DIRMETERS DE GTATE GRACRS OR TYEE III FACTORS

by
Ajain Connes
dere Fagemp
Euthat Gomex

1. Introduction. Let m an and $S_{0}(M)$ the nom ciossa act of lts aomat states. For sach $\omega \in S_{0}(M)$ let [ω] be the nom dosure ats artas uncer the action of the inner $*$-automorphisus ratm, $=$ wodu. The orbit

$$
d\left[[\omega] \cdot[\psi]=\operatorname{sn} E \| \omega^{*} \omega \psi \theta \omega^{\prime} \in[\omega], \psi \psi^{\prime} \in[\psi]\right\} .
$$

If M is not a mator the dimater of e_{0} (M)/tre(m) is clearly equal to 2. However if in a tactor it may be different.

Powers proved in [e] that is is a factor of type I_{n}, $n<\infty$, and $\phi=T(h)$, $\phi=T$ the are states then

$$
d([\varphi],[\psi])=\sum_{2=1}^{\sum_{2}}\left|\lambda_{2}-\mu_{i}\right|
$$

where $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ are the eiparmanes of h_{0} and $\mu_{1} \geqslant \mu_{2} \geqslant \ldots \geqslant \mu_{n}$ are the eigenvalues of $\%$. Fom erits ane easily gets that

$$
\operatorname{diam}_{0}\left(m \operatorname{lnc}(m)=2\left(1-\frac{1}{n}\right) .\right.
$$

The value $2\left(1-\frac{1}{n}\right)$ is actanad when is the tracial state and ϕ is a pure state.

The arguments of Powers can be extended to the case when M is a semifinite factor with faithful normal semifinite trace τ. If $\phi=\pi\left(h^{*}\right), \psi=\tau\left(k^{*}\right)$ are two positive normal functionals given by two positive operators h and k in M, which have "joint diagonalization"

$$
h=\sum_{i=1}^{n} \lambda_{i} p_{i}, \quad k=\sum_{i=1}^{n} \mu_{i} p_{i}
$$

Where $p_{1} \ldots, p_{n}$ are orthogonal projections with sum 1 and $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n^{\prime}} \cdot \mu_{1} \geqslant \mu_{2} \geqslant \ldots \mu_{n^{\prime}}$ then

$$
d([\phi],[\phi])=\sum_{i=1}^{n}\left|\lambda_{i}-\mu_{i}\right| \tau\left(p_{i}\right)=\|\phi-\psi\|
$$

From this one derives easily that if ϕ, ψ are two states of the form

$$
\phi(x)=\frac{1}{\tau(p)} \tau(p x), \quad \psi(x)=\frac{1}{\tau(q)} \tau(q x) .
$$

where p and q are two nonzero finite projections in M, and $p<q$, then

$$
d([\phi],[\psi])=2\left(1-\frac{\tau(p)}{\tau(q)}\right)
$$

Hence for a fiactor of types I_{∞} or II we have

$$
\operatorname{diam}\left(S_{0}(M) / \operatorname{Int}(M)\right)=2
$$

The main result of the present paper is a formula for the diameter when M is of type III. The result will be a charact terization of factors of type $I I I_{\lambda}$. $\lambda \in[0,1]$, purely in terms of the geometry of the state space and independent of Tomita-Takesaki theory.

Theorem. Let M be a σ-finite factor of type $\operatorname{III}_{\lambda}, \lambda \in[0,1]$.

Then

$$
\operatorname{diam}\left(S_{0}(M) / \operatorname{Int}(M)\right)=2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}} .
$$

In particular for a factor of type III $_{0}$ the diameter is 2 and for a factor of type III_{1} it is 0 . The last statement was previously proved by two of us in [6]. In the case when $0<\lambda<1$ it was shown by Bion-Nadal [2] that $2\left(1-\lambda^{\frac{1}{2}}\right)$ is an upper bound for the diameter, a result which inspired the present work. Our proof will be divided into two parts, namely to show the inequalities $\operatorname{diam}\left(S_{0}(M) / \operatorname{Int}(M)\right) \leqslant 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$ for $\lambda \in[0,1)$.

