§ O. Introduction. Let k be any algebraically closed field, and denote by $M=M(-1, n)$ the fine moduli space of stable vector bundles on $\mathbb{P}^{2}=\mathbb{P}_{k}^{2}$ of rank 2 with Chern classes $c_{1}=-1$ and $c_{2}=n_{0}[3$, thr 7.17]. If $n \leq 0$, then $M=\varnothing$, and if $n=1$, $M=S p e c k$. In this paper we prove the following

Theorem Suppose $n \geq 2$. Then PicM is generated by two elements m and c with one relation $n c=2 \mathrm{~m}$. In particular, PicM $=\mathbf{Z}$ if n is odd, and Pic $\mathbb{M}=\mathrm{Z} \oplus \mathrm{Z} / 2 \mathbf{Z}$ if n is even.

Remark: m and c are defined in § 2.

Remark: Le Potier [2] has computed PicM(0,n) in the case $k=\mathbb{C}$, using the technique of monads.

The proof goes along the following lines: First we find a decomposition of M into the union of three locally closed subsets, M_{0}, M_{1}, and $M_{\geq 2}$ such that M_{0} is open and dense in M, the closure of M_{1} has codimension 1, and $M_{\geq 2}$ is closed of codimension 2. We give complete descriptions of M_{o} and M_{1}, in particular, we compute their Picard groups. It turns out that this, together with the restriction map PicM \rightarrow Pic M ${ }_{1}$, is sufficient to determine PicM completely.

§ 1. The stratification.

In this section we give a summary of the results in [1]. We refer to that paper for complete proofs.

Fix a closed point $P \in \mathbb{P}^{2}(k)$, let $p: F \rightarrow \mathbb{P}^{2}$ be the blowing up with center P, and let $q: F \rightarrow \mathbb{P}^{1}$ denote the structure morphism of the ruled surface F. Let s and b be the linear equivalence classes of a fiber of q and the exceptional divisor $B=p^{-1}(P)$. Then s and b generate the Chow ring of F with the relations $s^{2}=0, s b=1, b^{2}=-1$.

Let E be a stable rank-2 vector bundle on \mathbb{P}^{2} with Chern classes $c_{1}(E)=-1, \quad c_{2}(E)=n$. Then there exist uniquely determined integers γ and α such that $q_{*} p^{*} E(\alpha s-\gamma b) \cong \theta_{\mathbb{P}^{1}}$ The pair ($\left.\gamma, \alpha\right)$ is called the type of E. The isomorphism above determines a unique minimal nonzero section σ_{E} of $\mathrm{p}^{*} \mathrm{E}(\alpha \mathrm{s}-\gamma \mathrm{b})$. Let $Z_{E} \subseteq \mathrm{~F}$ be the scheme of zeros of σ_{E}, and $I_{E} \subseteq \vartheta_{F}$ denote the ideal of $Z_{E^{\circ}}$. There is an exact sequence

$$
0 \rightarrow \theta_{F}(\gamma b-\alpha s) \rightarrow p * E \rightarrow I_{E}((\alpha-1) s-(\gamma+1) b) \rightarrow 0
$$

Let $M(-1, n)=M$ be the fine moduli space for stable rank-2 vector bundles on \mathbb{P}^{2} with Chern classes $c_{1}=-1, \quad c_{2}=n$. In [1] the following theorem is proved:

