
Dit\NETERS OF S'I'l:.,'TE SPACES OF' 'I'YPE III FACTORS 

E 

l . Introduction. 

the norm clos"'~d 

[w] 

inner * ~automo 

space s t~ l~n~{~'! Q' ·; I"· .. L\ >. 

If M is not a factor 

equal to 

Pmvers ln. 

n <"" , and ¢ = Tr 

d 

where t:hce 
n 

are the e l tJes c~f v~ OJ 

diarn(S~~ 0,1 I u 

The value 

4> is a pure state. 

let 

t. 'J.nder t.he action of the 

"" wo Adu. The orbit 

it.h 

l ,_r t ~ [ -I} 
11 ~ lu · \:: L w .J , 4> E 4> . • 

is clearly 

d fact.or it rnay be different. 

s a factor of type I ' n 

UAS Of: and 1-1 1 ;; 1.1 2 :> ••• ) fl. n 

gets that 

is the tracial state and 



',l;!h~ q:Jic;J\tmerrl:,~ ot Powers aan 'PE:J ext~nd,~~ to tite cas~ when t1 

.:t.s a s~m.:l:e:i.n~te factor with fc!\i~hfu~ normal. ~~mifin~t~ traoe ~~ 

If ~ = ~(h•), $ = ~(~·) are two V9~~tive normal functipn~~~ 

9iY~n l;)y tw~ ~s~tiye OJ?erator~ h artd X; irt M, Which h~Ve 

'!' ' t, A • 1 ' ' !I Joln· ~~~~~n~~~~at~on 

n 
h= rA..p., 

;i.=l l, ~ 
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'l'h• lll~in r~su;l..ir of the J?:t'EHil~nt pa;per is 4 f<':!rmu:ta fpr ~he 
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Then 

diam(s0 (r-1)/Int(M)) 
1,. 

1 -A. 2 
=2~ 

l+A. -l. 

In particular for a factor of type rrr 0 the diameter ia 2 

and for a factor of type III 1 

previousl,.y proved by two of us 

it \'las shown 'Qy Bion-Nadal [ 2] 

it is 0. The last statement. was 

in [ 6] . In the caee wh~n 0~}... 'li 1 

that ~(l ... A.~) is an upper bound. 

for the diarnE:~tei;", a result which inspi:J;"~d the present wor'k· Our 

p:rqo;f will be divided into two pa,rts, na,meJ,y to show the ine,qu~l"' 

k 
) 1 -'A. 2 

it i e s d i am ( S 0 01) I I n t ( M ) ) " 2 ~ for r.. E [ 0 , 1 ) • 
1 +A. 2 

2 • Proof of the inegua1ity ,;; . 

1-A. ~ 
2 ~ that gives the diameter appears as ~ 

1 +A. 2 

conseguenoe of the following function theoretic lemma. 

Lemma 2.1. Let O<a<b be real numbers, and 1et K a,b 

convex set of nonneg.;:ttive decreasing' funct:j.,one f on [a,b] such 

b 
that /fdt = 1 and af(a) = bf(b). Then we have 

a 

b 
sup f fv gdt 

f,gEK b a a. 

Proof, In order to show the lemma it suffices to consider step 

functions ;in K a,b If o:E[O,l) and t.nen we have 
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Hence it sl,lffices to prove the lemma for e:x:tremal step functions 

in 

where a = 

can find 

c . X [ +c X [ J E K , 
1 a . , a . _Ll ) n a , a +l a, b 

1 lT · n n 

a 1 ca~<, •• <an+l = b, 

~~0 and n>O such that 

a 
c 1 > c 2 > ••• > c n ;:;; be 1 • I f n!<l 3 

( 1 - e: ) c 1 > ( 1 +'11 ) c 2 , ( 1 ,..n ) c 2 ~t G 3 , 

c . 1 >(1+e:)c and such that the two functions n- n 

n-1 

we 

f±;:::(lte:)clx[a a )+(1+TJ)c2x[a a )+.I ... ciX[a. a. )+(l;te:)cnx[.a a·. J 
1' 2 2' 3 J.=i=3 1' 1+1 ' n' n+1 