2. Proof of the inequality \leqslant.

The number $2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$ that gives the diameter appears as a consequence of the following function theoretic lemma.

Lemma 2.1. Let $0<a<b$ be real numbers, and let $k a, b$ denote the convex set of nonnegative decreasing functions f on $[a, b]$ such that $\int_{a}^{b} f d t=1$ and $a f(a)=b f(b)$. Then we have

$$
\sup _{f, g \in K} \int_{a, b} f v g d t=2 \frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}+b^{\frac{1}{2}}}
$$

Proof. In order to show the lemma it suffices to consider step functions in $K_{a, b}$. If $\alpha \in[0,1]$ and $f_{1}, f_{2}, \in K_{a, b}$ then we have

$$
\left(\alpha f_{1}+(1-\alpha) f_{2}\right) \vee f_{\leqslant \alpha}\left(f_{1} \vee f\right)+(1-\alpha)\left(f_{2} \vee f\right) .
$$

Hence it suffices to prove the lemma for extremal step functions in $K a, b$ Let

$$
f=\sum_{i=1}^{n-1} c_{i} \chi\left[a_{i}, a_{i+1}\right)+c_{n} \chi\left[a_{n}, a_{n+1}\right] \in K_{a, b}
$$

where $a=a_{1}<a_{2}<\ldots<a_{n+1}=b, \quad c_{1}>c_{2}>\ldots>c_{n}=\frac{a}{b} c_{1}$. If $n>3$ we can find $\varepsilon>0$ and $\eta>0$ such that $(1-\varepsilon) c_{1}>(1+\eta) c_{2},(1-\eta) c_{2}>c_{3}$, $c_{n-1}>(1+\varepsilon) c_{n}$ and such that the two functions $f_{ \pm}=(1 \pm \varepsilon) c_{1} \chi\left[a_{1}, a_{2}\right)+\left(1 \bar{F}_{n}\right) c_{2} \chi\left[a_{2}, a_{3}\right)+\sum_{i=3}^{n-1} c_{i} \chi\left[a_{i}, a_{i+1}\right)+(1 \pm \varepsilon) c_{n} \chi\left[a_{n}, a_{n+1}\right]$ belong to $K_{a, b}$. Since $f=\frac{1}{2}\left(f_{+}+f_{-}\right), f$ is not extremal in $K_{a, b}$. Therefore it suffices to show the lemma for step functions of the form

$$
f_{s}=\frac{b}{s(b-a)} \chi_{[a, s)}+\frac{a}{s(b-a)} \chi_{[s, b]},
$$

where $s \in(a, b]$. If $a<r<s \leqslant b$ we find

$$
\int_{a}^{b} f_{r} v f_{s} d t=\frac{1}{b-a}\left(2 b-b \frac{r}{s}-a \frac{s}{r}\right)
$$

Since the maximum of this function of $\frac{S}{r}$ is obtained for $\frac{s}{\mathrm{r}}=\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{1}{2}}$ the proof is complete.

Since for two functions f and $g,|f-g|=2 f v g-f-g$, we have:

Corollary 2.2. In the above notation, if $0<\lambda<1$ we have

$$
\sup _{f, g \in K_{\lambda, 1}} \int_{\lambda}^{1}|f-g| d t=2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}
$$

Lemma 2.3. Let M be a σ-finite factor of type III $_{\lambda}, 0<\lambda<1$, and let $T=-\frac{2 \pi}{\log \lambda}$. Let ϕ_{0} be a faithful normal state on M for
which $\sigma_{\mathrm{T}}^{\phi_{0}}$ is the identity. Then for any faithful normal state ϕ on M there exists a positive operator h in the centralizer M_{0} of ϕ_{0} such that
(i) $\operatorname{sph} \subset[\lambda a, a]$ for some $a>0$,
(ii) There exists a unitary $u \in M$ such that $\phi\left(u x u^{\star}\right)=\phi_{0}(h x)$, $x \in M$.

