Abstract.
$E_{k}\left(x_{2}, \ldots, x_{n}\right)$ is defined by $E_{k}\left(a_{2}, \ldots, a_{n}\right)=1$ if $\sum_{i=2}^{n} a_{i}=k$, else $E_{k}\left(a_{2}, \ldots, a_{n}\right)=0$. We determine, the periods of the sequences generated by the shift register with the feedback function $x_{1}+E_{k}\left(x_{2}, \ldots, x_{n}\right)+E_{k+1}\left(x_{2}, \ldots, x_{n}\right)$
$+E_{k+2}\left(x_{2}, \ldots, x_{n}\right)$ over the field $G F(2)$. We indicate also how to find the periods when the feedback function is $x_{1}+E_{k}\left(x_{2}, \ldots, x_{n}\right)+\ldots+E_{k+p}\left(x_{2}, \ldots, x_{n}\right)$ where $p>2$.

1. Introduction.

In this paper we study only shift registers over the field $G F(2)=\{0,1\}$ characterized by $1+1=0+0=0$ and $1+0=1$. Let $S\left(x_{2}, \ldots, x_{n}\right)$ be a symmetric polynomial. A symmetric shift register of n stages with feedback function $x_{1}+S\left(x_{2}, \ldots, x_{n}\right)$ is the function $\theta:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ defined by

$$
\begin{aligned}
& \theta\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, x_{1}+s\left(x_{2}, \ldots, x_{n}\right)\right) \\
& \text { If } \theta^{s}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{n}\right), s \text { is a period of }
\end{aligned}
$$ (a_{1}, \ldots, a_{n}) with respect to θ. These periods are equal to the periods of the sequences $\left(a_{t}\right)_{t=1}^{\infty}$ satisfying the nonlinear difference equation

$$
a_{n+t}=a_{t}+s\left(a_{t+1}, \ldots, a_{t+n-1}\right) \text { for } t>0 .
$$

For a general treatment of nonlinear shift registers see [1].
We shall in this paper extend the results of Kjeldsen [2] and Søreng [3]. I am grateful to K. Kjeldsen who inspired me to study symmetric shift registers.

The weight $w(\vec{a})$ of a vector $\vec{a}=\left(a_{1}, \ldots, a_{n}\right)$ is defined by $w(\vec{a})=\sum_{i=1}^{n} a_{i}$. We define $E_{k}\left(x_{2}, \ldots, x_{n}\right)$ for $k \in\{0,1, \ldots, n-1\}$ by

$$
\begin{aligned}
& E_{k}\left(a_{2}, \ldots, a_{n}\right)=1 \text { if } w\left(a_{2}, \ldots, a_{n}\right)=k \text {, else } \\
& E_{k}\left(a_{2}, \ldots, a_{n}\right)=0 .
\end{aligned}
$$

The polynomials \mathbb{E}_{k} are very important. In [3] we showed that all symnetric polynomials are of the form $\sum_{k \in \Delta} E_{k}$ for some $\Delta \subset\{2, \ldots, n\}$. Besides,
if the periods of $E_{k}+\ldots+E_{k+p}$ for $p \geq 0$ are known, the periods of all symnetric shift registers can be determined.

In this paper we determine the periods when $S=E_{k}+E_{k+1}$ $+\mathrm{E}_{\mathrm{k}+2}$. In [3] we determined the periods when $\mathrm{S}=\mathrm{E}_{\mathrm{k}}$ and $\mathrm{S}=\mathrm{E}_{\mathrm{k}}+\mathrm{E}_{\mathrm{K}+1}$. By using Thm. 2.2 in [3] we therefore know the periods of all S of the form $S=\sum_{k \in \Delta} E_{k}$, where $\Delta \subset\{2, \ldots, n\}$ has the property

$$
k, k+1, k+2 \in \Delta \Rightarrow k-1, k+3 \notin \Delta .
$$

Besides this paper gives probably all ideas needed to solve the general case $S=E_{k}+\ldots+E_{k+p}$ for $p>2$. In Section 4 we will indicate how to treat the general case.

In Section 2 we state the results. In Section 3 and 5 we prove them. Section 3 contains the main lines of the proofs and Section 5 contains the tecnical lemmas which are needed. In section 4 we indicate the general situation by an example.

We denote $\vec{a}=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ also by $\vec{a}=a_{1} \ldots a_{n}$. We denote finite sequences of numbers by capitol letters (also the empty sequence). For $s \in\{0,1, \ldots\}$ we define $s(A)=A \ldots A$ where A appears s times. We let $1_{t}=1 \ldots 1$ (resp. $o_{t}=0 \ldots 0$) denotes a string of t consecutive 1 's (resp. 0's). We refer to the index of nota.tion in the end of this paper.
2. Main results.

In this section we introduce the concept of blocks and
the main results. In the proofs we show how the blocks of a vector $A=a_{1} \ldots a_{n}$ moves by using θ.

Definition 2.1.
Let $A=a_{1} \ldots a_{n} \in\{0,1\}^{n}$. We put $a_{n+1}=a_{n+2}=a_{n+3}=0$. hence $a_{1} \ldots a_{n+3}=A 000$. We define the 3 -blocks in A by the following inductive procedure:

Suppose $i=0$ or that the $3-b l o c k s$ in $a_{1} \ldots a_{i}$ are defined.

Let j be the least number $>_{i}$ such that $a_{j} \ldots a_{n+3}$ starts with $11 \mathrm{~s}(01) 1$ for some $s \geq 0$. If such a j does not exist, we stop the procedure.

Let p be the least number $>_{j}$ such that $a_{p} \ldots a_{n+3}$ starts with $00 s(10) 0$ for some $s \geq 0$.

By definition $a_{j} \ldots a_{p-1}$ is a 3-block in A. We have now defined the $3-b l o c k s$ in $a_{1} \ldots a_{p-1}$, and we continue the procedure.

Definition_2.2.
Let $A=a_{1} \ldots a_{n} \in\{0,1\}^{n}$. Isolated 1 's outside $3-$ blocks and isolated 0^{\prime} 's inside 3 -blocks are called 1-blocks.

11 outside 3-blocks and 00 inside 3-blocks are called 2-blocks.

We illustrate the definitions by two examples. We put one * above the 1 -blocks, one line above the 2 -blocks and one line below the 3 -blocks.
(2.1) $0 \overline{1101001101101011000100110001110 .}$.
(2.2) $\overline{110}{ }^{*} 0{ }_{10} 1000 \overline{1100011100} \stackrel{*}{100111 \overline{0011001}}{ }^{*}$.

The next theorem is the main result of this paper.

Theorem 2. 3 .

Suppose n and k are positive integers such that $0 \leq k \leq n-3$. Suppose $\theta:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is defired by

$$
\begin{aligned}
& \theta\left(x_{1}, \ldots, x_{n}\right)=\left(x_{2}, \ldots, x_{n}, x_{n+1}\right) \text { where } \\
& x_{n+1}=x_{1}+E_{k}\left(x_{2}, \ldots, x_{n}\right)+E_{k+1}\left(x_{2}, \ldots, x_{n}\right)+E_{k+2}\left(x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

We suppose $A=a_{1} \ldots a_{n}$ is such that $w(A)=k+3$
and A contains both 1-, 2- and 3-blocks.
We let γ_{i} be equal to the number of i-blocks in A for $i=1,2,3$. We let a and b be the minimal positive integers such that
(2.3) $\quad a\left(2 n+4-4 \gamma_{1}-6 \gamma_{2}-8 \gamma_{3}\right)=b\left(n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}\right)$.

Then p defined by
$p=a\left(n+2-2 \gamma_{2}-4 \gamma_{2}-4 \gamma_{3}\right)(n+3)+4 a \gamma_{2}+2 b \gamma_{1}$
is a period for A. That means $\theta^{p}(A)=A$.

The next theorem treats the situation that $A=a_{1} \ldots a_{n}$ does not contain 3 different types of blocks.

Theorem 2.4.
θ is defined as in Thm. 2.3. We suppose $A=a_{1} \ldots a_{n}$ satisfies $w(A)=k+3$. We let γ_{i} be equal to the number of i-blocks of A for $i=1,2,3$.
a) A contains only 1- and 2-blocks. Then the following is a period

$$
\left(n+1-2 \gamma_{1}-2 \gamma_{2}\right)(n+2)+2 \gamma_{1}
$$

b) A contains only 1- and 3-blocks. Then the following is a period

$$
\left(n+1-2 \gamma_{1}-2 \gamma_{3}\right)(n+3)+4 \gamma_{1}
$$

c) A contains only 2- and 3-blocks. Then the following is a period

$$
\left(n+2-4 \gamma_{2}-4 \gamma_{3}\right)(n+3)+4 \gamma_{2}
$$

d) If A contains only i-blocks, $n+i$ is a period for

$$
i=1,2,3 .
$$

We do not prove Thm. 2.4. It can be proved by using the distance functions defined in Def. 3.13 and the same ideas as in the proof of Lemma 3.15. Besides, the proof is similar to the proof of Thm. 4.4 in [3].

If $w(A) \in\{k, k+1, k+2, k+3\}$, there exist in almost all cases an integer q such that $w\left(\theta^{q}(A)\right)=k+3$. Then we use Thm. 2.3 or Thm. 2.4 to find a period of $\theta^{q}(A)$. If $w(A)<k$ or $w(A)>k+3$, we prove easily that $\theta^{n}(A)=A$.

Now we illustrate by three examples how Thm. 2.3 is used.

Let $n=12, k=3$ and $A=000000101100$. We use Thm. 2.3 on $\theta^{3}(A)=000101100111$. Since $\gamma_{1}=\gamma_{2}=\gamma_{3}=1$, (2.3) implies $10 a=7 b$. We get $a=7, b=10$ and the period equal to

$$
7 \cdot(12+2-2-4-4) \cdot 15+4 \cdot 7+2 \cdot 10=468 .
$$

The example (2.1) satisfies the hypothesis of the theorem with $k=13$. In this example $n=32, \gamma_{1}=5$,
$\gamma_{2}=2$ and $\gamma_{3}=2 .(2.3)$ implies $20 a=15 b$. We get $a=3, b=4$ and the perjod equal to 904 .

The example (2.2) satisfies the hypothesis of the theorem with $k=13$. In this example $n=32, \gamma_{1}=4, \gamma_{2}=3$ and $\gamma_{3}=2$. (2.3) implies $18 a=15 b$. We get $a=5, b=6$ and the period equal to 1158 .

Corollary 2.5.
θ is as in Thm. 2.3. We suppose $A=a_{1} \ldots a_{n}$ satisfies $w(A)=k+3$.

Then the minimal period of A with respect to θ is less than n^{3}.

We prove Cor. 2.5 in the end of Section 5.
Quite often the periods we find in Thm. 2.3 and Thm. 2.4 are the minimal periods. However, we have not found any good hyphothesiswhich implies minimality. By studying the proofs we think it is possible to find such a hypothesis. The next corollary is a simple example.

Corollary 2.6.

θ is as in Thm. 2.3. We suppose $A=a_{1} \ldots a_{n}$ satisfies $W(A)=k+3$, and A contains 1 i-block for $i=1,2,3$.

Then the period we find in Thm. 2.3 is the minimal period of A.

We prove Cor. 2.6 in the end of Section 5.
3. Main lines of the proofs.

In this section we prove Thm. 2.3. The proofs of the lemmas in this section are done in Section 5. We suppose
n and k are positive integers such that $k \leq n-3$. The proof of Thm. 2.3 is easier if we suppose $A=a_{1} \ldots a_{n}$ satisiies the next condition.

Condition 3.1.
Let $A=a_{1} \ldots a_{n} \in\{0,1\}^{n}$. A satisfies condition 3.1. if

1) $w(A)=k+3$
2) A contains 1-, 2- and 3-blocks.
3) A does not start with a 1-block or a 2-block.
4) A ends with a 3-block.

Iemma 3.2.
If $A=a_{1} \ldots a_{n}$ satisfies 1) and 2) in Cond. 3.1, there exists an integer q such that $\theta^{q}(A)$ satisfies Cond. 3.1.

Later in this section we define an integer $k(A)$ which is dependent of A. If A satisfies Cond. 3.1, we prove that $\theta^{n+3+k(A)}(A)$ satisfies Cond. 3.1. In the proof of Thm. 2.3 we regard $A_{0}=A, A_{1}=\theta^{n+3+k(A)}(A), A_{2}=\theta^{n+3+k\left(A_{1}\right)}\left(A_{1}\right)$, etc. At last we find an integer s such that $A=A_{s+1}$. Then the following is a period for A :

$$
\sum_{i=0}^{s} n+3+k\left(A_{i}\right)=(s+1)(n+3)+\sum_{i=0}^{s} k\left(A_{i}\right)
$$

We calculate s and $\sum_{i=0}^{S} k\left(A_{i}\right)$ and get the wanted period.
The idea of the proof is to examine the blocks of $\theta^{n+3+k(A)}(A)$ when we know the blocks of A. Usually an
i-block moves $k(A)+3-i \quad$ places to the left by applying $\theta^{\mathrm{n}+3+k(A)}$ on A. Because the blocks move with different velocities, they will meet sometimes. Therefore we must examine what happens when the blocks meet. In addition we must examine what happens when 1 -blocks and 2 -blocks inside a 3-blockreach the left endpoint of the 3-block. We must also examine what happens when a block reaches the first place in A. In that case the block cannot move to the left. Besides, we will prove that a 3-block does not change size by applying $\theta^{n+3+k(A)}$ on A. As a measure of the size of a 3-block B we will define the mass $m(B)$ of B.

First we study how the blocks move by applying θ^{n+2}. Before we formulate the next lemma we need some definitions.

Definition 3.3.
Let $A=a_{1} \ldots a_{n}$ and $B=a_{s} \ldots a_{t}$ be a piece of A. We define the left endpoint of B by $I(B)=I(A, B)=s$ and the right endpoint of B by $r(B)=r(A, B)=t$.