bel<:?n«'J to K b" Since a, is not extremal in 

'J;'herefore it sufficE~s to shmv the lemma for step functions of the 

form 

f = b X +a X 
s s ( b-a) [ a, s ) s ( b-a) [ s , b l ' 

wh~re s~(a,b). If a<r<s<b we find 

b 
f f v f d t = - ( 2 b-bE - a~) • r s b-a s r a 

Since the maximum of this function of 

~ = (g)~ the proof is complete. r a 

s 
r is obtained for 

S in9e fo:r;' two functions f and g, I f-91 = 2 f.v 9""' f ... g, 'ltle 

have: 

c,orollar;t 2 .~. In the Q.bove notation, if O<A. <1 We have 

1 
suP J 1 £- g I d t 

f, gE KA. ' l A. 

Lemma 2.3. Let ~1 be a cr-finite factor of type r:uA., oo.. <1, and 

let 2n 
T=,.,.,~ 

log\ · 
Let q, 0 be a fai thf1,1l normal state on ~l for 
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which o-~ 0 is the identity. Then for any faithfu). qo:rma:L stat~ 

~ on ~1 there exists a positive operator h in the oent~ali~qr' 

H'l>o 

( i) 

(ii) 

of qlJGh that 

Sph c (~a,a] for some 

The~e exists a unitary 

a;>O, 

uE H suc;h th&t 

Proof: Put v ~ (D~:D~O)T, see [4]. The~ for xEM 

= vcr4>o (x)v* = 
T * vxv , 

so in partic;ula~ $(vxv*) = 4J(cr~(x)) = 4>(x). Tnus v~M~. By 

spectral theory and the Riesz representation theore~ th~r~ is a 

unique probability measure fJ. on T := { zE ~:I z I "" 1} for which 

f f ( z ) dfl ( z) = 4> ( f ( v) ) 
'[' 

for any Bore). function f on T. Let v be the positive Borel 

measure on R. obtained by "rewinding" fJ., i.e. v is determineQ 'Py 

v (B) ::; 11 ( exp ( iB)) , B c: [ 0, 2Tt) , B Borel, 

and 

v(B+2Tt) = v(B), B c ~. B Bore~. 

Note that v ( [ s, s+2Tt ) ) = for a).l sER. Put 

g( s) = f exp(- ¥)dv(t), 
[ s, s+2Tt ) 

Since ~xp(~ ~) = A we have 

f exp(~ ~)dv(t) = 
( s, \XI ) 

CD 

I f exp(- ~)dv (t,) 
n=O [ s+n21t , s+ ( n+l ) 21t ) 

= (I An)g(s) 
n=O 



Hence we also have 
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= (1-~) J exp(- ~)~v(t). 
[s,co) 

This $hOW$ th,q.t g is a decreasing function on R, cont.i,nuot.Hi 

from l,eft~ ~et 

for s' ... s f:r:om 

and 

g(s+) (resp. g(s-)) qenote 

right ( resp. left) . Then 

g(O+) = J exp( .... ~)dv (t) 
(0,2n] 

g ( ( -2n ) -) = J exp(~ ~)dv(t) 
[ -2n f 0) 

Hence w~ can c;hoose rE [ -2n, o] such that 

g ( r+ ) ~ 1 .::: g ( r- ) . 

:Sy (1) we have 

the li~:j.t:;; 

( 1 I 

> 1 • 

g(r,...)-g(r+) = (1-~)exp(- ¥)v({r}) 

r { ir} = (1-A)exp(- T)~(,e .). 

<?f g( a' ) 

This shows th~'j:. r is a point of cqntinuit;.y for g if ~nd only 

if ir 
e 

1\loreover 

where !' 

that vi; 

Case 1 . 

is not an eigenvalue for v. 

is the 

..., irs e . 

Assume· 

r g(r-)-g(:t;"+) = (1-~)exp(~ T)$(p), 

projection on the eigenspace of tbe vee;; tors 

There are two cases to be considereQ. 

first that ir is not eigenYalue for e an 

~ 

v. 

be the branch of t,he argument functiqns that ta'kes values in 

(r,r+4n), and put 

l:luch 

Let 
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a = Arg (v) 
r 

S~nc~ vEM~ so are a and k. Moreov~r, a and k ar~ self~ 

adjoint« and th~ir spectra satisfy 

Spa .;:: [ r, r+21t J 

Furth~~more, since r is a continuity point for g, 

-1 1 
~(k } = fexp(- -T Arg (z))d~(z) 

T r 

r+21t 
= f exp(- ~)dv(t) 

r 

= 1 • 

Put ~(x) = ~(k- 1 x), xEM. Then ~ is a faithful normal state ~n 

M. 'T k~ = ~xp(ia) = v, we get, see [4], 

anQ. 