Proof: Put $v=\left(D \phi: D \phi_{0}\right)_{T}$, see [4]. Then for $x \in M$

$$
\sigma_{\mathrm{T}}^{\phi}(\mathrm{x})=\mathrm{v} \sigma_{\mathrm{T}}^{\phi_{0}}(\mathrm{x}) \mathrm{v}^{\star}=\mathrm{vxv}^{\star}
$$

so in particular $\phi\left(v x v^{\star}\right)=\phi\left(\sigma_{T}^{\phi}(x)\right)=\phi(x)$. Thus $v \in M_{\phi}$. By spectral theory and the Riesz representation theorem there is a unique probability measure μ on $T=\{z \in \mathbb{C}:|z|=1\}$ for which

$$
\int_{T} f(z) d \mu(z)=\phi(f(v))
$$

for any Borel function f on T. Let v be the positive Borel measure on R obtained by "rewinding" μ, i.e. v is determined by

$$
v(B)=\mu(\exp (i B)), \quad B \subset[0,2 \pi), B \text { Borel, }
$$

and

$$
\nu(B+2 \pi)=v(B), \quad B \subset \mathbb{R}, \quad B \text { Borel. }
$$

Note that $v([s, s+2 \pi))=1$ for all $s \in \mathbb{R}$. Put

$$
g(s)=\int_{[s, s+2 \pi)} \exp \left(-\frac{t}{T}\right) d v(t), \quad s \in \mathbb{R} .
$$

Since $\exp \left(-\frac{2 \pi}{T}\right)=\lambda$ we have

$$
\begin{aligned}
{\left[\int_{s, \infty} \exp \left(-\frac{t}{T}\right) d v(t)\right.} & =\sum_{n=0}^{\infty}[s+n 2 \pi, s+(n+1) 2 \pi) \\
& =\left(\sum_{n=0}^{\infty} \lambda^{n}\right) g(s)=\frac{1}{1-\lambda} g(s)
\end{aligned}
$$

Hence we also have

$$
\begin{equation*}
g(s)=(1-\lambda) \int_{[s, \infty)} \exp \left(-\frac{t}{T}\right) d v(t) . \tag{1}
\end{equation*}
$$

This shows that g is a decreasing function on \mathbf{R}, continuous from left. Let $g\left(s^{+}\right)(r e s p . g(s-))$ denote the limits of $g\left(s^{\prime}\right)$ for $s^{\prime} \rightarrow s$ from right (resp. left). Then

$$
g(0+)=\int_{(0,2 \pi]} \exp \left(-\frac{t}{T}\right) d v(t)<1,
$$

and

$$
g((-2 \pi)-)=\int_{[-2 \pi, 0)} \exp \left(-\frac{t}{T}\right) d \nu(t)>1 .
$$

Hence we can choose $r \in[-2 \pi, 0]$ such that

$$
g(r+) \leqslant 1 \leqslant g(r-) .
$$

By (1) we have

$$
\begin{aligned}
g(r-)-g(r+) & =(1-\lambda) \exp \left(-\frac{r}{T}\right) \nu(\{r\}) \\
& =(1-\lambda) \exp \left(-\frac{r}{T}\right) \mu\left(\left\{e^{i r}\right\}\right)
\end{aligned}
$$

This shows that r is a point of continuity for g if and only if $e^{i r}$ is not an eigenvalue for V.

Moreover

$$
g(r-)-g(r+)=(1-\lambda) \exp \left(-\frac{r}{T}\right) \phi(p),
$$

where p is the projection on the eigenspace of the vectors ξ such that $v \xi=e^{i r} \xi$. There are two cases to be considered.

