§ 0. <u>Introduction</u>. Let k be any algebraically closed field, and denote by M = M(-1,n) the fine moduli space of stable vector bundles on $\mathbb{P}^2 = \mathbb{P}_k^2$ of rank 2 with Chern classes $c_1 = -1$ and $c_2 = n$. [3, thm 7.17]. If $n \leq 0$, then $M = \emptyset$, and if n = 1, M = Speck. In this paper we prove the following

<u>Theorem</u> Suppose $n \ge 2$. Then PicM is generated by two elements m and c with one relation nc = 2m. In particular, PicM = Z if n is odd, and PicM = $Z \oplus Z/2Z$ if n is even.

Remark: m and c are defined in § 2.

<u>Remark</u>: Le Potier [2] has computed Pic M(0,n) in the case k = C, using the technique of monads.

The proof goes along the following lines: First we find a decomposition of M into the union of three locally closed subsets, M_0, M_1 , and $M_{\geq 2}$ such that M_0 is open and dense in M, the closure of M_1 has codimension 1, and $M_{\geq 2}$ is closed of codimension 2. We give complete descriptions of M_0 and M_1 , in particular, we compute their Picard groups. It turns out that this, together with the restriction map PicM \rightarrow PicM₁, is sufficient to determine PicM completely. § 1. The stratification.

In this section we give a summary of the results in [1]. We refer to that paper for complete proofs.

Fix a closed point $P \in \mathbb{P}^2(k)$, let $p: F \rightarrow \mathbb{P}^2$ be the blowing up with center P, and let $q: F \rightarrow \mathbb{P}^1$ denote the structure morphism of the ruled surface F. Let s and b be the linear equivalence classes of a fiber of q and the exceptional divisor $B = p^{-1}(P)$. Then s and b generate the Chow ring of F with the relations $s^2 = 0$, sb = 1, $b^2 = -1$.

Let E be a stable rank-2 vector bundle on \mathbb{P}^2 with Chern classes $c_1(E) = -1$, $c_2(E) = n$. Then there exist uniquely determined integers γ and α such that $q_*p^*E(\alpha s - \gamma b) \cong \bigotimes_{\mathbb{P}^1}$. The pair (γ, α) is called the <u>type</u> of E. The isomorphism above determines a unique minimal nonzero section σ_E of $p^*E(\alpha s - \gamma b)$. Let $Z_E \subseteq F$ be the scheme of zeros of σ_E , and $I_E \subseteq \bigotimes_F$ denote the ideal of Z_F . There is an exact sequence

$$0 \rightarrow \mathcal{O}_{\mathrm{F}}(\mathsf{yb-}\alpha s) \rightarrow p^* E \rightarrow \mathrm{I}_{\mathrm{E}}((\alpha-1)s - (\mathsf{y+}1)b) \rightarrow 0.$$

Let M(-1,n) = M be the fine moduli space for stable rank-2 vector bundles on \mathbb{P}^2 with Chern classes $c_1 = -1$, $c_2 = n$. In [1] the following theorem is proved:

<u>Theorem</u> (1.1) There is a stratification $M = \bigcup_{(\gamma,\alpha)} M_{(\gamma,\alpha)}$ into locally closed subvarieties $M_{(\gamma,\alpha)}$ parametrizing bundles of type (γ,α) . $M_{(\gamma,\alpha)}$ is nonempty if and only if $\alpha > 0$, $\gamma \ge 0$, and $n - \alpha - 2\gamma\alpha - \gamma^2 \ge 0$. If these inequalities hold, $M_{(\gamma,\alpha)}$ is an irreducible, rational, smooth and quasiprojective variety of dimension $(4n-4) - (n-\alpha+\gamma^2+2\gamma\alpha+\gamma)$. $M_{(0,n)}$ is dense in M, and

- 2 -

 $M_{(o,n-1)}$ is the only stratum of codimension 1.

The decomposition referred to in the introduction is the following: $M_0 = M_{(0,n)}, M_1 = M_{(0,n-1)}, \text{ and } M_{\geq 2} = M - (M_0 \cup M_1).$ § 2. The Picard group of M(-1,n).