Theorem (1.1) There is a stratification $M=\underbrace{M}_{(\gamma, \alpha)}(\gamma, \alpha)$ into locally closed subvarieties ${ }^{M}(\gamma, \alpha)$ parametrizing bundles of type (γ, α). $M_{(\gamma, \alpha)}$ is nonempty if and only if $\alpha>0, \gamma \geq 0$, and $n-\alpha-2 \gamma \alpha-\gamma^{2} \geq 0$. If these inequalities hold, $M_{(\gamma, \alpha)}$ is an irreducible, rational, smooth and quasiprojective variety of dimension $(4 n-4)-\left(n-\alpha+\gamma^{2}+2 \gamma \alpha+\gamma\right) .{ }^{M}(0, n)$ is dense in M, and
$M_{(0, n-1)}$ is the only stratum of codimension 1 .
The decomposition referred to in the introduction is the follow-
ing: $\quad M_{0}=M_{(0, n)}, \quad M_{1}=M_{(0, n-1)}$, and $M_{\geq 2}=M-\left(M_{0} \cup M_{1}\right)$.
§ 2. The Picard group of $M(-1, n)$.
Let 8 be a universal bundle on \mathbb{P}^{2}, and put $\tilde{p}=p \times 1_{M}: F \times M=F_{M} \rightarrow \mathbb{P}_{M}^{2}, \quad \tilde{q}=q \times 1_{M}: F_{M} \rightarrow \mathbb{P}_{M^{*}}^{1} \quad$ Since $\quad\{M(\gamma, \alpha)\}$ is a flattening stratification for the coherent sheaf $R{ }^{1} \tilde{q}_{*} \tilde{p}^{*} \mathcal{E}$ $[1, \S 4]$, it follows that $\tilde{\mathrm{q}}_{*} \tilde{\mathrm{p}}^{*} \mathcal{E}$ commutes with base change on M_{0}. Therefore there exists an invertible sheaf \mathcal{D} on M such that $\tilde{\mathrm{q}}_{*} \tilde{\mathrm{p}}^{*} \hat{\xi} \cong \theta_{\mathbb{P}}(-\mathrm{n}) 区 \mathcal{N}$. Replacing ε by $\varepsilon \otimes \mathrm{pr}_{\mathrm{M}}^{*} \mathcal{L}^{\prime-1}$, we obtain another universal bundle which we will call normalized. The normalized universal bundle is uniquely determined by the condition $\tilde{q}_{*} \tilde{p}^{*} \varepsilon_{0}=\theta_{\mathbb{P}^{1}}(-n) 区 \theta_{M^{\circ}}$
Since Pic \mathbb{P}_{M}^{2} is naturally isomorphic to Pic $\mathbb{P}^{2} \times$ Pic M, we may write $c_{1}\left(\mathcal{C}_{0}\right)=-t+c$, where \mathcal{E} is the normalized universal bundle, $t \in \operatorname{Pic} \mathbb{P}^{2}$ is the class of a line, and c is some element in Pic M.

Since M is nonsingular, $\bar{M} \subseteq M$ is a Cartier divisor; let $m \in$ Pic M denote its class. Then c and m are the generators of PicM mentioned in the introduction.

We state the following propositions (to be proved later):

Prop. (2.1) Let X be an irreducible, nonsingular variety, $W \subseteq X$ a closed subset, W_{1}, \ldots, W_{t} the irreducible components of W of codimension 1 in X. Then the restriction map Pic $X \rightarrow$ Pic ($X-W$) is surjective, and the kernel is generated by the linear equivalence classes of the $W_{i}, i=1, \ldots, t$.

Prop. (2.2) Pic $M_{0} \cong \mathrm{Z} / \mathrm{nZ}$ and is generated by the restriction of c.

Prop. (2.3) Pic $M_{1} /$ torsion $\cong Z$.

Prop. (2.4) Let δ be the composed map
PicM $\xrightarrow{\text { restriction }} \operatorname{Pic} M_{1} \rightarrow{\text { Pic } M_{1} / \text { torsion }}$.
Then, for a suitable choice of generator β for PicM $/$ torsion, we have $\delta(m)=-\frac{n}{a}(4 n-7) \beta$ and $\delta(c)=-\frac{2}{a}(4 n-7) \beta$, where $a=$ greatest common divisor of $n+2$ and 10 .

Proof that (2.1-4) imply the theorem. By (1.1) and (2.1), there is an exact sequence $Z \underline{>}$ PicM $\xrightarrow{\boldsymbol{\psi}}$ PicM $M_{0} \rightarrow 0$, where $\varphi(1)=m$. Since PicMo is generated by $\psi(c)(b y(2.2)$), it follows that PicM is generated by c and m. By (2.2) again, there must be a relation of the form $x m=n c$ in PicM. Applying the map δ to this equation, we see that $x=2$. On the other hand, if $\mathrm{xm}=\mathrm{yc}$ is any other relation, apply ψ to obtain $\mathrm{y}=\lambda \mathrm{n}$ for some integer λ, then apply δ to get $x=2 \lambda$, so the relation is just a multiple of $2 m=n c$. This proves the theorem.
§ 3. Description of M_{0} and M_{1}.
Fix an integer i such that $0 \leq i<n$. (Later we will be interested only in the cases $i=0$ and $i=1$). Let H be the Hilbert scheme of closed subschemes of F of length $i, Z \subseteq F_{H}=F \times H$ the universal subscheme, $I \subseteq Q_{F_{H}}$ its ideal, and $\pi: F_{H} \rightarrow H$ the projection.