Case 1. Assume first that $e^{i r}$ is not an eigenvalue for v. Let

$$
\operatorname{Arg}_{r}: T \vee\left\{e^{i r}\right\} \rightarrow(r, r+2 \pi)
$$

be the branch of the argument functions that takes values in ($r, r+2 \pi$), and put

$$
\begin{aligned}
& a=\operatorname{Arg}_{r}(v) \\
& k=\exp \left(\frac{1}{T} a\right)
\end{aligned}
$$

Since $v \in M_{\phi}$ so are a and k. Moreover, a and k are selfadjoint, and their spectra satisfy

$$
\begin{aligned}
& \operatorname{Spa} \subset[r, r+2 \pi] \\
& \operatorname{Spk} \subset\left[\exp \left(\frac{r}{T}\right), \lambda^{-1} \exp \left(\frac{r}{T}\right)\right]
\end{aligned}
$$

Furthermore, since r is a continuity point for g,

$$
\begin{aligned}
\phi\left(k^{-1}\right) & =\int_{\mathbf{T}} \exp \left(-\frac{1}{T} \operatorname{Arg}_{r}(z)\right) d \mu(z) \\
& =\int_{r}^{r+2 \pi} \exp \left(-\frac{t}{T}\right) d v(t) \\
& =1
\end{aligned}
$$

Put $\psi(x)=\phi\left(k^{-1} x\right), x \in M$. Then ψ is a faithful normal state on M. Since $k^{i T}=\exp (i a)=v$, we get, see $[4]$,

$$
\sigma_{T}^{\phi}(x)=k^{-i T} \sigma_{T}^{\phi}(x) k^{i T}=v^{\star}\left(v x v^{\star}\right) v=x, \quad x \in M
$$

and

$$
\left(D \phi: D \phi_{0}\right)_{T}=(D \psi: D \phi)_{T}\left(D \phi: D \phi_{0}\right)_{T}=k^{-i T} v=1
$$

Since σ^{ϕ} and $\sigma^{\phi} 0$ both have period T we can conclude as in the proof of $[4,4.3 .2]$ that there exists a unitary $u \in M$ such that $\psi\left(u x u^{\star}\right)=\phi_{0}(x)$ for $x \in M$. Hence, if $h=u^{\star} k u$ we have

$$
\phi\left(u x u^{\star}\right)=\psi\left(k u x u^{\star}\right)=\psi\left(u h x u^{\star}\right)=\phi_{0}(h x)
$$

Since $\operatorname{Sph}=\operatorname{Spk} \subset\left[\exp \left(\frac{r}{T}\right), \lambda^{-1} \exp \left(\frac{r}{T}\right)\right], h$ and u satisfy the conditions in the lemma.

Case 2. Assume next that $e^{i r}$ is an eigenvalue for v, and let
p be the projection on the corresponding eigenspace. Clearly $p \in M_{\phi}$. Since

$$
g(r+) \leqslant 1 \leqslant g(r-)
$$

we can choose $\alpha \in[0,1]$ such that

$$
1=(1-\alpha) g(r+)+\alpha g(r-)
$$

Now $\sigma_{T}^{\phi}(x)=v x v^{\star}$ for $x \in M$ and $p v=e^{i r} p$. Thus the restriction of σ_{T}^{ϕ} to the reduced algebra pMp is trivial. Since M is σ finite of type III, $\mathrm{pMp} \cong \mathrm{M}$, so is also a factor of type III $_{\lambda}$. Thus, as in the proof of $[4,4.2 .6]$ the centralizer of the restriction $\phi \mid p M p$ is a factor of type $I I_{1}$. Therefore we can choose a projection $p^{\prime} \leqslant p, p^{\prime} \in M_{\phi^{\prime}}$ such that $\phi\left(p^{\prime}\right)=\alpha \phi(p)$. Define now self-adjoint operators a and k in M_{ϕ} by

$$
\begin{aligned}
& a=\operatorname{Arg}_{r}(v(1-p))+r p^{\prime}+(r+2 \pi)\left(p-p^{\prime}\right) \\
& k=\exp \left(\frac{1}{T} a\right) .
\end{aligned}
$$

The operators are well defined since $e^{i r}$ is not in the point spectrum of $v(1-p)$. Clearly $S p(a) \subset[r, r+2 \pi]$; hence

$$
\operatorname{Sp}(k)=\left[\exp \left(\frac{r}{T}\right), \lambda^{-1} \exp \left(\frac{r}{T}\right)\right]
$$

