Contents

Introduction

Chapter 1. Cohomology groups of graded algebras
Chapter 2. Deformation functors and formal moduli.
Chapter 3. Relations to projective geometry.
Chapter 4. Positive and negative grading.
Chapter 5. The existence of a k-algebra
which is unliftable to characteristic zero.
INTRODUCTION

In this paper we study formal deformations of graded algebras and corresponding problems in projective geometry. Given a graded algebra \(A \), we may forget the graded structure and deform (lift) \(A \) as an algebra. Clearly we also have a deformation theory respecting the given graded structure of \(A \). This deformation theory is closely related to the corresponding theory of \(X = \text{Proj}(A) \). One objective of this paper is to compare these three theories of deformation.

A basic tool is the cohomology groups of André and Quillen. Let \(S \rightarrow A \) be a graded ring homomorphism and let \(M \) be a graded \(A \)-module. We shall see that the groups

\[
H^i(S, A, M)
\]

are graded \(A \)-modules whenever \(S \) is noetherian and \(S \rightarrow A \) is finitely generated. In fact, if we let

\[
\mathcal{H}^i(S, A, M)
\]

correspond to \(S \)-derivations of degree \(\nu \), we shall prove that there are canonical isomorphisms

\[
\bigoplus_{\nu=-\infty}^{\infty} \mathcal{H}^i(S, A, M) \cong H^i(S, A, M)
\]

for every \(i \geq 0 \).

Deformations of \(A \) (forgetting the graded structure) are classified by the groups \(H^i(S, A, A) \) for \(i=1,2 \). Restricting to graded deformations, we shall see that they are classified by the subgroups

\[
oH^i(S, A, A)
\]

for \(i=1,2 \). These generalities are proved or at least stated in chapter 1.

Let \(\pi : R \rightarrow S \) be a graded surjection satisfying \((\ker \pi)^2 = 0\).
Since there is an injection

\[\mathcal{H}^2(S, A, A \otimes \ker \Pi) \rightarrow \mathcal{H}^2(S, A, A \otimes \ker \Pi) \]

we deduce that \(A \) is liftable to \(R \) iff \(A \) is liftable as a graded algebra. We would like to generalize this result to arbitrary surjections of complete local rings. This seems difficult. However if we assume

\[\gamma \mathcal{H}^1(S, A, A) = 0 \]

for \(\gamma > 0 \) or \(\gamma < 0 \) (called negative or positive grading respectively), then the statement above follows from 2.6 of chapter 2 when \(S \) is a field \(k \). In fact, let \(\mathfrak{A} \) be the category of artinian local \(V \)-algebras with residue fields \(k, V/m_V = k \), and let \(\text{Def}^0(A/k, -) \), resp \(\text{Def}(A/k, -) \), be the graded deformation functor, resp non-graded deformation functor on \(\mathfrak{A} \) with hulls \(R^0(A) \) and \(R(A) \) respectively. Consider the local \(V \)-morphism

\[R(A) \rightarrow R^0(A) \]

Theorem 2.6 states that this morphism has a section whenever \(A \) has negative or positive grading. This follows from the existence of an isomorphisms.

\[R(A) \sim R^0(A[T]) \]

Here \(\deg T = 1 \) if we have negative grading.

In chapter 3 we enter into projective geometry assuming the graded algebras to be positively graded and generated by elements of degree 1. We compare the groups

\[\gamma \mathcal{H}^1(S, A, M) \]
with the corresponding groups $\Lambda_i^1(S, X, \tilde{M}(\nu))$ in projective geometry, $X = \text{Proj}(\mathbb{A})$. The groups $\Lambda_i^1(S, X, -)$ were introduced by Illusie in [I] and by Laudal [L1]. If X is S-smooth, then

$$\Lambda_i^1(S, X, \tilde{M}) = \mathcal{H}^i(X, \theta_X \otimes S \tilde{M})$$

where θ_X is the sheaf of S-derivations on X. If the depth of M with respect to the ideal

$$m = \bigoplus_{\nu=1}^{\infty} A_{\nu}$$

is sufficiently big, the groups

$$\mathcal{H}^i(S, A, M)$$

and

$$\Lambda_i^1(S, X, \tilde{M}(\nu))$$

coincide. For instance, if $\text{depth}_m A \geq 4$,

$$\mathcal{H}^1(S, A, A) \cong \Lambda^1(S, X, O_X(\nu))$$

and

$$\mathcal{H}^2(S, A, A) \cong \Lambda^2(S, X, O_X(\nu))$$

This implies that the deformations of A and X correspond uniquely to each other. When $\text{depth}_m A \geq 3$ a rigidity theorem of Schlessinger, see (2.2.6) in [K,L], is generalized by the injection

$$\mathcal{H}^1(S, A, A) \to \Lambda^1(S, X, O_X(\nu))$$

Now these depth conditions are usually rather crude, and the exact sequences in which these groups fit are in many cases a better tool.
In chapter 3 we also relate the groups corresponding to embeddings. Let \(\varphi: B \to A \) be a surjective morphism of graded \(S \)-algebras such that \(B_0 = A_0 = S \) and let

\[
f : X = \text{Proj}(A) \to Y = \text{Proj}(B)
\]

be the induced embedding. We would like to compare the groups \(\nu H^i(B,A,M) \) and \(A_i(S,f,\tilde{M}(\nu)) \). If \(f \) is locally a complete intersection, one knows that

\[
A_i(S,f,O_X(\nu)) \cong H^{i-1}(X,N_f(\nu))
\]

where \(N_f \) is the normal bundle of \(X \) in \(Y \). Again putting depth conditions on \(M \), we conclude that

\[
\nu H^i(B,A,M)
\]

and

\[
A_i(S,f,\tilde{M}(\nu))
\]

coincide. If \(\text{depth}_m A \geq 2 \), then

\[
\nu H^1(B,A,A) \cong A^1(S,f,\Theta_X(\nu))
\]

and

\[
\nu H^2(B,A,A) \cong A^2(S,f,O_X(\nu))
\]

From this follows that if \(B \) is \(S = k \)-free then

\[
\text{Def}^0(\varphi,-) \cong \text{Hilb}_X(-)
\]

on \(\mathcal{X} \) where \(\text{Def}^0(\varphi,-) \) is the graded deformation functor of \(\varphi \) and where \(\text{Hilb}_X(-) \) is the local Hilbert functor at \(X \). From this and the isomorphism

\[
R(A) \cong R^0(A[T])
\]

we generalize a theorem of Pinkham [P] as follows. If \(A \) has
negative grading and $\text{depth}_m A \geq 1$ and if $X = \text{Proj}(A[T])$ is the projective cone of X in $\mathbb{P}^{n+1}_k = \text{Proj}(B[T])$, then there is a smooth morphism of functors

$$\text{Hilb}_X(-) \rightarrow \text{Def}(A/k,-)$$

In chapter 4 we investigate the conditions of negative and positive grading. We shall assume A to be the minimal cone of a closed subscheme $X \subseteq \mathbb{P}^n_S$. By twisting the embedding we prove that the minimal cone B of $X \subseteq \mathbb{P}^N_S$ for large N very often has negative or positive grading. For instance, if X is S-smooth B will have negative grading. If X is of pure dimension ≥ 2 and locally Cohen-Macaulay, then B will have positive grading. Combining these two results we deduce a theorem of Schlessinger [S3]. See also [M].

Using these results we find that the smooth unliftable projective variety of Serre [Se] gives rise to a graded k-algebra which is unliftable to characteristic zero. This is done in chapter 5. His example is of the form $X = Y/G$. Y is a complete intersection of dimension 3 and the order of G divides the characteristic.

The possibility of using this example to get an unliftable k-algebra may be looked upon as the beginning of this paper. The proof given here is due to O.A. Laudal and the author.

We end chapter 5 by proving that if $\text{ord}(G)$ did not divide the characteristic and if Y was a complete intersection of dimension ≥ 3 then $X = Y/G$ would have been everywhere liftable. This paper contains all the results of [K]. I would like to thank O.A. Laudal for reading the manuscript.
CHAPTER 1

Cohomology groups of graded algebras.

Rings will be commutative with unit. Let \(\text{S-alg} \) be the

category of \(S \)-algebras and

\[\text{SF} \subseteq \text{S-alg} \]

the full subcategory of free \(S \)-algebras. Given an \(S \)-algebra

\(A \) and an \(A \)-module \(M \), we define

\[H^i(S,A,M) = \lim_{i} \text{Der}_S(-,M) \]

where \(\text{Der}_S(-,M) \) is the functor on \((\text{SF}/A)^0 \) with values in

\(\text{Ab} \) defined by

\[\text{Der}_S(-,M)(F \to A) = \text{Der}_S(F,M) \]

\(M \) being an \(F \)-module via \(\varphi \).