Let \mathscr{E} be a universal bundle on \mathbb{P}^2 , and put $\widetilde{p} = p \times 1_M : F \times M = F_M \rightarrow \mathbb{P}_M^2$, $\widetilde{q} = q \times 1_M : F_M \rightarrow \mathbb{P}_M^1$. Since $\{M_{(\gamma,\alpha)}\}$ is a flattening stratification for the coherent sheaf $\mathbb{R}^1 \widetilde{q}_* \widetilde{p}^* \mathscr{E}$ $[1, \S4]$, it follows that $\widetilde{q}_* \widetilde{p}^* \mathscr{E}$ commutes with base change on \mathbb{M}_0 . Therefore there exists an invertible sheaf \mathscr{A} on \mathbb{M} such that $\widetilde{q}_* \widetilde{p}^* \mathscr{E} = \mathscr{O}_{\mathbb{P}^1}(-n) \boxtimes \mathscr{A}$. Replacing \mathscr{E} by $\mathscr{E} \otimes \operatorname{pr}_M^* \mathscr{A}^{-1}$, we obtain another universal bundle which we will call <u>normalized</u>. The normalized universal bundle is uniquely determined by the condition $\widetilde{q}_* \widetilde{p}^* \mathscr{E} = \mathscr{O}_{\mathbb{P}^1}(-n) \boxtimes \mathscr{O}_M$.

Since $\operatorname{Pic} \mathbb{P}_{M}^{2}$ is naturally isomorphic to $\operatorname{Pic} \mathbb{P}^{2} \times \operatorname{Pic} M$, we may write $c_{1}(\mathcal{C}) = -t + c$, where \mathcal{C} is the normalized universal bundle, $t \in \operatorname{Pic} \mathbb{P}^{2}$ is the class of a line, and c is some element in Pic M.

Since M is nonsingular, $\overline{M}_1 \subseteq M$ is a Cartier divisor; let $m \in Pic M$ denote its class. Then c and m are the generators of Pic M mentioned in the introduction.

We state the following propositions (to be proved later):

<u>Prop</u>. (2.1) Let X be an irreducible, nonsingular variety, $W \subseteq X$ a closed subset, W_1, \ldots, W_t the irreducible components of W of codimension 1 in X. Then the restriction map Pic X \Rightarrow Pic (X-W) is surjective, and the kernel is generated by the linear equivalence classes of the W_i , $i = 1, \ldots, t$.

<u>Prop.</u> (2.2) Pic $M_0 \cong Z/nZ$ and is generated by the restriction of c.

<u>Prop</u>. (2.3) Pic M_1 /torsion $\approx Z$.

- 4 -

Prop. (2.4) Let δ be the composed map

Pic M $\xrightarrow{\text{restriction}}$ Pic M₁ \longrightarrow Pic M₁/torsion.

Then, for a suitable choice of generator β for PicM₁/torsion, we have $\delta(m) = -\frac{n}{a}(4n-7)\beta$ and $\delta(c) = -\frac{2}{a}(4n-7)\beta$, where a = greatest common divisor of n+2 and 10.

<u>Proof</u> that (2.1-4) imply the theorem. By (1.1) and (2.1), there is an exact sequence $\mathbb{Z} \xrightarrow{\varphi}$ Pic M $\xrightarrow{\psi}$ Pic M₀ \rightarrow 0, where $\varphi(1) = m$. Since Pic M₀ is generated by $\psi(c)$ (by (2.2)), it follows that Pic M is generated by c and m. By (2.2) again, there must be a relation of the form xm = nc in Pic M. Applying the map δ to this equation, we see that x = 2. On the other hand, if xm = yc is any other relation, apply ψ to obtain $y = \lambda n$ for some integer λ , then apply δ to get $x = 2\lambda$, so the relation is just a multiple of 2m = nc. This proves the theorem. § 3. Description of M_0 and M_1 .

Fix an integer i such that $0 \le i \le n$. (Later we will be interested only in the cases i = 0 and i = 1). Let H be the Hilbert scheme of closed subschemes of F of length i, $Z \subseteq F_H = F \times H$ the universal subscheme, $I \subseteq \mathcal{O}_{F_H}$ its ideal, and $\pi: F_H \longrightarrow H$ the projection.