Moreover, $k^{i T}=e^{i a}=v(1-p)+e^{i r} p=v$. Computing we find the following formulas:
$\phi\left(k^{-1}\right)=\underset{(r, r+2 \pi)}{ } \exp \left(-\frac{t}{T}\right) d v(t)+\alpha \phi(p) \exp \left(-\frac{r}{T}\right)+(1-\alpha) \phi(p) \exp \left(-\frac{r+2 \pi}{T}\right)$,
$g(r+)=\int_{(r, r+2 \pi]} \exp \left(-\frac{t}{T}\right) d v(t)=\int_{(r, r+2 \pi)} \exp \left(-\frac{t}{T}\right) d v(t)+\phi(p) \exp \left(-\frac{r+2 \pi}{T}\right)$,
$g(r-)=\int_{[r, r+2 \pi)} \exp \left(-\frac{t}{T}\right) d \nu(t)=\int_{(r, r+2 \pi)} \exp \left(-\frac{t}{T}\right) d \nu(t)+\phi(p) \exp \left(-\frac{r}{T}\right)$.

Adding we obtain $\phi\left(k^{-1}\right)=(1-\alpha) g(r+)+\alpha g(r-)=1$. The proof can now be completed as in case 1.

Proof of the inequality diam $\left(S_{0}(M) / \operatorname{Int}(M)\right) \leqslant 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$.
It suffices to show the inequality for faithful states. Let ϕ and ψ be faithful normal states on the factor M of type III λ_{λ}, $0<\lambda<1$. Let ϕ_{0} be a faithful normal state such that $\sigma_{\mathrm{T}}^{\phi_{0}}$ is the identity map. By Lemma 2.3 there are $\phi^{\prime} \in[\phi], \psi^{\prime} \in[\phi]$ such that $\phi^{\prime}(x)=\phi_{0}(h x), \psi^{\prime}(x)=\phi_{0}(k x), x \in M$, where $h, k \in M_{\phi_{0}}$ and $\lambda a \leqslant h \leqslant a$, $\lambda b \leqslant k \leqslant b$ for some $a, b>0$.

If $\delta>0$ we can by spectral theory find an integer n and orthogonal families $\left\{p_{1}, \ldots, p_{n}\right\},\left\{q_{1}, \ldots, q_{n}\right\}$ of projections in $M_{\phi_{0}}$ with $\phi_{0}\left(p_{i}\right)=\phi_{0}\left(q_{i}\right)=\frac{1}{n}, i=1, \ldots, n$, and constants $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{n}=\lambda \alpha_{1}, \quad \beta \beta_{2} \geqslant \ldots \geqslant \beta_{n}=\lambda \beta_{1} \quad$ satisfying $\quad \sum \alpha_{i}=\sum \beta_{i}=n$ such that

$$
\left\|\mathrm{h}-\int_{1}^{\mathrm{n}} \alpha_{i} \mathrm{p}_{i}\right\|{ }_{1}<\delta, \quad\left\|\mathrm{k}-\sum_{1}^{\mathrm{n}} \beta_{i} \mathrm{q}_{i}\right\|{ }_{1}<\delta,
$$

where $\|x\|_{1}=\phi_{0}(|x|)$ for $x \in M_{\phi_{0}}$. In order to show the desired estimate we may assume h and k are of this form, i.e. $h=\sum \alpha_{i} P_{i}, k=\sum \beta_{i} q_{i}$. Since $M_{\phi_{0}}$ is a factor of type $I I_{1}$ there is a unitary $u \in M_{\phi_{0}}$ such that $u q_{i} u^{\star}=p_{i}$ for all i, hence $u k u^{\star}=\sum_{1}^{n} \beta_{i} p_{i}$. Thus the state $\psi^{\prime \prime}$ defined by

$$
\psi^{\prime \prime}(x)=\phi_{0}\left(u k u^{\star} x\right)=\phi_{0}\left(k u^{\star} x u\right)
$$

