a) We define k(o) = r(A*,CP)—1 .
b) Ve define w(a) = o 3vE(A)(yy
c) By definition the 1-blocks and 2-blocks in A , which
correspond to blocks in s(1O)OC1 oo Cp , circle
around by applying ® , and meet ﬁ3 by applying o ,
where §3 is the last 3-block in A .
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We observe that k(A) = 2y4 + 4y, where y. = the number
of i-blocks which circle around by applying ¢ . DBesides,
k(A) 1is theleast integer s such that 6n+3+S(A) satisfies
Cond., 3.1.

The next definitions and lemma describe what happens to

gn+3+k(A)

the blocks in A when we apply © = in case A

satisfies Cond. 3.1.

Definition 3.8.

Suppose A =a, ... a, satisfies Cond. 3.1, and let

© = en+3+k(A)

gT+2 , Wwe also say

If two blocks in A meet by applying
that the two blocks meet by applying ® .

If a 1-block or a 2-block B jumps out of a 3-block

en+2 , we say that B Jjumps out by applying

by applying
o,

Before the lemma we must define precisely the concept
that a block moves (to the left). We calculate modulo n ,
therefore place O = place n , place (-1) = place (n-1) ,

etc.

Definition 3.3.

Suppose A = - satisfies Cond., 3.1, and B
is em i-block in A(i=1,2,3). |

Then B moves q places (to the left) by applying @

means: There exists an i-block B** in ©(A) such that
r(p(A),B**) = r(A,B) - ¢ (mod n) .

Lemma 3, 10,

Suppose A = 81 eee Bp satisfies Cond. 3.1.
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a) Let B, be a 1-block in A . As the main rule B,

1
moves k(A)+2 places by applying ¢® . In addition we have:

If B, meets a 3-block, it moves 1 place extra.

-—_

If B jumps out of a 3-block, it moves 1 place extra.
If B1 meets a 2-block, it moves 2 places extra.

If B1 circles around, it moves -1 place extra.

b) ILet B, be a 2-block in A ., As a main rule B,

2
moves k(A)+1 places by applying ¢ . In addition we have:
If B2 meets a 3-block, it moves 2 places extra.

If B jumps out of a 3-block, it moves 2 places extra.

2
B2 moves -2 places for each 1-block which meets B2 by
applying © .

If B2 circle around, it moves -2 places extra.

c) Let B; bea 3-block in A . As a main rule B3

3
moves k(A) places by applying o . In addition we nave:
B3 moves -4 places for each 2-block which meets B3 by
applying o .
B3 moves -2 places For each 1-block which meets B3 by
applying o .

d) Again let Bz Dbe a 3-block in A . By corresponds

to a 3-block Bz** in o(A) as in c¢). Then
1(®(A):B**) = l(A’B) - k(A) + 2y1 + 4.V2
where Vi = the number of i-blocks which jump out of B3 by

applying o .

Definition 3.11.

Suppose A satisfies Cond. 3.1. By lemma 3.10 a block
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B in A corresponds to a block B** in o(A) . We denote

B** by o(B) .

Lemma 3.12.

Suppose A satisfies Cond. 3.1. Then o(A) satisfies
Cond. 3.1, and all blocks in ®(A) are equal to o(B) for
some block B in A .

If Bz is a 3-block in A , then m(BB) = m(m(BB)) .

We illustrate lemma 3.10 by seven examples, We put an
asterisk above the 1-blocks, a line above the 2-blocks; and

a line below the 3-blocks.

Example 1. (k=10,k(4)=0) A = 000107T0011110041 110111

* [ e
o(h) = 0%*3 (1) =0700TT0001110011011111.,

Example 2. (k=7,k(4)=0) A =00TT0%70001111001011

w(a) = 8% (a)

07T0TT0000111010011.1 .

* 3¢
Example 3. (k=8,k(A)=0) A =11100100111000710 111

o(a) = 073 (4)

—

i

* * !
110110001110100011.1 .

-—

il

|

]

Example 4. (k=5,k(A)=0) A =00111000TT000111.

o(a) = 6772 (a)

0011100110000111 .

Example 5. (k=7,k(A)=0) A 001113*1__10001116611

o(a) = 6740 (a)

* .
00100111000TT00111 .

*
Example 6, (k=1,k(A)=2) A 00100000111
en+2 (A)1

o(a) = 62375y _ 00000011181 .

0100000001 11

-

fl
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(k=2,k(A)=4) A =0T700000111
6n+2(A)1

CPL(A) = ‘9p+3+k(A)(A)

Example 7.

i

0T1T000000 11 1
=00001110011 .

We also illustrate the proof of Thm. 2.3 by an example

with k=3 .
A =007T1010000111
o(h) = 0707700000111 = 8573(n)
61+ 2(p(4))1 = 100110000001 11
©2(A) = 0000110117011 = 02(n+3)+6¢,
93) = 000T00TTo00111 = 83346,
o*(a) = 0T000TT000111 = 840304645
61+ 2(p*(4))1 = 100001100001 11
©’(4) = 00TT000011311 = 85(m¥3)48(y,
wOa) = 0TT0000 00111 = 88(n30+8(,
872 (%(4))1 = 011000100001 11
oT(A) = 050000111TT11 = 6/ (@+3)+12¢,
072 ((4))1 = 100000011001 11
B(a) = 0000TT001181 1 = o8(03)+141yy
2(8) = 000TT00F 00111 = e9(m¥3)+14(,y
910() = 00TT0F 0000111 = 810m3)+T4(yy

Putting n=13 and vy, =Y, =Yz =1 in (2.3) we get

12a = 8b , and hence a=2 and b=3 . By Thm, 2.3 the period

is
2(13+2~2=4=4)(n+3)+4+2+42°3 = 10(n+3)+14

This is in accordance with the calculations in the example,
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Part 1 of the proof of Thm, 2.3:

We prove in this first part the existence of two integers

a and b satisfying (2.3) such that
a(n+2-2y1—4y2-4y3)(n+3) + 4ay, + 2by,

is a period.

In the second part we prove that a and b can be chosen
minimal,

Because of lLemma 3.2 we can suppose that A satisfies
Cond. 3,1,

We consider A,m(A),&Z(A), ee.. » There clearly exist
integers s, < s, such that p51(4) = ©°2(a) . Putting
s =8, -8, , we get o (A) = A .

We suppose A contains the blocks E1"“’Ex , numbered
from left to right, that is r(A,Ei) < r(A,Ei+1) for
i=1,...,%x-1.,

Consider A = 9°(4) = mgS(A) = ... . Because of the

finiteness there exist p < g such that
r(oP®(4),0P%(8,)) = r(09°(4),0%%(E,)) for i=1,...,x .
Putting t = gs-ps , we get
t T .
r(o (L), (Ei)) = r(A,Ei) for i=1,...,x .

This means that every 1-block (2-block) circles exactly
the same number of times around by applying mt . Let D
(a) be the number of times every 1-block (2-~block) circles
around by applying mt . By Lemma 3,10 the 3~block do not

circle around at all., Therefore we get that every 1-block,
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2-block and 3-block moves respectively nb , na and O

places by applying mt .