Put
$$G = \operatorname{Ext}_{\pi}^{1}(I((n-i-1)s-b), \mathcal{O}_{F_{H}}((-n+i)s)), \text{ see [1, Appendix]}.$$

Then G is a locally free sheaf on H. Consider the projective bundle $Q = \mathbb{P}_{H}(G^{\vee}) \xrightarrow{\mathbb{B}} H$, and let $\mathcal{O}_{Q}(\eta)$ denote the tautological linebundle on Q. Corresponding to the canonical surjection $g^{*}G^{\vee} \longrightarrow \mathcal{O}_{Q}(\eta)$ there is a "universal" short exact sequence of sheaves on F_{Ω} :

$$(*)_{i} \circ \longrightarrow \mathcal{O}_{F_{Q}}((-n+i)s+\eta) \longrightarrow X \longrightarrow I_{Q}((n-1-i))s-b) \longrightarrow 0.$$

Put $M_i = M_{(0,n-i)}$. The main result of [1] is that M_i is isomorphic to the open subvariety of Q whose k-points are those $y \in Q(k)$ such that the restriction X_y of X to $F \times \{y\} \cong F$ satisfies the following two conditions:

(a) X_{v} is locally free, and

(b) $X_y|B$ is the trivial bundle $2\Theta_B$.

Furthermore, under this isomorphism, $(p \times 1_{M_i})_* X_{M_i}$ is the restriction to $\mathbb{P}^2_{M_i}$ of a universal bundle on $\mathbb{P}^2_{M_i}$.

<u>The case</u> i = 0. (Proof of (2.2)). In this case, H = Speck, Z = \emptyset , and the condition (a) is automatically satisfied. To study condition (b), restrict (*)_o to B×Q:

- 6 -

$$\circ \longrightarrow p_{B}^{*} \mathcal{O}_{B}(-n) \otimes p_{Q}^{*} \mathcal{O}_{Q}(n) \longrightarrow X_{B} \longrightarrow p_{B}^{*} \mathcal{O}_{B}(n) \longrightarrow \circ$$

Tensor this sequence with $p_B^* \mathcal{O}_B(-1)$ and apply $\mathbb{R}^* p_{Q^*}$, and get $\mathcal{O}_Q \otimes_k H^0(\mathcal{O}_B(n-1)) \xrightarrow{\alpha} \mathcal{O}_Q(\eta) \otimes_k H^1(\mathcal{O}_B(-n-1)) \longrightarrow \mathbb{R}^1 p_{Q^*}(X_B \otimes p_B^* \mathcal{O}(-1)) \longrightarrow 0$

Let $W \subseteq Q$ be the divisor defined by $det(\alpha)$. It is clear that the support of W is the complement of M_0 in Q, and that the class of W is nn. We want to show that W is reduced and irreducible.

Put $L = \operatorname{Ext}_{B}^{1}(\mathcal{O}_{B}(n), \mathcal{O}_{B}(-n))$. The restriction map $\rho: G \longrightarrow L$ is surjective, and induces a linear projection $\rho: Q = \mathbb{P}(G^{\checkmark}) \longrightarrow \mathbb{P}(L^{\checkmark})$. Let $W_{j} \subseteq \mathbb{P}(L^{\checkmark})$ be the locally closed subset corresponding to extensions of the form

$$\circ \longrightarrow \mathcal{O}_{B}(-n) \longrightarrow \mathcal{O}_{B}(-j) \oplus \mathcal{O}_{B}(j) \longrightarrow \mathcal{O}_{B}(n) \longrightarrow \circ ,$$

and let $W' = \bigcup_{j>0} W_j$. Then W is the closure in Q of $\rho^{-1}(W')$, so if W' is irreducible, then so is W.

Consider the open subspace \mathcal{U}_{j} of $\operatorname{H}^{\circ}(\mathcal{O}_{B}(n+j)) \times \operatorname{H}^{\circ}(\mathcal{O}_{B}(n-j))$ consisting of pairs (f,g) such that $V(f,g) = \emptyset$. There is a map $\gamma_{j}: \mathcal{U}_{j} \longrightarrow \operatorname{I\!P}(\operatorname{L}^{\vee})$ such that the image of γ_{j} is precisely W_{j} . If j > 0, the fibers of γ_{j} are all isomorphic to $\left\{ \begin{pmatrix} \alpha & H \\ 0 & \beta \end{pmatrix} : \alpha, \beta \in k^{*}, \quad H \in \operatorname{H}^{\circ}(\mathcal{O}_{B}(2j)) \right\}$. Thus the dimension of W_{j} is (n+j+1)+(n-j+1)-(2j+3) = 2n-1-2j. It follows that W', and hence W, is irreducible. Furthermore, if x is the generic point of W, it maps to the generic point of W_{1} . Therefore, $\operatorname{R}^{1}_{PQ^{*}}(X_{B} \otimes \operatorname{P}_{B}^{*} \mathcal{O}_{B}(-1)) \otimes_{\mathcal{O}_{Q}} \mathcal{O}_{Q,x}$ has length 1. But $\mathcal{O}_{Q,x}$ is a discrete valuation ring, so length($\partial_{Q,x}/\det(\alpha)$) = length((coker α) $\otimes \circ_{Q,x}$) = 1. In particular, det(α) is a uniformizing parameter, thus W is reduced.