Put $G=\operatorname{Ext}_{\pi}^{1}\left(I((n-i-1) s-b), \Theta_{F_{H}}((-n+i) s)\right)$, see [1, Appendix].
Then G is a locally free sheaf on H. Consider the projective bundle $Q=\mathbb{P}_{H}\left(G^{v}\right) \xrightarrow{G} H$, and let $\theta_{Q}(\eta)$ denote the tautological linebundle on Q. Corresponding to the canonical surjection $\mathrm{g}^{*} \mathrm{G}^{\vee} \rightarrow \hat{\theta}_{Q}(\eta)$ there is a "universal" short exact sequence of sheaves on F_{Q} :

$$
\left.(*)_{i} \circ \longrightarrow \theta_{F_{Q}}((-n+i) s+\eta) \longrightarrow X \longrightarrow I_{Q}((n-1-i)) s-b\right) \longrightarrow 0 .
$$

Put $M_{i}=M(0, n-i)$. The main result of [1] is that M_{i} is isomorphic to the open subvariety of Q whose k-points are those $y \in Q(k)$ such that the restriction X_{y} of X to $F \times\{y\} \simeq F$ satisfies the following two conditions:
(a) X_{y} is locally free, and
(b) $\mathrm{X}_{\mathrm{y}} \mid \mathrm{B}$ is the trivial bundle $2 \theta_{\mathrm{B}}$.

Furthermore, under this isomorphism, $\left(p \times{ }_{1} M_{i}\right) * X_{M_{i}}$ is the restriction to $\mathbb{P}_{M_{i}}^{2}$ of a universal bunale on $\mathbb{P}_{M^{0}}^{2}$

The case $i=0$. (Proof of (2.2)). In this case, $H=$ Speck, $Z=\varnothing$, and the condition (a) is automatically satisfied. To study condition (b), restrict (*) ${ }_{0}$ to $B \times Q:$

$$
0 \rightarrow p_{B}^{*} \theta_{B}(-n) \otimes p_{Q}^{*} \theta_{Q}(n) \rightarrow x_{B} \rightarrow p_{B}^{*} \theta_{B}(n) \rightarrow 0 .
$$

Tensor this sequence with $p_{B}^{*} \theta_{B}(-1)$ and apply $\mathcal{R}^{*} p_{Q^{*}}$, and get $\theta_{Q} \otimes_{k} H^{0}\left(\theta_{B}(n-1)\right) \xrightarrow{\alpha} \theta_{Q}(\eta) \otimes_{k} H^{1}\left(\theta_{B}(-n-1)\right) \longrightarrow R^{1} p_{Q^{*}}\left(X_{B} \otimes_{p_{B}}^{*} \theta(-1)\right) \longrightarrow 0$

Let $W \subseteq Q$ be the divisor defined by $\operatorname{det}(\alpha)$. It is clear that the support of W is the complement of M_{O} in Q, and that the class of W is $n \eta$. We want to show that W is reduced and irreducible.

Put $I=\operatorname{Ext}_{B}^{1}\left(\theta_{B}(n), \theta_{B}(-n)\right)$. The restriction map $\rho: G \rightarrow I$ is surjective, and induces a linear projection $\rho: Q=\mathbb{P}\left(G^{\vee}\right) \cdots \mathbb{P}\left(L^{\vee}\right)$. Let $W_{j} \subseteq \mathbb{P}\left(I^{v}\right)$ be the locally closed subset corresponding to extensions of the form

$$
0 \rightarrow \theta_{B}(-n) \longrightarrow \theta_{B}(-j) \oplus \theta_{B}(j) \rightarrow \theta_{B}(n) \longrightarrow 0,
$$

and let $W^{\prime}=\bigcup_{j>0} W_{j}$. Then W is the closure in Q of $\rho^{-1}\left(W^{\prime}\right)$, so if W^{\prime} is irreducible, then so is W.

Consider the open subspace U_{j} of $H^{\circ}\left(\theta_{B}(n+j)\right) \times H^{0}\left(\theta_{B}(n-j)\right)$ consisting of pairs (f, g) such that $V(f, g)=\varnothing$. There is a map $\gamma_{j}: \ell_{j} \rightarrow \mathbb{P}\left(L^{v}\right)$ such that the image of γ_{j} is precisely W_{j}. If $j>0$, the fibers of γ_{j} are all isomorphic to $\left\{\left(\begin{array}{ll}\alpha & H \\ 0 & \beta\end{array}\right): \alpha, \beta \in k^{*}, \quad H \in H^{\circ}\left(\theta_{B}(2 j)\right)\right\}$. Thus the dimension of W_{j} is $(n+j+1)+(n-j+1)-(2 j+3)=2 n-1-2 j$. It follows that W^{\prime}, and hence W, is irreducible. Furthermore, if x is the generic point of W, it maps to the generic point of W_{1}. Therefore, $R^{1} p_{Q^{*}}\left(X_{B} \otimes p_{B}^{*} \theta_{B}(-1)\right) \otimes_{\theta_{Q}} \theta_{Q, x}$ has length 1. But $\theta_{Q, x}$ is a discrete valuation ring, so
$\operatorname{length}\left(\theta_{Q, x} / \operatorname{det}(\alpha)\right)=\operatorname{length}\left((\operatorname{coker} \alpha) \otimes \theta_{Q, x}\right)=1 . \quad$ In particular, $\operatorname{det}(\alpha)$ is a uniformizing parameter, thus W is reduced.