If \(S \to A \) is a graded \(S \)-algebra and if \(M \) is a graded

\(A \)-module, we may consider the category of graded \(S \)-algebras \n
\(\text{Sg-alg} \) and the corresponding category

\[\text{SgF} \subseteq \text{Sg-alg} \]

of free graded \(S \)-algebras. Let

\[k_{\text{Der}}_S(-,M) : \text{SgF}/A \to \text{Ab} \]

be the functor defined by

\[k_{\text{Der}}_S(-,M)(F \to A) = k_{\text{Der}}_S(F,M) = \{ D \in \text{Der}_S(F,M) | D \text{ is graded of degree } k \} \]

Then we put

Definition 1.1

\[kH^i(S,A,M) = \lim_{i} k_{\text{Der}}_S(-,M) \]

\[\text{SgF}/A^0 \]
As mentioned in the introduction, the groups $H^i(S,A,-)$ and $\widehat{H}^i(S,A,-)$ classify formal deformations. Recall that if $R \rightarrow S$ is any surjection with nilpotent kernel, we say that an R-algebra A' is a lifting or deformation of A to R if there is given a cocartesian diagram

$$
\begin{array}{ccc}
R & \longrightarrow & A' \\
\pi \downarrow & & \downarrow \\
S & \longrightarrow & A
\end{array}
$$

such that

$$\text{Tor}_1^R(A',S) = 0$$

Two liftings A' and A'' are considered equivalent if there is an R-algebra isomorphism $A' \sim A''$ reducing to the identity on A. If $\phi : A \rightarrow B$ is a morphism of S-algebras and A' and B' are liftings of A and B respectively, we say that a morphism

$$\phi' : A' \rightarrow B'$$

is a lifting or deformation of ϕ with respect to A' and B' if $\phi \circ \text{id}_S = \phi$. We define graded liftings of graded algebras and graded liftings of graded morphisms in exactly the same way.

Assume that $R \rightarrow S$ satisfies $(\ker \pi)^2 = 0$

Then it is known that

Theorem 1.2

There is an element

$$\sigma(A) \in H^2(S,A,A \otimes \ker \pi)$$
which is zero if and only if A can be lifted to R. If
$\sigma(A) = 0$, then the set of non-equivalent liftings is a principal homogeneous space over $H^1(S, A, A \otimes \ker \pi)$

Theorem 1.3

There is an element

$$\sigma(\varphi, A', B') \in H^1(S, A, B \otimes \ker \gamma)$$

which is zero if and only if φ can be lifted to R with respect to A' and B'. If $\sigma(\varphi ; A', B') = 0$ then the set of liftings is a principal homogeneous space over

$$H^0(S, A, B \otimes \ker \pi) = \text{Der}_S(A, B \otimes \ker \pi)$$

The elements $\sigma(A)$ and $\sigma(\varphi ; A', B')$ are called obstructions.

Then corresponding theorems in the graded case are

Theorem 1.4

There is an element

$$\sigma_0(A) \in \oH^2(S, A, A \otimes \ker \pi)$$

which is zero if and only if A can be lifted to a graded R-algebra. If $\sigma_0(A) = 0$, then the set of non-equivalent liftings is a principal homogeneous space over $\oH^1(S, A, A \otimes \ker \pi)$

Theorem 1.5

There is an element

$$\sigma_0(\varphi ; A', B') \in \oH^1(S, A, B \otimes \ker \pi)$$

which is zero if and only if φ can be lifted as a graded morphism to R with respect to A' and B'. Moreover, if $\sigma_0(\varphi ; A', B') = 0$, then the set of graded liftings is a principal homogeneous space over $\oH^0(S, A, B \otimes \ker \pi) = \o\text{Der}_S(A, B \otimes \ker \pi)$
In [L1] we find proofs of 1.2 and 1.3 and these can easily be carried over to the graded case.

If we want to compare the graded and non-graded theories of deformation, we need to know the relations between the groups $\text{H}^i(S, A, M)$ and $\text{H}^i(S, A, M)$. This is given by the following theorem. A proof of this can also be found in [I].

Theorem 1.6

Let $S \to A$ be a graded ring homomorphism and let M be a graded A-module. If S is noetherian and $S \to A$ is finitely generated, then there is a canonical isomorphism

$$
\bigoplus_{k=-\infty}^{\infty} \mathbb{H}^i(S, A, M) \to \mathbb{H}^i(S, A, M)
$$

for every $i \geq 0$.

Remark In general, there is an injection

$$
\bigoplus_{k=-\infty}^{\infty} \mathbb{H}^i(S, A, M) \to \mathbb{H}^i(S, A, M)
$$

for every $i \geq 0$.

Proof

Let

$$(S \mathcal{F} / A)_{fg} \subseteq S \mathcal{F} / A$$

be the full subcategory defined by the objects $\phi : F \to A$ where F is a finitely generated S-algebra.

Look at the diagram of categories

$$
\begin{array}{ccc}
(S \mathcal{F} / A)_{fg} & \to & S \mathcal{F} / A \\
\uparrow & & \uparrow \\
(S \mathcal{G} \mathcal{F} / A)_{fg} & \to & S \mathcal{G} \mathcal{F} / A
\end{array}
$$

where all functors are forgetful. These induce morphisms
I claim that these maps are all isomorphisms for \(i \geq 0 \).
This will prove 1.6 since there is a canonical isomorphism of functors
\[
\lim\left(t \right) \text{Der}_S(-,M) \cong \text{H}^i(S,A,M)
\]
\[
\left((SF/A)_{fg} \right)
\]
\[
\lim\left(t \right) \text{Der}_S(-,M) \cong \text{H}^i(S,A,M)
\]
\[
\left((SgF/A)_{fg} \right)
\]
\[
\lim\left(t \right) \text{Der}_S(-,M) \cong \text{H}^i(S,A,M)
\]
\[
\left(SgF/A \right)
\]

For \(i = 0 \), the contention of \(* \) is easily proved. For \(i > 0 \) let us prove that the right hand vertical morphisms are isomorphisms.

Let \(F \rightarrow A \) be a graded \(S \)-algebra surjection and let
\[
F_i = F \times F \times \cdots \times F \quad (i+1)-\text{times}
\]
Consider the complex
\[
\lim\left(q \right) \text{Der}_S(-,M) \rightarrow \lim\left(q \right) \text{Der}_S(-,M) \rightarrow \ldots \rightarrow \lim\left(q \right) \text{Der}_S(-,M) \rightarrow
\]
\[
\left(SF/F_i \right)
\]
where the differentials are the alternating sum of group-morphisms
\[
\lim\left(q \right) \text{Der}_S(-,M) \rightarrow \lim\left(q \right) \text{Der}_S(-,M)
\]
\[
\left(SF/F_{i-1} \right) \quad \left(SF/F_i \right)
\]
induced by the projections \(F_i \rightarrow F_{i-1} \). In this situation there
is a Leray spectral sequence given by the term

\[E^p,q = H^p(\lim(q) \operatorname{Der}_S(-,M)) \leftarrow SF/F. \]

converging to

\[\lim(\cdot) \operatorname{Der}_S(-,M) = H(\cdot)(S,A,M) \]

For a proof see (2.1.3) in [L1].

Similarly, there is a Leray spectral sequence with

\[E^p,q = H^p(\lim(q) \operatorname{Der}_S(-,M)) \leftarrow SF/F. \]

converging to

\[\lim(\cdot) \operatorname{Der}_S(-,M) \leftarrow SF/F. \]

To show that the morphisms

\[\lim(1) \operatorname{Der}_S(-,M) \rightarrow \lim(1) \operatorname{Der}_S(-,M) \]

are isomorphisms, we use induction on \(i \). If it is an isomorphism for \(i \leq n \) and for every object \(A \) in \(\text{Sg}_{-\text{alg}} \), we conclude that the morphism

\[E^p,q \rightarrow E^{p',q} \]

is an isomorphism for \(q \leq n \) and every \(p \).

Recall that

\[E^0,q \subseteq \lim(q) \operatorname{Der}_S(-,M) = H^q(S,F,M) \leftarrow SF/F \]
Hence $E^0_{2,q} = 0$ for $q \geq 1$.

Since $F \in \text{obSGF}$, we get

$$\lim_{\text{SGF}/F} (q) \text{Der}_S(-,M) = 0 \quad \text{for } q \geq 1$$

as well. Since for $r \geq 2$ the differentials of the spectral sequence are of bidegree $(r,1-r)$, and since for p and q given, $E^p_r,q = E^p_r,q$ for some r, we easily deduce isomorphisms

$$E^p_\infty,q \to E^p_\infty,q$$

for every p and q with $p+q \leq n+1$. Hence there is an isomorphism

$$\lim_{\text{SGF}/A} (n+1) \text{Der}_S(-,M) \to \lim_{\text{SGF}/A} (n+1) \text{Der}_S(-,M)$$

Q.E.D.

Let $R \to S$ be a graded surjection such that $(\ker \pi)^2 = 0$

It is easy to see that the injection

$$\sigma_0^S(A,A \otimes \ker \pi) \to \sigma^S(A,A \otimes \ker \pi)$$

maps the obstruction $\sigma_0(A)$ onto $\sigma(A)$. For definitions of the obstructions see [L1]. This proves

Corollary 1.7

Let $R \to S$ be a graded surjection such that $(\ker \pi)^2 = 0$.

If A is a graded S-algebra, then A can be lifted to R iff A can be lifted to R as a graded algebra.

Remark

Let F_A be the set of non-equivalent liftings of A to
R and F_A^0 the corresponding set of graded liftings. If A' is a graded lifting of A to R, then there are isomorphisms and obvious vertical injections fitting into the diagram

\[
\begin{array}{ccc}
F_A & \sim & H^1(S,A,A) \\
\uparrow & & \uparrow \\
F_A^0 & \sim & H^1(S,A,A)
\end{array}
\]

Hence there is a projection

\[p : F_A \to F_A^0 \]

Now 1.7 can be generalized as follows. Let

\[\varphi : A \to B \]

be a graded S-algebra homomorphism. Assume there are liftings A' and B', not necessarily graded, of A and B such that φ is liftable to R with respect to A' and B'. Then φ admits a graded lifting to R with respect $p(A')$ and $p(B')$. We omit the proof.

Similar results for graded S-modules and for graded module morphisms are valid.
CHAPTER 2

Defomation functors and formal moduli.

For the rest of this paper we shall deform only finitely generated algebras.