Definition 3.4.
Let B be a 3-block. We define the mass of B by $m(B)=$ (the number of $1^{\prime} s$ in B) - (the number of $0^{\prime} s$ in B). Definition 3. ${ }^{\text {. }}$
a) Let B_{3} be a 3-block in A. Suppose A is of the form

$$
A=C B_{3} O 0 s(10) O C_{1} \ldots C_{p} D
$$

where $s \geq 0$, and $C_{i}=10$ or $C_{i}=11 t(01) 00$ for some $t \geq 0$.

By definition the 1- and 2-blocks in $00 s(10) 0 C_{1} \ldots C_{p}$ meet B_{3} by applying θ^{n+2}.
b) Let B_{3} be a 3-block. We suppose B_{3} is of the form

$$
B_{3}=11 s(01) 1 C_{1} \ldots C_{p} D
$$

where $s \geq 0$, and $C_{i}=01$ or $C_{i}=00 t(10) 11$ for some $t \geq 0$.

By definition the 1- and 2-blocks in 11s(01)1C $\ldots C_{p}$ jump out of B_{3} by applying $\theta^{1 n+2}$.
c) Suppose B_{2} is a 2-block in A which does not meet or jump out of a 3 -block by applying θ^{n+2}. Suppose $r\left(A, B_{2}\right)=s$. If there are 1 -blocks on the places $s+2, s+4, \ldots, s+2 t$, we say that these 1-blocks meet B_{2}.

Lemma 3.6.
Suppose A satisfies Cond. 3.1; and let $A^{*}=\theta^{n+2}(A) 1 \in\{0,1\}^{n+1}$.
a) Suppose B_{1} is a 1-block in A. Then there exists a 1-block B_{1}^{*} in A^{*} such that

$$
r\left(A^{*}, B_{1}^{*}\right)=r\left(A, B_{1}\right)-1-y-2 z
$$

where $y=1$ if B_{1} meets or jumps out of a 3-block by applying $\theta^{n+2}, y=0$ otherwise, and $z=1$ if B_{1} meets a 2-block by applying $e^{n+2}, z=0$ otherwise.
b) Suppose B_{2} is a 2-block in A . Then there exists a 2-block $B_{2}{ }^{*}$ in A^{*} such that

$$
r\left(A *, B_{2}^{*}\right)=r\left(A, B_{2}\right)-2 y+2 z
$$

where $y=1$ if B_{2} meets or jumps out of a 3-block by applying
$\theta^{\mathrm{n}+2}, \mathrm{y}=0$ otherwise, and z is equal to the number of 1-blocks which meet B_{2} by applying θ^{n+2}.
c) Suppose B_{3} is a 3-block in A. Then there exists
a 3-block $B_{3}{ }^{*}$ in A^{*} such that

$$
r\left(A^{*}, B_{3}^{*}\right)=r\left(A, B_{3}\right)+1+2 \beta_{1}+4 \beta_{2}
$$

where $\beta_{i}=$ the number of i-blocks which meet B_{3} by applying θ^{n+2}.

$$
I\left(A^{*}, B_{3}^{*}\right)=I\left(A, B_{3}\right)+1+2 \beta_{1}+4 \beta_{2}
$$

where $\beta_{i}=$ the number of i-blocks which jump out of B_{3} by applying θ^{n+2}. Besides $m\left(B_{3}^{*}\right)=m\left(B_{3}\right)$.
d) $w\left(A^{*}\right) \div k+3 \ldots$ All the blocks in A^{*} arise from one of the blocks in A as in a), b) and c).
e) A^{*} is of the form

$$
A^{*}=s(10) 0 C_{1} \ldots C_{p} D
$$

where $s \geq 0, C_{i}=10$ or $C_{i}=11 t(01) 00$ for some $t \geq 0$, and D starts with 0 or a 3-block.

Definition 3.7
Let A and $A^{*}=\theta^{n+2}(A) 1$ be as in the previous lemma. Suppose $A^{*}=s(10) O C_{1} \ldots C_{p} D$ is as in Lemma 3.6.e.
a) We define $k(A)=r\left(A^{*}, C_{p}\right)-1$.
b) We define $\varphi(A)=\theta^{n+3+k(A)}(A)$.
c) By definition the 1-blocks and 2-blocks in A , which correspond to blocks in $s(10) 0 C_{1} \ldots C_{p}$, circle around by applying φ, and meet $\hat{\vec{B}}_{3}$ by applying φ, where \hat{B}_{3} is the last 3-block in A.

We observe that $k(A)=2 y_{1}+4 y_{2}$ where $y_{i}=$ the number of i-blocks which circle around by applying φ. Besides, $k(A)$ is the least integer s such that $\theta^{n+3+s}(A)$ satisfies Cond. 3.1.

The next definitions and lemma describe what happens to the blocks in A when we apply $Q=\theta^{n+3+k(A)}$ in case A satisfies Cond. 3.1.

Definition 3.8.
Suppose $A=a_{1} \ldots a_{n}$ satisfies Cond. 3.1, and let $\varphi=\theta^{n+3+k(A)}$.

If two blocks in A meet by applying θ^{n+2}, we also say that the two blocks meet by applying φ.

If a 1-block or a 2-block B jumps out of a 3-block by applying $\theta^{\mathrm{n}+2}$, we say that B jumps out by applying φ.

Before the lemma we must define precisely the concept that a block moves (to the left). We calculate modulo n, therefore place $0=$ place n, place $(-1)=$ place $(n-1)$, etc.

Definition 3.9.
Suppose $A=a_{1} \ldots a_{n}$ satisfies Cond. 3.1, and B is an i-block in $A(i=1,2,3)$.

Then B moves q places (to the left) by applying φ means: There exists an i-block $B^{* *}$ in $\varphi(A)$ such that

$$
r\left(\varphi(A), B^{* *}\right)=r(A, B)-q(\bmod n) .
$$

Ierma 3.10.
Suppose $A=a_{1} \ldots a_{n}$ satisfies Cond. 3.1.
a) Let B_{1} be a -block in A. As the main rule B_{1} moves $k(A)+2$ places by applying φ. In addition we have:

If B_{1} meets a 3-block, it moves 1 place extra.
If B_{1} jumps out of a 3-block, it moves 1 place extra.
If B_{1} meets a 2-block, it moves 2 places extra.
If B_{1} circles around, it moves -1 place extra.
b) Let B_{2} be a 2-block in A. As a main rule B_{2} moves $k(A)+1$ places by applying φ. In addition we have:

If B_{2} meets a 3-block, it moves 2 places extra.
If B_{2} jumps out of a 3-block, it moves 2 places extra.
B_{2} moves -2 places for each 1-block which meets B_{2} by applying φ.

If B_{2} circle around, it moves -2 places extra.
c) Let B_{3} be a 3-block in A. As a main rule B_{3} moves $k(A)$ places by applying φ. In addition we have:
B_{3} moves -4 places for each 2-block which meets B_{3} by applying φ.
B_{3} moves -2 places for each 1-block which meets B_{3} by applying φ.
d) Again let B_{3} be a 3-block in $A \cdot B_{3}$ corresponds to a 3-block $B_{3}{ }^{* *}$ in $\varphi(A)$ as in c). Then

$$
I\left(\varphi(A), B^{* *}\right)=I(A, B)-k(A)+2 y_{1}+4 y_{2}
$$

where $y_{i}=$ the number of i-blocks which jump out of B_{3} by applying φ.

Definition 3.11.
Suppose A satisfies Cond. 3.1. By lemma 3.10 a block
B in A corresponds to a block $B^{* *}$ in $\varphi(A)$ ．We denote $B^{* *}$ by $\varphi(B)$ 。

Lemma＿3．12．
Suppose A satisfies Condo．3．1．Then $\varphi(A)$ satisfies Cong．3．1，and all blocks in $\varphi(A)$ are equal to $\varphi(B)$ for some block B in A ．

If B_{3} is a 3－block in A ，then $m\left(B_{3}\right)=m\left(\varphi\left(B_{3}\right)\right)$ ．
We illustrate lemma 3.10 by seven examples．We put an asterisk above the 1 －blocks，a line above the 2 －blocks，and a line below the 3－blocks．

Example 1．$(k=10, k(A)=0) \quad A=000$ 草 011001111001110 茴 1111

$$
\varphi(A)=\theta^{n+3}(A)=0 \text { * } 00110001110011 \text { 卷 } 11111 .
$$

Example 2．$\quad(k=7, k(A)=0) \quad A=00710$ 苂 0001111001011

$$
\varphi(A)=\theta^{n+3}(A)=0 \text { * } 0110000111_{0}^{*} 100111 .
$$

Example 3．$(k=8, k(A)=0) \quad A=1110010011100010111$

$$
o(A)=0^{n+3}(A)=110^{*} 110001110^{*} 1000111 .
$$

Example 4．$(k=5, k(A)=0) \quad A=0011100011000111$

$$
\varphi(A)=\theta^{n+3}(A)=0011100110000111 .
$$

Example 5．$(k=7, k(A)=0) \quad A=001110^{*} 11000111 \overline{0011}$

$$
\varphi(A)=\theta^{n+3}(A)=001001110001100111 .
$$

Example 6．$(k=1, k(A)=2) \quad A=00 \stackrel{*}{1} 00000111$

$$
\begin{aligned}
\theta^{\mathrm{n}+2}(\mathrm{~A}) 1 & =010000000111 \\
\varphi(\mathrm{~A})=\theta^{\mathrm{n}+3+\mathrm{k}(\mathrm{~A})}(\mathrm{A}) & =0000001110^{*} 1
\end{aligned}
$$

Example 7. $\quad(\mathrm{k}=2, \mathrm{k}(\mathrm{A})=4) \quad \mathrm{A}=0 \mathrm{~T} 100000111$

$$
\theta^{\mathrm{n}+2}(\mathrm{~A}) 1=011000000111
$$

$$
\varphi(A)=\theta^{n+3+k(A)}(A)=00001110011 .
$$

We also illustrate the proof of Thm. 2.3 by an example with $k=3$.

$$
\begin{aligned}
& A=0011010000111 \\
& \rho(A)=0101100000111=\theta^{n+3}(A) \\
& \theta^{n+2}(\varphi(A)) 1=10011000000111 \\
& \varphi^{2}(A)=000011_{0}^{*} 110011=\theta^{2(n+3)+6}(A) \\
& \varphi^{3}(A)=0001001700111=\theta^{3(n+3)+6}(A) \\
& \varphi^{4}(\mathrm{~A})=0100071000111=\theta^{4(\mathrm{n}+3)+6}(\mathrm{~A}) \\
& \theta^{n+2}\left(\varphi^{4}(A)\right) 1=10000110000111 \\
& \varphi^{5}(A)=00110000111^{*} 11=\theta^{5(n+3)+8}(A) \\
& \varphi^{6}(\mathrm{~A})=0110000100111=\theta^{6(\mathrm{n}+3)+8}(\mathrm{~A}) \\
& \theta^{n+2}\left(\omega^{6}(A)\right) 1=01100010000111 \\
& \varphi^{7}(A)=0 \stackrel{1}{1} 00001110011=\theta^{7(n+3)+12(A)} \\
& \theta^{\mathrm{n}+2}\left(C^{7}(\mathrm{~A})\right) 1=10000001100111 \\
& \varphi^{8}(A)=00001700110^{*} 11=\theta^{8(n+3)+14}(A) \\
& \varphi^{9}(\mathrm{~A})=0001700100111=\theta^{9(\mathrm{n}+3)+14}(\mathrm{~A}) \\
& \varphi^{10}(\mathrm{~A})=00170 \stackrel{*}{1} 0000111=\theta^{10(\mathrm{n}+3)+14}(\mathrm{~A}) \text {. }
\end{aligned}
$$

Putting $n=13$ and $\gamma_{1}=\gamma_{2}=\gamma_{3}=1$ in (2.3) we get $12 \mathrm{a}=8 \mathrm{~b}$, and hence $\mathrm{a}=2$ and $\mathrm{b}=3$. By Thm. 2.3 the period is

$$
2(13+2-2-4-4)(n+3)+4 \cdot 2+2 \cdot 3=10(n+3)+14
$$

This is in accordance with the calculations in the example.

Part 1 of the prooi of Thm. 2.3:
We prove in this first part the existence of two integers a and b satisfying (2.3) such that

$$
a\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right)(n+3)+4 a \gamma_{2}+2 b \gamma_{1}
$$

is a period.
In the second part we prove that a and b can be chosen minimal.

Because of Iemma 3.2 we can suppose that A satisfies Cond. 3.1.

We consider $A, \varphi(A), \varphi^{2}(A), \ldots$. . There clearly exist integers $s_{1}<s_{2}$ such that $\varphi^{s 1}(A)=c^{s} 2(A)$. Putting $s=s_{2}-s_{1}$, we get $\varphi^{s}(A)=A$.

We suppose A contains the blocks E_{1}, \ldots, E_{X}, numbered from left to right, that is $r\left(A, E_{i}\right)<r\left(A, E_{i+1}\right)$ for $i=1, \ldots, x-1$.

Consider $A=\varphi^{S}(A)=\varphi^{2 s}(A)=\ldots$. Because of the finiteness there exist $p<q$ such that

$$
r\left(\varphi^{p s}(A), \varphi^{p s}\left(E_{i}\right)\right)=r\left(\varphi^{q s}(A), \varphi^{q s}\left(E_{i}\right)\right) \text { for } i=1, \ldots, x .
$$

Putting $t=q s-p s$, we get
$r\left(\varphi^{t}(A), \varphi^{t}\left(E_{i}\right)\right)=r\left(A, E_{i}\right)$ for $i=1, \ldots, x$.
This means that every 1-block (2-block) circles exactly the same number of times around by applying φ^{t}. Let b (a) be the number of times every 1-block (2-block) circles around by applying φ^{t}. By Lemma 3.10 the 3 -block do not circle around at all. Therefore we get that every 1-block,

2-block and 3-block moves respectively $n b$, na and 0 places by applying φ^{t}.

Using Lemma 3.10 we get by applying φ^{t} :
Each 1-blocks B_{1} moves (the number of places)
$\sum_{i=0}^{t-1}\left(2+k\left(\varphi^{i}(A)\right) \quad\right.$ (the main rule)

+ br $_{3} \quad\left(B_{1}\right.$ meets every 3-block b times $)$
$+\mathrm{by}_{3} \quad\left(\mathrm{~B}_{1}\right.$ jumps out of every 3-block b times)
$+2(b-a) y_{2} \quad\left(B_{1}\right.$ meets every 2-block (b-a) times)
- b $\quad\left(B_{1}\right.$ moves -1 place every time B_{1} circles around).