Sine~ cr~ and c:rtl>o both have period T we can oonc;::lude as in 

tne proo~ qf [4, 4.3.2] that there exists a un~tary uEM such 

that ~(uxu*) = t~> 0 (x) for xEM. Hence, if h = u*ku we have 

t1> (uxu*) = ~ (kuxu*) == ~ (uhx\l*) = ~t~ 0 (h>d. 

Since Sph = Spk c [exp(¥),A- 1 exp(~)], h and u sa~isfy the 

cond~tions in the lemma. 

Case 2. ~saume next that ir 
e is an eigenvalue for v, and let 
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p be the projection on the corresponding eigenspace. Clearly 

pEM4>. Sin~e 

g ( r+ ) .;; 1 .;; g ( r- ) 

we can choose aE[O,l] such that 

Now 

of 

= ( 1 -o: ) g ( r+) +a: g ( r-) . 

cr~ ( ~) ::;; vxv * for xE fv1 and 

cr~ to the reduced algebra 
~ 

ir pv = e p. Thus the restriction 

pMp is trivial. Since M is cr-

finite of type Ili, pMp = M, so is also a factor of type II IA. . 

Thus, as in the proof of [4, 4.2.6] the centralizer of the 

restriction cpjpMp is a factor of type II 1 • Therefore we can 

choose a projection p'.;;p, p'EH<P, such that c)l(p') = o:<J>(p). 

Define n,ow self..,.adjoint operators a and k in M<P by 

a = Arg ( v ( 1 -p) ) + rp' + ( r+2n ) ( p-p' ) 
r 

The operators are well defined since 
ir 

e is not in the point 

spectrum of v(l-p). Clearly Sp(a) c [r,r+2n] ~hence 

[ r -1 r ] Sp(k) c exp(T) ,A. exp(T) · 

Moreover, kiT::;; eia = v(l-p)+eirp = v. Co~puting we find the 

following formulas: 

-1 f t r r+2n ) <P(k )= exp(- T)dv(t)+o:c)l(p)exp(~ T)+(l-o:)cp(p)exp(- ~, 
(r,r+2n) 

g(r+) = f exp(-!)dv(t) = f exp(-~)dv(t)+cp (p)exp(- r+~n), 
(r,r+2n] T (r,r+2n) 

t f t r g(r-) ::;; J exp(--)dv(t) = exp(-T)dv(t)+c)l(p)exp(-T}. 
[r,r+2n) T (r,r+2n) 
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Adding we obtain ~(k-l) = (1-a)g(r+)+ag(r-) = 1. The proof can 

now be completed as in Case l . 

~ 

Proof of the inequality diam ( s0 (H) /Int ( t1) ) .;;; 2 1 -:\ !~. 
1 +:\ 2 

It suffices to show the inequality for faithful states. I-1et <jJ 

and <J; be faithful normal states on the factor H of type III/\, 

0<:\<1. Let <Po be a faithful normal state such that a<P O is the T . 

identity map. By Lemma 2.3 there are <P'E[cJ>], <J;'E[<J;] such that 

<P'(x) = <P 0 (hx). <J;'(x) = <P 0 (kx), xEM, where h,kEM¢ 0 and A.a..;h.;;a, 

1\.b~k<b for some a,b>O. 