belongs to $[\psi]$.
Let f and g be functions on the interval $[\lambda, 1]$ defined by $f=(1-\lambda)^{-1} \sum_{i=1}^{n} \alpha{ }_{i} \chi_{I_{i}}, \quad g=(1-\lambda)^{-1} \sum_{i=1}^{n} \beta{ }_{i} \chi_{I_{i}}$, where

$$
I_{i}= \begin{cases}{\left[\lambda+(i-1) \frac{1-\lambda}{n}, \lambda+i \frac{1-\lambda}{n}\right)} & \text { for } i=1, \ldots, n-1, \\ {\left[\lambda+(n-1) \frac{1-\lambda}{n}, 1\right]} & \text { for } i=n .\end{cases}
$$

Then f and g are decreasing step functions with integrals 1 and satifying $f(1)=\lambda f(\lambda), g(1)=\lambda g(\lambda)$, i.e. f, g belong to the set $K_{h, 1}$ of Lemna 2.1. Thus by Corollary 2.2 we have,

$$
\left\|\phi^{\prime}-\psi^{\prime \prime}\right\|=\left\|h-u k u^{*}\right\|_{i}=\sum_{i=1}^{n}\left|\alpha_{i}^{-\beta} i_{i}\right| \phi\left(p_{i}\right)=\int_{\lambda}^{1}|f-g| d t \leqslant 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}},
$$

completing the proof. The case $\lambda=0$ is trivial.

3. Proof of the ineguality \geq

The proof of the inequality

$$
\operatorname{diam}\left(S_{0}(M) / \operatorname{Int}(M)\right) \geqslant 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}
$$

for a factor of type $I I I_{\lambda}$ is based on the following theorem.

Theorem 3.1. Let M be a von Neumann algebra, let ϕ, ψ be two faithful normal positive functionals on M, and let $0<a<b$ be real numbers. Suppose
(i) ϕ and ψ commute and $a \phi \leqslant \psi \leqslant b \phi$,
(ii) $\operatorname{Sp}\left(\Delta_{\phi}\right) \cap\left(\frac{a}{b}, \frac{b}{a}\right)=\{1\}$.
where Δ_{ϕ} is the modular operator of ϕ. Then $\left\|u \phi u^{\star}-\phi\right\| \geqslant\|\phi-\psi\|$ for all unitary operators u in M.

The proof of the above theorem will be divided into three steps:

Step 1: M is finite,
Step 2: $T(M)=\left\{t: \sigma_{t}^{\phi} \in \operatorname{Int}(M)\right\}$ is dense in R,
Step 3: The general case.
In order to prove Step 1 we assume M is finite and that ϕ, ψ, a, b satisfy the above conditions (i) and (ii). since M has a faithful normal state it also has a faithful normal tracial state τ. There exist two positive operators h and k affiliated with M such that

$$
\phi=\tau(h \cdot) \quad \text { and } \quad \phi=\tau(k \cdot)
$$

By the usual identification of M_{\star} and $L^{1}(M, \tau)$ the inequality stated in Theorem 3.1 is equivalent to

$$
\left\|u h u^{\star}-k\right\|\left\|_{1} \geqslant\right\| h-k\| \|_{1}
$$

for all unitary operators $u \in M$. To prove this we shall need

Lemma 3.2. Let M be a finite von Neumann algebra with a faithful normal tracial state τ and let $h, k \in M$ be two positive operators with bounded inverses such that
(i) h and k commute and $a h \leqslant k \leqslant b h$,
(ii) with $\phi=\tau(h \cdot), \operatorname{sp}\left(\Delta_{\phi}\right) \cap\left(\frac{a}{b}, \frac{b}{a}\right)=\{1\}$.

Then $\left\|u h u^{\star}-k\right\|_{1} \geqslant\|h-k\|_{1}$ for all unitary operators $u \in M$.