Hence,
(3.1) $\quad n b=2 t+\sum_{i=0}^{t-1} k\left(\varphi^{i}(A)\right)+2 b \gamma_{3}+2(b-a) y_{2}-b$.

Each 2-block B_{2} moves (the number of places)
$\sum_{i=0}^{t-1}\left(1+k\left(\varphi^{i}(A)\right) \quad\right.$ (the main rule)
$+2 a \gamma_{3} \quad\left(B_{2}\right.$ meets every 3-block a times)
$+2 a \gamma_{3} \quad\left(B_{2}\right.$ jumps out of every 3-block a times)
$-2(b-a) \gamma_{2} \quad\left(B_{2}\right.$ meets every 1-block (b-a) times)

- $2 \mathrm{a} \quad\left(\mathrm{B}_{2}\right.$ moves -2 places every time B_{2} circles around).

Hence,
(3.2) $\mathrm{na}=t+\sum_{i=0}^{t-1} k\left(\varphi^{i}(A)\right)+4 a \gamma_{3}-2(b-a) y_{1}-2 a$.

Each 3-block B_{3} moves (the number of places)

$$
\sum_{i=0}^{t-1} k\left(\varphi^{i}(A)\right) \quad \text { (the main rule) }
$$

$-2 b \gamma_{1} \quad\left(B_{3}\right.$ meets every 1-block b times $)$
$-4 a y_{2} \quad\left(B_{3}\right.$ meets every 2-block a times).

Hence,

$$
0=\sum_{i=0}^{t-1} k\left(\varphi^{i}(A)\right)-2 b \gamma_{1}-4 a \gamma_{2}
$$

Hence,
(3.3) $\sum_{i=0}^{t-1} k\left(\varphi^{i}(A)\right)=2 b y_{1}+4 a y_{2}$.
(This follows also from the definition of $k\left(\varphi^{i}(A)\right)$, which implies that $k\left(\varphi^{i}(A)\right)=2 y_{1}+4 y_{2}$ where $y_{j}=$ the number of j-blocks in $\varphi^{i}(A)$ circling around by applying φ.)
(3.1) and (3.3) imply

$$
n b=2 t+2 b y_{1}+4 a y_{2}+2 b y_{3}+2 b \gamma_{2}-2 a \gamma_{2}-b
$$

Hence
(3.4) $\quad 2 t=b\left(n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}\right)-2 a \gamma_{2}$.

$$
\begin{aligned}
& \text { (3.2) and 3.3) imply } \\
& n a=t+2 b y_{1}+4 a y_{2}+4 a y_{3}-2 b y_{1}+2 a y_{1}-2 a
\end{aligned}
$$

(3.5) $\quad t=a\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right)$.

$$
\begin{aligned}
& \text { (3.4) and (3.5) imply }(2.3): \\
& b\left(n+1-2 y_{1}-2 \gamma_{2}-2 \gamma_{3}\right)=a\left(2 n+4-4 y_{1}-6 \gamma_{2}-8 y_{3}\right) . \\
& \varphi\left(\varphi^{i}(A)\right)=\theta^{n+3+k\left(\varphi^{i}(A)\right)}\left(\varphi^{i}(A)\right) . \text { Hence } \varphi^{t} \text { is equal. }
\end{aligned}
$$

to θ applied

$$
\sum_{i=0}^{t-1}\left(n+3+k\left(\varphi^{i}(A)\right)\right)=t(n+3)+\sum_{i=0}^{t-1} k\left(\varphi^{i}(A)\right) \quad \text { times. }
$$

(3.3) and (3.5) imply that φ^{t} is equal to θ applied

$$
t(n+3)+2 b \gamma_{1}+4 a \gamma_{2}=a\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right)(n+3)+2 b \gamma_{1}+2 a \gamma_{2} \text { times }
$$

which is a period for A . The proof of the first part is complete.

The main concept of the second part of the proof is the defintions of distances between blocks. We calculate modulo n. We write card m to denote the number of elements in m where m is a set.

Definition 3.13.
Suppose B and C are two blocks in $A=a_{1} \ldots a_{n}$. If B is to the left of C, we define

$$
\begin{aligned}
& m(B, C)=m=\left\{a_{r}(c)+1, \ldots, a_{n}\right\} \cup\left\{a_{1}, \ldots, a_{r}(B)-1\right\} \text { and } \\
& z(B, C)=z=1, \text { else } \\
& m(B, C)=m=\left\{a_{r(C)+1}, \ldots, a_{r}(B)-1\right\} \text { and } z(B, C)=z=0 .
\end{aligned}
$$

If $a_{i} \in M$, we say that a_{i} is between B and C.

> If B is a 1-block we define $x(B, C)=X=2 \cdot($ the number of 1 -blocks between B and C) $+2 \cdot($ the number of 2 -blocks between B and C)

+ (the number of endpoints a_{i} between B and C, of 3-blocks)-z.

If B is a 2-block or 3-block we define
$X(B, C)=X=2 \cdot($ the number of 1 -blocks between B and C)
$+4 \cdot$ (the number of 2 -blocks between B and C)
$+2 \cdot\left(\right.$ the number of endpoints a_{i} between B and C, of 3 -blocks) $-2 z$ We define $d(B, C)=\operatorname{card} \nVdash \quad-X$.

Before proving the second part of Thm. 2.3 we need 5 lemmas concerning distances between blocks.

Lemma 3.14.
Suppose A satisfies Cond. 3.1. and contains γ_{i} i-blocks for $i=1,2,3$. Suppose further that B_{i} and C_{i} are i-blocks in A, and \hat{B}_{3} is the last 3-block in A.
a) If B_{1} and B_{2} meet by applying φ, we have $d\left(B_{1}, B_{2}\right)=1$ and $d\left(\omega\left(B_{1}\right), \varphi\left(B_{2}\right)\right)=n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}$, otherwise

$$
\alpha\left(\varphi\left(B_{1}\right), \varphi\left(B_{2}\right)\right)=d\left(B_{1}, B_{2}\right)-1+z
$$

where $z=1$ if B_{2} jumps out of a 3 -block or meet a 3 -block $\neq \hat{B}_{3}$ by applying φ.
b) B_{2} and B_{3} meet by applying φ if and only if $\alpha\left(B_{2}, B_{3}\right)=4$. In this case

$$
\alpha\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=n+5-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3},
$$

otherwise
$\alpha\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=\alpha\left(B_{2}, B_{3}\right)-1$.
c) $d\left(\varphi\left(B_{1}\right), \varphi\left(C_{1}\right)\right)=d\left(B_{1}, C_{1}\right)$.
d) $d\left(\varphi\left(B_{2}\right), \varphi\left(C_{2}\right)\right)=d\left(B_{2}, C_{2}\right)$.
e) $d\left(\varphi\left(B_{3}\right), \varphi\left(C_{3}\right)\right)=d\left(B_{3}, C_{3}\right)$.

Iemma_3.15.
We suppose A satisfies Cond. 3.1, and B_{i} is an i-block for $i=1,2$. If t is a multiple of $n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}$ and $d\left(\varphi^{t}\left(B_{1}\right), \varphi^{t}\left(B_{2}\right)\right)=d\left(B_{1}, B_{2}\right)$, then $\varphi^{t}(A)=A$.

Iemma 3.16.
We suppose A satisfies Cond. 3.1, and B_{i} isan i-block in A for $i=1,2$. Moreover, we suppose that r and s are multiples of $n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}$.

If B_{1} and B_{2} meet $<c$ times by applying φ^{t} on $\varphi^{r}(A)$, then B_{1} and B_{2} meet $\leqq c$ times by applying φ^{t} on $\varphi^{S}(A)$.

Iemma_3.17.
Suppose A satisfies the hyphotesis of Thm. 2.3, and let $s=n+2-4 \gamma_{1}-4 \gamma_{2}-2 \gamma_{3}$. Moreover, B_{i} is an $i-b l o c k$ for $i=2,3$.

Then B_{2} meets B_{3} once, and jumps out of B_{3} once, by applying φ^{5} on A.

Lemma_3.18.
We suppose A satisfies Cond. 3.1, and that each 1-block B_{1} meets each 2-block c times, and each 2-block B_{2} meets each 3-block B_{3} a times by applying φ^{s}. We also suppose
$\varphi^{S}(\mathrm{~A})=\mathrm{A}$.
Then each 1-block B_{1} circles around $c+a$ times by applying $\varphi^{\text {S }}$.

Part 2 of the proof of Thm. 2.4:
We suppose A satisfies Cond. 3.1, and that a, b are the minimal numbers which satisfies (2.3).

From the first part of the proof where exist integers a^{\prime}, b^{\prime} which satisfies (2.3), and if $t=a^{\prime}\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right)$ (See (3.5)), then $\varphi^{t}(A)=A$. Moreover, each 1-block meets each 2-block in $A \quad c^{\prime}=b^{\prime}-a^{\prime}$ times by applying φ^{t}.

There exists a $q>0$ such that $a^{\prime}=a q$ and $b^{\prime}=b q \cdot$ We define

$$
t_{i}=a i\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{2}\right) \text { for } i=1, \ldots, q \text {. }
$$

Hence,
(3.6) $\quad \varphi^{t} q(A)=A$.
(3.7) Each 1-blockmeets each 2-block $q c=q b-q a \quad$ times by applying $\varphi^{t_{q}}$ on A.

We prove
(3.8) Each 1-block meets each 2-block $c=b-a$ times by applying $\varphi^{t_{1}}$ on A.

Suppose (3.8) is not true. By (3.7) there exist a 1block B_{1}, a 2-block B_{2} and $i, j \in\{0, \ldots, q-1\}$ such that $\varphi^{t_{i}}\left(B_{1}\right)$ meets $\varphi^{t_{i}}\left(B_{2}\right)<c$ times by applying $\varphi^{t_{1}}$, and $\varphi^{t} j\left(B_{1}\right)$ meets $\varphi^{t} j\left(B_{2}\right)>c$ times by applying $\varphi^{t_{1}}$. Lemma
3.16 with $t=t_{1}$ gives a contradiction.

Next we show that $d\left(B_{1}, B_{2}\right)=\alpha\left(\varphi^{t_{1}}\left(B_{1}\right), \varphi^{t_{1}}\left(B_{2}\right)\right)$ where
B_{i} is an i-block. Lemma 3.17 implies
(3.9) Each 2-block meets each 3-block a times and jumps out of each 3-block a times by applying $\varphi^{t_{\uparrow}}$ on A.

Let $\Omega=\left\{0, \ldots, t_{1}-1\right\}$. Then (3.9) and Lemma 3.14.a) imply
(3.10) There exist $\left(\gamma_{3}-1\right) a+\gamma_{3}$ numbers $i \in \Omega$ such that $d\left(\varphi^{i+1}\left(B_{1}\right), \varphi^{i+1}\left(B_{2}\right)\right)=d\left(\varphi^{i}\left(B_{1}\right), \varphi^{i}\left(B_{2}\right)\right)$.
(3.8) and Lemma 3.14a) imply
(3.11) There exist $c=b-a$ numbers $i \in \Omega$ such that $d\left(\varphi^{i}\left(B_{1}\right), \varphi^{i}\left(B_{2}\right)\right)=1$ and $d\left(\varphi^{i+1}\left(B_{1}\right), \varphi^{i+1}\left(B_{2}\right)\right)=n+1-$ $2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}$. In this case $\varphi^{i}\left(B_{1}\right)$ meets $\varphi^{i}\left(B_{2}\right)$ by applying φ.
(3.10), (3.11) and Lemma 3.14a) imply
(3.12) There exist $t_{1}-c-2 y_{3} a+a \quad$ numbers $i \in \Omega$ such that

$$
d\left(\varphi^{i+1}\left(B_{1}\right), \varphi^{i+1}\left(B_{2}\right)\right)=d\left(\varphi^{i}\left(B_{1}\right), \varphi^{i}\left(B_{2}\right)\right)-1
$$

By (3.11) $d\left(\varphi^{i}\left(B_{1}\right), \varphi^{i}\left(B_{2}\right)\right)$ changes first from $d\left(B_{1}, B_{2}\right)$ to 1 , then ($c-1$) times from $n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}$ to 1 , and finally from $n+1-2 Y-2 \gamma_{2}-2 \gamma_{3}$ to $d\left(\varphi^{t_{1}}\left(B_{1}\right), \varphi^{t_{1}}\left(B_{2}\right)\right)$. Hence by (3.12)

$$
\begin{aligned}
t_{1}-c-2 \gamma_{3} a+a & =\left(d\left(B_{1}, B_{2}\right)-1\right)+(c-1)\left(n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}-1\right) \\
& +\left(n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}-d\left(\varphi^{t_{1}}\left(B_{2}\right), \varphi^{t_{1}}\left(B_{2}\right)\right)\right.
\end{aligned}
$$

Since $t_{1}=a\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right)$ and $c=b-a$, we get

$$
\begin{aligned}
& a\left(B_{1}, B_{2}\right)-a\left(\varphi^{t} 1\left(B_{1}\right), \varphi^{t}\left(B_{2}\right)\right)=a\left(n+3-2 \gamma_{1}-4 \gamma_{2}-6 \gamma_{3}\right)-(b-a) \\
& -(b-a)\left(n-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}\right) \\
& =a\left(2 n+4-4 \gamma_{1}-6 \gamma_{2}-8 \gamma_{3}\right)-b\left(n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}\right)=0
\end{aligned}
$$

by (2.3). Hence,
(3.13) $\quad d\left(B_{1}, B_{2}\right)=d\left(\varphi^{t}\left(B_{1}\right), 0^{t_{2}}\left(B_{2}\right)\right)$.
(3.13) and Iemma 3.15 imply that $A=\varphi^{t_{1}}(A)$. By Lemma 3.18 each 1 -block circles around $b=a+c$ times by applying $\varphi^{\dagger} 1$. Besides, each 2-block circles around a times by applying $\varphi^{t_{1}}$. Hence,
t_{1-1}

$$
\sum_{i=0} k\left(\varphi^{i}(A)\right)=2 b \gamma_{1}+4 a \gamma_{2}
$$

As in the end of the first part of the proof we get that $a\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right)(n+3)+2 b \gamma_{1}+4 a \gamma_{2}$ is a period. The proof is complete.