Using Lemma 3,10 we get by applying wt

Bach 1-blocks B1

t-1 .
T (2+k(ot(a))
i=0
+ by (B1 meets
+ by (B1 jumps
+ 2(b—a)y2 (B1 meets
- b (B1 moves
around).
Hence,
t-1 i
(3.1) nb = 2t + % k(o (A))
i=0

BEach 2-block B2

t-1 .
T (1+k(e™(4))

i=0

+ 2ay3 (B2 meets
+ 2ay3 (32 jumps
- 2(b-a)y2 (B, meets
- 2a (B2 moves

around).

Hence,

moves (the number of places)

(the main rule)

every 3-block b times)

out of every 3-block b  times)
every 2-block (b-a) times)
-1 place every time B1 circles

+ 2by3 + Z(b—a)yz-b .

moves (the number of places)

(the main rule)

every 3-block a times)

out of every 3-block a times)
every 1-block (b-a) times)

-2 places every time 32 circles
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t-1 .
(3.2) na =t + = k(ot(a)) + 4ay5 - 2(b-a)y-2a .
i=0

Fach 3-block B, moves (the number of places)

t§1k(cDi(A)) (the main rule)

i=0

- 2by, (B3 meets every 1-block b times)

-4ay, (B3 meets every 2-block a times) .
Hence,

t=1
0= I k(v7(a)) - 2by, - 4ay, .

i=0

Hence,
t-1 i

(3.3) .Eok(cp (4)) = 2by, + 4ay, .
1=

(This follows also from the definition of k(@i(A)) , which
implies that k(v'(A)) = 2y, + 4y, where y; = the mumber of
j~blocks in mi(A) circling around by applying © .)

(3.1) and (3.3) imply

nb = 2t + 2by1 + 4aY2 + 2by3 + 2bY2 - 2aY2 - b .
Hence
(3.4) 2t = b(n+l = 2yy = 2y, = 2y5) - 2ay, .

(3.2) and 3.3) imply

na =t + 2by1 + 4ay2 + 4ay3 - 2by1 + 2ay1 - 2a .

Hence



- 19 -

(3.5) t = a(n+2 - 2y, - 4y, - 4Y3) .
(3.4) and (3.5) imply (2.3):

b(n+1 - 2y, = 2y, - 2y3) = a(2n+4 - 4y, - &Y, - 8Y3 ) .

. i . .
o(et(h)) = gn+3+k (e (A))(ml(A)) . Hence o° is equal
to © applied
t-1

. t-1 .
s (n3+k (ot (A)) = t(n+3) + ¢ k(e(a))  times.
i=O ]_:O

(3.3) and (3.5) imply that ol is equal to © applied
t(n+3) + 2by + 4ay, = a(n+2—2y1—4y2-4y3)(n+3)'+.2bv1+-2ay2 times

which is a period for A . The proof of the first part is

complete.
The main concept of the second part of the proof is the
defintions of distances between blocks. We calculate modulo

n. We write card 771 +to denote the number of elements

in 4%7) where 777 is a set.

Definition %.13.

o U T S i St ey

Suppose B and C are two blocks in A =2a, ... 2, . If

B 1is to the left of C , we define
\ =
ZZ(B,C/ =7 = iar(c)+1,...,an} u {a1,...,ar(B)_1f and
z(B,C) =z =1, else
77&(]3,0) = M= {ar(c)+1,...,ar(B)_1f and Z(B,C) =92 =0 ,

If a € 7 , we say that a, is between B and C.
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If B is a 1-block we define

x(B,C) =X = 2+(the number of 1-blocks detween B and C )
+ 2+(the number of 2-blocks between B and C )

+ (the number of endpoints a; between B and C, of 3-blocks)-z .

If B is a 2-block or 3-block we define

x(B,C) =X = 2-(the number of 1-blocks between B and C )
+ 4.(the number of 2-blocks between B and C )
+ 2+(the number of endpoints ay between B and C , of 3-blocks)-2z

We define 4(B,C) = card? - X .

Before proving the second part of Thm. 2.3 we need 5

lemmas concerning distances between blocks,

Lemma 3,14.

Suppose A satisfies Cond. 3.1. and contains y; i-blocks
for i=1,2,3. Suppose further that Bi and Ci are i-blocks
in A , and ﬁB is the last 3-block in A .

a) If B, and B, meet by applying ® , we have

1
d(B1’B2) = 1 and d(m(B1)yw(B2)) = n+l - 2Y1’2Y2“2Y3 s

otherwise
d(@(B1),¢(BZ)) = d(B1;B2) -1+ 2z

where 2z=1 if B, jumps out of a 3-block or meet a 3-block f ﬁB

by applying o .

b) B, and B, meet by applying ¢ if and only if

2 3
d(BZ'BB) = 4 , In this case

d(CD(BZ),CP(BS)) =-n+5 - 2Y1"'4Y2"4'Y3 ’
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otherwise

d(e(B,),9(B5)) = d(B,,Bz) - 1 .
c) da(w(By),0(c,)) = d(B,,C,)
a)  a(e(B,),0(C,)) = d(B,,Cp) .
e) d(e(B3),»(C5)) = d(Bs,Cs) .

Lemma 3,13,
We suppose A satisfies Cond. 3.1, and Bi isan i-block
for i=1,2. If t is a multiple of n+2 - 2y1—4y2~4y3 and

a(e"(8,),0%(B,))

U

a(B,,B,) , then o©°(A) = A .

Lemma 3,16,

- ot o ——

We suppose A satisfies Cond. 3.1, and Bi isan i-block
in A for i=1,2. Moreover, we suppose that r and s are
multiples of n+2 - 2Y1~4Y2-4Y3 .

If B, and B, meet < ¢ times by applying @t on

1 2
o (A) , then B, and B, meet < c times by applying p?

on ©°(A) .

Lemma 3.17.

Suppose A satisfies the hyphotesis of Thm, 2.3, and let
8= n+2 - 4Y1—4y2-2y3 . Moreover, Bi is an i-block for 1i=2,3 .
Then B2 meets 33 once, and Jjumps out of B3 once,

by applying ©0 on A .

Lemma 3,18,

We suppose A satisfies Cond. 3.1, and that each 1-block

B1 meets each 2-block ¢ times, and each 2-block 32 meets

each 3-block B3 a times by applying 0> . We also suppose
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©o®(A) = A .
Then each 1-block B1 circles around c+a times by

applying ©° .

Part 2 of the proof of Thm, 2.4:

We suppose A satisfies Cond. 3.1, and that a,h are
the minimal numbers which satisfies (2.3).

From the first part of the proof where exist integers
a',b' which satisfies (2.3), and if +t = a'(n+2—2y1-4y2-4y3)
(See (3.5)), then @t(A) = A . Moreover, each 1-block meets
each 2-block in A c¢' = b' - a' +times by applying wt .

There exists a ¢ > 0 such that a' =ag and b' = bg .

We define

Hence,
(3.6)  oQ(a) =A .

