§ 0. Introduction. Let k be any algebraically closed field,

and denote by M = M(-1,n) the fine moduli space of stable vector

2 =IP§ of rank 2 with Chern classes Cq = -1 and

bundles on TP
¢y, =n. [3, thm 7.17]. If n<0, then M = ¢, and if n =1,

M = Speck. In this paper we prove the following

Theorem Suppose n>2. Then PiclM is generated by two elements m
and c¢ with one relation nc = 2m. In particular, PicM=2 if

n is odd, and PicM=2Z@®Z/2Z2 if n is even.
Remark: m and c¢ are defined in § 2.

Remark: Le Potier [2] has computed PicM(O,n) in the case k=0,

using the technique of monads.

The proof goes along the following lines: First we find a decom-
position of M dinto the union of three locally closed subsets,

M M,], and 1"I>.2 such that Mo is‘open and dense in M, the

O,
closure of 11, has codimension 1, and M>2 is closed of co-

dimension 2. We give complete descriptions of MO and 11,
in particular, we compute their Picard groups. It turns out that
this, together with the restriction map PicM —> Pic M, is suffi-

cient to determine PicM completely.



§ 1, The stratification.

In this section we give a summary of the results in [1]. We

refer to that paper for complete proofs.

e be the blowing up

Fix a closed point PeTP-(k), let p: F —>T
with center P, and let q: F-+>IPq denote the structure morphism
of the ruled surface F, ILet s and b be the linear equivalence
classes of a fiber of q and the exceptional divisor B = p~ (P).
Then s and b generate the Chow ring of F with the relations

&2 =0, sb =1, b° = 1.

Let E Dbe a stable rank-2 vector bundle on ]P2 with Chern classes
cq(E) = =1, cg(E) = n, Then there exist uniquely determined in-
tegers y and o such that q,p*E(as-vyb) & & 4+ The pair (v,a)
is called the type of E. The isomorphism abongdetermines a
unique minimal nonzero section op of p*E(as-yb). Let Zp © F

be the scheme of zeros of op, and I C (9F denote the ideal

of 2 There is an exact sequence

T
0 = Og(yb-as) = p*E —> Iz((@=1)s - (y+1)b) = 0.

Let M(-1,n) =M be the fine moduli space for stable rank-2 vector
bundles on ]P2 with Chern classes cq = =1, Cs = . In [1] the

following theorem is proved:

Theorem (1.1) There is a stratification M = 1 J M into

(v,o) (Yo%)
locally closed subvarieties M(Y a) parsmetrizing bundles of type
9
(y,a). M(y,a) is nonempty if and only if «>0, y>0, and
n—a—Eycx—yg_?_O. If these inequalities hold, M(Y ) is an

9

irreducible, rational, smooth and quasiprojective variety of

dimension (4n—4)-(nna+y2+2ya+v). M(O n) is dense in M, and
b
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M(o n-1) is the only stratum of codimension 1.
9

The decomposition referred to in the introduction is the follow-

ing: Mo = M(o,n)’ M, = M(o,n—’l)’ and M..>..2 = M—(MOUM,]),
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§ 2. The Picard group of M(-1,n).

Iet & be a universal bundle on IPE, and put

A = . - TP, S = . — ] :
D =DXy: FxM=TFy >, q=axIy:Fy —>Py. Since {M(y,a)}

is a flattening stratification for the coherent sheaf R,]E*g* @

(1, 8§47, it follows that 5*5* éf commutes with base change on MO.
Therefore there exists an invertible sheaf nD on M such that
~ 3 A

~ " ~ - * )- s
q*p*f}, = @IP/‘ (-—n)[{{lob. Replacing é by g ® prMo£ q’ we ob%ain

another universal bundle which we will call normalized. The nor-

malized universal bundle is uniquely determined by the condition
~ ~ 2
d+D* l(n = OIPI]("IQ §M°

Since Pic IE’P%I is naturally isomorphic to Pic IngPicM y, We may

write C’l(“%) = -t + ¢, where g is the normalized universal bundle,

t € Pic P° is the class of a line, and ¢ is some element in Pic M.