Proof of Cor. 2.5.:

In the case that A contains only two different types of blocks, the proof is easy by using Thm. 2.4.

Suppose A contains 3 different types of blocks, therefore $n \geq 9$. We suppose that a, b are the minimal positive integers which satisfy (2.3). We have

$$
a \leq n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3} \leq n-5
$$

and

$$
b \leq 2 n+4-4 \gamma_{1}-6 \gamma_{2}-8 \gamma_{3} \leq 2 n-14
$$

The period p in Thm. 2.3 satisfies

$$
\begin{aligned}
& p=a\left(n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right)(n+3)+4 a \gamma_{2}+2 b \gamma_{1} \\
& \leq(n-5)(n-8)(n+3)+4(n-5) \frac{n}{4}+2(2 n-14) \frac{n}{2} \\
& =n^{3}-7 n^{2}-18 n+120<n^{3} \quad \text { since } \quad n \geq 9 .
\end{aligned}
$$

We have used the fact that $\gamma_{1} \leq \frac{n}{2}$ and $\gamma_{2} \leq \frac{n}{4}$.

Proof of Cor. 2. $6:$

We suppose A satisfies Cond. 3.1. Then $\varphi^{i}(A)$ satisfies Cond. 3.1. for all i.

It is easy to see that $\left.\theta\left(\varphi^{i}(A)\right), \ldots, \theta^{n+3+k\left(\varphi_{i}\right.}(A)\right)-1(A)$ do not satisfy Cond. 3.1. Therefore the minimal period p satisfies $\theta^{p}=\varphi^{q}$ for some q; that is, $\theta^{p}(A)=\varphi^{q}(A)=A$ for some q.

We suppose the 1 -block and the 2-block circles respectively b and a times around by applying φ^{q} on A. Then it is easy to see that the 1 -block meets the $2-b l o c k \quad c=b-a$ times by applying φ^{q} on A. As in the first part of the proof of Thm. 2.3 we see that p is as in the theorem.

4. The general situation.

In this section we will indicate by an example how to treat the general situation $E_{k}+\ldots+E_{k+p}$ for $p>2$.

We suppose $p=3$. As in the case $p=2$ we must define the concepts: i-block (for $i=1,2,3,4$) , $\theta, \varphi, k(A)$, meet, jump out, circle around, and "Cond. 3.1." Specially, $\varphi(A)=\theta^{n+4+k(A)}(\dot{A})$

We suppose $A \in\{0,1\}^{n}$ satisfies "Cond. 3.1", and contains 1 i-block B_{i} for $i=1,2,3,4$. Then we can show the following:

As a main rule B_{1} moves $3+k(A)$ places by applying φ. B_{1} moves in addition:

```
2 places if }\mp@subsup{\textrm{B}}{1}{}\mathrm{ meets }\mp@subsup{\textrm{B}}{2}{}\mathrm{ ,
1 place i.f }\mp@subsup{B}{1}{}\mathrm{ meets }\mp@subsup{B}{3}{}\mathrm{ or }\mp@subsup{B}{4}{}\mathrm{ ,
1 place if }\mp@subsup{B}{1}{}\mathrm{ jumps out of }\mp@subsup{B}{3}{}\mathrm{ or }\mp@subsup{B}{4}{}\mathrm{ ,
-1 place if }\mp@subsup{B}{1}{}\mathrm{ circles around .
```

As a main rule B_{2} moves $2+k(A)$ places by applying φ. B_{2} moves in addition:

```
-2 places if }\mp@subsup{B}{1}{}\mathrm{ meets }\mp@subsup{B}{2}{}\mathrm{ ,
    2 places if }\mp@subsup{B}{2}{}\mathrm{ meets or jumps out of }\mp@subsup{B}{3}{}\mathrm{ ,
    2 places if }\mp@subsup{B}{2}{}\mathrm{ meets or jumps out of }\mp@subsup{B}{4}{}\mathrm{ ,
-2 places if }\mp@subsup{B}{2}{}\mathrm{ circles around.
```

As a main rule B_{3} moves $1+k(A)$ places by applying φ. B_{3} moves in addition:

$$
\begin{aligned}
-2 & \text { places if } B_{1} \text { meets } B_{3}, \\
-4 & \text { places if } B_{2} \text { meets } B_{3}, \\
3 & \text { places if } B_{3} \text { meets or jumps out of } B_{4}, \\
-3 & \text { places if } B_{3} \text { circles around. }
\end{aligned}
$$

As a main rule B_{4} moves $k(A)$ places by applying φ. B_{4} moves in addition:

$$
\begin{array}{lllll}
-2 & \text { places if } & B_{1} & \text { meets } & B_{4}, \\
-4 & \text { places if } & B_{2} & \text { meets } & B_{4}, \\
-6 & \text { places if } & B_{3} & \text { meets } & B_{4} .
\end{array}
$$

We suppose next that $A=\varphi^{S}(A)$, and that the 1 -block, 2-block and 3-block respectively circles around a, b and c times. Let $K=\sum_{i=0}^{S-1} k\left(\varphi^{i}(A)\right)$. By applying φ^{s} to A, B_{1} moves the following number of places:

```
3s+K (the main rule)
-a (B, circles around a times)
+2(a-b) (B1 meets }\mp@subsup{B}{2}{}\mathrm{ (a-b) times)
+2(a-c) ( }\mp@subsup{B}{1}{}\mathrm{ meets and jumps out of }\mp@subsup{B}{3}{}2(a-c) times
+2a (B1 meets and jumps out of }\mp@subsup{B}{4}{}\mathrm{ La 
```

Hence
(4.1) $n a=3 s+K-a+2(a-b)+2(a-c)+2 a$.

In the same way, by studying B_{2}, B_{3} and B_{4} we get the equations:
(4.2) $\mathrm{nb}=2 \mathrm{~s}+\mathrm{K}-2 \mathrm{~b}-2(\mathrm{a}-\mathrm{b})+4(\mathrm{~b}-\mathrm{c})+4 \mathrm{~b}$.
(4.3) $n c=s+K-3 c-2(a-c)-4(b-c)+6 c$.
(4.4) $\quad 0=K-2 a-4 b-6 c$.

From (4 4) we see that $K=2 a+4 b+6 c$. Putting this into (4.1), (4.2) and (4.3), we get
(4.5) $3 s=a(n-7)-2 b-4 c$.
(4.6) $2 s=b(n-12)-2 c$.
(4.7) $s=c(n-15)$.

Hence,
(4:8) $a(n-7)-2 b-4 c=3 c(n-15)$.
$(4.9) \quad b(n-12)-2 c=2 c(n-15)$.

As in the end of the first part of the proof of The. 2.3
we can show that φ^{S} is equal to θ applied
(4.10) $p=s(n+4)+K=c(n-15)(n+4)+2 a+4 b+6 c$
times (We use (4.4) and (4.7)). p is therefore a period for A.

Let us check the above result on the following example: $\mathrm{n}=19, \mathrm{k}=7$ and $\mathrm{A}=0001011001110001111$. Calculations show that the period of A is $p=748$.

Putting $n=19$ into (4.8) and (4.9) we then get
(4.11) $12 a-2 b-4 c=12 c$,
(4.12) $7 b-2 c=8 c$.

The smallest integers satisfying (4.11) and (4.12) are $a=11, b=10, c=7$. We put these into (4.10), and again obtain $p=7 \cdot 4 \cdot 23+2 \cdot 11+4 \cdot 10+6 \cdot 7=748$ as a period.

5. Proofs of Lemmas from Section 3.

Throughout this section, k, n and θ are as in Thm. 2.3.

Definition 5.1.
If $a=1$, then $a^{\prime}=0$. If $a=0$, then $a^{\prime}=1$. Moreover, for every $c=c_{1} \ldots c_{t} \in\{0,1\}^{t}$, we define $c^{\prime}=c_{1}{ }^{\prime} \ldots c_{t}{ }^{\prime}$.

Iemma 5.2.
If $A=a_{1} \ldots a_{n}$, then $\theta(A)=a_{2} \ldots a_{n} a_{1}{ }^{\prime}$ whenever $w\left(a_{2} \ldots a_{n}\right) \in\{k, k+1, k+2\}, \theta(A)=a_{2} \ldots a_{n} a_{1}$ otherwise.

The proof is obvious.

Definition 5.3.

Suppose $A=a_{1} \ldots a_{n}$ and $C=a_{s} \ldots a_{r}$.
If C is outside all the 3 -blocks in A and $C=10$ or $11 t(01) 00$ for some $t \geq 0, C$ is an H-block in A.

If C is inside a 3-block in A and $C=01$ or $00 t(10) 11$ for some $t \geq 0, C$ is a K-block in A.

Lemma_5.4.

Suppose $A \in\{0,1\}^{n}$ and $w(A)=k+3$.
a) If $A=10 C$, then $\theta^{2}(A)=\operatorname{CO1}$.
b) If $A=11 t(01) 00 C$, then $e^{4+2 t}(A)=\operatorname{co0t}(10) 11$.
c) Suppose

$$
\begin{aligned}
& B_{3}=11 s_{0}(01) 1 C_{1} \ldots C_{p} 1_{s_{1}} C_{p+1} 1_{s_{2}} \ldots C_{p+q} 1_{S_{q+1}} \\
& G=00 f(10) 0 D_{1} \ldots D_{r} \text { and } A=B_{3} G E,
\end{aligned}
$$

where $s_{1}>0$, each C_{i} is a K-block, each D_{i} is an $H-$ block and $s_{i}, f \geq 0$. Furthermore, let

$$
\begin{aligned}
& \tilde{B}_{3}=00 s_{o}(10) 0 C_{1}^{\prime} \ldots C_{p}^{\prime} 1_{S_{1}} C_{p+1}^{\prime} s_{2} \ldots C_{p+q^{\prime}} S_{q+1}^{\prime} \\
& \tilde{G}=11 f(01) 1 D_{1}{ }^{\prime} \ldots D_{r}^{\prime}=G^{\prime} \\
& y=r\left(A, B_{3}\right) \text { and } z=r(A, G) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \theta^{\mathrm{y}}(\mathrm{~A})=\mathrm{GEB}_{3}, \theta^{\mathrm{z}}(\mathrm{~A})=\mathrm{EB}_{3} \tilde{\mathrm{G}}^{\sim}, \mathrm{w}\left(\theta^{\mathrm{Y}}(\mathrm{~A})\right)=\mathrm{k} \text { and } \\
& \mathrm{w}\left(\theta^{\mathrm{z}}(\mathrm{~A})\right)=\mathrm{k}+3
\end{aligned}
$$

Proof.
a) and b) follows from Lemma 5.2.
c) Let $n_{i}=r\left(A, C_{i}\right)$ and $m_{i}=r\left(A, D_{i}\right)$. We use Lemma 5.2 many times. The vectors in the following equations have weight k.

$$
\begin{aligned}
& \theta^{3+2 s_{0}(A)} \quad=\quad C_{1} \ldots \operatorname{EOOs}_{0}(10) 0 \\
& \theta^{\mathrm{n}_{1}}(\mathrm{~A}) \quad=\quad \mathrm{C}_{2} \ldots \mathrm{EOOs}_{\mathrm{o}}(10) 0 \mathrm{C}_{1}{ }^{\prime} \\
& \text { • } \\
& \stackrel{\rightharpoonup}{\bullet} \\
& \theta^{n_{p}(A)} \quad=\quad 1 s_{1} \ldots \operatorname{EOO}_{0}(10) 0 C_{1}{ }^{\prime} \ldots C_{p}{ }^{\prime} \\
& \theta^{n_{p}+S_{1}} \text { (A) } \quad=C_{p+1} \ldots E 0 s_{o}(10) O C_{1}{ }^{\prime} \ldots C_{p}{ }^{\prime} 1_{S_{1}} \\
& \theta^{n_{p+1}} \text { (A) }=1_{s_{2}} \ldots E 0 s_{0}(10) O C_{1}{ }^{\prime} \ldots C_{p}{ }^{\prime} 1_{s_{1}} C_{p+1}^{\prime} \\
& \text { - } \\
& \text { • } \\
& \theta^{n_{p+q}(A)} \quad=1_{S_{q+1}} \ldots \operatorname{EOOs}_{0}(10) 0 C_{1}{ }^{\prime} 1_{S_{1}} C_{p+1}{ }^{\prime} \ldots C^{\prime}{ }_{p+q} \\
& \theta^{\mathrm{Y}}(\mathrm{~A}) \\
& =00 f(10) 0 D_{1} \ldots D_{r} E \tilde{B}_{3}=G E \tilde{B}_{3} .
\end{aligned}
$$

The vectors in the following equations have weight $k+3$.
$\theta^{\mathrm{Y}+3+2 f}(\mathrm{~A}) \quad=\mathrm{D}_{1} \ldots \mathrm{D}_{\mathrm{EB}}^{3} \tilde{\mathrm{E}}^{11 f(01) 1}$
$\theta^{m_{1}}(A) \quad=D_{2} \ldots D_{r} \tilde{E B}_{3} 11 f(01) 1 D_{1}$,

$$
\theta^{z}(A)=\theta^{m_{r}}(A)=E \tilde{B}_{3} 11 f(01) 1 D_{1}^{\prime} \ldots D_{r}^{\prime}=\tilde{E B}_{3} \tilde{G}^{\prime} .
$$

Proof of Lemma 3.2:

(5.1) If $A=D 01$ and $W(A)=k+3$, then $\theta^{-2}(A)=10 D$.
(5.2) If $A=\operatorname{DOOs}(10) 11$ and $w(A)=k+3$ where $s \geq 0$, then $\epsilon^{-(4+2 s)}(A)=11 s(01) O 0 D$.