Let \(\Pi : R \rightarrow R' \) be a surjective ringhomomorphism. If \((\ker \Pi)^2 = 0 \), then 1.7 say that \(A \) is liftable to \(R \) iff \(A \) is liftable to \(R \) as a graded algebra. We would like to drop the condition \((\ker \Pi)^2 = 0 \) in 1.7. To do this we shall introduce defomation functors.

Let \(V \) be a noetherian local ring with maximal ideal \(m_V \) and residue field \(k = V/m_V \). Let \(\Gamma \) be the category whose objects are artinian local \(V \)-algebras with residue fields \(k \) and whose morphisms are local \(V \)-homomorphisms. Let \(S \) be a finitely generated \(k \)-algebra and assume that we can find graded liftings \(S_R \) of \(S \) to \(R \) for any \(R \in \text{obl} \) such that for any morphism \(\pi : R \rightarrow R' \) of \(\Gamma \) there is a morphism \(S_R \rightarrow S_{R'} \) with

\[
S_R \otimes_{R} R' \cong S_{R'}
\]

For each \(R \), fix one \(S_R \) with this property and let

\[
\varphi : S \rightarrow A
\]

be a finitely generated graded \(S \)-algebra. Relative to the choice of liftings \(S_R \) we define

\[
\text{Def}^0(A/S,R) = \left\{ \frac{S_R \rightarrow A'}{S_S \rightarrow A} \mid A' \text{ is a graded lifting of } A \text{ to } S_R \right\}/\sim
\]
It is easy to see that $\text{Def}^0(A/S,-)$ is a covariant functor on \mathbb{L} with values in Set_S. This is the graded deformation functor or A/S. Correspondingly, we denote by $\text{Def}(A/S,-)$ the non-graded deformation functor of A/S.

Recall that a morphism of covariant functors

$$F \rightarrow G$$

on \mathbb{L} is smooth iff the map

$$F(R) \rightarrow F(R') \times G(R)$$

is surjective whenever $R \rightarrow R'$ is surjective. The tangent space t_F of F is defined to be

$$t_F = F(k[\varepsilon])$$

when $k[\varepsilon] \in \text{ob} \mathbb{L}$ is the dual ring of numbers.

Definition 2.1

A pro-\mathbb{L} object $R(A/S)$, or just $R(A)$ is called a hull for $\text{Def}(A/S,-)$ if there is a smooth morphism of functors

$$\text{Hom}_{\mathbb{L}}(R(A),-) \rightarrow \text{Def}(A/S,-)$$

on \mathbb{L} which induces an isomorphism on their tangent spaces. $R^0(A)$ is similarly defined as the hull of $\text{Def}^0(A/S,-)$.

By 1.2 and 1.4 we see that

$$\text{Def}(A/S,k[\varepsilon]) = H^1(S,A,A)$$

$$\text{Def}^0(A/S,k[\varepsilon]) = _0H^1(S,A,A)$$

Look at the canonical morphism of functors

$$\text{Def}^0(A/S,-) \rightarrow \text{Def}(A/S,-)$$

and the corresponding V-morphism
If this morphism splits we have solved the problem mentioned at the beginning of this paragraph.

In [L1] we find a very general theorem describing these hulls. Following [L1] we notice that since A is a finitely generated S-algebra, the group $H^i(S, A, A)$ for a given i is finite as an A-module. We pick a countable basis $\{v_j\}$ for $H^i(S, A, A)$ as a k-vectorspace and define a topology on H^i in which a basis for the neighbourhoods of zero are those subspaces containing all but a finite number of these v_j.

Let

$$H^i = \text{Hom}_k(H^i, k) \quad \text{for } i = 1, 2$$

and let

$$T_A^i, \text{ or just } T^i \quad i = 1, 2$$

be the completion of $\text{Sym}_v(H^i)$ in the topology induced by the topology on H^i, i.e. the topology in which a basis for the neighbourhoods of zero are those ideals containing some power of the maximal ideal and intersecting H^i in an open subspace. If H^i is a finite k-vectorspace then T^i is a convergent power series algebra on \mathfrak{t}. The result we need is the following. See (4.2.4.) in [L1].

Theorem 2.2

There is a morphism of complete local rings

$$\sigma = \sigma(A) : T^2 \longrightarrow T^1$$

such that

$$R(A) \sim T^1 \overset{\wedge}{\otimes} T^2 \hat{v}$$
Short remark on the proof.

To simplify ideas, assume $V = k$ and $H^1(S, k, k)$ finite as a k-vector space. Let $\mathcal{L}_n \subset \mathcal{L}$ be the full subcategory of \mathcal{L} consisting of objects R satisfying $m^n_R = 0$. Put

$$T_n^1 = T_n^1 / m^n T_n$$

and $R_2 = T_2^1$. If $R \in \text{obj}_{\mathcal{L}_2}$, then by 1.2

$$\text{Def}(A/S, R) = H^1(S, k, A) \otimes_{m_R} \text{Hom}_k^c(T^1, R) = \text{Hom}_k^c(R_2, R)$$

Hence R_2 represents the functor $\text{Def}(A/S, -)$ on \mathcal{L}_2. Let \mathcal{A}_2 be the universal lifting of A to S_{R_2}. If $\sigma_2 : T_2^2 \rightarrow k \rightarrow T_2^1$ is the composition,

then

$$R_2 = T_2^1 = T_2^1 \otimes_{T_2^2} k$$

By induction we shall assume that

$$\sigma_i : T_i^2 \rightarrow T_i^1 \quad ;2 \leq i \leq n-1$$

are constructed such that

$$R_i = T_i^1 \otimes_{T_i^2} k$$

and such that A_2 is liftable to S_{R_1}. Consider the following diagram

\[
\begin{array}{ccc}
T_2^2 & \xrightarrow{\sigma_n} & T_2^1 \\
\downarrow & & \downarrow \\
T_{n-1}^2 & \xrightarrow{\sigma_{n-1}} & T_{n-1}^1
\end{array}
\]

We shall try to construct $\sigma_n : T_n^2 \rightarrow T_n^1$ such that the diagram
above commutes. In fact it is enough to define σ_n on H^{2*} as a k-linear map. Let

$$R'_n = T'_n / \pi^{-1}(\alpha)$$

Then the diagram

$$
\begin{array}{ccc}
T'_n & \rightarrow & R'_n \\
\pi & \downarrow & \pi' \\
T_{n-1} & \rightarrow & R_{n-1}
\end{array}
$$

is commutative and $\ker \pi'$ is a k-module via $T'_n \rightarrow k$.

Let A_{n-1} be any lifting of A_2 to $S_{R_{n-1}}$. The obstruction for lifting A_{n-1} to $S_{R'_n}$ is given by

$$\sigma(A_{n-1}) \in H^2(S_{R_{n-1}}, A_{n-1}, A_{n-1} \otimes \ker \pi') \sim H^2(S, A, A) \otimes \ker \pi' \cong \text{Hom}(H^{2*}, \ker \pi')$$

Let σ_n be any k-linear map fitting into the commutative diagram

$$
\begin{array}{ccc}
H^{2*} & \rightarrow & \sigma(A_{n-1}) \\
\sigma_n & \downarrow & \sigma_n \\
T'_n & \rightarrow & R'_n \supset \ker \pi'
\end{array}
$$

and put

$$R_n = R'_n / \text{im} \sigma(A_{n-1})$$

Thus killing the obstruction of lifting, we conclude that A_{n-1} is liftable to S_{R_n}. Put

$$R(A) = \lim R_n \quad \text{and} \quad \sigma = \lim \sigma_n.$$
Lauald proves that this $R(A)$ is a hull for $\text{Def}(A/S, -)$.

If $V \rightarrow k$, just as in the general step, we let V_2 be the largest quotient of V/m_{V^2} to which $S \rightarrow A$ is liftable. Any lifting $S_{V^2} \rightarrow A_2$ may serve as a zero point for the isomorphism

$$\text{Def}(A/S, R) \cong H^1(S, A, A) \otimes m_R$$

where $R \in \text{ob}_2$. For the rest we may proceed as before.

Corollary 2.2.a

Let V be a regular local ring such that $S \rightarrow A$ is liftable to V/m_{V^2}. Then $R(A)$ is regular iff the composition

$$H^2^* \rightarrow T^2 \sigma \rightarrow T^1$$

is zero.

Proof.

It follows from the fact that the image of the composition is in $m_{T^1}^2$. Q.E.D.

Similar results are true for $R^0(A)$. If

$$o_{H^i}^* = \text{Hom}_k(o_{H^i}(S, A, A), k) \quad i=1,2$$

and

$$o_{T^i}^* \text{ A, or just } o_{T^i}^* \quad \text{ for } i=1,2$$

is the completion of $\text{Sym}_V(o_{H^i}^*)$ in the corresponding topology, then there is a morphism of complete local rings

$$\sigma_o = \sigma_o(A): o_{T^2} \rightarrow o_{T^1}$$

such that

$$R^0(A) \cong o_{T^1} \wedge V_{o_{T^2}}$$

The canonical injections
\[oH^i = oH^i(S,A,A) \rightarrow H^i(S,A,A) = H^i \]

induces surjections

\[T^i \rightarrow oT^i \quad \text{for } i = 1,2 \]

These surjections can be assumed to fit nicely into a commutative diagram

\[
\begin{array}{ccc}
T^2 & \rightarrow & oT^2 \\
\sigma & \downarrow & \sigma_o \\
T^1 & \rightarrow & oT^1
\end{array}
\]

in such a way that the induced morphism

\[R(A) \rightarrow R^0(A) \]

makes the diagram

\[
\begin{array}{ccc}
\text{Def}^0(A/S,-) & \rightarrow & \text{Def}(A/S,-) \\
\uparrow & & \uparrow \\
\text{Hom}(R^0(A),-) & \rightarrow & \text{Hom}(R(A),-)
\end{array}
\]

commutative.