Consider once again the extension $(*)_{0}$. Applying $(q \times 1_{Q})_{*}$, we see that $X(-\eta)$ restricted to M_{0} is the restriction to M_{0} of $(p \times 1_{M})^{*}$ where \mathcal{E} is the normalized universal bundle. In particular, $c|M_{0} = -\eta|M_{0}$. Using (2.1), this proves (2.2). Q.E.D.

The case
$$i = 1$$
 (Proof of (2.3)).

In this case, $H \cong F$ and Z is the diagonal in $F_H = F \times H$. Let $\sigma, \beta \in PicH$ correspond to $s, b \in PicF$ under the isomorphism $H \cong F$. Then PicQ is freely generated by σ, β and η . (We will use the canonical inclusion $g^* : PicH \longrightarrow PicQ$ to identify σ and $g^*\sigma$, β and $g^*\beta$, when no confusion is possible. The same applies for the inclusions $pr_Q^* : PicQ \longrightarrow PicF_Q$ and $pr_F^* : PicF \longrightarrow PicF_Q$.)

Put $W_a = \{y \in Q: X_y \text{ is not locally free}\}$, and $W_b = \{y \in Q: X_y | B \not\ge 2\mathcal{O}_B\}$. <u>Lemma</u> (3.1) W_a is the support of the zero-scheme of a section of

 $\Theta_Q(\eta - (2n-6)\sigma + 3\beta)$. Furthermore, this scheme is reduced and irreducible.

<u>Proof</u>: Let $W'_a \subseteq F_Q$ be the locus where X is not locally free. Then $W_a = pr_Q(W'_a)$. On the other hand, let $Z' \subseteq F_Q$ be the inverse image of $Z \subseteq F_H$. Then $W'_a \subseteq Z'$, and pr_Q maps Z' isomorphically to Q. Note also that since I has projective dimension ≤ 1 locally, $W'_a = \text{Supp} \underbrace{\text{Ext}}^1_{F_Q}(X, \mathcal{L})$, where \mathcal{L} is any locally free sheaf on F_Q . The sequence $(*)_1$:

$$0 \longrightarrow \mathcal{O}_{F_Q}((-n+1)s + \eta) \longrightarrow X \longrightarrow I'((n-2)s - b) \longrightarrow 0$$

where $I' = I_Q$ is the ideal of Z', gives, when dualized, an exact sequence

$$\mathcal{O}_{F_Q} \xrightarrow{\alpha} \underline{\operatorname{Ext}}_{F_Q}^1 (I'((n-2)s-b), \mathcal{O}_{F_Q}((-n+1)s+\eta)) \rightarrow \underline{\operatorname{Ext}}_{F_Q}^1 (X, \mathcal{O}((-n+1)s+\eta)) \rightarrow 0.$$

Restricting this sequence to Z' and using the identity $\underline{\operatorname{Ext}}_{F_Q}^1(\mathbf{I}', \mathcal{O}_{F_Q}) = \underline{\operatorname{Ext}}_{F_Q}^2(\mathcal{O}_{Z'}, \mathcal{O}_{F_Q}) = \mathbf{w}_{Z'} \otimes \mathbf{w}_{F_Q}^{-1} = \mathcal{O}_{Z'}(3\sigma + 2\beta), \text{ and}$ noting that $\mathcal{O}_{F_Q}(s) \otimes \mathcal{O}_{Z'} = \mathcal{O}_{F_Q}(\sigma) \otimes \mathcal{O}_{Z'}$ (correspondingly for b and β), we finally obtain that the map α above is a section of $\mathcal{O}_{Z'}(\eta - (2n-6)\sigma + 3\beta)$. Pushing this down to Q via the isomorphism $\operatorname{pr}_Q[Z']$, we obtain the first part of (3.1).