If o>O we can by spectral theory find an integer n and 

orthogonal families {p 1 , ••. ,pn}, {q1 , ••• ,qn} of projections in 

¢ 0 (q.) = ~. i = l, ••. ,n, and constants 
1 n 

a 1 ~a 2 ~ ••• >cxn = A.a 1 , 

such that 

where II xll 1 = <Po(lxl) 

estimate we may assume 

for xE M~ 0 • 

h and k 

satisfying 

In order to show 

are of this form, 

~a:.=~a.=n 1" l L, ~--' l 

the desired 

i.e. 

h = 2, 0: • p 'I k = 1) .q .. Since M~o is a factor of type rr 1 there 
l l l l 

is unitary * a uE H~ 0 such that uqiu = P· l 
for aLl. i, hence 

n 
* I~. P .• <j;" defined by uku = Thus the state 

1 l l 

<j; " (X) * = ~ 0 ( uku x) * = cp 0 (J~u xu) 

belongs to [<J;]. 

by 

Let f and g be functions on the interval [/\.,1] defined 

-1 n 
f = ( l -:\) I a . X 1 , 

. l l . 
J_= l 

-1 n 
g = ( 1-A.) Y ~ . x 1 , where 

. l l . 
1.= l 
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lrA.+(i-1) 
l ~/, 

A.+i 
l ~A. 

i l, ..• ,n-1, -- ' 
-) for = n n 

L -- '\, 
l -A. l t_[:\+(n~l) 1 J for i -~-

' = n. 
n 

Then f and g are decreasing step functions with integrals 

and satifying f(l) = A.f(A.), g(l) = A.g(A.), i.e. f,g belong to the 

set K 
A., l 

of Lemrna 2, Thus by Corollary 2.2 we have, 

II ¢ I -c)! "II = llh- 11 1 = 
n 

I I a i -~ i I <~> (Pi ) 
i=1 

1 
= J 1 t-9 1 dh 

A. 

completing the proof, 'I'he case f.- = 0 is trivial. 

3. Proof '?f the inequality ;;. . 

The proof of the inequalit.y 

k 
1 -{1_ 2 

d i am ( S 0 (r~1) /I n t ( N ) ) ?< 2 ------,:;-
1 +i\ 2 

k 
l -A. 2 

2 --1, 
l +A. "2 

for a factor of ·type -lii 
~~~. 

is based on the following theorem, 

Theorem 3.1. Let M be a von Neumann algebra, let ¢,c)! be two 

faithful normal posit:.ive functionals on H, and let O<a<b l:;e 

real numbers. Suppose 

( i) ¢ and l[! corrrr'1u-te and a¢.;; c!Y.;; b¢ , 

( ii) 

where is the modular operator of ¢. 

* Then llu¢u ~cjJII)II<j>-cjJII for all unitary operators u in M. 

The proof of t:he above th2orem 1,vill be divided into three 

steps: 
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stev 1 : M is finite, 

stee 2: T(H) = {t:atEint(H)} is dense in R, 

stee 3 : The gener~l case. 

In O!'der to prove Step l we assume H is finite and that 

~~~.a,b satisfy the above conditions (i) and (ii). Since M has 

a faithfui normal state it also has a faithful normal tracial 

state "· Th~re exist two positive operators h and k affilia~ 

ted with M such that 

4> = 1: ( h • ) q.nd 41 • 1: ( k • ) . 

By the usual identification of the inequality 

stated in TI1eorem 3.1 is equivalent to 

* II uhu -kll 1 ~llh-kll 1 

for all unitary operators uEM. To prove this we shall need 

Lemma 3.2. Let M be a finite von Neumann algebra with a faith-

ful normal tracial state ,; and let h,kEM be two positive ope-

rators with bounded inverses such that 

( i) h apd k commute and ah.,; k.,; bh, 

( i i ) w i th ~ = ,: ( h • ) , s p ( t> ~ ) n ( ~, ~) = { 1 } • 

Then * lluhu ...,'k11 1 )11h-kll 1 for all unitary operators uE M. 

Proof. The modular automorphism group asociated with ~ is, see 

[ 10], 

Moreover t"l acts standardly on L2 (M,'t). Io~et Sp(a4>) denote the 

Arveson spectrnm of the one parameter group a<P • He shall con

sid.er $p(a4>) as a subset of the multiplicative group R+. Since 
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h is Qounded ~nd has bounded inverse, OfSp(~~} and therefore 

l3y [10] if J is the conjugation on L2(r-t,'t') defined by 

Sl)Ch that. JHJ ..., HI' we have t,¢> = hJh ... , J. We first assume 

a faqtGr: t;.hen 

By condition (ii) we therefore get that if ~, ,~ 2~Sp(h) and 

IJ.l >~-t 2 t})en 

il 2 a 
- ~ b' 
lJ.l 

Since Sp(h) is a compact subset of (O,~) it follows that 

Sp(h) is finite . 