We shall only sketch a proof of this commutativity since we will not use it much. We need an easy lemma, see (4.2.3) in [L1].

Lemma 2.3.

Consider the commutative diagram

\[
\begin{array}{ccc}
R_1 & \rightarrow & R_2 \\
\pi_1 & \downarrow & \pi_2 \\
R_1 & \rightarrow & R_2 \\
& & \downarrow k
\end{array}
\]
whose objects and morphisms are in \mathbb{L}. Assume π_1 and π_2 surjective and $(\ker \pi_1)^2 = (\ker \pi_2)^2 = 0$. If A_1 is a lifting of A to S_{R_1}, and $A_2 = A_2 \otimes_{R_2} R_2$, then

$$H^2(S_{R_1}, A_1, A_1 \otimes \ker \pi_1) \rightarrow H^2(S_{R_2}, A_2, A_2 \otimes \ker \pi_2)$$

maps the obstruction $\sigma(A_1)$ onto $\sigma(A_2)$.

Proof of the commutativity.

As in the "proof" of 2.2, let us assume $V = k$ and $H^1(S, A, A)$ finite as a k-vectorspace. We constructed R_n and σ_n in such a way that

$$R(A) = \lim R_n \quad \sigma = \lim \sigma_n$$

In the graded case we shall use the notations

$$R^0(A) = \lim^0 R_n \quad \sigma_0 = \lim (\sigma_0)_n$$

Now R_2 and 0R_2 represents this deformation functors on \mathbb{L}_2. If A_2 is the universal lifting of A to S_{R_2}, we easily see that $A_2 \otimes _{R_2}^0R_2$ is the graded universal lifting to S_{R_2}.

Let $n \geq 3$ and let A_{n-1} be a lifting of A_2 to $S_{R_{n-1}}$. By induction we may assume the commutativity of

$$\xymatrix{T^2_{n-1} \ar[r] \ar[d]^{\sigma_{n-1}} & ^0T^2_{n-1} \ar[d]^{(\sigma_0)_{n-1}} \\
^1T_{n-1} \ar[r] & ^0T^1_{n-1}}$$

and that $A_{n-1} \otimes _{R_{n-1}}^0R_{n-1}$ is a graded lifting of $A_2 \otimes _{R_2}^0R_2$.
By 2.3 a commutative diagram

\[
\begin{align*}
H^2 \
ightarrow & \ H^2 \ + \\
\sigma_n & \downarrow \sigma_n \\
T_n & \rightarrow \ oT_n
\end{align*}
\]

is found, hence then is a commutative diagram

\[
\begin{align*}
R_n & \rightarrow \ oR_n \\
\pi_n & \downarrow \pi_n \\
R_{n-1} & \rightarrow \ oR_{n-1}
\end{align*}
\]

Since

\[
\ker \pi_n \rightarrow \ ker \ o\pi_n
\]

is a surjective map of k-vector spaces, we deduce from the surjectivity of

\[
\begin{align*}
H^1(S,A,A) \otimes \ker \pi_n & \rightarrow \ H^1(S,A,A) \otimes \ker o\pi_n \\
\end{align*}
\]

(using 1.2 and 1.7) that there is a lifting A_n and A_{n-1} to S_{R_n} such that $A_n \otimes oR_n$ is a graded lifting of $A_{n-1} \otimes oR_{n-1}$.

The case $V \nmid k$ makes no trouble.

Q.E.D.

From this we get
Proposition 2.4

Let \(V \) be a regular local ring such that \(S \to A \) is liftable to \(V/m_V^2 \). Then

i) If \(R(A) \) is a regular local ring, so is \(R^0(A) \).

ii) If \(R^0(A) \) is regular, then the morphism

\[R(A) \to R^0(A) \]

splits

Proof.

i) follows from the commutativity of the diagram

\[
\begin{array}{ccc}
H^2(-) & \to & oH^2(-) \\
\downarrow & & \downarrow \\
T^2 & \to & oT^2 \\
\sigma & \downarrow & \sigma_o \\
T^1 & \to & oT^1
\end{array}
\]

using 2.2.a

If \(R^0(A) \) is regular, then \(oT^1 = R^0(A) \).

The obvious surjection

\[H^1 = H^1(S,A,A) = H^1(S,A,A) \to oH^1(S,A,A) = oH^1 \]

induces an injection

\[oT^1 \to T^1 \]

which defines a one-sided inverse of \(R(A) \to R^0(A) \).

The surjections

\[H^i \to oH^i \]

for \(i = 1,2 \)

induce morphisms
If the corresponding diagram

\[
\begin{array}{ccc}
0_{T^2} & \rightarrow & T^2 \\
\sigma & \downarrow & \sigma \\
0_{T^1} & \rightarrow & T^1
\end{array}
\]

commutes, then \(R(A) \rightarrow R^0(A) \) splits. In general there seem to be no reasons for this diagram to commute. However imposing some rather natural conditions on the graded algebra \(A \), the commutativity can be proved.

Definition 2.5

We say that \(S \rightarrow A \) has negative grading (resp. positive grading) if

\[
\bigwedge^1(S, A, A) = 0 \quad \text{for} \quad \nu > 0
\]

(resp. \[
\bigwedge^1(S, A, A) = 0 \quad \text{for} \quad \nu < 0
\]

If \(A \) has positive or negative grading, then the diagram above commutes, proving

Theorem 2.6

If \(S \rightarrow A \) has negative or positive grading, then

\[
R(A) \rightarrow R^0(A)
\]

splits as a local \(V \)-homomorphism.

In the same direction we have the following more general result.

Theorem 2.7

Assume \(S \rightarrow A \) has negative (resp. positive) grading and put \(B = A[T] \) with \(\deg T = 1 \) (resp \(\deg T = -1 \)). Then there is
a V-isomorphism

$$R^0(B) \cong R(A)$$

We shall need some preparations.

Let A and B be graded S-algebras and

$$\Psi : B \to A$$

an S-algebra homomorphism, not necessarily graded. For every $i \geq 0$, Ψ induces maps

$$\Psi^i : H^i(S, A, A) \to H^i(S, B, A)$$

$$\Psi_i : H^i(S, B, B) \to H^i(S, B, A)$$

Let $\Psi_i/0$ be the composed map

$$H^i(S, B, B) \to H^i(S, B, B) \to H^i(S, B, A)$$

Lemma 2.8

If Ψ^i and $\Psi_i/0$ are isomorphisms for $i = 1$ and injections for $i = 2$, then there is a local V-isomorphism

$$R(A) \cong R^0(B)$$

Remark 2.8

Let $\pi : R \to R'$ be a surjection in \mathbb{L} such that $\ker \pi$ is a k-module via $R \to k$. Look at

\[
\begin{array}{ccc}
R & \to & S_R \\
\downarrow \pi & & \downarrow \Psi \\
R' & \to & S_{R'} \\
\downarrow & & \downarrow \Psi' \\
k & \to & S \\
\end{array}
\]

where A' and Ψ' are liftings to $S_{R'}$ and B' is a graded
lifting to $S_{R'}$. Consider the diagram

$$
\begin{array}{ccc}
H^2(S,B,B) \otimes \ker \pi & \longrightarrow & H^2(S,B,A) \otimes \ker \pi \\
\downarrow & & \downarrow \\
H^2(S,A,A) \otimes \ker \pi & \longrightarrow & H^2(S,B,A) \otimes \ker \pi \\
\end{array}
$$

By [L1], the obstructions for deforming A' and B' respectively map on the same element in $H^2(S,B,A) \otimes \ker \pi$.

Proof of 2.8

We shall use the notation

$$T^i_Y$$

for the completion of

$$\text{Sym}_Y(H^i(S,B,A)^*)$$

The morphisms

$$\psi^i : H^i(S,A,A) \longrightarrow H^i(S,B,A)$$

$$\psi^0 : H^i(S,B,B) \longrightarrow H^i(S,B,A)$$

induce morphisms

$$T^i_A \leftarrow T^i_Y$$

$$oT^i_B \leftarrow T^i_Y$$

which by the "proof" of 2.2 and by 2.8 a fit into a commutative diagram
The horizontal maps are surjections and isomorphisms by the assumptions of 2.8. Q.E.D

Remark 2.8 b

If ψ^i is an isomorphism for $i = 1$ and an injection for $i = 2$ the morphism

$$(\psi^1)^{-1}\psi_1 : H^1(S, B, B) \to H^1(S, A, A)$$

induces a morphism

$R(A) \to R(B)$

Now we turn to the proofs of 2.6 and 2.7

Proof of 2.7

Let

$\psi : B \to A$

be the composition

$B = A[T] \to A[T]/(T-1) \cong A$

and let j be the canonical injection

$j : A \to B$

Let M be any B-module. j induces maps

$\psi^i_M : H^i(S, B, M) \to H^i(S, A, M)$

Using the exact sequence

$$\to H^i(A, B, M) \to H^i(S, B, M) \to H^i(S, A, M) \to H^{i+1}(A, B, M) \to$$

and the fact that

$H^i(A, B, M) = 0$ for $i \geq 1$
we deduce that j^i_M are isomorphisms for $i \geq 1$. However
ψ^i are the inverse maps of j^i_A for $i = 1, 2$.
Hence by 2.8 it is enough to prove that

$$\psi_{i/o} : oH^i(S, B, B) \longrightarrow H^i(S, B, A)$$

is an isomorphism for $i = 1$ and an injection for $i = 2$.
Look at the diagram

$$
\begin{array}{ccc}
 oH^i(S, B, B) & \longrightarrow & H^i(S, B, B) \\
 \downarrow j_B^i & & \downarrow j_B^i \\
 oH^i(S, A, B) & \longrightarrow & H^i(S, A, B)
\end{array}
$$

$\|$

$$
\begin{array}{ccc}
 H^i(S, A, A) \otimes k[T] & \longrightarrow & H^i(S, A, A)
\end{array}
$$

where the lower horizontal map is induced by sending T to 1. If $\deg T = 1$ and if $i \geq 1$, $(\psi^i)^{-1} \psi_{i/o}$ is given by the
composition

$$
\begin{array}{cc}
oH^i(S, B, B) \cong \bigoplus_{\nu = -\infty} \nu H^i(S, A, A)T^{-\nu} \cong \bigoplus_{\nu = -\infty} \nu H^i(S, A, A) \longrightarrow H^i(S, A, A)
\end{array}
$$

which is an injection for all $i \geq 1$. If A has negative
grading, then by definition $\psi_{1/o}$ is an isomorphism. The
case $\deg T = -1$ is similar. Q.E.D.