Suppose A satisfies 1) and 2) in Def. 3.1, and $A=C D$ where C ends with a 3-block and D does not contain any 3block. We define $p_{1}=n-r(A, C)$. Then $A_{1}=\theta^{-p 1}(A)$ ends with a 3-block. (5.1) and (5.2) implies that $w\left(A_{1}\right)=k+3$. Therefore A_{1} satisfies 1), 2) and 4) in Cond. 3.1.

Suppose $A_{1}=C_{1} \ldots C_{p} E B_{3}$ where $C_{i}=10$ or $C_{i}=11 \mathrm{~s}(01) 00, B_{3}$ is a 3 -block and E starts with 0 or a 3-block. Let $p_{2}=r\left(A, C_{p}\right) . \theta^{p_{2}}\left(A_{1}\right)=E B_{3} C_{1}{ }^{\prime} \ldots C_{p}^{\prime}$. Then $B_{3} C_{1}^{\prime} \ldots C_{p}^{\prime}$ becomes a 3-block in $\theta^{p_{2}}\left(A_{1}\right)$. Therefore $\theta^{p} 2\left(A_{1}\right)$ satisfies Cond. 3.1.

Proof.of Lemma 3.6:

We observe that A has the form

$$
A=O_{s_{1} Q_{1}} O_{2} Q_{2} O_{s_{3}} \ldots O_{s_{p}} Q_{p}
$$

where $s_{i} \geq 0$, and Q_{i} has one of the following forms for $i<p$

$$
Q_{i}=10 \text { where } Q_{i} \text { is outside all the 3-blocks in }
$$

(5.3) A, and the 1-block in Q_{1} does not meet any block by applying θ^{n+2} on A.
$Q_{i}=11 t(01) 00$ where $t \geq 0, Q_{i}$ is outside all
(5.4) the 3-blocks in A, and the blocks in Q_{i} do not meet any 3-block in A by applying θ^{n+2} on A.
(5.5) $Q_{i}=B_{3} G$ where B_{3} and G are as in Lemma 5.4.c). Furthermore,

If Q_{1} is of the form (5.3) or (5.4), then $s_{1}>0$. If Q_{i} is of the form (5.5) and $0 \leq i<p$, then
(5.6) Q_{i+1} is of the form (5.5) or $s_{i+1}>0 . Q_{p}=B_{3}$ where B_{3} is as in Lemma 5.4. c).

By Lemma 5.4
$\theta^{n}(A)=o_{S_{1}} \tilde{Q}_{1} o_{S_{2}} \tilde{Q}_{2} O_{S_{3}} \ldots o_{S_{p}} \tilde{Q}_{p}$ where $\tilde{Q}_{i} \quad$ is defined as follows:

Case 1: If Q_{i} is as in (5.3), then $\tilde{Q}_{i}=01$.
Case 2: If Q_{i} is as in (5.4), then $\tilde{Q}_{i}=00 t(10) 11$.
Case 3: If $Q_{i}=B_{3} G$ is as in (5.5), then $\tilde{Q}_{i}=\widetilde{B}_{3} \tilde{G}^{G}$ as in Lemma 5.4. c).

Case 4: If $i=p, \widetilde{Q}_{p}=\widetilde{B}_{3}$ is as in Lemma 5.4., c) (see (5.6)).

Furthermore, Lemma 5.4.c) implies $w\left(\theta^{n}(A)\right)=k \because$ Since A starts with 01,11 or $00,0^{n}(A)$ starts with 00 . Hence $\theta^{n+2}(A)$ is of the form
(5.7) $\quad \theta^{n+2}(A)=C \widetilde{Q}_{p} 11$ and $w\left(\theta^{n+2}(A)\right)=k+2$.

Next, we prove
A 3-block in $A^{*}=\theta^{n+2}(A) 1$ is contained in $\widetilde{Q}_{p} 1$ or ${\tilde{Q_{i}}}_{i}$ where Q_{i} is as in (5.5).

Let Q_{i} be as in (5.5). By (5.6), $A=H Q_{i} O t(10) M$ or $A=Q_{i} K$ where K starts with a 3-block. In both cases \tilde{Q}_{i} is followed by $00 t(10) 0$ for some $t \geq 0$. If Q_{i} is as in (5.3) or (5.4), no 3-block in A^{*} can start at any position
in \widetilde{Q}_{i}. We conclude that (5.8) is true.
Case 1: We denote the 1-block in $Q_{i}=10$ by B_{1}. The number 1 in $\widetilde{Q}_{i}=01$ is in position $r\left(A, B_{1}\right)+1$ in $\theta^{n}(A)$, and is preceded and followed by 0 . Therefore, there is a 1-block B_{1}^{*} in position $r\left(A, B_{1}\right)-1$ in $A^{*}=\theta^{n+2}(A) 1$. This is in accordance with a) since B_{1} do not meet any block by applying $\theta^{\mathrm{n}+2}$ on A .

Case 2: We denote the 2-block in Q_{i} by B_{2} and the 1-blocks by $B_{1}^{1}, \ldots, B_{1}^{t}$, such that $Q_{i}=B_{2} O B_{1}^{1} O \ldots O B_{1}^{t} 00$. Since $\widetilde{Q}_{i}=00 t(10) 11$ is followed by 00 , there are 1-block in the positions $r\left(A, B_{1}^{1}\right)-1, \ldots, r\left(A, B_{1}^{t}\right)-1$ and a 2-block in the position $r\left(A, B_{2}\right)+2 t+2$ in $\theta^{n}(A)$. Therefore, there are 1blocks in the positions $r\left(A, B_{1}^{1}\right)-3, \ldots, r\left(A, B_{1}^{t}\right)-3$ in $A^{*}=$ $\theta^{n+2}(A) 1$. This is in accordance with a) since the 1-blocks meet B_{2} by applying θ^{n+2}. Furthermore, there is a 2-block in the position $r\left(A, B_{2}\right)+2 t$. This is in accordance with b), since B_{2} meet t-blocks by applying θ^{n+2} on A. Case 3: $Q_{i}=B_{3} G$ and $\widetilde{Q}_{i}=\widetilde{B}_{3}{ }^{\tilde{G}}$ where

$$
\begin{aligned}
& B_{3}=11 s_{o}(01) 1 C_{1} \ldots C_{p} C_{s_{1}} C_{p+1} s_{s_{2}} \ldots C_{p+q^{1} s_{q+1}}^{G^{\prime}}=00 f(10) 0 D_{1} \ldots D_{r} \\
& \widetilde{B}_{3}=00 s_{o}(10) 0 C_{1}^{\prime} \ldots C_{p}^{\prime 1} s_{1} C^{\prime}{ }_{p+1}{ }^{1} s_{2} \ldots C^{\prime}{ }_{p+q^{1} s_{q+1}} \\
& \widetilde{G}=11 f(01) 1 D_{1}^{\prime} \ldots D_{r}^{\prime}
\end{aligned}
$$

where $s_{1}>0, C_{i}$ is a K-block, D_{i} is an H-block and $s_{i}, f \geq 0$.

We divide Case 3 into 9 subcases.

Case_3a: Suppose $1 \leq i \leq p$. Suppose $C_{i}=01=B_{1} 1$ where B_{1} is a 1-block which jumps out of B_{3}. Then $C_{i}{ }^{\prime}=10, C_{i}{ }^{\prime}$ is preceded by a 0 and is outside all the 3 -blocks in $\theta^{n}(A)$. Therefore there is a 1 -block in $\theta^{n}(A)$ in position $r\left(A, B_{1}\right)$, hence a 1-block in $A *$ in position $r\left(A, B_{1}\right)-2$.

Case 3b: Suppose $1 \leq i \leq p$ and $C_{i}=00 t(10) 11 . C_{i}{ }^{\prime}=11 t(01) 00$ is outside all the 3 -blocks in $\theta^{n}(A)$. As in Case $3 a$, the blocks in C_{i} do not move by applying θ^{n}. Therefore if B is a block in C_{i}, there is a block B^{*} of the same type in A^{*} such that $r\left(A^{*}, B^{*}\right)=r(A, B)-2$. Since the block B jumps out of the 3 -block B_{3} by applying θ^{n+2}, this is in accordance with Lemma 3.6 a) and b).

Qase_3c: The 1-blocks in $s_{o}(01)$ move as the 1-block in Case 3 a .

Case 3d: We define B_{3}^{*} and F by

$$
B_{3}^{*}=1_{s_{1}} C_{p+1}^{1} s_{2} \ldots 1_{s_{q+1}} 11 f(01) 1 D_{1}^{\prime} \ldots D_{r}^{\prime}=11 \mathrm{~F},
$$

hence $\widetilde{Q}_{i}=00 s_{o}(10) 0 C_{1}^{1} \ldots C^{\prime}{ }_{p} B_{3}^{*}$. First we prove that $B_{3}{ }_{3}$ starts with $11 t(01) 1$ for some $t \geq 0$. If $s_{1} \geq 2$, $C^{\prime}{ }_{p+1}=11 t(01) 00$ or $C_{p+1}^{\prime} \ldots s_{q+1}$ is the empty set, the claim is trivially true. Therefore, we suppose $s_{1}=1$ and $C^{\prime}{ }_{p+1}=10$. If we move from the left to the right in F, we reach two consecutive 1 's before we reach two consecutive O's. Hence, B_{3}^{*} starts with $11 \mathrm{t}(01) 1$ for some $t \geq 0$. Next we observe that B_{3} does not contain any piece of the form $00 \mathrm{~s}(10) 0$. By (5.8) $B^{*} 3$ is a 3-block in A^{*}. We now observe that:

$$
\begin{aligned}
& m\left(B_{3}\right)=3+s_{1}+\ldots+s_{q+1}=m\left(B_{3}^{*}\right), \\
& r\left(A^{*}, B_{3}^{*}\right)=r(A, B)+3+2 \beta_{1}+4 \beta_{2}-2
\end{aligned}
$$

where $f_{i}=$ the number of i-blocks in $11 \pm(01) 1 D^{\prime}{ }_{1} \ldots D^{\prime}{ }_{r}$ $=$ the number of i-blocks which meet B_{3} by applying θ^{n+2},

$$
I\left(A^{*}, B_{3}^{*}\right)=I(A, B)+3+2 \beta_{1}+4 B_{2}-2
$$

where $\beta_{i}=$ the number of i-blocks in $00 s_{0}(10) 0 C_{1}{ }_{1} \ldots{ }^{\prime}{ }^{\prime} p$ = the number of i-blocks which jump out of B_{3} by applying $\theta^{\mathrm{n}+2}$ 。

Case Be: Suppose $p<i \leq p+q$ and $C_{i}=01=B_{1} O$ where B_{1} is a 1-block in A contained in B_{3}. Then $C_{i}=10$, C_{i} is followed by a 1 and C_{i}^{\prime} is contained in B_{3}^{*}. The 0 in C_{i} is a 1-block in A^{*}. Hence, there is a 1-block in A^{*} in the position $r\left(A, B_{1}\right)-1$. This is in accordance with the lemma since B_{1} does not meet or jump out of any block by applying θ^{n+2}.

Case 3f: Suppose $p<i \leq p+q$ and $C_{i}=00 t(10) 11=$ $B_{2} 1 B_{1}^{1} 1 B_{1}^{2} \ldots 1 B_{1}^{t} 11$ where B_{2} is a 2-block and B_{1}^{i} are 1-blocks. $C_{i}=11 t(01) 00=11 B_{1}^{1} * 1 B_{1}^{2}{ }^{*} \ldots 1 B_{1}^{t}{ }^{* 1} B^{*}{ }_{2}$ where $B_{1}^{i}{ }^{*}$ are 1-blocks and B_{2}^{*} is a 2-block in A^{*}. $\left.r\left(A^{*}, B_{1}^{i}\right)^{*}\right)=$ $r\left(A, B_{1}\right)-3$ and $r\left(A *, B_{2}\right)=r\left(A, B_{2}\right)+2 t$. This is in accordance with the lemma, since B_{1}^{i} meets a 2 -block and B_{2} meets t-blocks by applying θ^{n+2}.

Case 3g: Suppose $D_{i}=10=B_{1} 0$ where B_{1} is a 1-block which meets B_{3} by applying $\theta^{n+2} \cdot D_{i}^{\prime}=01=B_{1}^{*} 1$ is contained in B_{3}^{*}, and $B^{*}{ }_{1}$ is a 1-block in A. $r\left(A^{*}, B^{*}{ }_{1}\right)=$ $r\left(A, B_{1}\right)-2$.

Case 3h: The 1-blocks in $f(10)$ move as the 1-block in case 3 g .

Case_3i: Suppose $D_{i}=11 t(01) 00=B_{2} O B_{1}^{1} O B_{1}^{2} \ldots O B_{1}^{t} O 0$ where B_{2} is a 2-block and B_{1}^{i} are 1-blocks in A. $D_{i}^{\prime}=00 t(10) 11=B_{2}^{*} 1 B_{1}^{1} * 1 B_{1}^{2} * \ldots 1 B_{1}^{t} * 11$ where $B_{1}^{i} *$ are 1-blocks and B_{2}^{*} is a 2-block in $A^{*} \cdot r\left(A^{*}, B_{1 *}^{i}\right)=r\left(A, B_{1}^{i}\right)-2$ and $r\left(A^{*}, B_{2}^{*}\right)=r\left(A, B_{2}\right)-2$. This is in accordance with the lemma, since B_{1}^{i} and B_{2} meet B_{3} by applying θ^{n+2}. Case 4: This case is treated like Case $3 \mathrm{a}, \ldots$, Case 3 f. Specially, there is a 3-block B_{3}^{*} in A^{*} such that $r\left(A^{*}, B_{3}^{*}\right)=n+1$.

The proof of Lemma 3.6 a), b), c) and d) is now complete. Suppose Q_{1} is of the form (5.5). Then \tilde{Q}_{1} starts with $00 s_{o}(10) 0$ and e) is satisfied.

Next, suppose Q_{1} is of the form (5.3) or (5.4). By (5.6) $s_{1}>0 . A$ is of the form $O_{S_{1}} C_{1} \ldots C_{e} D$ where D starts with 0 or a 3 -block, and $C_{i}=10$ or $C_{i}=$ $11 t(01) 00$ for some $t \geq 0$. $\theta^{n}(A)=0_{S_{1}} C_{1}^{1} \ldots C_{e}^{\prime} \tilde{D}^{1}$ where $\widetilde{\mathrm{D}}$ starts with $00 \mathrm{~s}(10) 0$ for some $\mathrm{s} \geq 0$, and e) is satisfied.