For the second part, note that W_a induces linear spaces on the fibers of $g: Q \longrightarrow H$. To prove the lemma, it is therefore sufficient to show that W_a contains no fiber of g. This is easily checked. Q.E.D.

<u>Lemma</u> (3.2) W_{b} is the support of a reduced and irreducible section of $\mathcal{O}_{Q}((n-1)\eta + \beta)$.

<u>Proof</u>: Consider again the exact sequence (*)₁:

$$0 \longrightarrow \mathcal{O}_{F_Q}(-(n-1)s+\eta) \longrightarrow X \longrightarrow I'((n-2)s-b)) \longrightarrow 0$$

Restrict to $B_Q = B \times Q \subseteq F_Q$, tensor by $\mathcal{O}_{B_Q}(-s)$ and apply pr_{Q^*} to get an exact sequence

$$pr_{Q^*}(\mathbf{I} \otimes \mathcal{O}_{B_Q}((n-2)s)) \xrightarrow{\alpha} \mathbb{R}^1 pr_{Q^*} \mathcal{O}_{B_Q}(-ns+\eta) \longrightarrow \mathbb{R}^1 pr_{Q^*}(\mathbf{X} \otimes \mathcal{O}_{B_Q}(-s)) \longrightarrow 0$$

Note that $\mathbb{R}^1 pr_{Q^*} \mathcal{O}_{B_Q}(-ns+\eta) = (n-1) \mathcal{O}_Q(\eta).$

Sublemma (3.3) $\operatorname{pr}_{Q^*}(I \otimes \mathcal{O}_{B_Q}((n-2)s))$ is locally free of rank (n-1), and its (n-1)-th exterior power is $\mathcal{O}_Q(-\beta)$.

Granting (3.3) for a moment, we see that $det(\alpha)$ is a section of $\mathcal{O}_Q((n-1)\eta + \beta)$, the support of which is W_b . To show that

det(α) is irreducible and reduced, look at the fibers of g and apply the same method as in the proof of (2.2). There remains only to show that W_b contains no fiber of g. This is straightforward to check. Q.E.D.

<u>Proof of</u> (3.3) Let $Z'' = Z \cap B_H \subseteq F_H$, and let $\not = \varphi$ be the ideal of Z'' in $B_H = B \times H$. Z'' may be identified with the diagonal in $B \times B \subseteq B \times H$. In particular, it is the zeroset of a section of $\mathcal{O}_B(s) \boxtimes \mathcal{O}_B(\sigma)$ on $B \times B$. This section can be lifted to a section over B_H of $\mathcal{O}_B(s) \boxtimes \mathcal{O}_H(\sigma) = \mathcal{O}_{B_H}(s + \sigma)$, since $H^1(H, \mathcal{O}_H(\sigma - \beta)) = 0$. It follows that Z'' is a complete intersection in B_H , having the following Koszul complex:

$$0 \longrightarrow \mathcal{O}_{B_{H}}(-\beta - \sigma - s) \longrightarrow \mathcal{O}_{B_{H}}(-\sigma - s) \oplus \mathcal{O}_{B_{H}}(-\beta) \longrightarrow \mathcal{J} \longrightarrow 0.$$

Twist it by (n-2)s to get

$$0 \rightarrow \mathcal{O}_{B_{H}}(-\beta-\sigma+(n-3)s) \rightarrow \mathcal{O}_{B_{H}}(-\sigma+(n-3)s) \oplus \mathcal{O}_{B_{H}}(-\beta+(n-2)s) \rightarrow \mathcal{J}((n-2)s) \rightarrow 0.$$

From this one easily deduces that $\mathbb{R}^{1}\mathrm{pr}_{\mathrm{H}^{*}} \neq ((n-2)s) = 0$, and that $\mathrm{pr}_{\mathrm{H}^{*}} \neq ((n-2)s)$ is locally free of rank (n-1) and commutes with base change on H. In particular, applying the base change $g: Q \longrightarrow H$, we get the following resolution of $\mathrm{pr}_{Q^{*}}(\mathbb{I} \otimes \mathcal{O}_{B_{Q}}((n-2)s))$:

$$0 \rightarrow (n-2)\partial_{Q}(-\sigma-\beta) \rightarrow (n-2)\partial_{Q}(-\sigma) \oplus (n-1)\partial_{Q}(-\beta) \rightarrow \operatorname{pr}_{Q^{*}}(\mathbb{I}^{*} \otimes \partial_{B_{Q}}((n-2)s)) \rightarrow 0.$$