Consider once again the extension (*) 0_{0} Applying $\left(q \times 1_{Q}\right)_{*}$, we see that $X(-\eta)$ restricted to M_{0} is the restriction to M_{0} of $\left(p \times 1_{M}\right)^{*} \frac{g}{6}$ where δ is the normalized universal bundle. In particular, $c\left|M_{0}=-\eta\right| M_{0}$. Using (2.1), this proves (2.2). Q.E.D.

The case $i=1$ (Proof of (2.3)).
In this case, $H \cong F$ and Z is the diagonal in $F_{H}=F \times H$.
Let $\sigma, \beta \in \operatorname{Pic} H$ correspond to $s, b \in P i c F$ under the isomorphism $H \cong F$. Then Pic Q is freely generated by σ, β and η. (We will use the canonical inclusion $G^{*}: \operatorname{PicH} \longrightarrow$ PicQ to identify σ and $G^{*} \sigma, \beta$ and $g^{*} \beta$, when no confusion is possible. The same applies for the inclusions $\mathrm{pr}_{Q}^{*}: \operatorname{Pic} Q \longrightarrow P i c F_{Q}$ and $\mathrm{pr}_{\mathrm{F}}^{*}: \operatorname{PicF} \longrightarrow \operatorname{Pic} \mathrm{F}_{\mathrm{Q}^{\bullet}}$)

Put $W_{a}=\left\{y \in Q: X_{y}\right.$ is not locally free $\}$, and $W_{b}=\left\{y \in Q: X_{y} \mid B \neq 2 \theta_{B}\right\}$. Lemma (3.1) W_{a} is the support of the zero-scheme of a section of $\theta_{Q}(\eta-(2 n-6) \sigma+3 \beta)$. Furthermore, this scheme is reduced and irreducible。

Proof: Let $W_{Q}^{\prime} \subseteq F_{Q}$ be the locus where X is not locally free。 Then $W_{a}=\operatorname{pr}_{Q}\left(W_{a}^{\prime}\right)$. On the other hand, let $Z^{\prime} \subseteq F_{Q}$ be the inverse image of $Z \subseteq F_{H^{\prime}}$ Then $W_{a}^{\prime} \subseteq Z^{\prime}$, and pr_{Q} maps Z^{\prime} isomorphically to Q. Note also that since I has projective dimension ≤ 1 locally, $\quad W_{a}^{\prime}=\operatorname{Supp} E_{F_{Q}}^{1}(X, \mathcal{W})$, where \mathcal{W} is any locally free sheaf on F_{Q}. The sequence $(*)_{1}$:

$$
0 \rightarrow{ }_{F_{Q}}((-n+1) s+\eta) \rightarrow X \rightarrow I^{\prime}((n-2) s-b) \rightarrow 0
$$

where $I^{\prime}=I_{Q}$ is the ideal of Z^{\prime}, gives, when dualized, an exact sequence
$\theta_{F_{Q}} \xrightarrow{a} \operatorname{Ext}_{F_{Q}}^{1}\left(I^{\prime}((n-2) s-b), \theta_{F_{Q}}((-n+1) s+\eta)\right) \rightarrow \operatorname{Ext}_{F_{Q}}^{1}(X, Q((-n+1) s+\eta)) \rightarrow 0$.
Restricting this sequence to Z^{\prime} and using the identity $\operatorname{Ext}_{\mathrm{F}_{Q}}^{1}\left(I^{\prime}, \theta_{F_{Q}}\right)=\operatorname{Ext}_{\mathrm{F}_{Q}}^{2}\left(\theta_{Z^{\prime}}, \theta_{\mathrm{F}_{Q}}\right)=\omega_{Z^{\prime}} \otimes_{W_{\mathrm{F}}}^{-1}=\theta_{Z^{\prime}}(3 \sigma+2 \beta)$, and noting that $\theta_{F_{Q}}(s) \otimes \theta_{Z^{\prime}}=\theta_{F_{Q}}(\sigma) \otimes \theta_{Z^{\prime}} \quad$ (correspondingly for b and β, we finally obtain that the map α above is a section of $\theta_{Z^{\prime}}(\eta-(2 n-6) \sigma+3 \beta)$. Pushing this down to Q via the isomorphism $p r_{Q} \mid Z^{\prime}$, we obtain the first part of (3.1).