Since M is nonsingular, T’T,]_C_M is a Cartier divisor; let
m€PicM denote dits class. Then ¢ and m are the generators

of Picl! mentioned in the introduction.
We state the following propositions (to be proved later):

Prop. (2.1) Let X Dbe an irreducible, nonsingular variety, WEX
a closed subset, W,I,...,Wt the irreducible components of W of
codimension 1 in X. Then the restriction map PicX = Pic (X-W)
is surjective, and the kernel is generated by the linear equivalence

classes of the Wi, 1 =1500ey9te

Prop. (2.2) Pic MO = Z/nZ and is generated by the restriction

of c.

Prop. (2.3) PicM,]/torsion';Z .
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Prop. (2.4) Let & be the composed map

PicM restrlctlon> Pic l"[,l —> Pic M,l/torsion .

Then, for a suitable choice of generator £ for Pic M,l/torsion,
we have 6(m) =—%(4n—-’7)s and 6(c) =—-§(4n—'7)5, where

a = greatest common divisor of n+2 and 0.

Proof that (2.1-4) imply the theorem. By (1.1) and (2.1), there
is an exact sequence 2 ¥> PicM ¥ pic M, —> 0, where (1) = m.
Since PiclM  1is generated by y(c) (by (2.2)), it follows that

PicM is generated by ¢ and m. By (2.2) again, there must be

a relation of the form xm = nc in PicM. Applying the map §

to this equation, we see that x = 2. On the other hand, if
xm = y¢ is any other relation, apply ¢ to obtain y = An
for some integer A\, then apply & to get =x = 2\, so the rela-

tion is Just a multiple of 2m = nc. This proves the theorem.
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§ 3, Description of M, and M.

Fix an integer 1 such that 0<i<n, (Later we will be interested
only in the cases i =0 and i =1). Let H be the Hilbert
scheme of closed subschemes of F of length i, ZEEFH = FxH
the universal subscheme, IS (p its ideal, and m:Fy > H

H
the projection.

Put G = Ext;(I((n—imﬂ)s—b), Oy ((-n+i)s)), see [1, Appendix].
H .

Then G 1is a locally free sheaf on H, Consider the projective
bundle Q =IPH(GV) £ H, and let {SQ(n) denote the tautological
linebundle on (. Corresponding to the canonical surjection

g*¢’ —> (9Q(n) there is a "universal" short exact sequence of

sheaves on FQ:

(x); © ——>19FQ((—n+i)s-+n) _ X — IQ((n-ﬂ—i))s-b)-—_> 0.

Put Mi = M(O,n-i)’ The main result of [1] is that Mi is iso-
morphic to the open subvariety of Q whose k-points are those
v € Q(k) such that the restriction Xy of X to Fx{yl=F

satisfies the following two conditions:

(a) X& is locally free, and
(b) XyIB is the trivial bundle 2&;.

Furthermore, under this isomorphism, (p><1M )*XM is the re-
i i
striction to Iﬂi_ of a universal bundle on ]Pgo
i
The case i = 0. (Proof of (2.2)). In this case, H = Speck,
Z = @, and the conditioh (a) is automatically satisfied. To study

condition (b), restrict (*)o to BxQ:
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0 —> pé@B(—n)®p5‘§Q(n) _ XB _ p];@B(n) —> 0,

Tensor this sequence with p]; @B(_ﬂ) and apply R.PQ* , and get
O & B (G (n-1) £> €, (1) 8, H  ©p(-n-1) —> R'py. (X, @ p36(-1) —> 0

Let W<SQ be the divisor defined by det(a). It is clear that
the support of W is the complement of Mo in Q, and that the

class of W 1is nn. We want to show that W is reduced and

irreducible,

Put L = Extg(GB(n), @B(-—n)). The restriction map p: G —= 1L is
surjective, and induces a linear projection p: Q= ]P(Gv) ——>IP(LY).
Let WJ._C_]P(LV) be the locally closed subset corresponding to ex-

tensions of the form

0 —> Op(-n) ~—> O5(-§)® G3(3) —> Bx(n) —> 0,

and let W' = LJW.. Then W is the closure in Q of p '(W'),
so if W' is gzgeducible, then so is W,

Consider the open subspace /C[J. of HO(G'B(IHJ)) x HO( @B(n—j))
consisting of pairs (f,g) such that V(f,g) = J. There is a
map Yy f{,(,j —>1P(L") such that the image of Y; 1is precise-
ly Wjo If j=>0, the fibers of Yj are all isomorphic to