Proof of 2.6

Let

$$\phi : B \longrightarrow B/(T) = A$$

be the canonical surjection. Then

$$\phi^i : oH^i(S, A, A) \longrightarrow oH^i(S, B, A)$$
are isomorphisms for $i \geq 1$. By 2.8 b there is a morphism $
abla^0(A) \rightarrow \nabla^0(B)$ deduced from the commutative diagram

$$
\begin{array}{ccc}
o_{T_A}^2 & \rightarrow & o_{T_B}^2 \\
\sigma_o(A) \downarrow & & \downarrow \sigma_o(B) \\
o_{T_A}^1 & \rightarrow & o_{T_B}^1
\end{array}
$$

The horizontal maps are induced by $(\phi^i)^{-1} \circ \phi i$. Moreover by 2.7 and its proof, the isomorphism

$$\nabla^0(B) \cong \nabla(A)$$

is deduced from the commutative diagram

$$
\begin{array}{ccc}
o_{T_B}^2 & \leftarrow & o_{T_A}^2 \\
\sigma_o(B) \downarrow & & \downarrow \sigma(A) \\
o_{T_B}^1 & \leftarrow & o_{T_A}^1
\end{array}
$$

The horizontal maps are induced by

$$(\psi^i)^{-1} o(\psi i/o) : oH^i(S,B,B) \rightarrow H^i(S,A,A)$$

However if $\deg T = 1$, this morphism is given by

$$oH^i(S,B,B) \sim \bigoplus_{\nu=-\infty} H^i(S,A,A) \rightarrow H^i(S,A,A)$$

which splits. Using a one-sided inverse, i.e. a projection for $i = 2$, a commutative diagram

$$
\begin{array}{ccc}
o_{T_B}^2 & \rightarrow & o_{T_A}^2 \\
\sigma_o(B) \downarrow & & \downarrow \sigma(A) \\
o_{T_B}^1 & \sim & o_{T_A}^1
\end{array}
$$
is found, inducing the isomorphism \(R^0(B) \cong R(A) \). We claim that the composed map

\[
R^0(A) \longrightarrow R^0(B) \cong R(A)
\]

is a one-sided inverse of \(R(A) \longrightarrow R^0(A) \). This is trivial if we look at the diagram

\[
\begin{array}{ccc}
\circ_{T_A}^2 & \longrightarrow & \circ_{T_B}^2 \\
\downarrow \sigma(A) & \circ & \downarrow \sigma(A) \\
\circ_{T_A}^1 & \longrightarrow & \circ_{T_B}^1 \\
\end{array}
\]

The composition of the horizontal maps are induced by the obvious projections

\[
\circ_i^H(S, A, A) \leftarrow H_i^i(S, A, A)
\]

since \((\phi^i)^{-1} \circ \phi_i \) are given by

\[
\circ_i^H(S, B, B) \cong \bigoplus_{v=-\infty}^{\infty} H_i^i(S, A, A)T^{-v} \longrightarrow \circ_i^H(S, A, A)
\]

sending \(T \) to 0. The case \(\deg T = -1 \) is similarly treated.

Q.E.D.

Theorem 2.7 can be generalized in the following way. Let

\[
C = A[T]_T = B_T
\]

be the localization of \(B \) in the multiplicative system \(\{1, T, T^2, \ldots\} \) and put \(\deg T = 1 \). Then for any finitely generated \(S \)-algebra \(A \), then is an isomorphism

\[
R^0(C) \cong R(A)
\]

We omit details of a proof.
The conditions of negative and positive grading on $S \rightarrow A$ are only reasonable if the graded ring S sits in degree zero. However, if $S \rightarrow A$ is any graded morphism and S is smooth, then

$$R(A) \rightarrow R^0(A)$$

splits if $S_0 \rightarrow A$ has negative or positive grading. In being more precise we shall assume that the "choice" of the liftings of S_0 and S are compatible, i.e. for any $R \in \text{obl}$, there is a morphism $(S_0)_R \rightarrow S_R$ such that if $R \rightarrow R'$ is in Π, then there is a commutative diagram

$$
\begin{array}{ccc}
(S_0)_R & \rightarrow & S_R \\
\downarrow & & \downarrow \\
(S_0)_{R'} & \rightarrow & S_{R'}
\end{array}
$$

Then the maps

$$\text{Def}^0(A/S, -) \rightarrow \text{Def}^0(A/S_0, -)$$
$$\text{Def}(A/S, -) \rightarrow \text{Def}(A/S_0, -)$$

are well defined and they are easily seen to be smooth. Therefore the morphisms

$$R^0(A/S) \leftarrow R^0(A/S_0)$$
$$R(A/S) \leftarrow R(A/S_0)$$

are still smooth. These maps fit into a commutative diagram

$$
\begin{array}{ccc}
R^0(A/S) & \leftarrow & R^0(A/S_0) \\
\uparrow & & \uparrow \\
R(A/S) & \leftarrow & R(A/S_0)
\end{array}
$$
The right hand vertical morphism splits because \(S_0 \to A \) has negative or positive grading. By definition of smoothness the left hand vertical morphism also splits.
CHAPTER 3

Relations to projective geometry.

As we know the graded theory of algebras are closely related to projective geometry. In what follows we shall compare the groups $\nu H^i(S,A,M)$ with $A^i(S,X,\tilde{M}(\nu))$ when $X = \text{Proj}(A)$. Moreover if

$$\varphi : B \rightarrow A$$

is a surjective graded morphism and

$$f : \text{Proj}(A) \rightarrow \text{Proj}(B)$$

is the induced embedding, we shall relate the groups $\nu H^i(B,A,M)$ to $A^i(S,f,\tilde{M}(\nu))$.

Let X be any S-scheme, M any quasicoherent O_X-Module and let $f : X \rightarrow Y$ be a morphism of S-schemes. Then there are groups

$$A^i(S,X,M)$$

and

$$A^i(S,f,M)$$

for every $i \geq 0$. Using [L1] we shall summarize some properties needed in the sequel.

i) (3.1.12) in [L1] states that $A^i(S,X,M)$ is the abutment of a spectral sequence given by the term

$$E^2_{pq} = H^p(X,A^q(S,M))$$

If $U = \text{Spec}(A)$ is an open affine subscheme of X, the O_X-Module $A^q(S,M)$, or just $A^q(M)$, is given by

$$A^q(M)(U) = H^q(S,A,M(U))$$
If X is affine, say $X = \text{Spec}(A)$, and $M = \tilde{M}$ for some A-module M, we deduce

$$A^i(S, X, M) = H^i(S, A, M)$$

If X is S-smooth, we find

$$A^i(S, X, M) = H^i(X, \Theta_X \otimes_M S)$$

where $\Theta_X = A^0(0_X)$ is the sheaf of S-derivations.

ii) By (3.1.14) in [L1] $A^i(S, f, M)$ is the abutment of the spectral sequence given by

$$E^p_{ij} = H^p(Y, A^q(f, M))$$

If $V = \text{Spec}(B)$ is any open affine subscheme of Y, then by definition

$$A^q(f, M)(V) = A^q(B, f^{-1}(V), M)$$

Therefore if f is affine, say $f^{-1}(V) = \text{Spec}(A)$,

$$A^q(B, f^{-1}(V), M) = H^q(B, A, H^0(f^{-1}(V), M))$$

iii) Let $Z \subseteq X$ be locally closed. By (3.1.16) there is an exact sequence

$$A^n(S, X, M) \longrightarrow A^n(S, X, M) \longrightarrow A^n(S, X - Z, M) \longrightarrow A^{n+1}(S, X, M)$$

where the groups $A^n(S, X, M)$ is the abutment of a spectral sequence given by the term

$$E^p_{ij} = A^p(S, X, H^n_M(M))$$

If $X = \text{Spec}(A)$ and $Z = V(I)$ for a suitable ideal $I \subseteq A$ we write

$$H^n_I(S, A, M) = A^n(S, X, \tilde{M})$$

iv) Let $f : X \rightarrow Y$ be an affine morphism of S-schemes.

By (3.2.3) there is a long exact sequence
Let S be noetherian and let A and B be finitely generated, positively graded S-algebras generated by its elements of degree 1. Assume $A_0 = B_0 = S$. Let
\[\varphi : B \to A \]
be a surjective graded S-algebra morphism and let
\[f : X = \text{Proj}(A) \to \text{Proj}(B) = Y \]
be the corresponding embedding. Put
\[m = \bigoplus_{n=1}^{\infty} A_n \quad \text{and} \quad X' = \text{Spec}(A) - V(m) \]
Let
\[\pi : X' \to X \]
be the obvious morphism. π is an affine smooth surjection.