The proof of Lemma 3.6 is complete.

Proof of Lemma 3.10. We denote the last 3-block in A by \ddot{B}_{3}. We let $A^{*}=\theta^{n+2}(A) 1=s(10) 0 C_{1} \ldots C_{p} D$ be as in Lemma 3.6.e). Besides, we denote A^{*} by $A^{*}=a^{*}{ }_{1} \ldots a_{n+1}^{*}$ and put $r=r\left(A *, C_{p}\right)$. Then

$$
\varphi(A)=\theta^{n+3+k(A)}(A)=a_{r+1}^{*} \ldots a_{n}^{*} s(01) 1 C_{1}^{1} \ldots C_{p}^{1}=
$$

$$
a^{*}{ }_{r+1} \cdots a_{n}^{*_{n}}{ }^{*_{1}}{ }^{\prime} \ldots a_{r}^{*}{ }^{\prime}
$$

We suppose $\hat{B}_{3}^{*}=a *_{s} \ldots a *_{n+1}$. From (5.7) in the proof of Lemma 3.6 we get that $a_{n-1}^{*}=a_{n}^{*}=1$. Therefore,

$$
\begin{aligned}
& \hat{B}_{3}^{*}=a{ }_{s}^{*} \ldots a_{n}^{*} s(01) 1 C_{1}^{1} \ldots C_{p}^{\prime}=a{ }_{s}^{*} \ldots a_{n}^{*} a_{1}^{*^{\prime}} \ldots a^{*}{ }_{r}^{\prime} \\
& \text { is a 3-block in } \varphi(A) .
\end{aligned}
$$

Since (the number of $1^{\prime} \mathrm{s}$ in $\mathrm{s}(01) 1 C_{1}^{1} \ldots C_{p}^{\prime}$) - (the number of 0's in $\left.s(01) 1 C_{1}^{\prime} \ldots C_{p}^{\prime}\right)=1, m\left(\hat{B}_{3}^{*}\right)=m\left(\hat{B}_{3}^{* *}\right)$. We observe that $k(A)=r-1=2 \beta_{1}+4 \beta_{2}$ where $\beta_{i}=$ the number of i-blocks which meet \hat{B}_{3} by applying φ. Hence,

$$
r\left(\hat{B}_{3}^{* *}\right)=n=r\left(\hat{B}_{3}\right)-\left(k(A)-2 \beta_{1}-4 B_{2}\right)
$$

Next let B_{i} be an i-block in A which corresponds to a block B_{i}^{*} in $a_{1}^{*} \ldots a_{r}^{*}$. We prove that B_{i} corresponds to an i-block in $\varphi(A)$ such that $r\left(B_{i}^{* *}\right)=n+r\left(B_{i}^{*}\right)-(k(A)+1)$. If $B_{1}^{*}=a_{j}^{*}=1$, then $B_{1}^{* *}=a_{j}^{* \prime}=0$ is a 1-block in $\varphi(A)$ and
(5.9) $r\left(B_{1}^{* *}\right)=n-r+j=n+j-(k(A)+1)=n+r\left(B_{1}^{*}\right)-(k(A)+1)$. Analogously, there exists a 2-block $B_{2}^{* *}$ in $\varphi(A)$ such that

$$
\text { (5.10) } \quad r\left(B_{2}^{* *}\right)=n+r\left(B_{2}^{*}\right)-(k(A)+1) .
$$

By Lemma 3.6.a) and (5.9) (y, z are defined in Lemma 3.6.a))

$$
\begin{equation*}
r\left(B_{1}^{* *}\right)=n+r\left(B_{1}\right)-([k(A)+2]+y+2 z+1-1) \tag{5.11}
\end{equation*}
$$

We add and subtract 1 to indicate that B_{1} both circles around and meets \hat{B}_{3} by applying φ. (5.11) is in accordance with

Lemma 3.10.a). By Lemma 3.6.b) and (5.10) (y,z are defined in Lemma 3.6.b))
(5.12) $r\left(B_{2}^{* *}\right)=n+r\left(B_{2}\right)-([k(A)+1]+2 y-2 z+2-2)$.

We add and subtract 2 to indicate that B_{2} both circles around and meets \hat{B}_{3} by applying 0 . (5.12) is in accordance with Lemma 3.10.b).

Suppose B_{i} is an i-block in A different from \hat{B}_{3}, which does not circle around by applying φ, and corresponds to B_{i}^{*} in A^{*}. Since $\varphi(A)=\theta(n+2)+(1+k(A))(A)$, there exists an i-block $B_{i}^{* *}$ in $\varphi(A)$ such that
(5.13) $\quad r\left(B_{i}^{* *}\right)=r\left(B_{i}^{*}\right)-k(A)-1, I\left(B_{i}^{* *}\right)=I\left(B_{i}^{*}\right)-k(A)-1$ and $m\left(B_{3}^{* *}\right)=m\left(B_{3}^{*}\right)$.

By (5.13) and Lemma 3.6 the Lemma is true for B_{i}.
Finally, $I\left(\hat{\mathrm{~B}}_{3}^{* *}\right)=I\left(\hat{\mathrm{~B}}_{3}^{*}\right)-k(\mathrm{~A})-1$. Therefore, by Lemma 3.6 we get that d) in the Lemma is true for $B_{3}=\hat{B}_{3}$.

The proof of Lemma 3.12 follows easily from the proof of Lemma 3. 10.

Iemma 5.5.

Suppose B and C are blocks in $A=a_{1} \ldots a_{n}$ and specially that B is a 2-block. Furthermore, suppose \hat{B}_{3} is the last 3 -block in A. Let $M=M(B, C)$ be as in Def. 3.13. We then define
$n=n(B, C)=U\left\{D \subset M_{2}: D\right.$ is an H-block or a K-block in $\left.A\right\}$
$u\left\{\left\{a_{i}, a_{i+1}\right\} \subset M: a_{i} \in D\right.$ is a left endpoint of a 3 -block in $\left.A\right\}$
$U\left\{a_{i}, a_{i+1}\right\} \subset \mathscr{M}: a_{i-1} \in D$ is a right endpoint of a 3 -block $\neq \hat{B}_{3}$ in $\left.A\right\}$.

If $C \neq \hat{B}_{3}$, then $\mathrm{C}(\mathrm{B}, \mathrm{C})=$ card $M-\operatorname{card} \mathscr{N}$, while $C=\hat{\mathrm{B}}_{3}$ implies $a\left(B, \hat{B}_{3}\right)=$ card $M-\operatorname{card} n+2$. Besides, all the sets in the union in this lemma are disjoint.

Proof:. By studying the definitions of blocks we observe that all the sets in the union in the lemma are disjoint. Hence,

$$
\text { card } \begin{aligned}
n= & 2(\text { the number of } 1-\text { blocks between } B \text { and } C) \\
& +4 \text { (the number of } 2 \text {-blocks between } B \text { and } C) \\
& +2\left(\text { the number of endpoint } a_{i} \neq a_{n} \text {, between } B\right.
\end{aligned}
$$

If $C \neq \hat{B}_{3}$, then $T=$ (the number of endpoints, between B and C, of 3 -blocks) $-2 z$ is equal to (the number of endpoints $a_{i} \neq a_{n}$, between B and C, of 3-blocks), else $T=$ (the number of endpoints $a_{i} \neq a_{n}$, between B and C, of 3-blocks) -2, where z is as in Def. 3.13. Therefore, $X=\operatorname{card} \eta$ if $\mathrm{C} \neq \hat{\mathrm{B}}_{3}$, and $x=\operatorname{card} n-2$ otherwise.

Proof of Lemma 3.14: In this proof, B_{i} and C_{i} denote i-blocks. Furthermore, "meet", "jump out" and "move" mean meet by applying ep etc.
a) Suppose $B_{1}^{1}, \ldots, B_{1}^{t}$ meet B_{2}. By Def. 3.5 and 3.8 we can suppose
(5.14) $\quad r\left(B_{1}^{i}\right)=r\left(B_{2}\right)+2 i$
and that B_{1}^{i} and B_{2} cannot meet any 3 -block $\neq \hat{\mathrm{B}}_{3}$. From Lemma 3.10, if B_{1}^{i} meets \hat{B}_{3}, then B_{1}^{i} moves 1 position in addition. Moreover, B_{1}^{i} also circles around, hence moves -1 position in addition. Analogously with B_{2}. Lemma 3.10 implies
$r\left(\varphi\left(B_{1}^{i}\right)\right)=r\left(B_{1}^{i}\right)-(k(A)+2+2)=r\left(B_{2}\right)+2 i-k(A)-4 \quad$ and $\quad r\left(\varphi\left(B_{2}\right)\right)=r\left(B_{2}\right)-$ (k(A)+1-2t).

Hence,
(5.15) $r\left(\varphi\left(B_{1}^{i}\right)\right)-r\left(\varphi\left(B_{2}\right)\right)=2 i-3-2 t$

By (5.14) and (5.15) we get
$\alpha\left(B_{1}^{i}, B_{2}\right)=\left(r\left(B_{1}^{i}\right)-r\left(B_{2}\right)-1\right)-2(i-1)=r\left(B_{2}\right)+2 i-r\left(B_{2}\right)-1-2 i+2=1$.
$\operatorname{card} M\left(\varphi\left(B_{1}^{i}\right), \varphi\left(B_{2}\right)\right)=r\left(\varphi\left(B_{1}^{i}\right)\right)-1+n-r\left(\varphi\left(B_{2}\right)\right)=n-4+2 i-2 t$.
$d\left(\varphi\left(B_{1}^{i}\right), \varphi\left(B_{2}\right)\right)=n-4+2 i-2 t-2\left(\gamma_{1}-(t-i+1)\right)-2\left(\gamma_{2}-1-2 \gamma_{3}+1=n+1-2 \gamma_{1}-2 \gamma_{2}-2 \gamma_{3}\right.$.
This is in accordance with the first part of a).
Suppose B_{1} and B_{2} do not meet, and let
$m_{2}=m_{1}\left(\mathrm{~B}_{1}, \mathrm{~B}_{2}\right), x=x\left(\mathrm{~B}_{1}, \mathrm{~B}_{2}\right), z=z\left(\mathrm{~B}_{1}, \mathrm{~B}_{2}\right), m_{\varphi}=m\left(\varphi\left(\mathrm{~B}_{1}\right), \varphi\left(\mathrm{B}_{2}\right)\right)$,
$\chi_{\varphi}=x\left(\varphi\left(B_{1}\right), \varphi\left(B_{2}\right)\right), z_{\varphi \varphi}=z\left(\varphi\left(B_{1}\right), \varphi\left(B_{2}\right)\right)$. We calculate card $\geqslant \eta_{\varphi}$ and X_{φ} by the following prodedure: First, put card $M_{\varphi}=$ card M and $X_{\varphi}=x$. By Lemma 3.10 we must decrease card M_{φ} and X_{φ} according to the following table:

Decrease $\operatorname{card}\left(\mathscr{M}_{\varphi}\right)$ by Decrease χ_{φ} by

The main rule 1
B_{1} meets a 2-block 2
(5.16) B_{1} meets $\hat{\mathrm{B}}_{3} \quad 0 \quad 0$
B_{1} meets a 3-block $\neq \hat{\mathrm{B}}_{3} \quad 1$
B_{1} jumps out of a 3-block 1
A 1-block meets $B_{2} \quad 2$
(5.17) B_{2} meets $\hat{\mathrm{B}}_{3} \quad 0$
B_{2} meets a 3-block $\neq \hat{B}_{3} \quad-2 \quad-1$
B_{2} jumps out of a 3-block -2 -1
(5.16) follows in this way: If B_{1} meets $\hat{\mathrm{B}}_{3}$, both \mathbb{M}_{φ} and X_{φ} decrease by 1. However, B_{1} also circles around, hence M_{φ} increases by 1 . Besides, χ_{φ} increases by 1 since $z=1$ and $z_{\varphi}=0$. (5.17) follows in the same way. Conclusion: card $m_{\varphi p}-x_{\varphi}=$ card $m-x$ if B_{2} meet a 3 -block $\neq \hat{\mathrm{B}}_{3}$ or jumps out of a 3 mblock , else

$$
\operatorname{card} m_{\varphi}-x_{\varphi}=(\operatorname{card}-x)-1
$$

Hence, a) is proved.
b) Suppose $A=a_{1} \ldots a_{n}, m=m\left(B_{2}, B_{3}\right)$ and $n=N\left(B_{2}, B_{3}\right)$ (see Lemma 5.5). In the following and asterisk below a_{i} means: $a_{i} \in m$ and $a_{i} \notin n$. We observe
(5.18) If $B_{2}=a_{i} a_{i+1}$, then $a_{i} \in M$ and $a_{i} \notin \mathbb{N}$.

First we suppose $B_{3} \neq \hat{B}_{3}$, hence
(5.19) $\quad \mathrm{A}=\mathrm{DB}_{3} 00 \mathrm{OH}(10) \mathrm{OC}_{*} \ldots \mathrm{C}_{\mathrm{p}} \mathrm{E}$ where E starts with 0 or a 3-block and* C_{i} are H-blocks.

If B_{2} meets B_{3}, then B_{2} is contained in $C_{1} \ldots C_{p}$. (5.18) and (5.19) imply by Lemma 5.5 that $d\left(B_{2}, B_{3}\right)=4$. If B_{2} does not meet B_{3}, we have two cases

Besides, B_{2} is contained in F or D. (5.18) and (5.20) imply by Lemma 5.5 that $a\left(B_{2}, B_{3}\right) \geq 5$.

Pinally we suppose $B_{3}=\hat{B}_{3}$. Moreover, we suppose B_{2}^{*} and \hat{B}_{3}^{*} in $A^{*}=\theta^{n+2}(A) 1$ correspond to B_{2} and \hat{B}_{3}. We now prove that
(5.21) $\quad d\left(B_{2}^{*}, \hat{B}_{3}^{*}\right)=d\left(B_{2}, B_{3}\right)$.