{¢ Ig) ta,Bek”, HER’(H(25))]. Thus the dimension of Wy is

(n+j+1) + (n~j+1) = (2j+3) = 2n-1-2j. It follows that W', and
hence W, is irreducible. Furthermore, if x is the generic point
of W, it maps to the generic point of W,. Therefore,

1 . < .
R pQ*(XB®p§ 03(-’1)) ®§Q(>’Q’X has length 1. But UQ,,X is a

discrete valuation ring, so
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lengbh(@Q /det(a)) = length((cokera)® @Q ) = 1. In particular,

det(a) is a uniformizing parameter, thus W is reduced.

Consider once again the extension (*)O. Applying (qx’IQ)* ,

we see that X(-1) restricted to Mo is the restriction to M

o
of (px’IM)* £  where & is the normalized universal bundle.
In particular, clMo = -nIMO. Using (2.1), this proves (2.2).

Q-EoDo

The case i =1 (Proof of (2.3)).

In this case, H= F and Z is the diagonal in Fy; = FxH

Let o0,B€PicH correspond to s,b€PicF under the isomorphism
HEF., Then PicQ is freely generated by o¢,8 and n. (We will
use the canonical inclusion g*:PicH—> PicQ to identify o
and g*o, B and g*p, when no confusion is possible, The same
applies for the inclusions pré : Pic@—> Pic FQ and

pr; : PicF—> Pic F,. )
Put W, = {yGQ:Xy is not locally free}, and W, = {yeQ:Xle¥2G‘B},

Lemma (3.1) W, 1is the support of the zero-scheme of a section of
(SQ(n- (2n-6)c + 38), Furthermore, this scheme is reduced and irre-

ducible.

Proof: Let W;_EFQ be the locus where X is not locally free.
Then W, = prQ(W;). On the other hand, let Z' SFy be the inverse
image of ZCFy. Then W;EZ' , and pry maps Z2' isomorphically
to Q. Note also that since I has projective dimension < 71

locally, WE'1 = Supp Ext;.Q(X,cL'), where o> is any locally free

sheaf on FQ,' The sequence (*)’I:

0 —> @FQ((—n+’l)S+n) —> X —> I'((n-2)s=Db) —> 0
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where I' = IQ is the ideal of Z', gives, when dualized, an exact

sequence
Sy s Ezt_; (L'((n-2)s~b), @F (~n+1)s+n) — Ex’c; (X,8({(-n+1)s+n) => O.
Q Q Q Q
Restricting this sequence to z' and using the identity
2 -1
EX-:G-E‘-(T’@F ) = Exty (éz',ﬁF ) = wy ®ug = (3430 +28), and
Q Q Q Q Q
noting that O, (8)® 8,1 = @1 (6)®C ,1 (correspondingly
FQ Z FQ Z

for b and B), we finally obtain that the map o above is a
section of /ﬁ‘z'(ﬂ— (2n-6)c + 38). Pushing this down to Q via

the isomorphism prQIZ' , we obtain the first part of (3.1).

For the second part, note that Wa induces linear spaces on the
fibers of g:Q —> H. To prove the lemma, it is therefore suffi-
cient to show that W, contains no fiber of g. This is easily

checked. Q.E.D.

Lemma (3.2) W, 1s the support of a reduced and irreducible

section of @Q( (n=1)n+ 8).
Proof: Consider again the exact sequence (*),‘ :
0 —> ﬁFQ(_ (n=M)s+n) —> X —> I'((n-2)s-b)) —> 0

Restrict to B, = BXQCSF,, tensor by &n (-s) and apply pras«

to get an exact sequence

prQ*(I ® C'“ ((n-2)s)) —>R PT« @BQ(-nqul) —_— qurQ*(X@’@BQ(-s)) - 0

Note that R"prQ* 6BQ(-ns +n) = (n-1) Gy(m).