If M is a graded A-module, we shall denote by M_a the localization of M in $\{1, a, a^2, \ldots\}$. Let $M(a)$ be the homogeneous piece of M_a of degree zero.

Let $b \in B$ such that $a = \varphi(b)$. Since
\[B(b) \to B_b \]
is flat, a theorem from [A] gives the isomorphism
\[H^q(B(b), A(a), M_a) \cong H^q(B_b, A(a) \otimes_{B(b)} B_b, M_a) \]
However
\[A(a) \otimes_{B(b)} B_b \cong A_a \]
Therefore
\[H^q(B(b), A(a), M_a) \simeq H^q(B, A, M) \simeq H^q(B, A, M)_a \]
Hence
\[H^q(B(b), A(a), M(a)) \simeq H^q(B, A, M)(a) \]
Put
\[D_+(b) = \text{Spec}(B(b)) \subseteq Y \]
Then by (ii)
\[A^q(f, \tilde{M}(\nu))(D_+(b)) = H^q(B(b), A(a), M(\nu)(a)) \]
proving
\[A^q(f, \tilde{M}(\nu)) \simeq H^q(B, A, M)(\nu) \]
Using (i) we find
\[A^q(B, \tilde{M})(D(a)) = H^q(B, A, M) = H^q(B, A, M)_a \]
Therefore
\[A^q(B, \tilde{M}) \simeq H^q(B, A, M) \]
This proves
\[\pi_*(A^q(B, \tilde{M})) \simeq \bigvee A^q(f, \tilde{M}(\nu)) \]

Lemma 3.1

With notations as above there is an isomorphism
\[A^i(S, f, \tilde{M}(\nu)) \simeq \bigvee A^i(B, X', \tilde{M}) \]
where \(\bigvee A^i(B, X', \tilde{M}) \) is the homogeneous piece of \(A^i(B, X', \tilde{M}) \) of degree \(\nu \).

Proof.

Going back to the definitions of \(A^i(S, f, \tilde{M}(\nu)) \) and
\[A^i(B,X',\overline{M}) \text{ in [L1] we deduce a morphism} \]
\[A^i(S,f,\overline{M}(\nu)) \longrightarrow \sqrt{A^i(B,X',\overline{M})} \]

The corresponding morphism of spectral sequences
\[H^p(X,A^q(f,\overline{M}(\nu))) \longrightarrow \sqrt{H^p(X',A^q(B,\overline{M}))} \cong \sqrt{H^p(X,A^q(B,\overline{M}))} \]
is an isomorphism for every \(p \) and \(q \)

Q.E.D.

Theorem 3.2

If \(\varphi : B \rightarrow A \) is surjective and if
\[
\text{depth}_mA \geq n
\]
then the morphisms
\[\sqrt{H^i(B,A,M)} \longrightarrow A^i(S,f,\overline{M}(\nu)) \]
are isomorphisms for \(i < n \) and injections for \(i = n \)

Proof

By iii) there is a long exact sequence
\[\rightarrow H^i_m(B,A,M) \rightarrow H^i(B,A,M) \rightarrow A^i(B,X',\overline{M}) \rightarrow H^{i+1}_m(B,A,M) \rightarrow \]
Since \(\text{depth}_mA \geq n \), we conclude that
\[H^q_m(M) = 0 \quad \text{for} \quad q \leq n-1 \]
Moreover \(H^0(B,A,-) = 0 \) since \(\varphi \) is surjective. By the spectral sequence of iii) we deduce
\[H^i_m(B,A,M) = 0 \quad \text{for} \quad i \leq n \]

Q.E.D.

Corollary 3.3

If \(\text{depth}_mA \geq 2 \)
\[\sqrt{H^1(B,A,A)} \cong A^1(S,f,0_X(\nu)) \]
are isomorphisms and injections respectively.

Let us apply this result to the case \(S = k, k \) a field. We denote by

\[
\text{Hilb}_f(-)
\]

the local Hilbert functor relative to \(Y \) at \(f \), defined on the category \(\mathfrak{M} \). (See the beginning of chapter 2 and use \(V = k \)). Let

\[
\text{Def}^0(\varphi, -)
\]

by the functor \(\text{Def}^0(A/B, -) \) defined in chapter 2 using trivial liftings of \(B \).

Corollary 3.4

If \(\text{depth}_m A \geq 2 \), then there is an isomorphism of functor

\[
\text{Def}^0(\varphi, -) \sim \text{Hilb}_f(-)
\]

on \(\mathfrak{M} \).

Proof

Both functors are prorepresentable. By (2.2) \(\text{Def}^0(\varphi, -) \) is prorepresented by

\[
\text{Sym}(\varpi^1(B, A, A)^* \wedge \otimes k
\]

\[
\text{Sym}(\varpi^2(B, A, A)^*)
\]

Using (5.1.1) in [L1], \(\text{Hilb}_f(-) \) is prorepresented by the object

\[
\text{Sym}(A^1(f, O_X)^* \wedge \otimes k
\]

\[
\text{Sym}(A^2(f, O_X)^*)
\]
The natural morphism of functors
\[\text{Def}^0(\varphi, -) \to \text{Hilb}_t(-) \]
corresponds to a morphism between their prorepresenting objects. This is nothing but the morphism induced by the natural maps in (3.2).

Q.E.D.

Assume B to be k-free and
\[f : X \subset \mathbb{P}^n_k \]
to be the induced embedding. In this case Hilb_r(\cdot) is also denoted by Hilb_X(\cdot). Both Hilb_X(\cdot) and Def^0(\varphi, -) are easily defined on \(\mathfrak{A} \) for \(V \) arbitrary, and by the same arguments as before there is an isomorphism of functors
\[\text{Def}^0(\varphi, -) \cong \text{Hilb}_X(\cdot) \]
on \(\mathfrak{A} \) whenever \(\text{depth} \ A \geq 2 \). Even if \(\text{depth} \ A \geq 1 \) we deduce this isomorphism in some cases. In fact, the sequence
\[0 \to oH^1(B, A, A) \to A^1(k, f, O_X) \to oH^1(B, A, H^1_m(A)) \to oH^2(B, A, A) \to A^2(k, f, O_X) \]
is exact. The isomorphism therefore follows from
\[oH^1(B, A, H^1_m(A)) = 0 \]
Recall that if \(I = \ker \varphi \subset B \)
\[oH^1(B, A, H^1_m(A)) = o\text{Hom}_A(I/I^2, H^1_m(A)) \]
Furthermore \(X \subset \mathbb{P}^n_k = P \) and if \(n \geq 2 \)
\[H^1_m(A) \cong \mu H^1(P, \mathbb{F}(v)) \]
If we define \(c \) by
\[c = \max \{ v | H^1(P, \mathbb{F}(v)) \neq 0 \} \]
and

\[s = \min \{ \deg f_i \mid \{ f_1, \ldots, f_r \} \text{ is a minimal set of generators of } I \} \]

then

\[\partial H^i(B, A, H^1_m(A)) = 0 \quad \text{for } c < s \]

In [E] we find more or less a direct proof of (3.4).

So far we have concentrated on deformations of embeddings. One may ask for the relationship between the groups

\[\bigwedge^H_i(S, A, M) \]

and

\[A^i(S, X, \tilde{M}(\nu)) \]

This is given by our next theorem

Theorem 3.5

There are canonical morphisms

\[\bigwedge^H_i(S, A, M) \longrightarrow A^i(S, X, \tilde{M}(\nu)) \]

for any \(i \geq 0 \) and any \(\nu \). If \(n \geq 1 \) and if \(\text{depth}_M \geq n+2 \), then the morphisms above are bijective for \(1 \leq i < n \) and injective for \(i = n \).

Proof.

Consider the following two exact sequences

\[\rightarrow H^i_m(S, A, M) \longrightarrow H^i(S, A, M) \longrightarrow A^i(S, X', \tilde{M}) \longrightarrow H^{i+1}_m(S, A, M) \longrightarrow \]

\[\rightarrow A^i(S, \Pi, \tilde{M}) \longrightarrow A^i(S, X', \tilde{M}) \longrightarrow A^i(S, X, \Pi \ast \tilde{M}) \longrightarrow A^{i+1}(S, \Pi, \tilde{M}) \]

with

\[\Pi : X' = \text{Spec}(A) - V(m) \longrightarrow X = \text{Proj}(A) \]
as before. The spectral sequence given by
\[E^{p,q}_2 = H^p(X, \mathbb{A}^q(n, \tilde{M})) \]
converges to
\[A^{p+q}(S, \pi, M) \]
\(A^q(n, \tilde{M})\) is defined by
\[A^q(n, \tilde{M})(D(a)) = A^q(A(a), A_a, M_a) \]
and it is easy to see that
\[A^q(n, \tilde{M}) = \begin{cases} 0 & q \neq 0 \\ \pi_\ast \tilde{M} & q = 0 \end{cases} \]
Since depth \(M \geq n+2 \) then
\[A^i(S, \pi, M) = H^i(X, \pi_\ast \tilde{M}) = \oplus H^i(X, M(\nu)) = 0 \quad \text{for} \ 1 \leq i \leq n \]
Furthermore
\[H^i_M(M) = 0 \quad \text{for} \ i \leq n+1 \]
implying that
\[H^i_M(S, A, M) = 0 \quad \text{for} \ i \leq n+1 \]
The theorem now follows from the two exact sequences stated at the beginning of this proof. \(Q.E.D. \)

Corollary 3.6.