(3.7) Each 1-blockmeets each 2-block gqc = gb - ga times

by applying @tq on A .
We prove

(3.8) Fach 1-block meets each 2-block c=b-a times by

applying ®t1 on A ,

Suppose (3.8) is not true. By (3.7) there exist a 1-
block B,, a 2-block B, and i,j¢€ {0,...,9-1} such that

wti(B1) meets @ti(BZ) < ¢ times by applying wt1 , and

.b

@tj(B1) meets ©’J(B,) > c times by applying ©®1 . Temma
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3,16 with t = t1 gives a contradiction.
Next we show that d(B1,B2) = d(®t1(B1),wt1(B2)) whers
Bi is an i~-block. Lemma 3.17 implies

(3.9) Fach 2-block meets each 3-block a times and jumps

L

out of each 3-block a times by applying © on A .

et QO = {O,...,t1-1f. Then (3.9) and Lemma 3.14.a) imply

(3.10)  There exist (y3—1)a+y3a numbers i€ Q such that
a(e™1(3,),011(3,)) = a(e’(8,),07(3,)) .

(3.8) and Lemma 3.714a) imply

(3.11) There exist c¢=b-a numbers i€ Q such that
(0 (8,),0M(By)) = 1 and a(o™(3,),0™1(B,)) = n+1 -
2y1--2y2--2y3 . In this case mi(B1) meets wl(B2)

by applying © .
(3.10), (3.11) and Lemma 3.14a) imply

(3,12) There exist t1-c-2y3a+a numbers i€ 0 such that

a(e(8)),0M1(8,)) = ale’(3,),0M(B,))-1 .

By (3.11) d(mi(B1),mi(B2)) changes first from d(B1,B2)

to 1, then (c-1) +times from n+1-2y1--2Y2--2y3 to 1, and
finally from n+1-2y-2y,-2y5 to a(0*1(8,),0°1(8,)) .

Hence by (3.12)

ty-c-2yza+a = (d(B1,BZ)-1)+(c-1)(n+1-2y1-2y2-2y3-1)
+ (nr1-2y =2y p=2v5-8(0 " 1(B,),0°1(By)) .

Since t, = a(n+2-2y1~4Y2~4Y3) and c=b-a , we get
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d(B1 ,Bz)-—d(tp-t'] (B1 ) ywt1 (Bz)) = a(n+3"2Y1"4’Y2"6Y3)"(b“a>
-(v-a) (n-2y -2y -2y )
= a(2n+4-4Y1—6Y2—8y3) - b(n+1—2y1-2y2-2y3) = 0

by (2.3). Hence,
(3.13)  a(B,,B,) = a(e*1(B,),0"2(5,)) .

(3.13) and Lemma 3.15 imply that A = ©°1(A) . By Lemma
3.18 each 1-block circles around Db=a+c times by applying
®t1 . DBesides, each 2-block circlées around a times by

applying o©°1 , Hence,
tq=1 .
T k(e'(A)) = 2by,+day
. 1 2
i=0
As in the end of the first part of the proof we get that
a(n+2-2y1-4Y2—4y3)(n+3)+2by1+4aY2 is a period. The proof is

complete,.

Proof of Cor, 2,5.:

In the case that A contains only two different types
of blocks, the proof is easy by using Thm. 2.4.

Suppose A contains 3 different types of blocks, there-
fore n>9 . Ve suppose that a,b are the minimal positive

integers which satisfy (2.3)., We have
a < n+l - 2Y1-2Y2—2Y3 < n-5

and
b < 2n+4 - 4Y1-6Y2-8y3 < 2n-14 .

The period p in Thm. 2.3 satisfies
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p = a(n+2-2y1-4Y2-4y3)(n+3) + day, + 2by,

(n=5) (n=8) (n+3) + 4(n-5)% + 2(2n-14)%
3

A

= n3-7n2—18n+120 <n since n>9 .

We have used the fact that Yq < % and Y, < % .

Prgst 6t ‘Oof, 2.6:

We suppose A satisfies Cond., 3.1, Then wi(A) satis-
fies Cond. 3.,1. for all i .

It is easy to see that B(mi(A)),...,9n+3+k(wi(A)>'?(A)
do not satisfy Cond. 3.1. Therefore the minimal period p
satisfies 6P = ¢ for some q; that is, 6P(n) = o3(a) = A
for some q . 7

We suppose the-1-block and the 2-block circles respectively
b and a times around by applying mq on A . Then it is
easy to see that the 1-block meets the 2-block ¢ = b-a times
by applying @q on A ., As in the first part of the proof of

Thm, 2.3 we see that p 1is as in the theorem.

4. The general situation.

In this section we will indicate by an example how to
treat the general situation Ek tooot Ek+p for p>2 .
We suppose p=5 . As in the case p=2 we must define the
concepts: i-block (for i=1,2,3,4) , & , © , k(A) , meet, jump
out, circle around, and “Cond. 3.1." Specially, m(A)=9n+4+k(A2(A)
We suppose _AE.§O,1§n satisfies "Cond. 3.1", and contains
1 i-block B; for i=1,2,3,4 . Then we can show the following:
As a main rule B, moves 3+k(A) places by applying © .

B1 moves in addition:
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2 places if B1 meets B2 ’
1 place if B1 meets B3 or B4 ,
1 place if B, Jumps out of B5 or B4 ’

-1 place if B1 circles around ,

As a main rule B, moves 2+k(A) places by applying o

B2 moves in addition:

-2 places if B1 meets 32 ,
2 places if 32 meets or Jjumps out of B3 .
2 places if B, meets or jumps out of B4 ’

-2 places if B2 circles around.

As a main rule By moves 1+k(A) places by applying @

B3 moves in addition:

-2 places if B1 meets B3 ’
-4 places if B2 meets B3 ’
3 places if B3 meets or jumps out of B4 y

-3 places if B5 circles around.

As a main rule 3B, moves k(A) places by applying o .

B4 moves in addition:

-2 places if B1 meets B4 ’
-4 places if B2 meets B4 ’
-6 places if B3 meets B4 .

We suppose next that A = ws(A) , and that the 1-block,
2-block and 3-block respectively circles around a,b and ¢

S-1 .

times. Let K = X k(»'(a)) . By applying ©° to A , B,
i=0

moves the following number of places:
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3s+K (the main rule)

-a (B circles around a times)

+2(a-b) (B; meets B, (a-b) times)

+2(a-c) (B1 meets and jumps out of Bs 2(a-c) times)

+28, (B1 meets and jumps out of B, 2a times).

Hence
(4.1) na = 3s+K-a + 2(a-b) + 2(a-c) + 2a .

In the same way, by studying BZ’ B3 and B4 we get the

equations:
(4.2) =nb = 28+K - 2b - 2(a-b) + 4(b-c) + 4b .
(4.3) nc = s+K - 3¢ - 2(a-c) - 4(b-c) + 6c .

(4 4) 0 =X - 2a -~ 4b - 6c .,

From (4 4) we see that X = 2a + 4b + 6¢ . Putting this into
(4.1), (4.2) and (4.3), we get

(4.5) 38 = a(n-7) - 2b - 4c .

(4.6) 28 = b(n-12) ~ 2¢c ,

(4.7) s = c(n-15) .

Hence,

(4:8) a(n-7) - 2b - 4c = 3c(n-15) .