0'<1> 

M 

.1:3y (i) we have k .,. rnh, where m(2M commutes with h, an<J, 

al.;;; m,.; bl • 

is 

By continuity it. is enough to prove the inequa].ity 

* IIIJhU -KII 1 >11h"'l"k11 1 in t;,he case when the speqtrum of m is a finite 

subset of the interval [a,b). In this case k also has finite 

spectrum, and 1~ and k have a "joint. diaC!JOn&l,.izqt:.ion'' 

where P1 , • • • d'n 

n 
h = L A .p., 

' 1 ~ ~ ;t= 

n 
k= L!J..p., 

i:;:l J., l. 

are nonzero orthogonal projections with s1,1m 

.ay perlt\ut,ing the indices { 1 , ... , n} we may assume that 

"A1;1;"A2> • '.~"An. 

1 • 

Let i 1<i 2< ••• <iq be the values of i for which ~i>"Ai+l. By 

permutin~ the indices inside each of the q+l sets on which the 
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~ 's ar~ constant we may also obtain that K. 

However, since 

and since 'by (i) 

we alao have 

Bence by tJ,e ex:tenaion of Powers' result ment:l.oned in, the intro ... 

duc:tic:m. we get 

for all unitary operators uEM. This completes the proof in the 

case when t<t is a factor. 

Let now M be general, and let T:M + Z be the ~enter 

valued tr~ce on M, where z denotes ~he qenter of M. ~~r eve:r:y 

pure state w on z 

't = wo'r w 

is a (possibly nonnorma1) tracial state on M. Put 

Then I i~ a maximal ideal in M, and 
(J.l 

M = M/I w w 

is a finite factor, see [9, Ch. II]. 

will a1so be denoted by 't • 
w 

Let 1t 
w 

be the quotient map 
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h ::::; 'Jt (h) 1 k :;::;: 'Jt (k) t w w w w 

and put ~w = •w(hw~). By Arveson's definition of Sp(~~), see 

[ 1 ] , we have 
00 • • 

/f(t)h 1 txh- 1 tdt = 0 for every xEM -
if fELl(R) and supp(l)nsp(cr~) ::::; ¢, wher~ th~ Fouri~r tran~fqrm 

~ of f ip considered as a function on (~+'" ), Since t ~ h~t 

is norm continuous ,it follo\tls that under the same condi~ion on f, 

Hence 
~w ~ 

Sp ( ~ ) c;: Sp ( ~ ) • 

for every Y.Er-1 • w 

Therefore hw and k 
w 

satisfy the 

conditions of Lemma 3,2, so by the first part of the proof 

for every unitary 

* II vh v - k II l > II h - k II l w w w w 

vE H • w By the spectral theorem ThU~ 

if v is the probability measurE;! on 
A z \'lhich corresponds to the 

restricti9n of • to z, we have for xEM: 

= •oT(x) = f• oT(x)qv{w) = 
'Z w 

Hence for any unitary operator uEM, 

llul1.u" ... k.n 1 c::;: fun (u)h 1t (u)*-k 11 1dv(w) 'Z w w w w . 

= II h-kll l . 

This completes the proof of Lemma 3~2. 
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Completion of Step .1. To complete the proof of Theorem 3.1 in the 

case when M is finite v1e need to extend Lemma 3. 2 to the c&se 

when h and k are (possibly unbounded) positive operators in 

L 1 (M,~) with trivial nullspaces. 

Let Pn be the spectral projection of h corresponding to 
1 the interval [;,nJ, nEN. Then h = pnh and k = Pnk satisfy n n 

the conditions of Lemma 3.2 with respect to the von Neumann alge .... 