Proof. The modular automorphism group asociated with ϕ is, see [10],

$$
\sigma_{t}^{\phi}(x)=h^{i t} x^{-i t}, \quad x \in M
$$

Moreover M acts standardly on $L^{2}(M, \tau)$. Let $\operatorname{Sp}\left(\sigma^{\phi}\right)$ denote the Arveson spectrum of the one parameter group σ^{ϕ}. We shall consider $\operatorname{sp}\left(\sigma^{\phi}\right)$ as a subset of the multiplicative group \mathbf{R}_{+}. Since
h is bounded and has bounded inverse, $0 \notin \operatorname{Sp}\left(\Delta_{\phi}\right)$ and therefore

$$
\operatorname{Sp}\left(\sigma^{\phi}\right)=\operatorname{Sp}\left(\Delta_{\phi}\right)
$$

By $[10]$ if J is the conjugation on $L^{2}(M, \tau)$ defined by σ^{ϕ} such that $J M J=M$, we have $\Delta_{\phi}=h J^{-1} J$. We first assume M is a factor; then

$$
\operatorname{Sp}\left(\Delta_{\phi}\right)=\operatorname{Sp}(h) \cdot \operatorname{Sp}(h)^{-1}
$$

By condition (ii) we therefore get that if $\mu_{1}, \mu_{2} \in S p(h)$ and $\mu_{1}>\mu_{2}$ then

$$
\frac{\mu_{2}}{\mu_{1}} \leqslant \frac{a}{b}
$$

Since $S p(h)$ is a compact subset of $(0, \infty)$ it follows that Sp(h) is finite.

By (i) we have $k=m h$, where $m \in M$ commutes with h, and

$$
a 1 \leqslant m \leqslant b l \text {. }
$$

By continuity it is enough to prove the inequality $\left\|u h u^{\star}-k\right\|, \geqslant\|h T k\|$, in the case when the spectrum of m is a finite subset of the interval $[a, b]$. In this case k also has finite spectrum, and h and k have a "joint diagonalization"

$$
h=\sum_{i=1}^{n} \lambda_{i} p_{i}, \quad k=\sum_{i=1}^{n} \mu_{i} p_{i}
$$

where $p_{1} \ldots \ldots p_{n}$ are nonzero orthogonal projections with sum 1. By permuting the indices $\{1, \ldots, n\}$ we may assume that

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n} .
$$

Let $i_{1}<i_{2}<\ldots<i_{q}$ be the values of i for which $\lambda_{i}>\lambda_{i+1}$. By permuting the indices inside each of the $q+1$ sets on which the
λ_{k} 's are constant we may also obtain that

$$
\mu_{1} \geqslant \ldots \geqslant \mu_{i_{1}}, \mu_{i_{1}+1} \geqslant \cdots \geqslant \mu_{i_{2}}, \ldots, \mu_{i_{q}+1} \geqslant, \cdots \mu_{n} .
$$

However, since

$$
\lambda_{i_{k}+1} \leqslant \frac{a}{b} \lambda_{i_{k}}
$$

and since by (i)

$$
a \mu_{i} \leqslant \lambda_{i} \leqslant b \mu_{i},
$$

we also have

$$
\mu_{i_{1}}{ }^{2 \mu} i_{i_{1}+1} \prime \mu_{i_{2}}{ }^{\geqslant \mu} i_{i_{2}+1}, \ldots, \mu_{i_{q}+1} \mu_{i_{q}} .
$$

Hence by the extension of Powers' result mentioned in the introduction, we get

$$
\left\|u h u^{\star}-k\right\|_{1} \sum_{i=1}^{n}\left|\lambda_{i}-\mu_{i}\right| \tau\left(p_{i}\right)=\|h-k\| 1
$$

for all unitary operators $u \in M$. This completes the proof in the case when M is a factor.