If depth \(A \geq 3 \) and
\[A^1(S, X, 0_X(\nu)) = 0 \]
for every \(\nu \), then
\[H^1(S, A, A) = 0 \]
In the smooth case
\[A^1(S, X, O_X(\nu)) \cong H^1(X, \theta_X(\nu)) \]
and (3.6) reduces to a rigidity theorem of Schlessinger; see (2.2.6) in [K,L]. See also [SV].

Corollary 3.7

If \(\text{depth}_m A \geq 4 \) and
\[A^2(S, X, O_X(\nu)) = 0 \]
for every \(\nu \), then
\[H^2(S, A, A) = 0 \]
If \(X \) has only a finite number of nonsmooth points, then
\[H^1(X, A^1(O_X(\nu))) = 0 \]
Moreover if the non-smooth points are complete intersections
\[H^0(X, A^2(O_X(\nu))) = 0 \]

In this case we conclude
\[A^2(S, X, O_X(\nu)) \cong H^2(X, \theta_X(\nu)) \]

We will end this chapter by proving a geometric variant of (2.7) due to Pinkham [P]. We also need (3.4).

Let \(R \) be \(k \)-free and \(\varphi : R \to A \) be surjective, corresponding to \(X = \text{Proj}(A) \subseteq \mathbb{P}^n_k \). Look at the diagram

\[
\begin{array}{ccc}
R[T] & \rightarrow & R \\
\downarrow \varphi & & \downarrow \varphi \\
B = A[T] & \rightarrow & A
\end{array}
\]

where \(\bar{\varphi} = \varphi \otimes \text{id}_k[T] \) and where the horizontal maps are induced by sending \(T \) to 1. Put \(\deg T = 1 \).
Clearly
\[\text{Def}^0(\overline{\sigma},-) \rightarrow \text{Def}^0(B/k,-) \]
is smooth. Hence
\[R^0(B) \rightarrow R^0(\overline{\sigma}) \]
is smooth. If \(A \) has negative grading
\[R(A) \sim R^0(B) \]
The composition
\[R(A) \sim R^0(B) \rightarrow R^0(\overline{\sigma}) \]
is therefore smooth.
Moreover if depth \(A \geq 1 \) then depth \(B \geq 2 \). Using (3.4) we find
\[\text{Def}^0(\overline{\sigma},-) \sim \text{Hilb}_X(-) \]
whenever \(X = \text{Proj}(B) \). This proves
Theorem 3.8
Let \(X \) be a closed subscheme of \(\mathbb{P}_k^n \) and let \(A \) be its minimal cone. If
\[X = \text{Proj}(A[T]) \]
is its projective cone in \(\mathbb{P}_k^{n+1} \) and if \(A \) has negative grading, then there is a smooth morphism of functors
\[\text{Hilb}_X(-) \rightarrow \text{Def}(A/k,-) \]
on \(\mathcal{I} \) (\(V \) arbitrary)
CHAPTER 4

Positive and negative grading

In this paragraph we shall see that if

\[X \subseteq \mathbb{P}_S^N \]

is closed and satisfies some weak conditions, then after a suitable twisting the minimal cone of the corresponding embedding will have positive or negative grading.

Suppose \(S \) noetherian and let

\[A = \bigoplus_{\nu=0}^{\infty} A_\nu \]

be a graded \(A_0 = S \) algebra of finite type, generated by \(A_1 \). Denote by \(m \) the augmentation ideal of \(A \); i.e.

\[m = \bigoplus_{\nu=1}^{\infty} A_\nu \]

Assume moreover

\[\text{depth}_m A \geq 1 \]

Let \(M \) be any graded \(A \)-module and put

\[M(d) = \bigoplus_{\nu=0}^{\infty} M_{d\nu} \]

In what follows we shall relate the groups

\[H^i(S, A, M) \]

to the groups

\[H^i(S, A(d), M(d)) \]

Lemma 4.1

If \(X' = \text{Spec}(A) - V(m) \) and \(X'(d) = \text{Spec}(A(d)) - V(m(d)) \)

then the groups
are isomorphic for every \(i \)

Proof

The canonical morphism \(A(d) \hookrightarrow A \) induces a morphism of schemes

\[
X' \longrightarrow X'(d)
\]

thus a homomorphism

\[
A^i(S, X', \tilde{M}) \longrightarrow A^i(S, X'(d), \tilde{M})(d)
\]

It suffices to prove that the corresponding morphism of spectral sequences

\[
H^p(X', \Lambda^q(\tilde{M}))(d) \longrightarrow H^p(X'(d), \Lambda^q(\tilde{M})(d))
\]

is an isomorphism for every \(p \) and \(q \).

Consider the commutative diagram

\[
\begin{array}{ccc}
X' & \longrightarrow & X'(d) \\
\downarrow \pi & & \downarrow \pi \\
\text{Proj}(A) = X & \sim & X(d) = \text{Proj}(A(d))
\end{array}
\]

Then

\[
H^p(X', \Lambda^q(\tilde{M}))(d) \sim H^p(X, \pi_* \Lambda^q(\tilde{M}))(d) \sim \underset{\nu}{\frac{\text{HP}(X, \Lambda^q(\tilde{M}))(d\nu)}{\nu}} \sim
\]

\[
\frac{\text{HP}(X(d), \Lambda^q(\tilde{M})(d)) \nu}{H^p(X(d), \pi_* \Lambda^q(\tilde{M})(d))} \sim H^p(X'(d), \Lambda^q(\tilde{M})(d))
\]

This will prove

Theorem 4.2

Let \(n \) be an integer and assume \(\text{depth}_m M \geq n + 2 \)

Then
are isomorphic for \(i \leq n \) and for every \(d \geq 1 \).

Proof

Consider the exact sequences

\[
\begin{align*}
&\rightarrow H^i_m(S, A, M)(d) \rightarrow H^i(S, A, M)(d) \rightarrow A^i(S, \tilde{X}, \tilde{M})(d) \rightarrow H^{i+1}_m(S, A, M)(d) \\
&\rightarrow H^i_{m(d)}(S, A(d), M(d)) \rightarrow H^i(S, A(d), M(d)) \rightarrow A^i(S, \tilde{X}(d), \tilde{M}(d)) \rightarrow H^{i+1}_m(S, A(d), M(d)) \\
&\rightarrow \cdots \rightarrow \rightarrow H^i(S, A(d), M(d)) \rightarrow A^i(S, \tilde{X}(d), \tilde{M}(d)) \rightarrow H^{i+1}_m(S, A(d), M(d)) \rightarrow \cdots
\end{align*}
\]

Since \(\text{depth}_M \geq n+2 \) is equivalent to the conditions

\[
\forall i \leq n \\
H^0(X, \tilde{M}(\nu)) = 0
\]

we easily deduce

\[
\text{depth}_M(d) \geq n+2
\]

Hence

\[
H^i_m(S, A, M) = H^i_{m(d)}(S, A(d), M(d)) = 0 \quad \text{for } i \leq n+1
\]

Q.E.D.

We are specially interested in (4.2) for the case \(n = 1 \) and \(M = A \). Let \(R \) be a graded \(S \)-free algebra, generated by \(R_1 \), such that

\[
A = R/I
\]

Put

\[
P = P_S^N = \text{Proj}(R)
\]

If \(N \geq 2 \),
Furthermore by assumption $\text{depth } A \geq 1$, thus

$$H^0_m(A) = 0$$

Recall also

$$H^{i+1}_m(A) = H^i_t(X, O_X(t)) = H^i_t(O_X(t)) \quad \text{for } i \geq 1$$

Proposition 4.3

Let $d \geq 1$ and assume

$$H^1_t(X, O_X(t+1)) = 0 \quad H^1_t(P, \mathcal{F}(t+1)) = 0$$

for all $t \geq d$. Then there is a natural isomorphism

$$d^\nu H^1_t(S, A, A) \cong H^1_t(S, A(d), A(d))$$

for $\nu \geq 1$

Proof

Consider the long exact sequences

$$\cdots \rightarrow H^1_t(S, A, A)(d) \rightarrow H^1_t(S, A, A)(d) \rightarrow A^1(S, X'(d), O_{X'(d)}) \rightarrow H^2_t(S, A, A)(d) \rightarrow \cdots$$

$$\cdots \rightarrow H^1_t(S, A(d), A(d)) \rightarrow H^1_t(S, A(d), A(d)) \rightarrow A^1(S, X'(d), O_{X'(d)}) \rightarrow H^2_t(S, A(d), A(d)) \rightarrow \cdots$$

By assumption we have

$$d^\nu H^1_t(S, A, A) = d^\nu H^0_t(S, A, H^1_t(A)) = d^\nu \text{Der}_S(A, H^1_t(A)) = 0$$

$$H^1_t(d)(S, A(d), A(d)) = \nu \text{Der}_S(A(d), H^1_t(\mathcal{F}(dt))) = 0$$

since $\nu \geq 1$.

Futhermore
\[d_v H^0(S, A, H^2_m(A)) = d_v \text{Der}_S(A, \Omega^1_X(0_X(t))) = 0 \]
\[v H^0(S, A(d), H^2_{m(d)}(A)) = v \text{Der}_S(A(d), \Omega^1_X(0_X(dt))) = 0 \]

Since
\[H^1(R, A, H^1_m(A)) \rightarrow H^1(S, A, H^1_m(A)) \]
is surjective and since
\[d_v H^1(R, A, H^1_m(A)) = d_v \text{Hom}_A(I/I^2, \Omega^1_X(0_X(t))) = 0 \]
we find
\[d_v H^1(S, A, H^1_m(A)) = 0 \quad \text{for } v \geq 1 \]

Similarly we prove that
\[v H^1(S, A(d), H^1_{m(d)}(A(d))) = 0 \quad \text{for } v \geq 1. \]

Hence
\[d_v H^2_m(S, A, A) = 0 \quad \text{for } v \geq 1 \]
\[v H^2_m(d)(S, A(d), A(d)) = 0 \quad \text{for } v \geq 1 \]

The exact sequences above together with (4.1) prove the proposition

Q.E.D.