bra PnHPn• For every unitary uE M we can find a sequence of 

p~rtial isometries u Et-'1 with support and range p:rroject.l,.ons equa;l.. n 

to SLH,:h that u -+ u 
n 

in the strong-* topology (for instance 

write u in the form u = exp(ia) and put u = p exp(ip &p )). n n n n 
Then 

* II uhu -k11 1 = limll u h u"' -k II 1 n n n n 
n-+<~> 

> limllh -k 11 1 = llh-kll 1 • 
n-+c;o n n 

This completes the proof of Step 1 • 

Ste~ 2. For any faithful normal positive functional 

Neumann algebra M we let II • II: be the norm 

11 xll: * * k = ¢ ( ~ (X x+ X ,X ) ) 2 , 

Note that if 4> is a state and u is 1,mitary then 

<P on a von 

11 ull: = 1 • 

Lernma 3.3. Let M be a von Neumann algebra for whic::h T(M) is 

dense in ~~ Let ¢ be a faithful normal state on H, a,nd let u 

be a unitary operator in M. For every t:>O there exist a faith-

ful normal state w on I-1 and a 1.,mi tary operator vE M such that 

(a) 

(b) 

(c) 

4> and w 

M¢ c t1 WI 

vEH and 
w 

commute, 

II u-vll: <t:. 
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Since the function t + 0"4> ( u) 
t 

continuous there is t 1>o such that 

Since T(H) i~ dense in R we can therefore choose t 0 >;0, 

t 0ET(M) such that 

llo-<P(u)-ull#<e, for ltl~t0 . 
t <P 

Let wEM ~e a unitary operator such that 

-A wxw , xE t1. 

By [4, 1 ~3·2J w belongs to the center of M<P. Hence 

II U\'1-WUII: = II u-wuw" II~ <o. 

Let Arg be the branch of the argument function on c~{o} that 

takes v~lues in thE;; half-open interval [ 0, 2rt). Then for 9ER 

-ie Arg9 (z) = Arg(e z)~e 

~s the ~rancn of the argument function that takes values in 

~>le shall show that e can be chosen such that 

norm 

Let H!/l 

# 
II~ .• 

ctenote the completion of M with respect to th~ 

Let 

* * ~<P(y x:+xy) 
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be the porresponding inner product on M. Def~ne a ~nitary repre~ 

sentat~on 1t of z2 on by 

(the representation is unitary since wE HIP). By Bochner's theorem 

there e~ists a probability measure ~ on 

n m # n m 
< w U\'1 , u > ~ = ~J ex ~ d~ ( ex , ~ ) ~ 

Hence for aPY pair o! bounded Borel functions f qnq 9 On f 

<f(w)ug(w) ,u>: = 

From this equality we obtain that 

( 1 ) 

for every bo~nded Borel function f on T (compare with the 

proof of ?reposition 1.1 in [s] ). In particular 

Moreover, 

( 2) (II a u-ua II# ) 2 e · e ~ 

where 

For o: .:;;;: and icr 
~ = e 0<cr<2n, we have 
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-ie Arg(e a) ~ 2n-e, 0<9~2n, 

Now the function 

f(q) = 4n sin~~ q(2n-cr) 

is continuous on the interval [0,2n] and f(O) = f(2n) ~ 0. 

Mor~over, its qerivative 

f'(cr) = 2n ( cos £.2· - ( 1 .,.. 2.) ) n . 

is positive for O<cr<n and negative for n<cr<2n, Qeoause 

is concave on [o,n] and conve~ on [n,~n]. Hence 

Thus 

4n sin~ - cr(2n-a)>O for O<cr<2n. 
2 

cr 2n 
= 21t U (2n-cr) 2 de+f cr 2 de) 

0 0' 

= cr(2n-cr) 

4 . cr 
..; n s~n 2 

it it h(e a,e ~) = h(a,~), tE R. 

Using th~t;. ~(1) = we therefore get 

cr 
cos 2 
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~ 
< 21tU£1a:-~l 2 dj.1(a:,~ )> ~ 

T 

= 21tll wu-uwii#<P 

< 21t 0 • 

Hence we oan choose 9E[0,21t) such that with a= a e 

(II au-uall:) 2 <21to, 

For a 1 ,a2 ER, jeicrl-eicrzl;;; Ja 1-o2 1. Using for:mul,as (1 ), {2) 

and the fact that a = Arg8 (w) "vve therefore have 

Put 

Since w 

llexp(isa)u-uexp(isa)u: = 

k 
= <~£I exp( isArg8 (a:) )..,exp( isArg9 (~)) J2 ~(a:,~)) 2 

~ ' I s I ( ~J I Arg 9 (a: ) - Arg 9 ( ~ ) I 2 d1-1 (a , ~ ) ) 2 

:;: Is In au,.,.uall ~, 

and 

w(x) = xE M. 

belongs to the center of H<P so does h. 

is .a :f:cti thfu~ no:r~al state on M, w commutes with 4>, and 

M c M • 
<P w 

Moreover, we have 



- 20 -

Since we get in particular 

w 
0' t (X) = X, xE M. 