Sublemma (3.3) prQ*(I' ® @B ((n-2)s)) 1is locally free of rank
(n-1), and its (n-1)-th exterior power is @Q(— 8) »
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Granting (3.%) for a moment, we see that det(a) is a section
of @Q((n-ﬂ)n+ 8), the support of which is Wy. To show that
det(a) is irreducible and reduced, look at the fibers of g and
apply the same method as in the proof of (2.2). There remains
only to show that Wb contains no fiber of g. This is straight-

forward to check. QoD

Proof of (3.3) Let Z" = ZNByCF;, and let ¢ be the ideal
of 2" in By = BxH, z" may be identified with the diagonal
in BxXB € BxH. In particular, it is the zeroset of a section
of Op(s) X @B(c) on BxB. This section can be lifted to a
section over By of @B(s)@ @H(G) = @BH(S+0), since

Hq(H, @H(G-B)) = 0. It follows that 2Z' is a complete intersec-

tion in BH, having the following Koszul complex:

0 —> C:’BH(—B—G— s) —> ﬁBH<-o-s>@ 6BH<-B> —> 4 —> 0.

Twist it by (n-2)s to get

— O, (~B-0+(n-3)s) >0, (~0+(n-3)s) @0, (-B+(n-2)s) —>}/((n—2)s)->0.
By By By

From this one easily deduces that R/]pr *g((n-Z)s) = 0, and

that pr *}((n-2)s) is locally free of rank (n-1) and commutes

with base change on H. In particular, applying the base change

g:Q —> H, we get the following resolution of prQ*(I'® @B (n-2)s):
Q

-> (n—E)C’)Q(—c—B) —> (n—Z)@Q(-o) ® (n-1 )@Q(—B) - prQ*(I'®ﬁBG§(n—2)s))—> 0.

From this one computes the (n-4)-th exterior power, and finds

the formula of (3.3). Q.E.D.
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Proof of (2.3) By (2.1), (3.1) and (3.2), PicM, is generated

by o, B and mn , with the two relations
n-(2n-6)o+38 = O
(n-1)n+8 = 0.

Eliminating B, we get the single relation

(en-6)o + (3n-4)n = 0O
So we have proved the following, which easily implies (2.3):

(3.4) PicM, is generated by o and n with one relation
(2n-6)o + (3n-4)n. In particular, if a = (2n-6,3%n-4) = (n+2,10)
then Picl"l,] = 2®%4Z/a2,

Proof of (2.1) Since X is nonsingular, the closure in X of
any divisor on X-W is a (Cartier) divisor on X. This proves
the surjectivity. For the second statement, let 5 be an in-
vertible sheaf on X which restricts to @X on X-W., Then ob
admits a rational section which is defined and nowhere vanishing
on X-W, It follows that the associated divisor is a linear

combination of the Wi. R.E.D.
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§ 4. Proof of (2.4)
Lemma &.1) c|M,]' = 20 - M.

Proof: Consider the cartesian square

F _—J;_>

M,
qqu’\ l quqM
/|

1
M

M

ﬂ%ﬂq —> P

Put @ = (p x’IM)*g , Where S is the normalized universal bundle,
Now (ax)«d = @P,l(—n) X] Oy, and (qquq)*i*°@= %4_(11_4))@“5

for some linebundle oL on I"I,]. The natural base-change map B8

gives an exact sequence

0 —> @Pq(-m =l @Mq £ @P,‘(-(n-—ﬂ))oﬁ,——> coker B —> O

' In order to determine o/ , Testrict to {E] xM, for a point

5P (k).
Supp(coker B) N {8} x M, = Supp(R (ax 1)« D) N (8} x M,
= {vector bundles E of type (O,n-1) such that the
length-1 subscheme Z;CF 1lies on q'q(g)},

? )
It follows that if B is reduced, then o= EM (6). But B 1is
/I
reduced, since if y is a generic point of SuppV(B), then
because R/l(qx’l),k 30 is, by definition of M’I’ locally free of

rank 1 over M,] we have

5] .
1 = l(Sy(R/I(qx ’I)*f;f)y) = 1@‘7(5[‘01',I J (k(Y%R,\(qx’I)*éiSy)) =l@y(C°ker By),
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Consider the universal exact sequence (*), restricted to M,cQ

0 —> Of ((-n+1)s+1)) —> X —> Iy ((a-2)s-) —> 0.
M
1

Applying (qx’qu)*, we see that (qx’qu)*X= @]Pq(—(n-’l)s) ﬁM/](T]).