From this one computes the (n-1)-th exterior power, and finds the formula of (3.3). Q.E.D. <u>Proof of</u> (2.3) By (2.1), (3.1) and (3.2), Pic M_1 is generated by σ , β and η , with the two relations

 $\eta - (2n-6)\sigma + 3\beta = 0$

 $(n-1)\eta + \beta = 0$.

Eliminating β , we get the single relation

 $(2n-6)\sigma + (3n-4)\eta = 0$

So we have proved the following, which easily implies (2.3):

(3.4) Pic M₁ is generated by σ and η with one relation (2n-6) σ + (3n-4) η . In particular, if a = (2n-6,3n-4) = (n+2,10) then Pic M₁ = $\mathbf{Z} \oplus \mathbf{Z}/a\mathbf{Z}$.

<u>Proof of</u> (2.1) Since X is nonsingular, the closure in X of any divisor on X-W is a (Cartier) divisor on X. This proves the surjectivity. For the second statement, let \mathcal{L} be an invertible sheaf on X which restricts to \mathcal{O}_X on X-W. Then \mathcal{L} admits a rational section which is defined and nowhere vanishing on X-W. It follows that the associated divisor is a linear combination of the W_i. Q.E.D. § 4. Proof of (2.4)

<u>Lemma</u> (4.1) $c | M_1 = 2\sigma - \eta.$

Proof: Consider the cartesian square

Put $\mathcal{D} = (p \times 1_{M})^{*} \mathcal{E}$, where \mathcal{E} is the normalized universal bundle. Now $(q \times 1_{M})_{*} \mathcal{D} = \mathcal{O}_{1}(-n) \boxtimes \mathcal{O}_{M}$, and $(q \times 1_{M_{1}})_{*}i^{*} \mathcal{D} = \mathcal{O}_{1}(-(n-1)) \boxtimes \mathcal{J}_{1}$ for some linebundle \mathcal{J} on M_{1} . The natural base-change map β gives an exact sequence

 $0 \longrightarrow \mathcal{O}_{\mathbb{P}^1}(-n) \boxtimes \mathcal{O}_{\mathbb{M}_1} \xrightarrow{\beta} \mathcal{O}_{\mathbb{P}^1}(-(n-1)) \boxtimes \mathcal{J} \longrightarrow \operatorname{coker} \beta \longrightarrow 0$

In order to determine \mathscr{A} , restrict to $\{5\} \times M_1$ for a point $5 \in \mathbb{P}^1(k)$.

Supp(coker β) $\{\xi\} \times M_1 = \text{Supp}(\mathbb{R}^1(q \times 1_M)_* \mathcal{D}) \cap \{\xi\} \times M_1$

= {vector bundles E of type (0,n-1) such that the

length-1 subscheme $Z_E \subseteq F$ lies on $q^{-1}(\xi)$.

It follows that if β is reduced, then $\hat{\mathcal{U}} = \hat{\mathcal{C}}_{M_1}(\sigma)$. But β is reduced, since if y is a generic point of $\operatorname{Supp} V(\beta)$, then because $\mathbb{R}^1(q \times 1)_* \hat{\mathcal{D}}$ is, by definition of M_1 , locally free of rank 1 over M_1 we have

$$1 = 1_{\mathcal{O}_{y}}(\mathbb{R}^{1}(q \times 1)_{*}\mathcal{D}_{y}) = 1_{\mathcal{O}_{y}}(\operatorname{Tor}_{1}^{\mathcal{O}_{y}}(\mathbf{k}(y),\mathbb{R}^{1}(q \times 1)_{*}\mathcal{D}_{y})) = 1_{\mathcal{O}_{y}}(\operatorname{coker} \beta_{y}).$$

Consider the universal exact sequence $(*)_1$ restricted to $M_1 \subseteq Q$

$$0 \longrightarrow \mathcal{O}_{F_{M_1}}((-n+1)s+\eta)) \longrightarrow X \longrightarrow I_{M_1}((n-2)s-b) \longrightarrow 0.$$