0 

Therefore we can define a conditional expectation 

E (x) = 
w 

xE M. 

w ~ -it it ~ 
Since ot(u)-u = ot(h uh ~u)+ot(u)-u, and since 

t 
exp(-i~0 a), we get for O<t(t0 , 

Therefore we also have 

# k 
II Ew ( u)-ull ¢ < (2no) 2+o. 

E 
w 

of 

-it 
h 

M onto 

k 
and o ' = ( 2n o ) 2+0 . Since t1 

w is a finite von 

Neumann algebra the partial isometry in the polar decomposition of 

y can be extended to a unitary operator vEM • 
w 

Clearly 

y:::; vjyj = 1/ jv. U::;;ing the inequality (1-t) 2 ~1-t2 for tE[O,l] 

we get 

<P ( ( v- y)"" ( v-y) ) = ¢ ( ( 1 -I y I ) 2 ) < <P ( 1 -I y I 2 ) , 

and 

Hence 
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On the other hand 

Thus 

( II v-y II : ) 2 < 1 ~ ( 1 - o ' ) 2 .;; 2 o ' • 

Therefore 

11 u-vll:,;; II u-yll: +II y-vll: < o '+ ( 2o ' ) ~. 

Since o was arbitrary i.ve have proved Lemma 3. 3. 

Completion of step 2. Assume that T(M) is dense in ~. Let ~ 

and 4> be commuting faithful normal positive functionals on H 

such that there are positive real numbers a and b with 

and such that 

1ive shall prove that 

for every unitary operator uEM. Clearly it is enough to prove 

the inequality for a strongly dense set of unitaries. Henee by 

Lemma 3.3 we may assume that there exists a faithful no:rmal state 

w on H, ~ and w commute, M<l> c M , and such that uE M . Let 
w w 

~, and q;l be the restrictions of <P and q; to M . Since 
w 

wo ()'¢ = w, M is a cr~-invariant subalgebra of M, and therefore t w 

cr<Pl is simply the restriction of ()'~ to M . In particular t t w 

Sp(L'I ) c Sp(6 ), 
<P l <P 

hence 



We have ¢ = ¢(m•) for some positive operator mEM¢. Since 

M <I> c Hw , ¢ 1 = ¢ i ( m • ) , so ¢ 1 

a¢ 1 (~ 1 (b¢ 1 , so by step 

and ¢ 1 also commute. Clearly 

Let E : M + H be the conditional expecta-tion for which w w 

woE = w. Since <P and (J_i can be written in the form w 

~) = w(k•), 

where h and k are positive operators affiliated with 

have 

ql -- <P oE 
1 w ' 

Therefore 

= II ( ¢ , -¢ 1 ) o E II = II c)> l -¢ 1 11 , 
I ' (•J 

v,rhich implies that 

* II u¢ u -¢II> II ¢-¢II • 

This completes the proof of s·tep 2. 

M , we 
w 

Step 3. Let nov; H be an arbitrary von Neumann algebra and let 

¢ and ¢ be normal positive functionals on M which satisfy the 

condition of 'I'heorem 3. l • We can assume that M acts on a 

Hilbert space H with a separating and cyclic vector Eo such 

that ¢(x) = (x~ 0 .~ 0 ), xEM. Let G be a countable dense subgroup 

of R and let 

be the crossed produc-t of ~1 with the discrete group {a~: tE G} 

of automorphisms. N is the von Neumann algebra on i 2 (G,H) 

generated by n(H) and /\(G), where 



{n (x)l; ) ( t) = ¢ ( "' ;; ( t) xEH, I;E.,\1,2 (G, H) a ' \cl:,_ ' ' ~' t:, 

f "A ( ) , )(·t) ""' 
,. t.-s), sE G, E;EY2 ( G, H) \ s <; ';::;· . 