For the second part, note that W_{a} induces linear spaces on the fibers of $g: Q \rightarrow H$. To prove the lemma, it is therefore suficient to show that W_{a} contains no fiber of g. This is easily checked. Q.E.D.

Lemma (3.2) W_{b} is the support of a reduced and irreducible section of $\xi_{Q}((n-1) \eta+\beta)$.

Proof: Consider again the exact sequence (*) :

$$
\left.0 \rightarrow \theta_{F_{Q}}(-(n-1) s+\eta) \rightarrow X \rightarrow I^{\prime}((n-2) s-b)\right) \rightarrow 0
$$

Restrict to $B_{Q}=B \times Q \subseteq F_{Q}$, tensor by $\Theta_{B_{Q}}(-s)$ and apply $p_{Q}{ }^{*}$ to get an exact sequence
$\mathrm{pr}_{Q^{*}}\left(I^{\prime} \otimes \theta_{B_{Q}}((n-2) s)\right) \xrightarrow{\alpha} \rightarrow R^{1} p_{Q^{*}} \theta_{B_{Q}}(-n s+\eta) \rightarrow R^{1} p_{Q^{*}}\left(X \otimes \mathcal{Q}_{B_{Q}}(-s)\right) \rightarrow 0$
Note that $R^{1} p^{p} r^{*} \theta_{B_{Q}}(-n s+\eta)=(n-1) \theta_{Q}(\eta)$.
Sublemma (3.3) $\mathrm{pr}_{Q^{*}}\left(I^{\prime} \otimes \theta_{B_{Q}}((n-2) s)\right.$ is locally free of rank $(n-1)$, and its $(n-1)$-th exterior power is $\theta_{Q}(-\beta)$ 。

Granting（3．3）for a moment，we see that $\operatorname{det}(\alpha)$ is a section of $\theta_{Q}((n-1) \eta+\beta)$ ，the support of which is W_{b} ．To show that $\operatorname{det}(\alpha)$ is irreducible and reduced，look at the fibers of g and apply the same method as in the proof of（2．2）．There remains only to show that W_{b} contains no fiber of g ．This is straight－ forward to check．Q．E．D．

Proof of（3．3）Let $Z^{\prime \prime}=Z \cap B_{H} \subseteq F_{H}$ ，and let $\not \subset$ be the ideal of $Z^{\prime \prime}$ in $B_{H}=B \times H_{0} \quad Z^{\prime \prime}$ may be identified with the diagonal in $B \times B \subseteq B \times H$ ．In particular，it is the zeroset of a section of $\theta_{B}(s) 区 \hat{\theta}_{B}(\sigma)$ on $B \times B$ ．This section can be lifted to a section over B_{H} of $\theta_{B}(s) 区 \theta_{H}(\sigma)=\theta_{B_{H}}(s+\sigma)$ ，since $H^{1}\left(H, \theta_{H}(\sigma-\beta)\right)=0$ ．It follows that $Z^{i \prime}$ is a complete intersec－ tion in B_{H} ，having the following Koszul complex：

$$
0 \rightarrow \theta_{\mathrm{B}_{\mathrm{H}}}(-\beta-\sigma-s) \rightarrow \theta_{\mathrm{B}_{\mathrm{H}}}(-\sigma-s) \oplus \theta_{\mathrm{B}_{\mathrm{H}}}(-\beta) \rightarrow \mathcal{F} \rightarrow 0
$$

Twist it by（n－2）s to get
$0 \rightarrow \theta_{B_{H}}(-\beta-\sigma+(n-3) s) \rightarrow \theta_{B_{H}}(-\sigma+(n-3) s) \oplus \theta_{B_{H}}(-\beta+(n-2) s) \rightarrow f((n-2) s) \rightarrow 0$.
From this one easily deduces that $\mathrm{R}^{1} \mathrm{pr}_{\mathrm{H}} * \mathcal{F}((n-2) s)=0$ ，and that $p r_{H} * \mathcal{F}((n-2) s)$ is locally free of rank $(n-1)$ and commutes with base change on H ．In particular，applying the base change $g: Q \longrightarrow H$ ，we get the following resolution of $p r_{Q^{*}}\left(I^{\prime} \otimes \theta_{B_{Q}}((n-2) s)\right)$ ： $0 \rightarrow(n-2) \theta_{Q}(-\sigma-\beta) \rightarrow(n-2) \theta_{Q}(-\sigma) \oplus(n-1) \theta_{Q}(-\beta) \rightarrow \mathrm{pr}_{Q^{*}}\left(I^{\prime} \otimes \theta_{B_{Q}}((n-2) s)\right) \rightarrow 0$.