Therefore, noting that o = §M1(0> , X(6-n) is the restriction

to FM of c% o It follows that
|

CIM,] c,l(X(o-n)) + (s+b) = 20 -1, Q.E.D.

Lemma (4.2) mIM/I (2n-3)o + (n-2)n.

Proof: Let RE]P‘?(k) be a point different from P. Denote by F'
the blowing up of F at the point p~ (R), end let q' :F' —> P
be the morphism induced by the linear system of lines passing

through R.

Let M,'I be the codimension one stratum in the stratification

of M defined by the point R. An automorphism of ]]P2 taking
P to R moves M, to M,'], hence the divisors M, and M, are
linearly equivalent. Furthermore, it is easily verified by de-
formation theory that M,] and M,'| intersect transversally.

Hence mn|M, is defined by the divisor M,]ﬂﬁ',‘ in M,.

Pulling back the sequence (*), to M, xF', and using that
fb}M,lx F = X(o-n), where £ is as in the proof of (2.4), we

deduce the sequence

0 ->0M1(0)(X1 C’JF. (=(n=-1)s) > D > ’9M1(0—n)[21(9F ((n-2)s-b) ->(92'((n—2)s-b+o—n) >0,

where ' 1is the pullback of o@ to M,]XF' and Z' 4is the pull~-
back of 7,
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Let r:ll, XP' — M, Dbe the projection. It can be factored

P

t .
i, xB' 285 x P =L, Now it is easily checked that as

/]O
sets, M,]nﬁ,; = Supp(pq*Rq(’l xq').d'), and since M NN, is
reduced and the rank of P4 *Rq(’l xq')*f{)' is 1 generically on

its support, it follows that mIM,} = c,](p,l*R/‘(’l Xq')w @').

Denote by xr(A) the formal sum igo(-ﬂ )l[Rir*A], for any sheaf A
on M, xF'. Applying Xp to the exact sequence above and using

the easily verified formulas:

Xe(Oy ()& Opr (-(a=1)8)) = ~[(0-2) Oy (0)]

Xp( Oy, (0-m) [} Ot ((n-2)5 =) = 0, and

X (O ((@-2)s=b+o-m) = [Oy (=)o + (@-2)m)],
(recall that B = -(n-1)n in PicM,), we get the expression

Xp( D) = ~[(a-2) By, (1= L0y ((5=1)a + (a-2)m)].

On the other hand, since M, and M,'] intersect transversally,
(Mxa D) D' = @Mq@ SJP,](-n). Furthermore, TyJ' = Rgr*e@' =0,
since the bundles induced by d' on the fibers of r are pull-
backs of stable bundles on IP2, hence have no H° or H2. By
the Leray spectral sequence for the composition T = p,-° (1xq"),

we get the expression
o R (1xa" D' = -[x D' 1+ 2,21+ (R0, D" ]
-[R,lpq*(’l xq')eA'] = -[xr@'] - [(n-1) @M 1.
1
Using the expression above for xr(\fﬁ ') and taking first Chern
class, we finally obtain

(PR (1% 2" ) D') = (0-2)0 + (2=1)0 + (n-2)n = (2n-3)0 + (a-2)n.
Q.E.D.
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Proof of (2.4)., Choose integers a, a;, b; such that 2n-6=a,a,

i’ “i
n-4 = a8, and aqbq-ra2b2 = 1. Use the invertible matrix
1 P
- to get a new basis {a,8} for the free abelian group
-a a
2 1

generated by ¢ and mn, such that o

bqa-ags, n = bga-+aqa.

Then (2n-6)0+ (Zn-4)n = a(aqc-ragn) a((a1b1-+a2b2)a +

(aq°(-a2)4-a2o aq)B) = aa. In particular, by (3.4) one sees that
PicPL1= (2/22)a.®28, and that B generates PicPL/torsion.

Now, by (4.1):
cil, = 20-n = (2b,-by)a + (-2a5-2,)8

= 1 (-2(30-4) - (20-6))8 = - £(4n-7)8 (moda) .

Similarly, by (4.2):
m|M,; = (2n-3)0 + (n-2)n = ((2n-3)(-a,) + (n-2)a,)8

= = X((2n-3)(3n-4) - (n-2)(20-6))8 = - Z(4n-7)8  (moda). Q.E.D.
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