(4.9) ©b(n-12) - 2¢ = 2c(n-15).

As in the end of the first part of the proof of Thm. 2.3
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we can show that ©° is equal to O applied
(4.10) p = s(n+4) + K = c(n~15)(n+4) + 2a + 4b + 6¢

times (We use (4.4) and (4.7)). p 4is therefore a period
for A .

Let us check the above result on the following example:
n=19, k=7 and A = 0001011001110001111 ., Calculations
show that the period of A is p = 748 .

Putting n=19 into (4.8) and (4.9) we then get

(4.11) 12a -~ 2b - 4c = 12c¢ ,
(4.12) 7Tb - 2¢c = 8¢ .

The smallest integers satisfying (4.11) and (4.12) are
a=11, b=10, c¢=7 . We put these into (4.10), and again obtain
Pp=T+4.23+211 + 4+10 + 6+ 7 = 748 as a period.

5. Proofs of Lemmas from Section 3.

Throughout this section, k,n and 6 are as in Thm. 2.3.

Definition >.1.

If a=1 , then a'=0 . If a=0, then a'=1 . Moreover,

for every C = Cy oee cté {0,1}t , we define C(C!' = c1' see ct' .

Lemma _3.2.

If A=a, ...a, , then 8(A) = a, ... aja,' whenever

w(a2 cee an)é {x,k+1,k+2} , 6(a) = a5 ... a a; otherwise.

The proof is obvious.
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Definition 5.3.

e — — T — " > =

Suppose A = R and C = By eee g o

If C 1is outside all the 3-blocks in A and C=10 or
11t(01)00 for some t >0, C is an H-block in A .

If C is inside a 3-block in A and C=01 .or 00t(10)11

for some t >0, C is a K-block in A .

o b Sy v

Suppose A€ {0,1}" and w(A) = k+3 .
a) If A=10C , then 62(A) = CO1 .

b) If A = 11t(01)00C , then 6%+t

(A) = Co0t(10)11 .
¢)  Suppose

B, = 1180(01)101 ees C_14.C 1 eee C

37 P 51 p+1 52 p+q1Sq+1 ’

where 84 > O , each Ci is a K-block, each Di is an H-

block and s,,f > 0 . Furthermore, let

By = 008,(10)0C;" oo C'1g4C" 4lgp wen C' Ty

@2
1

: 11f(O1)1D1' cee D' o= G

NA r(A,BB) and z = r(4,G).

Then we have

0Y(a) = GEB, , 6%(4) = E%’Bé:, w(eY(4)) = k¥ and

3 ’
w(8%(4)) = k+3 .
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Proof.

a) and b) follows from Lemma 5.2.

c) TLet n, = r(A,Ci) and m; = r(A,Di) . We use

Lemma 5.2 many times., The vectors in the following equations

have weight k .

§3+285 (1) - ¢, ... EOOs,(10)0
n
8% (a) = lgq ... E00s (10)0C4" ... C’
Npy+54 _
8™'P (1) = Chpq eeo E0Os_(10)0C," ... Cy' sy
6fp+1 (a) = Tsp «.. B00S,(10)0C," ... C,'1s4C 1,
Ny - N
97 P+q(A) = 1UQ+1 cee E00s0(1o)oc1'181cp+1' - c'p+q
y . - S R
6v (4) = 00£(10)0D, ... D EB; = GE By .

The vectors in the following equations have weight k+3 .

D 11£(01)1

9y+3+?f<A) q e DrEB3

m ~JF
671 () D, ... DrEB311f(O1)1D1'

1l

2

~J ~ g

EB511£(01)1D," ... D' = EB,G

H

8%(a) = 0™r (a)

Proof of Lemma %,2:

(5.1) If A = D01 and w(A) = k+3 , then 6-2(A) = 10D .

(5.2) If A = D00s(10)11 and w(A) = k+3 where s >0,
then 6~ (4*28)(n) - 11s(01)00D .
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Suppose A satisfies 1) and 2) in Def. 3.1, and A = CD
where C ends with a 3-block and D does not contain any 3-
block. We define p, = n-r(4,C) . Then A, = 8"P1(a) ends
with a 3-block. (5.1) and (5.2) implies that w(A1) = k+3 .
Therefore A, satisfies 1), 2) and 4) in Cond. 3.1.

—_ Iy -

Suppose A1 = C1 oas CP,..B3 where Ci = 10 or
C; = 11s(01)OO,B3 is a 3-block and E starts with O or
a 3-block. et P, = r(A,Cp) . 9p2(A1) = EB301' eae C_' .

D

Then 3301' .es Cp' becomes a 3-block in 6p2(A1) . There-

fore ePz(A1) satisfies Cond. 3.1.

Proof.,of lLemma %.6:

We observe that A has the form

A = OS1Q1OSZQ2083 s 080 OSPQP

where s, >0 , and Qi has one of the following forms for

i
i<op

Qi = 10 where Qi is outside all the 3-blocks in
(5.3) A , and the 1-block in Q, does not meet any block

by applying 6n+2 on A .

Q; = 11t(01)00 where t >0, Qi is outside all
(5.4) the 3-blocks in A , and the blocks in Q; do not

Gn+2 on A .,

meet any 3-block in A by applying
(5.5) Q; = BsG where Bz and @ are as in Lemma 5.4. ¢c) .

Furthermore,
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If Q is of the form (5.3) or (5.4), then sy >0 .

If Qi is of the form (5.5) and 0 < i < p , then

(5.6) Q is of the form (5.5) or s. >0 ., Q. = 33

i+1 i+1 P

where B3 is as in Lemma 5.4. c).

By Lemma 5.4
n ~ ~ ~ ~ ) . .
8 (A) = Os1Q1OSQonS3 ceo OSPQp where Q; is defined

as follows:

Case 1: If Q. is as in (5.3), then Q; = 01

1

Case 2: If Q; is as in (5.4), then Q 00t(10)11 .

~J

Case 3: If Q; = ByG is as in (5.5), then Q, = B8

as in Lemma 5.4. c).

~J

Case 4: If i=p , QP = 53 is as in Lemma 5.4. c)

(see (5.6)).

Purthermore, Lemma 5.4. c) implies w(6™(A)) = k . Since A
starts with 01,11 or 00 , 8™(A) starts with 00 . Hence
6%*2(1) is of the form

(5.7) e™*2(a) - 05p11 and  w(6%2(a)) = k+2 .
Next, we‘prove

( ) A 3-block in A¥ = 9n+2(A)1 is contained in 5p1
5-8 ~
or G; where Q; is as in (5.5).

Let Q; De as in (5.5). By (5.6), A = HQiOt(10)M or
A = QiK where K starts with a 3-block. In both cases 61

is followed by 00t(10)0 for some t >0 , If Q; 1is as in

(5.3) or (5.4), no 3-block in A* can start at any position



- 33 -

in 51 . We conclude that (5.8) is true.

Case 1: We denote the 1-block in Qi =10 by B, . The

mmmber 1 in 61 = 01 is in position r(A,B1)+1 in 8%(n),

and is preceded and followed by O . Therefore, there

is a 1-tlock B¥ in position r(A,B,)-1 in A* = 6%"%(a)1, This
is in accordance with a) since B1 do not meet any block

en+2

by applying on A .