Suppose $m=m\left(B_{2}, \hat{B}_{3}\right), \chi=x\left(B_{2}, \hat{B}_{3}\right), m_{2}^{*}=M\left(\mathrm{~B}_{2}^{*}, \hat{\mathrm{~B}}_{3}^{*}\right)$ and $x^{*}=x\left(B_{2}^{*}, \ddot{B}_{3}^{*}\right)$. We calculate card π_{n}^{*} and x^{*} by the following procedure: First put card $\mathscr{M}^{*}=$ card $N=$ and $x^{*}=x$. By Lemma 3.6 we must decrease card M^{*} and x^{*} according to the following table:

Decrease card \mathbb{M}^{*} by \quad Decrease X^{*} by
A 1-block meet B_{2} by -2 applying θ^{n+2}
B_{2} meet a 3-block by app-
2 Iying $\theta^{\mathrm{n}+2}$
B_{2} jumps out of a 3-block by 2 2 applying θ^{n+2}

Hence, $d\left(B_{2}^{*}, \hat{B}_{3}^{*}\right)=\operatorname{card} m^{*}-x^{*}=\operatorname{card} m_{-x}=d\left(B_{2}, \hat{B}_{3}\right)$.
Next we prove
(5.22) B_{2}^{*} in A^{*} circles around (this is equivalent to ${ }^{\prime \prime} \mathrm{B}_{2}$ moens $\left.\hat{\mathrm{B}}_{3}{ }^{18}\right)$ if and only if $\mathrm{d}\left(\mathrm{B}_{2}^{*}, \hat{\mathrm{~B}}_{3}^{*}\right)=4$.

A* has the following form as in Lemma 3.12.e.
(5.23) $s(10) \underset{*}{*} C_{1} \ldots C_{p} D$ where D starts with a 0 or a 3-block and C_{i} are H-blocks. If B_{2} meets \hat{B}_{3}, B_{2}^{*} is contained in $C_{1} \ldots C_{p}$. Putting $n^{*}=\eta\left(B_{2}^{*}, \hat{B}_{3}^{*}\right)$ we get by (5.18), (5.23) and Lemma 5.5 that card M^{*}-card $\mathbb{X}^{*}=2$. If B_{2} does not meet $\hat{\mathrm{B}}_{3}$, we show as in the case $\mathrm{B}_{3} \neq \stackrel{\rightharpoonup}{\mathrm{B}}_{3}$ that $\operatorname{card} M^{*}-$ card $\eta^{*} \geq 3$. By Lemma $5.5 \mathrm{~d}\left(\mathrm{~B}_{2}^{*}, \hat{\mathrm{~B}}_{3}^{*}\right)=\operatorname{card} \Re^{*}-\operatorname{card} \Re^{*}+2$ and the proof of (5.22) is complete.

Combining (5.21) and (5.22) we get: \bar{B}_{2} meets \hat{B}_{3} if
and only if $d\left(B_{2}, \hat{B}_{3}\right)=4$.
Suppose B_{2} meets $B_{3} \neq \hat{B}_{3}$ (the case $B_{3}=\hat{B}_{3}$ is treated in the same way), and that there are T_{i} i-blocks between B_{2} and E_{3}. Moreover, we suppose $A=E B_{3} 00$ (10)0C1... $C_{i} C_{i+1} F$ where C_{j} are H-blocks and $C_{i+1}=B_{2} t(01) 00$. Observing that $\operatorname{card}\left(00 s(10) 0 C_{1} \ldots C_{i}\right)=3+2 T_{1}+4 T_{2}$, we get

$$
r\left(B_{2}\right)-r\left(B_{3}\right)=5+2 T_{1}+4 T_{2}
$$

Supposing there are s_{i} i-blocks which meet B_{3} we get:

$$
\begin{aligned}
& r\left(\varphi\left(B_{2}\right)\right)=r\left(B_{2}\right)-1-2-k(A) \cdot \\
& \begin{aligned}
& r\left(\varphi\left(B_{3}\right)\right)=r\left(B_{3}\right)+2 s_{1}+4 s_{2}-k(A) \cdot \\
& \operatorname{card} m\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=\left[r\left(\varphi\left(B_{2}\right)\right)-1\right]+n-r\left(\varphi\left(B_{3}\right)\right) \\
&=n-4-2 s_{1}-4 s_{2}+\left(r\left(B_{2}\right)-r\left(B_{3}\right)\right) \\
&=n+1+2\left(T_{1}-s_{1}\right)+4\left(T_{2}-s_{2}\right) \\
&=2\left(\gamma_{1}-\left(s_{1}-T_{1}\right)\right)+4\left(\gamma_{2}-\left(s_{2}-T_{2}\right)\right)+2\left(2 \gamma_{3}-1\right)-2 \\
& x\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right) \quad 2 \gamma_{1}+4 \gamma_{2}+4 \gamma_{3}-4-2\left(s_{1}-T_{1}\right)-4\left(s_{2}-T_{2}\right) .
\end{aligned} \\
& \begin{aligned}
d\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=\operatorname{card} m\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)-x\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=n+5-2 \gamma_{1}-4 \gamma_{2}-
\end{aligned} \\
& 4 \gamma_{3} .
\end{aligned}
$$

The last part of b), and the parts c), d) and e) are proved by using a procedure and a table as in the proof of a).

Definition 5. 6

Suppose B and C are two blocks in $A=a_{1} \ldots a_{n}$. If B is to the left of C, we define
$\bar{m}(B, C)=\bar{m}=\left\{a_{I}(C)+1, \ldots, a_{n}\right\} \cup\left\{a_{1}, \ldots, a_{I}(B)-1\right\}$ and $z(B, C)=z=1$, else
$\bar{m}(B, C)=\bar{m}=\left\{a_{1}(C)+1, \ldots, a_{1}(B)-1\right\}$ and $z(B, C)=z=0$.
We define "between", $\bar{\chi}(B, C)=\bar{\chi}$ and $\bar{d}(B, C)$ as in Def. 3.13 by using \bar{m} instead of m.

Lemma _5.7.

Suppose B_{i} is an i-block for $i=2,3$. Then B_{2} jumps out of B_{3} if and only if $\bar{d}\left(B_{2}, B_{3}\right)=2$. In this case

$$
\bar{d}\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=n+3-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3},
$$

otherwise

$$
\bar{d}\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=\bar{d}\left(B_{2}, B_{3}\right)-1 .
$$

The proof of Lemma 5.7 is similar to the proof of Lemma 3.14.b). We only indicate the proof on an example: $n=14, k=3$ and

$$
\begin{aligned}
& A=0001^{*} 0001110011 \\
& \varphi(A)=01^{*} 00000 \overline{1100111}
\end{aligned}
$$

Denoting the i-blocks in A by B_{i} we observe that $\operatorname{card} \bar{M}\left(B_{2}, B_{3}\right)=2, \mathbf{z}\left(B_{2}, B_{3}\right)=0, \bar{X}\left(B_{2}, B_{3}\right)=0$, $\operatorname{card} \bar{m}\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=9=n-5, z\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=1$, $\bar{\chi}\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=2 \gamma_{1}+4\left(\gamma_{2}-1\right)+2\left(2 \gamma_{3}-1\right)-2=2+0+2-2=2$. Hence, $\overline{\mathrm{d}}\left(\mathrm{B}_{2}, \mathrm{~B}_{3}\right)=2$ and
$\bar{d}\left(\varphi\left(B_{2}\right), \varphi\left(B_{3}\right)\right)=(n-5)-\left(2 \gamma_{1}+4\left(\gamma_{2}-1\right)+2\left(2 \gamma_{3}-1\right)-2\right)-n+3-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}$.

Iemma 5. 8

Suppose B_{i} is an i-block in A for $i=2,3$, A satisfies Cond. 3.1 and let $s=n+2-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{2}$. Then $d\left(B_{2}, B_{3}\right)=d\left(\varphi^{s}\left(B_{2}\right), \varphi^{s}\left(B_{3}\right)\right)$ and $\bar{d}\left(B_{2}, B_{3}\right)=\bar{d}\left(\varphi^{s}\left(B_{2}\right), \varphi^{s}\left(B_{3}\right)\right)$.

Proof: We show first that
(5.25) $4 \leq d\left(B_{2}, B_{3}\right) \leq n+5-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}$.

We choose p as the least integer such that $\varphi^{-p}\left(B_{2}\right)$ meets $0^{-p}\left(B_{3}\right)$ by applying φ. By Lemma 3.14.b)
$d\left(\varphi^{-(p-1)}\left(B_{2}\right), \varphi^{-(p-1)}\left(B_{3}\right)\right)=n+5-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}$. Hence, $d\left(B_{2}, B_{3}\right)=(p-1)+\left(n+5-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}\right) \leq n+5-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}$. $4 \leq d\left(B_{2}, B_{3}\right)$ is obvious. Putting $T=d\left(B_{2}, B_{3}\right)$ we get

$$
\begin{aligned}
& d\left(\varphi^{T-4}\left(B_{2}\right), \varphi^{T-4}\left(B_{3}\right)\right)=4 \cdot \\
& d\left(\varphi^{T-3}\left(B_{2}\right), \varphi^{T-3}\left(B_{3}\right)\right)=n+5-2 \gamma_{1}-4 \gamma_{2}-4 \gamma_{3}=s+3 \cdot \\
& d\left(\varphi^{s}\left(B_{2}\right), \varphi^{s}\left(B_{3}\right)\right)=(s+3)-(s-T+3)=T=d\left(B_{2}, B_{3}\right)
\end{aligned}
$$

since $\varphi^{s}=\varphi^{(s-T+3)}{ }_{\circ \varphi^{T-3}} \cdot \bar{d}\left(B_{2}, B_{3}\right)=\bar{d}\left(\varphi^{s}\left(B_{2}\right), \varphi^{s}\left(B_{3}\right)\right)$
follows in the same way.

Definition 5.9。

"Between" is used in the same way as in Def. 3.13. Suppose B and C are blocks in A. Then

$$
\begin{aligned}
& y_{i}(B, C)=\text { the number of i-blocks between } B \text { and } C(i=1,2), \\
& y_{3}(B, C)=\text { the number of endpoints between } B \text { and } C \text {, of } \\
& 3 \text {-blocks. }
\end{aligned}
$$

Moreover, we order the positions in A relatively to B in this way: $r(B)<r(B)+1<\ldots<n<1<\ldots<r(B)-1$.

Iemma 5.10

Suppose A satisfies Cond. 3.1. Moreover, let B_{i}^{*} be an i-block for $i=1,2$ and $d\left(B_{1}^{*}, B_{2}^{*}\right)=d\left(\varphi^{p}\left(B_{2}^{*}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)$. Then $d\left(B_{1}, B_{2}^{*}\right)=d\left(\varphi^{p}\left(B_{1}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)$ for every 1-block B_{1}.

Proof: Suppose $r\left(B_{2}^{*}\right)<r\left(B_{1}^{*}\right)<r\left(B_{1}\right)$ relatively to B_{2}^{*}. Then $z\left(B_{1}, B_{2}^{*}\right)=z\left(B_{1}, B_{1}^{*}\right)+z\left(B_{1}^{*}, B_{2}^{*}\right), m\left(B_{1}, B_{2}^{*}\right)=m\left(B_{1}^{*}, B_{2}^{*}\right)+$ $m\left(B_{1}, B_{1}^{*}\right)+1$ and

$$
\begin{aligned}
x\left(B_{1}, B_{2}^{*}\right) & =2\left(y_{1}\left(B_{1}^{*}, B_{2}^{*}\right)+y_{1}\left(B_{1}, B_{1}^{*}\right)+1\right)+2\left(y_{2}\left(B_{1}^{*}, B_{2}^{*}\right)+y_{2}\left(B_{1}, B_{1}^{*}\right)\right) \\
& +\left(y_{3}\left(B_{1}^{*}, B_{2}^{*}\right)+y_{3}\left(B_{1}, B_{1}^{*}\right)\right)+z\left(E_{1}, B_{2}^{*}\right)=x\left(B_{1}, B_{2}^{*}\right)+x\left(B_{1}, B_{1}^{*}\right)+2
\end{aligned}
$$

Hence,

$$
\begin{equation*}
a\left(B_{1}, B_{2}^{*}\right)=a\left(B_{1}, B_{1}^{*}\right)+d\left(B_{1}^{*}, B_{2}^{*}\right)-1 . \tag{5.26}
\end{equation*}
$$

By Lemma 3.14 c) $d\left(\varphi^{p}\left(B_{1}\right), \varphi^{p}\left(B_{1}^{*}\right)\right)=d\left(B_{1}, B_{1}^{*}\right)$. Since $r\left(B_{2}^{*}\right)<r\left(B_{1}^{*}\right)<r\left(B_{1}\right), a\left(B_{1}^{*}, B_{2}^{*}\right)<a\left(B_{1}^{*}, B_{1}\right)$. Hence, $\quad \alpha\left(\varphi^{p}\left(B_{1}^{*}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)<\alpha\left(\varphi^{p}\left(B_{1}^{*}\right), \varphi^{p}\left(B_{1}\right)\right)$, which implies $\varphi^{p}\left(B_{2}^{*}\right)<\varphi^{p}\left(B_{1}^{*}\right)<\varphi^{p}\left(B_{1}\right)$ relatively to $\varphi^{p}\left(B_{2}^{*}\right)$. Similar to (5.26), we get $d\left(\varphi^{p}\left(B_{1}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)=d\left(\varphi^{p}\left(B_{1}\right), \varphi^{p}\left(B_{1}^{*}\right)\right)+d\left(\varphi^{p}\left(B_{1}^{*}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)-1$

Hence, $\quad d\left(B_{1}, B_{2}^{*}\right)=d\left(\varphi\left(B_{1}\right), \varphi\left(B_{2}^{*}\right)\right)$.
If $r\left(B_{2}^{*}\right)<r\left(B_{1}\right)<r\left(B_{1}^{*}\right)$ relatively B_{2}^{*}, we show similar to (5.26) thet

$$
\begin{aligned}
& d\left(B_{1}^{*}, B_{2}^{*}\right)=d\left(B_{1}^{*}, B_{1}\right)+d\left(B_{1}, B_{2}^{*}\right)-1 \\
& d\left(\varphi^{p}\left(B_{1}^{*}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)=d\left(\varphi^{p}\left(B_{1}^{*}\right), \varphi^{p}\left(B_{1}\right)\right)+d\left(\varphi^{p}\left(B_{1}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)-1
\end{aligned}
$$

This implies by Lemma 3.14.c) that $d\left(B_{1}, B_{2}^{*}\right)=d\left(\varphi^{p}\left(B_{1}\right), \varphi^{p}\left(B_{2}^{*}\right)\right)$.