From this one computes the $(n-1)$－th exterior power，and finds the formula of（3．3）． Q。E。D．

Proof of (2.3) By (2.1), (3.1) and (3.2), PicM 1 is generated by σ, β and η, with the two relations

$$
\begin{aligned}
& \eta-(2 n-6) \sigma+3 \beta=0 \\
& (n-1) \eta+\beta=0
\end{aligned}
$$

Eliminating β, we get the single relation

$$
(2 n-6) \sigma+(3 n-4) \eta=0
$$

So we have proved the following, which easily implies (2.3):
(3.4) PicM1 is generated by σ and η with one relation $(2 n-6) \sigma+(3 n-4) \eta$. In particular, if $a=(2 n-6,3 n-4)=(n+2,10)$ then $\mathrm{PicM}_{1}=\mathrm{Z} \oplus \mathrm{Z} / \mathrm{ZZ}$ 。

Proof of (2.1) Since X is nonsingular, the closure in X of any divisor on $X-W$ is a (Cartier) divisor on X. This proves the surjectivity. For the second statement, let \mathcal{d} be an invertible sheaf on X which restricts to θ_{X} on $X-W$. Then \mathcal{D} admits a rational section which is defined and nowhere vanishing on $\mathrm{X}-\mathrm{W}$. It follows that the associated divisor is a linear combination of the W_{i} 。
Q.E.D.
§4．Proof of（2．4）
Lemma（4．1）$\quad c \mid M_{1}=2 \sigma-\eta_{0}$
Proof：Consider the cartesian square

$$
\begin{aligned}
\mathrm{F}_{\mathrm{M}_{1}} & \xrightarrow{i} \mathrm{~F}_{\mathrm{M}} \\
\mathrm{q} \times 1_{\mathrm{M}_{1}} \|_{1} & \downarrow \mathrm{q} \times 1_{\mathrm{M}} \\
\mathbb{P}_{\mathrm{M}_{1}}^{1} & \longrightarrow \mathbb{P}_{\mathrm{M}}^{1}
\end{aligned}
$$

Put $D=\left(p \times 1_{M}\right)^{*} \mathbb{E}$ ，where \mathcal{E} is the normalized universal bundle．
 for some linebundle α on M_{1} ．The natural base－change map β gives an exact sequence

$$
0 \rightarrow \theta_{\mathbb{P}^{1}}(-n) 区 \theta_{M_{1}} \xrightarrow{\beta} \theta_{\mathbb{P}^{1}}(-(n-1)) 区 \mathcal{x} \alpha \operatorname{coker} \beta \rightarrow 0
$$

In order to detemine d ，restrict to $\{\xi\} \times M_{1}$ for a point $\xi \in \mathbb{P}^{1}(k)$ 。
$\operatorname{Supp}(\operatorname{coker} \beta) \cap\{\xi\} \times M_{1}=\operatorname{Supp}\left(R^{1}\left(q \times 1_{M}\right) * D\right) \cap\{\xi\} \times M_{1}$
$=$ \｛vector bundles E of type $(0, n-1)$ such that the
length－1 subscheme $Z_{E} \subseteq F$ lies on $q^{-1}(\xi)$ ．
It follows that if β is reduced，then $\alpha=\theta_{M_{1}}(\sigma)$ ．But β is reduced，since if y is a generic point of $\operatorname{Supp} V(\beta)$ ，then because $R^{1}(q \times 1) * \mathcal{D}$ is，by definition of M_{1} ，locally free of rank 1 over M_{1} we have
$1=1_{\theta_{y}}\left(R^{1}(q \times 1) * g_{y}\right)=1_{\theta_{y}}\left(\operatorname{Tor}_{1}^{\theta}\left(k(y), R^{1}(q \times 1) * \theta_{y}\right)=1_{\theta}\left(\operatorname{coker} \beta_{y}\right)\right.$