Case 2: We denote the 2-block in Qi by B2 and the 1-blocks

1 t 1 t o
by B1""’B1 , such that Qi = B20B1O o OB1OO . DBSince

Q; = 00t(10)11 is followed by 00 , there are 1-block in the
positions r(A,B})-1,...,r(A,B?)—1 and a 2-block in the posi-
tion r(A,Bz) + 2t+2 in 6™(A) . Therefore, there are 1-
blocks in the positions r(4,B3)-3,...,r(4,B))-3 in A% =
9n+2(A)1 . This is in accordance with a) since the 1-blocks

8n+2

meet B2 by applying . Furthermore, there is a 2-block

in the position r(A,B2)+2t . This is in accordance with

b), since B, meet t i-blocks by applying 6°*° on 4 .
Case 3%: Qi = B3G and Qi = BBE where

By = 1155(01)10; «.. O lg Cp ilsp «ee Cpgls s

G = OOf(1O)OD1 esa Dr

G =11 £(01)1D," ... D’
where 84 > o, Ci is a K-block, Di is an H-block and
s;,f 20,

We divide Cage 3 into 9 subcases.
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Case_3a: Suppose 1 <1<p . Suppose Ci = 01 = B11
where B1 is a 1=block which jumps out of B3 . Then

Ci' = 10,Ci' is preceded by a O and is outside all the
3-blocks in 6"(A) . Therefore there is a 1-block in 6%(a)
in position r(A,B1) , hence a 1-block in A* in position
r(A,B1) -2,

Case_3b: Suppose 1< i<p and C; = 00t(10)11 . o' = 11t£(01)00
is outside all the 3-blocks in 67%(A) . As in Case 3a , the

blocks in Ci do not move by applying 6 ., Therefore if

B is a block in Oi , there is a block B* of the same

type in A¥ such that r(A*,B*) = r(A,B) = 2 ., Since the

block B jumps out of the 3-block 33 by applying pl+2

»

this is in accordance with Lemma 3.6 a) and b).

Case 3c: The 1-blocks in sO(O1) move as the 1-block in

Case 3a.

Case 3d: We define B*3 and F by

B¥ 18q4411£(01) 1Dy .. D = 1P,

3= 15,8 pe1lsy *o
hence @, = 005,(10)0C; ... C' B¥, . First we prove that

B¥; starts with 11¢(01)1 for some t>0 . If s, >2,
C'p+1 = 11t(01)00 or Cb*1..1SQ+1is the empty set, the claim
is trivially true. Therefore, we suppose 84 = 1 and

C'p+1 = 10 . If we move from the left to the right in F ,

we reach two consecutive 1's Dbefore we reach two consecutive
O's. Hence, 3*3 starfs with 11t(01)1 for sSume t >0 .
Next we observe that B*3 does not contain any piece of the
form 00s(10)0 . By (5.8) B¥s; 1is a 3-block in A* . Ve

now observe that:
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m(BB) =3 4 84+ e00 + 8, 4 = m(B*B) ’

g+
ﬂA&Bg)=:iLB)+3-+251+452-2

where Pi= the number of i-blocks in 11f(01)1D'1 .o DU
en+2

’

= the number of i-blocks which meet B3 by applying
1(a%,B%;) = 1(4,B) + 3 + 2B, 4 4B, - 2
where Bi = the number of i-blocks in OOSO(‘lO)OC‘1 coe C'p

= the number of i-blocks which jump out of B3 by applying
9n+2

Case 3e: OSuppose p < i < p+q and Ci = 01 = B1O where

’ is a 1-block in A contained in B3 . Then Ci = 10 ,

Ci is followed by a 1 and Ci is contained in B*3 . The
0 in Ci is a 1-block in A%* ., Hence, there is a 1-block
in A¥ in the position r(A,B1) ~ 1 . This is in accordance

with the lemma since B1 does not meet or jump out of any
6n+2

block by applying

Case_3f: Suppose p< i< p+q and C; = 00t(10)11 =

B 1B]1B§ ... 1B%11 where B, is a 2-block and B% are

2 1
1-blocks. C! = 11£(01)00 = 11B}*1B5* .., 1B¥*1Bx, wnere

Bi* are 1-blocks and B*, is a 2-block in A* . r(A%,BI¥) =
r(A,B1) -3 and r(A*,B*Z) = r(A,BZ) + 2t , This is in
accordance with the lemma, since B% meets a 2-block and

B, meets t 1=blocks by applying pli+2 .

Case_3g: Suppose Dy = 10 = B,O where B, 1is a 1-block
which meets B3 by applying en+2 . D' =01 = B*11 is
i
contained in B*; , and B¥, is a 1-block in A . r(A*,B*1) =

r(A,B1) -2,
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Case 3h: The 1=blocks in f(10) move as the 1-block in

Case_3i: Suppose D, = 11t(01)00 = B,0B]OB{ ... 0BJ0O

where B, is a 2-block and B# are 1-blocks in A .

D' = 00£(10)11 = 3*2131*1Bf% ... 1BY%¥11 vhere Bi* are
i-blocks and B¥, is a 2-block in A* . r(A%,B,) = r(a,B])-2
and r(A*,B*z) = r(A,BZ) - 2 . This is in accordance with

the lemma, since B% and 32 meet B3 by applying en+2

Case 4: This case is treated like Case 3a ,..., Case 3f,
Specially, there is a 3-block B*3 in A¥* such that
r(A*,B*B) =n+l .

The proof of Lemma 3.6 a), b), c) and d) is now complete,

Suppose Q, 1is of the form (5.5). Then 61 starts
with 00so(1o)o and e) is satisfied.

Next, suppose Q, is of the form (5.3) or (5.4). By
(5.6) s, >0 . A is of the form 0g,Cy ... CD where
D starts with O or a 3-bleck, and Ci = 10 or Ci =

~J

114(01)00 for some >0 . 87(A) = 05,0} ... CLD where
D starts with 00s(10)0 for some s >0, and e) is satis-

fied,

The proof of Lemma 3.6 is complete,

Proof of Lemma 3.70. We denote the last 3-block in A

by Bg . We let A¥= 8%2(a)1 = s(10)0Cy ... c,D be as in
Lemma 3.6.e¢). Besides, we denote A* Dby A¥* = a¥y ... 2% 4

and put r = r(A*,Gp) . Then

o(a) = o83HE@B) 0y _ e . ars(01)10) ... C =

r+1 P
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a eeos ¥ a*1’ e, A¥ Y,

*
r+1 n T

’~

We suppose B*3 =a* .., a¥

s e ] From (5.7) in the proof of

Lemma 3.6 we get that a* , = a* =1 . Therefore,

~ ] 1 t
= = ' cea * 1

is a 3-block in ®(4) .
! 1]
Since (the number of 1's in s(O1)1C1 ces Cp) - (the number of
) ' ~ % At
0's in s(01)1C, ... cp) =1, m(33)==m(B3 ) . We observe
that k(A) = r-1 = 28, + 4B, where B = the number of

i-blocks which meet éB by applying ¢. Hence,
~ H¥ -
r(B; ) = n = 7(B5) - (k(a) - 28-48,) .