Applying $(q \times 1_{M_1})_*$, we see that $(q \times 1_{M_1})_* X = \mathcal{O}_{\mathbb{P}^1}(-(n-1)s) \boxtimes \mathcal{O}_{M_1}(\eta)$. Therefore, noting that $\mathcal{L} = \mathcal{O}_{M_1}(\sigma)$, $X(\sigma - \eta)$ is the restriction to F_{M_1} of \mathcal{D} . It follows that

$$c|M_1 = c_1(X(\sigma-\eta)) + (s+b) = 2\sigma - \eta. \qquad Q_*E_*D_*$$

Lemma (4.2) $m | M_1 = (2n-3)\sigma + (n-2)\eta$.

<u>Proof</u>: Let $R \in \mathbb{P}^2(k)$ be a point different from P. Denote by F' the blowing up of F at the point $p^{-1}(R)$, and let $q': F' \longrightarrow \mathbb{P}^1$ be the morphism induced by the linear system of lines passing through R.

Let M'_1 be the codimension one stratum in the stratification of M defined by the point R. An automorphism of \mathbb{IP}^2 taking P to R moves M_1 to M'_1 , hence the divisors \overline{M}_1 and \overline{M}'_1 are linearly equivalent. Furthermore, it is easily verified by deformation theory that M_1 and M'_1 intersect transversally. Hence $m|M_1$ is defined by the divisor $M_1 \cap \overline{M}'_1$ in M_1 .

Pulling back the sequence $(*)_1$ to $M_1 \times F'$, and using that $\mathfrak{D}|M_1 \times F = \mathfrak{X}(\sigma-\eta)$, where \mathfrak{D} is as in the proof of (2.4), we deduce the sequence

 $\begin{array}{l} 0 \rightarrow \theta_{M_1}(\sigma) \boxtimes \theta_{F'}(-(n-1)s) \rightarrow \mathcal{D}' \rightarrow \theta_{M_1}(\sigma-\eta) \boxtimes \theta_{F'}((n-2)s-b) \rightarrow \theta_{Z'}((n-2)s-b+\sigma-\eta) \rightarrow 0, \\ \\ \text{where } \mathcal{D}' \text{ is the pullback of } \mathcal{D} \text{ to } M_1 \times F' \text{ and } Z' \text{ is the pull-back of } Z. \end{array}$

Let $r: M_1 \times F' \longrightarrow M_1$ be the projection. It can be factored $M_1 \times F' \xrightarrow{1 \times q'} M_1 \times \mathbb{P}^{1 \xrightarrow{p_1}} M_1$. Now it is easily checked that as sets, $M_1 \cap \overline{M}_1' = \operatorname{Supp}(p_1 \ast \mathbb{R}^1(1 \times q') \ast \mathcal{D}')$, and since $M_1 \cap \overline{M}_1'$ is reduced and the rank of $p_1 \ast \mathbb{R}^1(1 \times q') \ast \mathcal{D}'$ is 1 generically on its support, it follows that $m|M_1 = c_1(p_1 \ast \mathbb{R}^1(1 \times q') \ast \mathcal{D}')$.

Denote by $\chi_r(A)$ the formal sum $\sum_{i \ge 0} (-1)^i [R^i r_* A]$, for any sheaf A on $M_1 \times F'$. Applying χ_r to the exact sequence above and using the easily verified formulas:

$$\begin{aligned} \chi_{\mathbf{r}}(\mathcal{O}_{\mathbf{M}_{1}}(\sigma)\boxtimes\mathcal{O}_{\mathbf{F}}(-(n-1)s)) &= -[(n-2)\mathcal{O}_{\mathbf{M}_{1}}(\sigma)] \\ \chi_{\mathbf{r}}(\mathcal{O}_{\mathbf{M}_{1}}(\sigma-\eta)\boxtimes\mathcal{O}_{\mathbf{F}}((n-2)s-b)) &= 0, \text{ and} \\ \chi_{\mathbf{r}}(\mathcal{O}_{\mathbf{Z}}((n-2)s-b+\sigma-\eta)) &= [\mathcal{O}_{\mathbf{M}_{1}}((n-1)\sigma+(n-2)\eta)], \end{aligned}$$