For t.his and the fol the reader may consult [7] and [3], see 

also [ ll] • Since G ts d:Ls r:et:.e U1.ere is a faithful normal con-

ditional expectation E of N onto n(M) such that 

'1 (X 
0 

if s "" 0 
i.f s :f 0 $ 

T'hen ~) is the-:· dual weight" of ¢, so we have 

dJ 
'it (J' t, )( ) ,¢ xE M, 

Horeover, G,H 

~-

I c, 
I 0 ,. t. ::::0 

"' 

is cyclic and separa lng ~ N, 

and 

where t:, it is 
cp 

sE G. 

g "fen by 

if i::. = 0 

i .. t * 0 ' 

yEN, 

E;E1 2 (G,H), 

From the above forrn,.:,l a.s it. f,ollows tha.t 

,.,.Q> y , ·c· 
<J ~ (I ' 

c 
0* t \ 

·- J tEG, yEN. 

Hence G c T(N), whence TN j_ dense in and step 2 is 

applicable" Since /j, lS 1__1 ~_:; t_ an ifica'cion of it is 
rjJ 

clear that sp(L'I ) ·- sp /\ SCJ c?.ls.~·· 

¢ 
-<b 
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Put 
"' _, 
<V=l/Jo'Jll oc:. Then clearly Horeover one v~rifies 

easily that 

Indeed, it is easily checked that the formula holds on elem~nts in 

N of th~ form A.(s)n(x), sEG, xEH. Since it follows 

that 
~ 

and q; commute. Therefore ~ 

also satisfy the conditions of the theorem, \vhence 'by step 2 we 

have 

""*"" '"'-'""' II Vljl v -q; II) II ljl-<J; II 

for all unitaries vEN. 

Let uEM be a unitary operator. Then 

~ * ~ * -1 n ( u) 4> n ( u) -q; = ( u(j> u -q; ) on o c: • 

Thus 

j:., ""' * ....., rv .....__ 

II u!jl u -{j! II > lin ( u) 4> n ( u) -<~;!I ~ II ljl-t!; II = II <!> -<~;II • 

This completes the proof of Theorem 3.i. 

The proof of the main theorem follows from section 2 and the 

following result. 

Corolla~ 3.4. Let M be a cr-finite factor of type IIIA, O~A.'l. 

Then 

Proof. For A. = 1 

k 
1 -A. 2 

diam(s0 (H) /Int(M) )~ 2 --1-. 

1 +A. "2 

there is nothing to prove. 

Suppose O<A.<l. Then we can choose a faithful normal state 
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if> on H ~uch that 

S p ( t. <P ) = { A. n: nE Z} U { 0} • 

ThU$ 
-1 

sp(~q,>n<x.,;.. ) = 1. Horeover, the centralizer Mtl> of 4> 

is a type rr 1 factor [4, 4.2.6]. Hence we can choose a projec~ 

tion pEf14> such that 

4l ( p) 
1 

=~, 

1 +A. "2 

Put Then <P(m) ~ 1, 

<jJ ( x ) = ¢ ( mx ) , xE H 

defines a normal st.ate on H such that ¢ and <jJ commute~ and 

By Theorem 3.1 it follows that 

for every unitary 

restrictions of 

we can identify 

* II u¢ u -<jJ II ;;. II if> -<jJ II 

operator 

4> and <jJ 

( M¢ ) * with 

u in H. Let if> 1 and 

to t14> ' Since 4> is a 

Ll ( H¢ 'if> 1 ) • Therefore 

k 

= <P l ( jl -m I ) 1 -A. 2 
:::;: 2 ~' 

1 +A. "2 

proving the corollary when O<A.<l. 

<jJ 1 be the 

trace on M<P 

Finally if A.= 0 we can for every ~E (0,1) choose a faith

ful normal state <P such that 

-1 
sp < t. <P ) n ( ~ , ~ ) = { 1 } . 

As in [ 4, ,;3, 2. 7 J one gets that the centralizer of 4> is a type 

:u 1 von Neumann algebra vJi th diffuse center. Hence we can choose 

a projection pEM<P such that 

¢ ( p) 
1 

=~· 
1 +A. '2 
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Arg~ing as above we get that 

so in the limit as ~ ~ 0 we find that the diameter is (at least) 

2. 1~e proof is complete. 
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