Next let Bi be an i-block in A which corresponds to

* * *
a block Bi in 89 «s» @, . We prove that Bi corresponds

T
* % ¥
to an i-block in ®(A) such that r(Bi ) = n+r(Bi) - (k(a)+1) .
* ¥* ¥¥ *1
If By = ay = 1, then B, = a; = 0 is a 1=block in o(A)
and

(5.9)  (B;") = n-r+j = nej-(k(a)+1) = nex(B))-(k(a)+1) .

%
Analogously, there exists a 2-block B, in ®(A) such
that

(5.10)  r(B,") = nex(By) - (k(a)+1) .
By Lemma 3.6.a) and (5.9) (y,z are defined in Lemma 3.6.a))
(5.11)  =(B]) = ner(By) ~ ([k(a)+2]+y+2241-1) .

We add and subtract 1 to indicate that B1 both cirecles around

~

and meets By by applying o . (5.11) is in accordance with
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Lemma 3,10.,a), By Lemma 3.6.b) and (5.10) (y,z are defined
in Lemma 3.6.%))

(5.12)  (By ) = n+x(By) - ([k(a)+1]+2y-2242-2) .

We add and subtract 2 to indicate that B2 both circles

around and meets B3 by applying ¢ . (5.12) is in accor-
dance with Lemma 3,10.b).

Suppose Bi is an i-block in A different from B3 ,

which does not circle around by applying o , and corresponds
to B: in AT . Since o(A) = 8(n+2)+(1+k(A))(A) , there
¥

exists an i-block B; in ®(A) such that

1

(5.13)  2(3; ) = v(B]) - k(&)-1, 1(B;") = 1(B))-k(a)-1 and

m(B;*) m(B;) .

By (5.13) and Lemma 3.6 the Lemma is true for B; .
¥ * %
Finally, l(B3 ) = 1(B3) - k(A)-1 . Therefore, by Lemma

3.6 we get that d) in the Lemma is true for By = ﬁB .

The proof of Lemma 3.12 follows easily from the proof of

Lemma 3, 10.

o —— i

Suppose B and C are blocks in A = &y eee By and
specially that B 1is a 2-block. Furthermore, suppose B3
is the last 3-block in A . Let 7 = 7(B,C) be as in Def.

3.,13. We then define

70 = 7(B,C) = uiDeZ: D 1is an H~block or a K-block in A |
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ui{ai,ai+1}c:2%: 2;€D 1is a left endpoint of a 3-block in Al
ui%ai,ai+1}c:za: a;_4€D is a right endpoint of a 3-block
£ B3 in A}
If C4 By , then a(B,0) = card” - cardZ , while C = §3

implies d(B,BB) = card” - card % +2 . Besides, all the sets

in the union in this lemma are disjoint.

Proof: By studying the definitions of blocks we observe
that all the sets in the union in the lemma are disjoint.

Hence,

1

card 7 2(the number of 1-blocks between B and ()

+ 4(the number of 2-blocks between B and C)

+ 2(the number of endpoint a; i a, , between B

and C , of 3-blocks) .
If ¢ & By , then T = (the number of endpoints, between B
and C , of 3-blocks)-2z is equal to (the number of endpoints
ay * a, , between B and C, of 3-blocks) , else T = (the
nunber of endpoints 2y + 8y s between B and C , of 3-blocks)
-2 , where 2z is as in Def. 3.13, Therefore, ¥ = card %

if C+ B and ¥ = card/f, -2 otherwise,

3 ?

Proof of Lemma 3,14: In this proof, B, and C; denote

i-blocks. Furthermore, ‘meet®, "jump out" and "move' mean
meet by applying o etc.
a) Suppose B} yooes 131JG meet B, . By Def. 3.5 and

3.8 we can guppose
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(5.14) r(B%) = r(By)+21

and that B% and B2 cannot meet any 3-block E éB . From
Lemma 3.10, if B! meets §3 , then B} moves 1 position in
addition. Moreover, B% also circles around, hence moves

-1 position in addition. Analogously with B2 . Lemma 3.10

implies

r(0(B}))=r(BE)- (k(a)+2+2)=r(B,)+2i-k(2)-4 and r(o(B,)) =r(B,)-
(k(A)+1-21%).

Hence,
(5.15)  w(9(B])) - r(0(By)) = 2i-3-2%

By (5.14) and (5.15) we éet

a(8,B,) = (x(8}) - 2(By)-1) - 2(i-1) = r(By)+2i-r(By)-1-2142 = 1 .
card M (2(BL),0(8,)) = r(o(8}))-1in-2(a(B,)) = n - 4+2i-2¢ .
a(9(3]),9(B,)) = n=4+21-28-2(Y = (£=5+1) ) =20y gw B2Y 5+ Tons1-2y =2y p=2y 5.

This is in accordance with the first part of a).

Suppose B1 and B2‘ do not meet, and let
%t = 7(B4,Bp) X=X (By,By),2=2(By,By) , 2, =72(0(B,),9(B,)),
Xep = X(m(B1),@(BZ)),Zm=z(m(B1),m(B2)) ; We calculate cardﬁ%¢
and xcp by the following prodedufe: Tirst, put card%QD =
card 7, and Xy = X By Lemma 3,10 we must decrease cardZ?gtp

and X@ according to the following table:
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Decrease card(Z?m) by  Decrease X, by

The main rule 1 0
B1 meets a 2-block 2 2
(5.16) B, meets é3 0 0
B, meets a 3-block E §3 1 1
B, Jumps out of a 3-block 1 1
A 1-block meets B, 2 2
(5.17) B, meets ﬁg 0 0
B, meets a 3-block + By -2 -1
B2 jumps otit'of a 3-block -2 -1

»

(5.16) follows in this way: If B, meets B, both 72,
and Xeo decrease by 1. However, B1 also circles around,

hence ﬂ@cp increases by»1 . Besides, ¥ increases by 1

O

since z = 1 and By, = 0. (5.17) follows in the same way.

Conclusion: cardlnm - XCD = card-x if B2 meet a %-block

k EB or jumps out of a 3-block, else
card?‘ncp-xCp = (card -YX)=1 .

Hence, a) is proved.

b) Suppose A = Ay ees ay, W= %KBZ,BB) and 7 = ZKBZ,BB)

(see Lemma 5.5). In the following and asterisk below 2y

n?

means: a,€ 7 and ai¢ 7. . We observe

(5.18) If B, =a;a;., , then a.€# and a,¢7%.

First we suppose B3 + B3 , hence

(5.19) A = DB OOS(TO)OC1 ...CPE where E starts with O or
¥ *
a %-block and- Ci are H-blocks.