(recall that $\beta = -(n-1)\eta$ in Pic M₁), we get the expression

$$\chi_{\mathbf{r}}(\mathcal{D}') = -[(\mathbf{n}-2)\mathcal{O}_{\mathbf{M}_{1}}(\sigma)] - [\mathcal{O}_{\mathbf{M}_{1}}((\mathbf{n}-1)\sigma + (\mathbf{n}-2)\eta)].$$

On the other hand, since M_1 and M'_1 intersect transversally, $(1 \times q')_* \mathcal{D}' = \mathcal{O}_{M_1} \boxtimes \mathcal{O}_{\mathbb{P}^1}(-n)$. Furthermore, $r_* \mathcal{D}' = \mathbb{R}^2 r_* \mathcal{D}' = 0$, since the bundles induced by \mathcal{D}' on the fibers of r are pullbacks of stable bundles on \mathbb{P}^2 , hence have no \mathbb{H}^0 or \mathbb{H}^2 . By the Leray spectral sequence for the composition $r = p_1 \circ (1 \times q')$, we get the expression

$$[p_{1*}R^{1}(1 \times q')_{*}\mathcal{D}'] = -[\chi_{r}\mathcal{D}'] + [r_{*}\mathcal{D}'] + [R^{2}r_{*}\mathcal{D}']$$
$$-[R^{1}p_{1*}(1 \times q')_{*}\mathcal{D}'] = -[\chi_{r}\mathcal{D}'] - [(n-1)\mathcal{O}_{M_{1}}].$$

Using the expression above for $\chi_r(\mathcal{D}')$ and taking first Chern class, we finally obtain

$$c_1(p_1 R^1(1 \times q')_* \mathcal{D}') = (n-2)\sigma + (n-1)\sigma + (n-2)\eta = (2n-3)\sigma + (n-2)\eta.$$

Q.E.D.

 $\begin{array}{l} \underline{\operatorname{Proof}} \text{ of } (2.4). \quad \operatorname{Choose integers} \ a, \ a_i, \ b_i \quad \operatorname{such that} \ 2n-6=a_1a, \\ \exists n-4=a_2a, \ and \quad a_1b_1+a_2b_2=1. \quad \operatorname{Use the invertible matrix} \\ \begin{bmatrix} b_1 & b_2 \\ -a_2 & a_1 \end{bmatrix} \text{ to get a new basis } \{a,\beta\} \quad \text{for the free abelian group} \\ \text{generated by } \sigma \quad \text{and} \quad \eta, \ \operatorname{such that} \ \sigma = b_1a - a_2\beta, \ \eta = b_2a + a_1\beta. \\ \text{Then } (2n-6)\sigma + (\exists n-4)\eta = a(a_1\sigma + a_2\eta) = a((a_1b_1 + a_2b_2)a + (a_1 \cdot (-a_2) + a_2 \cdot a_1)\beta) = aa. \quad \text{In particular, by } (\exists.4) \text{ one sees that} \\ \text{Pic } M_1 = (\mathbf{Z}/a\mathbf{Z})a \oplus \mathbf{Z}\beta, \ \text{and that} \quad \beta \quad \text{generates Pic } M_1/\text{torsion.} \\ \text{Now, by } (4.1): \\ c|M_1 = 2\sigma - \eta = (2b_1 - b_2)a + (-2a_2 - a_1)\beta \\ = \frac{1}{a} (-2(\exists n-4) - (2n-6))\beta = -\frac{2}{a}(4n-7)\beta \pmod{a}. \\ \text{Similarly, by } (4.2): \\ m|M_1 = (2n-3)\sigma + (n-2)\eta = ((2n-3)(-a_2) + (n-2)a_1)\beta \\ = -\frac{1}{a}((2n-3)(\exists n-4) - (n-2)(2n-6))\beta = -\frac{n}{a}(4n-7)\beta \pmod{a}. \\ \text{God } a \ Q.E.D. \end{array}$

References:

- [1] Ellingsrud, G. and Strømme, S.A.: On the moduli space for stable rank-2 vector bundles on P², Preprint No 7, May 1979, Institute of Mathematics, University of Oslo.
- [2] Le Potier, J.: Talk in Nice, June 1979.
- [3] Maruyama, M.: Moduli of stable sheaves, II, J. of Math. Kyoto Univ. 18-3 (1978) 557-614.