Consider the universal exact sequence (*) $\mathcal{1}_{1}$ restricted to $M_{1} \subseteq Q$

$$
\left.0 \rightarrow \Theta_{\mathrm{F}_{M_{1}}}((-n+1) s+n)\right) \longrightarrow X \longrightarrow I_{M_{1}}((n-2) s-b) \longrightarrow 0 .
$$

Applying $\left(q \times 1_{M_{1}}\right)_{*}$, we see that $\left(q \times 1_{M_{1}}\right) * X=\theta_{\mathbb{P}^{1}}(-(n-1) s) \boxtimes \theta_{M_{1}}(\eta)$. Therefore, noting that $\alpha=\theta_{M_{1}}(\sigma), X(\sigma-\eta)$ is the restriction to $\mathrm{F}_{\mathrm{M}_{1}}$ of D. It follows that

$$
c \mid M_{1}=c_{1}(X(\sigma-\eta))+(s+b)=2 \sigma-\eta_{0} \quad \text { Q.E.D. }
$$

Lemma (4.2) $m \mid M_{1}=(2 n-3) \sigma+(n-2) \eta$.
Proof: Let $R \in \mathbb{P}^{2}(k)$ be a point different from P. Denote by F^{\prime} the blowing up of F at the point $p^{-1}(R)$, and let $q^{\prime}: F^{\prime} \rightarrow \mathbb{P}^{1}$ be the morphism induced by the linear system of lines passing through R.

Let M_{1}^{1} be the codimension one stratum in the stratification of M defined by the point R. An automorphism of \mathbb{P}^{2} taking P to R moves M_{1} to M_{1}^{\prime}, hence the divisors \bar{M}_{1} and \bar{M}_{1}^{\prime} are linearly equivalent. Furthermore, it is easily verified by deformation theory that M_{1} and M_{1}^{\prime} intersect transversally. Hence $m \mid M_{1}$ is defined by the divisor $M_{1} \cap \bar{M}_{1}^{\prime}$ in M_{1}. Pulling back the sequence (*) ${ }_{1}$ to $M_{1} \times F^{\prime}$, and using that $D / M_{1} \times F=X(\sigma-\eta)$, where D is as in the proof of (2.4), we deduce the sequence
$0 \rightarrow \theta_{M_{1}}(\sigma) 区 \theta_{F^{\prime}}(-(n-1) s) \rightarrow D^{\prime} \rightarrow \theta_{M_{1}}(\sigma-\eta) \| \theta_{F^{\prime}}((n-2) s-b) \rightarrow \theta_{Z^{\prime}}((n-2) s-b+\sigma-\eta) \rightarrow 0$, where D^{\prime} is the pullback of D^{2} to $M_{\uparrow} \times F^{\prime}$ and Z^{\prime} is the pullback of Z.

Let $I: M_{1} \times F^{\prime} \longrightarrow M_{1}$ be the projection. It can be factored $M_{1} \times F^{\prime} \xrightarrow{1 \times q^{\prime}} M_{1} \times \mathbb{P}^{1} \xrightarrow{\mathrm{p}_{1}} M_{1}$. Now it is easily checked that as sets, $M_{1} \cap \bar{M}_{1}^{\prime}=\operatorname{Supp}\left(p_{1} * R^{1}\left(1 \times q^{\prime}\right) * D^{\prime}\right)$, and since $M_{1} \cap \bar{M}_{1}^{\prime}$ is reduced and the rank of $p_{1} *^{1}\left(1 \times q^{\prime}\right) * D^{\prime}$ is 1 generically on its support, it follows that $m \mid M_{1}=c_{1}\left(p_{1 *} R^{1}\left(1 \times q^{\prime}\right) * D^{\prime}\right)$.

Denote by $X_{r}(A)$ the formal sum $\sum_{i=0}(-1)^{i}\left[R^{i} r_{*} A\right]$, for any sheaf A on $M_{1} \times F^{\prime}$. Applying X_{r} to the exact sequence above and using the easily verified formulas:

$$
\begin{aligned}
& x_{r}\left(\theta_{M_{1}}(\sigma) \boxtimes \theta_{F^{\prime}}(-(n-1) s)\right)=-\left[(n-2) \theta_{M_{1}}(\sigma)\right] \\
& x_{r}\left(\theta_{M_{1}}(\sigma-\eta) \boxtimes \theta_{F^{\prime}}((n-2) s-b)\right)=0, \text { and } \\
& x_{r}\left(\theta_{Z^{\prime}}((n-2) s-b+\sigma-\eta)\right)=\left[\theta_{M_{1}}((n-1) \sigma+(n-2) \eta)\right]
\end{aligned}
$$