If B2 meets B3 , then B2 is contained in C1 e CP .
(5.18) and (5.19) imply by Lemma 5.5 that d(Bz,BB) =4 ,

If 32 does not meet B3 , we have two cases

(5.20) A = DB,00s(10)0C,,..C_OF or A = DB,00s(10)0C....C_11t(01)1F
%% % 1 Px 3 1 1Y *

¥ ¥*
Besides, B, is contained in F or D . (5.18) and (5.20)
imply by Lemma 5.5 that d(BZ,BB) >5,
Finally we suppose B3 = ﬁB . Moreover, we suppose Bg
and ﬁ; in A = 9n+2(A)1 correspond to B, and éB . We

now prove that
* A%
(5.21) d(BZ,BB) = d(Bz,BB) .

- - K, %%
Suppose %?==ﬁ%(BZ,BB),XshX(BZ,BBD,QQ =A%(B2,B3) ~and
* % % * *
X = X(BZ’B3> . We calculate card Z and X by the
following procedure: First put card 7 = card#Z and
% * *
X =X . By Lemma 3.6 we must decrease card?Z and X

according to the following table:

* *
Decrease card 7 by Decrease X by
A 1-block mijg B2 by -2 2
applying 6
32 meet a 3-block by app= o o
lying en+2
B, Jjumps out of a 3-block by
2 n+2 ; 2 2
applying €

% 2 *  * -
Hence, d(B;,B;) = card M =X = card 7y = d(BZ’BB) .

Next we prove

¥ ¥*
(5.22) B, in A circles around (this is equivalent to

"B, meets ﬁgt') if and only if d(B;’ﬁg) =4



*
A

has the following form as in Lemma 3,12.e,

(5.23) s(10)0C, ... ch where D starts witha O or a 3-block

~ *
and Ci are H-blocks., If B2 meets B3’ B2 is contained in

C

... O, . Putting n" = 72(33,%2) we get by (5.18), (5.23)

* *
and Lemma 5.5 that card M -card %2 = 2 . 1If B, does not

meet By , we show as in the case By k By that

5 +* * % * *
card 7l -card /" > 3 . By Lemma 5.5 d(BZ’BB) = card A —card 2 +2

and the proof of (5.22) is complete.

Combining (5.21) and (5.22) we get: B, meets §3 if

and only if d(Bz,ég) =4 .

Suppose B, meets By k B3 (the case B3 = B3 is treated

in the same way), and that there are Ti i-blocks between

B, and B; . Moreover, we suppose A = EBBOOS(1O)OO1...CiO

i i+1F

where C. are H-blocks and C; 4 = th(01)00 . Observing

J

that card(OOS(1O)OC1...Oi) = 3+2T,+4T, , we get

r(BZ) - r(BB) = 5 + 2T, + 41, .

Supposing there are 5 i-blocks which meet 53 we gets

r(o(B,)) = r(By) - 1 -2 « k(&) .
r(9(Bz)) = r(Bs) + 25y + 45, = k(4) .
card 7o (B,),9(B5)) = [r(v(B,))-1] + n-r(o(B5))
= n-4—281~4s2+(r(B2)—r(BB))
= n+1+2(T1—sj)+4(T2—sz) .
X (0(B,),9(B5)) = 2(y4=(54=04))+4(y o= (55=15) ) +2(2y 5=1)-2

2y1+4y2+4y3—4—2(s1-T1)—4(82-T2) .
d(9(B,),9(B5)) = card Z(w(B,),9(Bz))-X (9(By),®(B3) )=n+5-2y ; =4y =

4‘Y3 '
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The last part of b), and the parts c), d) and e) are

proved by using a procedure and a table as in the proof of a).

Definition 5.6

Suppose B and C are two blocks in A = Bqeaedy o If

B is to the left of C , we define

ﬁ(B,C) =W_2‘-= fal(C)H,...,anfUia1,...,a1(B)_1l and Z(B,C)=Z=1,
else

2?(B,C) =é%:={al(C)+1""’al(B)-1} and z(B,C) =z =0 .

We define ‘hetween’, -QKB,C) =% and E]B,C) as in Def. 3.13

by using M instead of M.

Suppose B; 1is an i-block for 1 = 2,5 . Then B, Jjumps
out of By if and only if 5(32,33) = 2, In this case

AUw(B,),2(B5)) =0 + 3 = 2y, - 4y, - dys ,
otherwise

a(0(B,),9(B5)) = a(B,,B5) - 1 .

The proof of Lemme 5.7 is similar to the proof of Lemma
3.14.b). We only indicate the proof on an example: n =14, k = 3

and

* omema

A=00010001110011

¥* [

®(A) = 01000001100111
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Denoting the i-blocks in A Dby Bi we observe that
card M (B,,B5) = 2 , z(By,Bz) = O , X(By,B3) = 0,
Carda&(@(Bz)ym(Bg)) = 9 = n-5, Z(m(Bz)’w(BB)) =1,
i(m(BZ),m(BB)) = 2yy + 4(yp=1) + 2(2y3-1) -2 = 240+2-2 = 2 .
Hence, 5(32’33) = 2 and

T(P(By),0(B5)) = (0=5)-(2y 1+4(y p=1)+2(2y5-1)-2) w 043-2y 1 =4y p=by5 -

Suppose B, is an i-block in A for 1 =2,3, A satis-

fies Cond. 3.7 and let s = n+2 - 2y1—4y2-4y2 . Then

a(By,B5) = A(9°(B,),9°(B5)) and A(B,,B5) = A(07(B,),9°(B5)) .

Proof: We show first that
(5.25) 4 < d(BZ’BB) < n+5—2y1:4y2_4Y3 .

We choose p as the least integer such that @—p(Bz) meets

@'P(BB) by applying © . By Lemma 3.714.Db)

d(m—(p-1)(Bz),@-(p—1)(B3)) = n+5—2y1-4Y2-4Y3 . Hence!
d(By,Bz) = (p=1)+(n+5=2y =4y y~dyz) < n+5-2y =4y p=dy3 .
4 g.d(BZ,BB) is obvious. Putting T = d(BZ,BB) we get

4 .

a(o*(B,), 074 (B5))
a (o2 (B,), 077 (B5))
a(9%(B,),0%(B5)) = (8+3) = (s-1+3) = T

s+3 .

d(Bz,BB)

il
I

n+5-2Y1~4Y2-4Y3

since ©° = {8 T+3)5pT=3 a(By,B5) = a(v°(B,),9°(B5))

follows in the same way.
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Definition 5.9.

"Between® is used in the same way as in Def. 3.13. Suppose

B and C are blocks in A . Then

the number of i-blocks between B and C (i=1,2),

li

v;(B,C)
yB(B,C) = the number of endpoints between B and C , of

3-blocks.

Moreover, we order the positions in A relatively to B in

this way: 1r(B) <r(B)+1 <...<n<1<...<r (B)-1.

Suppose A satisfies Cond. 3.1. Moreover, let B; be
. o . * * ¥ X
an i-block for i=1,2 and 4a(B;,B,) = d(vP(B,),0"(B,))
¥ ¥*
Then d(B1,B2) = d(wP(B1),@p(B2)) for every 1-block B, .