Lemma_5.11.

Suppose A satisfies Cond. 3.1, and B_{i} is an i-block for $i=1,2,3$. Then

$$
\begin{aligned}
& d\left(B_{2}, B_{3}\right)+d\left(B_{3}, B_{2}\right)=(n-2)-\left[2 \gamma_{1}+4\left(\gamma_{2}-1\right)+2\left(2 \gamma_{3}-1\right)+2\right], \\
& \bar{d}\left(B_{2}, B_{3}\right)+\bar{d}\left(B_{3}, B_{2}\right)=(n-2)-\left[2 \gamma_{1}+4\left(\gamma_{2}-1\right)+2\left(2 \gamma_{3}-1\right)+2\right], \\
& d\left(B_{1}, B_{2}\right)+d\left(B_{2}, B_{1}\right)=(n-2)-\left[2\left(\gamma_{1}-1\right)+2\left(\gamma_{2}-1\right)+2 \gamma_{3}+1\right] .
\end{aligned}
$$

Proof: We observe that $m\left(B_{2}, B_{3}\right)+m\left(B_{3}, B_{2}\right)=n-2$ and $\chi\left(B_{2}, B_{3}\right)+\chi\left(B_{3}, B_{2}\right)=\left[2 \gamma_{1}+4\left(\gamma_{2}-1\right)+2\left(2 \gamma_{3}-1\right)+2\right]$. Hence, the first equality is true. The other equalities are proved in the same way.

Proof of Iemma 3.15. C_{i} denotes an arbitrary i-block. Lemmas 5.8, 5.11 and 3.13.d) imply

$$
\bar{a}\left(\varphi^{t}\left(C_{3}\right), \varphi^{t}\left(B_{2}\right)\right)=\bar{a}\left(C_{3}, B_{2}\right), a\left(\varphi^{t}\left(C_{3}\right), \varphi^{t}\left(B_{2}\right)\right)=a\left(C_{3}, B_{2}\right)
$$

$$
\begin{equation*}
\alpha\left(\varphi^{t}\left(C_{2}\right), \varphi^{t}\left(B_{2}\right)\right)=d\left(C_{2}, B_{2}\right), d\left(\varphi^{t}\left(C_{1}\right), \varphi^{t}\left(B_{2}\right)\right)=d\left(C_{1}, B_{2}\right) \tag{5.27}
\end{equation*}
$$

Let $A=D B_{2} E=a_{1} \ldots a_{n}, \varphi^{t}(A)=F \varphi^{t}\left(B_{2}\right) G=b_{1} \ldots b_{n}, i=r\left(B_{2}\right)$ and $j=r\left(\varphi^{t}\left(B_{2}\right)\right)$. We then get

$$
\begin{aligned}
& B_{2} \text { is contained in } C_{3} \Leftrightarrow d\left(B_{2}, C_{3}\right)>\bar{d}\left(B_{2}, C_{3}\right) \\
(5.28) & \Leftrightarrow d\left(\varphi^{t}\left(B_{2}\right), \varphi^{t}\left(C_{3}\right)\right)>\bar{d}\left(\varphi^{t}\left(B_{2}\right), \varphi^{t}\left(C_{3}\right)\right) \Leftrightarrow \varphi^{t}\left(B_{2}\right) \text { is } \\
& \text { contained in } \varphi^{t}\left(C_{3}\right) .
\end{aligned}
$$

We suppose there exist a minimal integer q such that $a_{i+q} \neq b_{j+q}$. Without loss of generality we can suppose $a_{i+q}=1$. Hence,
(5.29) $\quad a_{i}=b_{j}, \ldots, a_{i+q-1}=b_{j+q-1}$.
(5.27), (5.28) and (5.29) imply for $0<q^{\prime}<q$

$$
I\left(C_{3}\right)=i+q^{\prime} \Rightarrow I\left(\varphi^{t}\left(C_{3}\right)\right)=j+q^{\prime}, r\left(C_{3}\right)=i+q^{\prime}
$$

$$
\begin{align*}
& \Longrightarrow r\left(\varphi^{t}\left(C_{3}\right)\right)=j+q^{\prime}, r\left(C_{2}\right)=i+q^{\prime} \Longrightarrow r\left(\varphi^{t}\left(C_{2}\right)\right)= \tag{5.30}\\
& j+q^{\prime}, r\left(C_{1}\right)=j+q^{\prime} \Longrightarrow r\left(\varphi^{t}\left(C_{1}\right)\right)=j+q^{\prime},
\end{align*}
$$

In particular, we have a_{i+q} is contained in a 3 -block if and only if b_{j+q} contained in a 3-block. Thus (5.29) and (5.30) give a contradiction. For example, if $a_{i+q}=1=C_{1}$ is a 1 -block, then $b_{j+q}=\varphi^{t}\left(C_{1}\right)=0$ is a 1-block. This gives a contradiction since b_{j+q} is not contained in any 3-block. Without loss of generality we can suppose $i \geq j$. We have therefore proved that $a_{i}=b_{j}, \ldots, a_{n}=b_{j+(n-i)}$. By (5.30) $n=r\left(\hat{B}_{3}\right)=r\left(\omega^{t}\left(\hat{B}_{3}\right)\right)=j+n-i$. Hence, $j=i$ and $E=G$.
$D=F$ is proved in the same way by using $\overline{\mathrm{d}}\left(\mathrm{B}_{2}, \mathrm{C}_{3}\right)=$ $\bar{a}\left(\varphi^{t}\left(B_{2}\right), \varphi^{t}\left(C_{3}\right)\right), d\left(B_{2}, C_{3}\right)=a\left(\varphi^{t}\left(B_{2}\right), \omega^{t}\left(C_{3}\right)\right), d\left(B_{2}, C_{2}\right)=$ $d\left(\varphi^{t}\left(B_{2}\right), \varphi^{t}\left(C_{2}\right)\right)$ and $d\left(B_{2}, C_{1}\right)=d\left(\varphi^{t}\left(B_{2}\right), \varphi^{t}\left(C_{1}\right)\right)$.

Proof of Lemma 3.16: If $c^{r}(A)=\varphi^{S}(A)$, the Lemma is tri-
vial. We suppose $\varphi^{r}(A) \neq \varphi^{S}(A)$. If there exists an i such that $d\left(\varphi^{r+i}\left(B_{1}\right), \varphi^{r+i}\left(B_{2}\right)\right)=d\left(\varphi^{s+i}\left(B_{1}, \varphi^{s+i}\left(B_{2}\right)\right)\right.$, we get by Lemma 3.15 that $\varphi^{r+i}(A)=\varphi^{S+i}(A)$. Hence, $\varphi^{r}(A)=$ $\omega^{s}(A)$ which is a contradiction. Therefore $\alpha\left(\varphi^{r+i}\left(B_{1}\right), \varphi^{r+i}\left(B_{2}\right)\right) \neq d\left(\varphi^{s+i}\left(B_{1}\right), \varphi^{s+i}\left(B_{2}\right)\right)$ for all i. We observe by Lemma 3.14 a): If $\varphi^{i}\left(B_{1}\right)$ and $\varphi^{i}\left(B_{2}\right)$ do not meet by applying $\varphi, \alpha\left(\varphi^{i}\left(B_{1}\right), \varphi^{i}\left(B_{2}\right)\right)$ "decreases" by 0 or 1 . Hence:

$$
\begin{align*}
& \text { If } a\left(\varphi^{s+i}\left(B_{1}\right), \varphi^{s+i}\left(B_{2}\right)\right)>d\left(\varphi^{r+i}\left(B_{1}\right), \varphi^{r+i}\left(B_{2}\right)\right), \\
& \varphi^{r+i}\left(B_{1}\right) \text { meets } \varphi^{r+i}\left(B_{2}\right) \text { "before" } \varphi^{s+i}\left(B_{1}\right) \text { meets } \tag{5.31}\\
& \varphi^{s+i}\left(B_{2}\right), \text { else } \varphi^{s+i}\left(B_{1}\right) \text { meets } \varphi^{s+i}\left(B_{2}\right) \text { "before" } \\
& \varphi^{r+i}\left(B_{1}\right) \text { meets } \varphi^{r+i}\left(B_{2}\right) .
\end{align*}
$$

We suppose $t_{1}, \ldots, t_{q}(q<c)$ are the integers such that $\infty^{r+t_{i}}\left(B_{1}\right)$ meets $\varphi^{r+t_{i}}\left(B_{2}\right)$ by applying φ. We prove the following 3 claims by using (5.31):
(5.32) $\varphi^{s}\left(B_{1}\right)$ meets $\varphi^{s}\left(B_{2}\right)$ at most once by applying $\varphi^{t} 1^{+1}$. (5.33) $\varphi^{s+t_{i}+1}\left(B_{1}\right)$ meets $\varphi^{s+t_{i}+1}\left(B_{2}\right)$ once by applying $\varphi^{t_{i+1}-t_{i}}$.
(5.34) $\quad \varphi^{s+t_{q}+1}\left(B_{1}\right)$ meets $\varphi^{s+t_{q}+1}\left(B_{2}\right)$ at most once by applying $\varphi^{t-t_{q}}{ }^{-1}$.

The Lemma now follows easily from (5.32), (5.33) and (5.34).

Proof of (5.32): If $d\left(\varphi^{s}\left(B_{1}\right), \varphi^{s}\left(B_{2}\right)\right)>\alpha\left(\varphi^{r}\left(B_{1}\right), \varphi^{r}\left(B_{2}\right)\right)$, then $\varphi^{s}\left(B_{1}\right)$ does not meet $\omega^{s}\left(B_{2}\right)$ by applying $\varphi^{t_{1}+1}$. Otherwise, let y be the least integer such that $\varphi^{s}\left(B_{1}\right)$ meets $\varphi^{S}\left(\mathrm{~B}_{2}\right)$ by applying φ^{y}. Then
$d\left(\varphi^{s+y}\left(B_{1}\right), \varphi^{s+y}\left(B_{2}\right)\right)>d\left(\varphi^{r+y}\left(B_{1}\right), \varphi^{r+y}\left(B_{2}\right)\right)$, and $\varphi^{r+y}\left(B_{1}\right)$ meets $\varphi^{\mathrm{r}+\mathrm{y}}\left(\mathrm{B}_{2}\right)$ mefore" $\varphi^{s+\mathrm{y}}\left(\mathrm{B}_{1}\right)$ meets $\varphi^{s+\mathrm{y}}\left(\mathrm{B}_{2}\right)$.

Proof of (5.33): Iet y be the least integer such that $\varphi^{s+t_{i}+1}\left(B_{1}\right)$ meets $\varphi^{s+t_{i}+1}\left(B_{2}\right)$ by applying φ^{y}. Then $\alpha\left(\varphi^{s+t_{i}+1+y}\left(B_{1}\right), \varphi^{s+t_{i}+1+y}\left(B_{2}\right)\right)>d\left(\varphi^{r+t_{i}+1+y}\left(B_{1}\right), \varphi^{r+t_{i}+1+y}\left(B_{2}\right)\right)$, and $\varphi^{r+t_{i}+1+y}\left(B_{1}\right)$ meets $\varphi^{r+t_{i}+1+y}\left(B_{2}\right)$ "before" $\varphi^{s+t_{i}+1+y}\left(B_{1}\right)$ meets $\varphi^{s+t_{i}+1+y}\left(B_{2}\right)$.

The proof of (5.34) is analogous.

The proof of Lemma 3.17 follows from the proof of Lemma 5.8.

The proof of Lemma 3.18 is obvious since each 2-block meets each 3-block a times, each 1-block meets each 2block c times and $A=\varphi^{S}(A)$.

INDEX OF NOTATION

E_{k}	The introduction	move	Def. 3.9.
$w(A)$	The introduction	$\varphi(\mathrm{B})$	Def. 3.11.
i-block	Def. 2.1, 2.2.	$m=m(\mathrm{~B}, \mathrm{C})$	Def. 3.13.
θ	Thm. 2.3.	$X=X(B, C)$	Def. 3.13.
Y_{i}	Thm. 2.3.	$z=z(B, C)$	Def. 3.13, 5.6.
$I(B)=I(A, B)$	Def. 3.3.	d (B, C)	Def. 3.13.
$r(B)=r(A, B)$	Def. 3.3.	C^{\prime}	Def. 5.1.
$m(B)$	Def. 3.4.	H-block	Def. 5.3.
meet	Def. 3.5, 3.7 and 3.8.	K-block	Def. 5.3.
jump out	Def. 3.5, 3.8.	$\pi=N(\mathrm{~B}, \mathrm{C})$	Lemma 5.5.
\hat{B}_{3}	Def. 3.7.	$\bar{m}=\bar{m}(\mathrm{~B}, \mathrm{C})$	Def. 5.6.
$k(A)$	Def. 3.7.	$\bar{x}=\bar{x}(B, C)$	Def. 5.6.
$\varphi(\mathrm{A})$	Def. 3.7.	$\bar{d}(B, C)$	Def. 5.6.
circle around $\text { card }=\text { "the }$	Def. 3.7. number of elements	$\begin{aligned} & y_{i}(B, C) \\ & " i<j \text { relam } \\ & \text { tively to } B^{n} \end{aligned}$	Def. 5.9. Def. 5.9.

RPFERENCES

1. E.R. BERTEKAMP, "Algebraic Coding Theory", McGraw-Hill, New York, 1968.
2. K. KJEIDSEN, On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions, J. Combinatorial Theory, Ser. A. 20 (1976). 154-169.
3. J. SøRENG, The periods of the sequences generated by some symmetric shift registers, J. Combinatorial Theory, Ser. A. 21 (1976), 164-187.