Corollary 4.4

If \(\text{depth}_mA \geq 2 \) and if \(v \) is an integer such that
\[H^1(X, 0_X(dv+1)) = 0 \]
then
\[d_v H^1(S, A, A) = 0 \quad \text{implies} \quad v H^1(S, A(d), A(d)) = 0 \]
Proof.

By assumption

\[H^1_m(A) = H^1_{m(d)}(A(d)) \]

Moreover

\[(d \nu + 1)H^2_m(A) = H^1(X, O_X(d \nu + 1)) = 0 \]

Thus

\[d \nu H^2_m(S, A, A) = d \nu \text{Der}_S(A, H^2_m(A)) = 0 \]

Using the long exact sequences of the proof of (4.3) we find a diagram

\[
\begin{array}{c}
0 \rightarrow d \nu H^1(S, A, A) \rightarrow d \nu A^1(S, X, O_X) \rightarrow 0 \\
0 \rightarrow H^1(S, A(d), A(d)) \rightarrow A^1(S, X'(d), O_{X'})
\end{array}
\]

which proves 4.4
Q.E.D.

Corollary 4.5 (Negative grading of \(A(d) \))

Assume \(\text{depth}_m A \geq 1 \) and suppose there is a \(d \geq 1 \) such that

\[H^1(X, O_X(t+1)) = 0 \quad H^1(P, \tilde{I}(t+1)) = 0 \]

\[tH^1(S, A, A) = 0 \quad \text{for} \ t \geq d \]

Then

\[\nu H^1(S, A(d), A(d)) = 0 \quad \text{for} \ \nu \geq 1 \]

Proof.

Use 4.3 for \(\nu = 1, 2, \ldots \)
Q.E.D.
Corollary 4.6 (Positive grading of $A(d)$)

Assume depth $A \geq 2$. Suppose there is a $d \geq 1$ such that

$$(-t)H^1(S, A, A) = 0 \quad \text{and} \quad H^1(X, O_X(-t+1)) = 0 \quad \text{for } t \geq d$$

then

$$\forall H^1(S, A(d), A(d)) = 0 \quad \text{for } \forall < 0$$

Proof

Use 4.4 for $\forall = -1, -2, \ldots$ \hspace{1cm} Q.E.D.

Let us put 4.5 and 4.6 together in the following theorem

Theorem 4.7

Let $X = \text{Proj}(A)$

a) If X is S-smooth, then there is a graded S-algebra B having negative grading such that

$$X \sim \text{Proj}(B)$$

b) If depth $A \geq 2$ and if there is an integer n such that

$$H^1(X, O_X(t)) = 0 \quad \text{for } t \leq n$$

then there is an S-algebra B having positive grading such that

$$X \cong \text{Proj}(B)$$

c) If X satisfies the conditions of a) and b) then

$$X \cong \text{Proj}(B)$$

for an S-algebra B which has both positive and negative grading

Proof

If X is S-smooth, then
\[\forall H^1(S,A,A) = 0 \]

for large \(\nu \). In fact the sequence

\[\cdots \to H^0(S,A,H^1_m(A)) \to H^1(S,A,A) \to \Lambda'(S,X',O_{X'}) \to \]

is exact and

\[\forall H^0(S,A,H^1_m(A)) = \forall \text{Der}_S(A, H^1(I(t))) = 0 \]
\[\forall H^1(S,A',O_{X'}) = \forall H^1(X',\theta_{X'}) = \forall H^1(X,\pi_*\theta_{X'}) = 0 \]

for large \(\nu \). Thus (4.5) proves a). (4.6) proves b) since

\[\forall H^1(S,A,A) = 0 \]

for small \(\nu \). This follows from the surjection

\[H^1(R,A,A) \to H^1(S,A,A) \]

and from the fact that

\[\forall H^1(R,A,\Lambda) = \forall \text{Hom}_A(I/I^2,\Lambda) = 0 \]

for small \(\nu \).

Q.E.D.

For similar results, see [S3] and [M].
CHAPTER 5

The existence of a \(k \)-algebra which is unliftable to characteristic zero.

In [Se] Serre gives an example of a \(k \)-smooth projective variety \(X \) in characteristic \(p \) which cannot be lifted to characteristic zero. This means that for any complete local ring \(\Lambda \) of characteristic zero such that \(\Lambda / \mathfrak{m} \Lambda = k \), it is impossible to lift \(X \) to \(\Lambda \). His variety is of the form

\[X = Y / G \]

when \(Y \) is a complete intersection of dimension 3 and \(G \) is a finite group operating on \(Y \) without fixpoints. Furthermore the order of \(G \) divides \(p \).

By (4.7 a) there exists a graded \(k \)-algebra \(B \) with negative grading such that

\[X = \text{Proj}(B) \]

Hence (2.6) proves that \(B \) cannot be lifted to any \(\text{noetherian} \) complete local ring \(\Lambda \) of characteristic zero. In fact the example of Serre satisfies even (4.7 c), thus proving the existence of a graded \(k \)-algebra \(C \) satisfying \(\nu \mathcal{H}^1(k, C, C) = 0 \) for \(\nu \neq 0 \), such that \(X = \text{Proj}(\Lambda) \). (2.6) reduces to the almost trivial result

\[R^0(C) \sim R(C) \]

Clearly \(C \) is unliftable to any complete local ring \(\Lambda \) of characteristic zero.

The reason why Serre's example works is obviously that \(p \), the characteristic of \(k \), divides the order of \(G \). To see
this, let us prove

Theorem 5.1

Let \(B \rightarrow A \) be an \(S \)-algebra homomorphism having a \(B \)-linear retraction. Let \(I \subseteq A \) be an ideal such that the composed morphism

\[
U = \text{Spec}(A) - V(I) \hookrightarrow \text{Spec}(A) \rightarrow \text{Spec}(B)
\]

is étale. If \(\text{depth}_IA \geq n+2 \), then there is an injection

\[
H^i(S, B, B) \hookrightarrow H^i(S, A, A)
\]

for \(i \leq n \).

Proof

By étaleness \(A^i(B, U, 0_U) = 0 \) for all \(i \), and the depth condition implies

\[
H^i_I(B, A, A) = 0 \quad \text{for } i \leq n+1
\]

Using the exact sequence

\[
\rightarrow H^i_I(B, A, A) \rightarrow H^i(B, A, A) \rightarrow A^i(B, U, 0_U) \rightarrow
\]

we conclude

\[
H^i(B, A, A) = 0 \quad \text{for } i \leq n+1
\]

However, there is an exact sequence

\[
\rightarrow H^i(B, A, A) \rightarrow H^i(S, A, A) \rightarrow H^i(S, B, A) \rightarrow H^{i+1}(B, A, A) \rightarrow
\]

Hence

\[
H^i(S, A, A) \rightarrow H^i(S, B, A) \quad i \leq n
\]

Since the injection \(B \rightarrow A \) has a \(B \)-linear retraction

\[
H^i(S, B, B) \rightarrow H^i(S, B, A)
\]

is injective for any \(i \)

Q.E.D.
Apply (5.1) to the following situation. Let

\[Y = \text{Proj}(A) \]

be a projective \(k \)-scheme, and let \(G \) be a finite group acting on \(A \) such that the graded injection

\[A^G \rightarrow A \]

induces \(Y \rightarrow Y/G = X \). Assume \(Y \rightarrow X \) étale and suppose that the order of \(G \) does not divide the characteristic of the field \(k \).

Corollary 5.2

a) If \(\text{depth}_mA \geq 3 \) then

\[H^1(k, A, A) = 0 \quad \text{implies} \quad H^1(k, A^G, A^G) = 0 \]

b) If \(\text{depth}_mA \geq 4 \) then

\[H^2(k, A, A) = 0 \quad \text{implies} \quad H^2(k, A^G, A^G) = 0 \]

Proof

Clearly \(A^G \rightarrow A \) has a retraction by the assumption on \(\text{ord}(G) \). Moreover the morphism

\[\text{Spec}(A) - \mathcal{V}(m) \rightarrow \text{Spec}(A^G) \]

is étale. We use (5.1) \hspace{1cm} Q.E.D.

Assume \(Y \) to be a complete intersection

\[Y = \text{Proj}(A) \]

with \(\text{depth}_mA \geq 4 \). Under the same conditions as in (5.2) we deduce

\[H^2(k, A^G, A^G) = 0 \]

Clearly \(X = \text{Proj}(A^G) \) behaves as the example of Serre except
for the condition on $\text{ord}(G)$.

Remark

Clearly (5.2) is true not only for graded k-algebras A. In this case we suppose the condition on $\text{ord}(G)$ and that the morphism

$$\text{Spec}(A^G) - V(m) \longrightarrow \text{Spec}(A)$$

is étale. For (5.2 a), see [S2].
Bibliography

[A] André, M., Méthode Simpliciale en Algèbre Homologique et Algèbre Commutative. Springer Lecture Notes, nr. 32 (1967)

[L] Illusie, L., Complexe Cotangent et Deformation I & II. Springer Lecture Notes no 239 (1971) et no 283 (1972)

[L1] Laudal O.A., Sections of functors and the problem of lifting (deforming) algebraic