% *

Proof: Suppose r(BZ) < r(B ) < r(B1) relatively to

*

B2 »
*

Z@(B1,B1) + 1 and

Then Z(B19 2) = “(3193 ) + Z(B ;) ’ Z%’(B1; 2) = Qy(B1’Bz)+

X(B1’B ) = 2(Y1(B1s 2)+Y1<B1:B )+1)+2(Y2(B1,B >+y2(B1’B ))
+ (y3(31s 2)+y3(B1,B ))+Z(Bl,B2) = X(B1;B2){K(B1s 1)+2 "

Hence,
3#* * * %
(5.26) d(B1,B2) = d(B1,B1)+d(B1,B2)—1 .

By Lemma 3.14 c) d(eP(5,),9P(B})) = d(B,,B]) . Since

r(B,) < r(B)) < r(8,) , d(2],B,) < a(B],B,)

Hence, d(oP(8)),9P(B,)) < a(«P(8]),0°(B,)) , which implies

oP(By) < ¢P(B]) < 0P(B,) relatively to oP(By). Similar to
(5.26), we get a(oP(3)P(85))=a(0P(B,),P(B]))+a(eP(B]),oP(By))-1
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* *
Hence, d(B1,B2)=d(®(B1),$(B2)) .
% * *
If r(Bz) < r(B1) < r(B1) relatively B, , we show similar

to (5.26) thot

a(s;,B,) = 4(3;,B,) + a(B,,B,)-1,
a(@P(B]),9P(83)) = a(P(B]),0P(B,)) + a(¥P(B,),0P(B,))-1 .

This implies by Lemmz 3.14. c) that a(By,By) = a(9P(84),9°(3,)) .

Lemma 5.11,

Suppose A satisfies Cond. 3.7, and Bi is an i-block

for 1i=1,2,3. Then

(n-2)-l2y +4(y - 1)+2(2v5=1)+2] ,
(n-2)-lT2y +4(y,=1)+2(2y5-1)+2] ,
(n-2)-[2(y1~1)+2(y2—1)+2y3+1] .

d(Bz,BB) + d(BB,BZ)
d(BZ,BB) + d(BB,BZ)
d(B1,BZ) + d(B2,B1)

Proof: We observe that ZQ(BZ,BB) + ZZ(BB,BZ) = n-2 and
X(B,,Bz) + X(Bg,B,) = [2Y1+4(Y2-1)+2(2y3—1)+2]. Hence, the
first equality is true. The other equalities are proved in

the same way.,

Proof of Lemma 3,15, Ci denotes an arbitrary i-hlock.

Lemmas 5.8, 5.11 and 3.13.4) imply

a’(@t(c3)pc@t(32)) = a(c3v32)aa(@t(c3)t@t(32)) = d(c3,32),
(5.27)
a(9*(C,),9%(B,)) = a(Cy,B,),a(v°(0,),0°(B,)) = a(c,,B,) .
‘Tet A = DBYE = 24 +or 8y 9 (A) = FU(By)G = byuuub , i = T(B,)
and j = r(mt(BZ)) . We then get
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B, is contained in C; <= d(B,,C5) >'E(32,03)

2
(5.28) == a(0"(B,),9°(05)) > A6"(B,),0°(C5)) <> 0°(B,) is

contained in mt(CB) .

We suppose there exist a minimal integer q such that
254 + Ds,q - Without loss of genmerality we can suppose
a. = 1 . Hence,

(5.29) ai = .bj s 000y ai+q‘—1 = b;]+q_.] °
(5.27), (5.28) and (5.29) imply for 0 < q' < g

1(C5) = i+q" => 1(9°(C5)) = j+q',7(C5) = i+q"
(5.30) = r(6"(05)) = J+q’, £(C,) = irq'=> r(0°(C,)) =
3+q',7(C,) = i+qie=> 2(0°(Cy)) = J+q',
“ In particular, we have a. is contained in a 3-block if

“i+q

and only if bj+q contained in a 3-block. Thus (5.29) and

(5.30) give a contradiction. For example, if ai+q =1 = C1

is & 1-block, then b. = mt(C1) =0 1is a 1-block. This

J+q
gives a contradiction since b. is not contained in any

J+4

3-block. Without loss of generality we can suppose 1 > J .
We have therefore proved that a; = bj""’an = bj+(n—i).
By (5.30) n = r(BB) = r(@t(33)) = j+n-i . Hence, j=i and
=G .

D =F is proved in the same way by using E(BZ,CB) =
¢t t t t
d(@ (BZ)’® (CB))yd(B2903) = d(CD (B2),® (03))sd(B2902) =
a(0%(B,),0°(C,)) and a(B,,C,) = a(®*(B,),0%(c,)) .

Proof of Lemms 3.16: If o (A) = ¢°(A) , the Lemma is tri-
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vial, We suppose © (A) + ©°(A) . If there exists an i
d(@s+l(B1,®s+l(B2)) ) W€

®S+i(A) . Hence, o (A) =

such that d(mr+i(B1),$r+i(Bg))

get by Lemma 3.15 that mr+i(A)
©°(A) which is a contradiction. Therefore

(o™ (B,), 07 (B,)) £ a(e®(B,),0%H(B,)) for all i .

We observe by Lemma 3.14 a): If mi(B1) and wi(Bz) do not
meet by applying o , d(@i(B1),®i(B2)) "decreases® by O or

1 . Hence:

I a(o®(8,),0°7(8,)) > a(etTi(B,),0"(B,)) ,

mr+i(B1) meets mr+i(B2) "before® ®S+i(B1) meets
(5.31) . _ .
ms+l(B2), else ®S+l(B1) meets ws+l(Bo) hefore'

mr+i(B1) meets mr+i(B2) .

We suppose t1,...,tq(q < ¢) are the integers such that

mr+ti(B1) meets ®r+ti(32) by applying ¢ . We prove the

following 3 claims by using (5.31):
(5.32) @S(B1) neets mS(Bz) at most once by applying $t1+1 .

(5.33) ws+ti+1(B1) meets ®S+ti+1(32) once by applying
ptisl=ti

(5.34) ®S+tq+1(B1) meets ms+tq+1(B2) at most once by
applying ottt -

The Lemms now follows easily from (5.32), (5.33) and (5.34).

Proof of (5.32): If a(e°(B,),0°(B,)) > a(e"(B,),v (B,)) ,

then mS(B1) does not meet ms(Bz) by applying b1t

Otherwise, let y ©be the least integer such that wS(B1)

meets @s(Bz) by applying o’ . Then
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(@547 (8,),0%7(8,)) > A" (8,077 (B,)), and oFV(B,)

meets wr+y(B2) peforel ms+y(B1) meets ms+y(B2) .

Proof of (5,33): ILet y be the least integer such that

ms+ti+1(B1) meets ®S+ti+1(B2) by applying @ . Then
d(ms+ti+1+y(B1),ws+ti+1+y(32)) > d($r+ti+1+y(B1),mr+ti+1+y(32)) ,
and @r+ti+1+y(B1) meets ®r+ti+1+y(B2) "before"

Cps+ti+1+y(B1) neets cps+ti+1+y(B2) .

The proof of (5.34) is analogous.

" The proof of Lemma 3.17 follows from the proof of Lemma

5.80

The proof of Lemma 3.18 is obvious since each 2-block
meets each 3-block a +times, each 1-block meets each 2-

block c¢ +times and A = o°(A) .
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