(recall that $\beta=-(n-1) \eta$ in Pic M_{1}), we get the expression

$$
x_{r}\left(D^{\prime}\right)=-\left[(n-2) \theta_{M_{1}}(\sigma)\right]-\left[\theta_{M_{1}}((n-1) \sigma+(n-2) n)\right]
$$

On the other hand, since M_{1} and M_{1}^{1} intersect transversally, $\left(1 \times q^{\prime}\right) * D^{\prime}=\theta_{M_{1}} \mathbb{X} \theta_{\mathbb{P}^{1}}(-n)$. Furthermore, $\quad r_{*} D^{\prime}=R^{2} r_{*} D^{\prime}=0$, since the bundles induced by \mathcal{D}^{\prime} on the fibers of r are pullbacks of stable bundles on \mathbb{P}^{2}, hence have no H° or H^{2}. By the Leray spectral sequence for the composition $r=p_{1}{ }^{\circ}\left(1 \times q^{\prime}\right)$, we get the expression

$$
\begin{aligned}
& {\left[p_{1 *} R^{1}\left(1 \times q^{\prime}\right) * D^{\prime}\right]=-\left[x_{r} D^{\prime}\right]+\left[r_{*} D^{\prime}\right]+\left[R^{2} r_{*} D^{\prime}\right]} \\
& -\left[R^{1} p_{1 *}\left(1 \times q^{\prime}\right) * D^{\prime}\right]=-\left[x_{r} D^{\prime}\right]-\left[(n-1) \theta_{M_{1}}\right]
\end{aligned}
$$

Using the expression above for $x_{r}\left(X^{\prime}\right)$ and taking first Chern class, we finally obtain

$$
c_{1}\left(p_{1 *} R^{1}\left(1 \times q^{\prime}\right) * D^{\prime}\right)=(n-2) \sigma+(n-1) \sigma+(n-2) \eta=(2 n-3) \sigma+(n-2) \eta_{0} .
$$

Proof of (2.4). Choose integers a, a_{i}, b_{i} such that $2 n-6=a_{1} a$, $3 n-4=a_{2} a$, and $a_{1} b_{1}+a_{2} b_{2}=1$. Use the invertible matrix $\left[\begin{array}{cc}b_{1} & b_{2} \\ -a_{2} & a_{1}\end{array}\right]$ to get a new basis $\{a, \beta\}$ for the free abelian group generated by σ and η, such that $\sigma=b_{1} \alpha-a_{2} \beta, \eta=b_{2} \alpha+a_{1} \beta$ 。 Then $(2 n-6) \sigma+(3 n-4) \eta=a\left(a_{1} \sigma+a_{2} \eta\right)=a\left(\left(a_{1} b_{1}+a_{2} b_{2}\right) a+\right.$ $\left.\left(a_{1} \cdot\left(-a_{2}\right)+a_{2} \cdot a_{1}\right) \beta\right)=a a_{0}$. In particular, by (3.4) one sees that Pic $M_{1}=(\mathbf{Z} / \mathrm{a} . Z) \propto \mathrm{Z} \beta$, and that β generates Pic $M_{\gamma} /$ torsion.

Now, by (4.1):
$c M_{1}=2 \sigma-\eta=\left(2 b_{1}-b_{2}\right) \alpha+\left(-2 a_{2}-a_{1}\right) \beta$
$\equiv \frac{1}{a}(-2(3 n-4)-(2 n-6)) \beta=-\frac{2}{a}(4 n-7) \beta \quad(\bmod \alpha)$.
Similarly, by (4.2):
$m \mid M_{1}=(2 n-3) \sigma+(n-2) \eta \equiv\left((2 n-3)\left(-a_{2}\right)+(n-2) a_{1}\right) \beta$
$=-\frac{1}{a}((2 n-3)(3 n-4)-(n-2)(2 n-6)) \beta=-\frac{n}{a}(4 n-7) \beta \quad(\bmod \alpha)_{0} \quad Q_{0} E_{0} D_{0}$

References:
[1] Ellingsrud, G. and Strømme, S.A.: On the moduli space for stable rank-2 vector bundles on \mathbb{P}^{2}, Preprint No 7, May 1979, Institute of Mathematics, University of Oslo.
[2] Le Potier, J. : Talk in Nice, June 1979.
[3] Maruyama, M.: Moduli of stable sheaves, II, J. of Math. Kyoto Univ. 18-3 (1978) 557-614.