Let now M be general, and let $T: M \rightarrow Z$ be the center valued trace on M, where Z denotes the center of M. For every pure state ω on z

$$
\tau_{\omega}=\omega 0 T
$$

is a (possibly nonnormal) tracial state on M. Put

$$
I_{\omega}=\left\{x \in M: \tau_{\omega}\left(x^{\star} x\right)=0\right\} .
$$

Then I_{ω} is a maximal ideal in M, and

$$
M_{\omega}=M / I_{\omega}
$$

is a finite factor, see [9, Ch. II]. The tracial state on M_{ω} will also be denoted by τ_{ω}. Let π_{ω} be the quotient map
$\pi_{\omega}: M \rightarrow M_{\omega}$, put

$$
h_{\omega}=\pi_{\omega}(h), \quad k_{\omega}=\pi_{\omega}(k),
$$

and put $\phi_{\omega}=\tau_{\omega}\left(h_{\omega} \cdot\right)$. By Arveson's definition of $\operatorname{Sp}\left(\sigma^{\phi}\right)$, see [1], we have

$$
\int_{-\infty}^{\infty} f(t) h^{i t} x h^{-i t} d t=0 \quad \text { for every } \quad x \in M
$$

if $f \in L^{+}(R)$ and $\operatorname{supp}(\hat{f}) \cap \operatorname{Sp}\left(\sigma^{\phi}\right)=\emptyset$, where the Fourier transform $\hat{\mathbf{f}}$ of f is considered as a function on $\left(\mathbf{R}_{+}, \cdot\right)$. since $t \rightarrow h^{i t}$ is norm continuous it follows that under the same condition on f,

$$
\int_{-\infty}^{\infty} f(t) h_{\omega}^{i t} y h_{\omega}^{-i t} d t=0 \quad \text { for every } y \in M_{\omega} .
$$

Hence $\operatorname{Sp}\left(\sigma^{\phi_{\omega}}\right)=\operatorname{Sp}\left(\sigma^{\phi}\right)$. Therefore h_{ω} and k_{ω} satisfy the conditions of Lemma 3.2, so by the first part of the proof

$$
\left\|v h_{\omega} v^{\star}-k_{\omega}\right\|_{1} \geqslant\left\|h_{\omega}-k_{\omega}\right\|_{1}
$$

for every unitary $v \in M_{\omega}$. By the spectral theorem $z \cong C(\hat{z})$. Thus if v is the probability measure on \hat{Z} which corresponds to the restriction of τ to Z, we have for $x \in M$:

$$
\tau(x)=\tau \circ T(x)=\int_{\hat{Z}}^{\tau} \omega \circ T(x) d v(\omega)=\int_{\hat{Z}} \tau \omega(x) d v(\omega) .
$$

Hence for any unitary operator $u \in M$,

$$
\begin{aligned}
\left\|u h u^{*}-k\right\|_{1} & =\int_{\hat{z}}\left\|\pi_{\omega}(u) h_{\omega} \pi_{\omega}(u)^{*}-k_{\omega}\right\|_{1} d v(\omega) \\
& \geqslant \int_{\hat{z}}^{\left\|h_{\omega}-k_{\omega}\right\| 1} d v(\omega) \\
& =\|h-k\|_{1} .
\end{aligned}
$$

This completes the proof of Lemma 3.2.

Completion of step 1. To complete the proof of Theorem 3.1 in the case when M is finite we need to extend Lemma 3.2 to the case when h and k are (possibly unbounded) positive operators in $L^{1}(M, \tau)$ with trivial nullspaces.

Let P_{n} be the spectral projection of h corresponding to the interval $\left[\frac{1}{n}, n\right]$, $n \in \mathbb{N}$. Then $h_{n}=p_{n} n$ and $k_{n}=p_{n} k$ satisfy the conditions of Lemma 3.2 with respect to the von Neumann algebra $p_{n} M p_{n}$, For every unitary $u \in M$ we can find a sequence of partial isometries $u_{n} \in M$ with support and range projections equal to p_{n} such that $u_{n} \rightarrow u$ in the strong-* topology (for instance write u in the form $u=\exp (i a)$ and put $u_{n}=p_{n} \exp \left(i p_{n} a p_{n}\right)$). Then

$$
\begin{aligned}
\left\|u h u^{\star}-k\right\|_{1} & =\lim _{n \rightarrow \infty} u_{n} h_{n} u_{n}^{*}-k_{n} \| \\
& \geqslant \lim _{n \rightarrow \infty} h_{n}-k n_{1}=\|h-k\| l_{1} .
\end{aligned}
$$

This completes the proof of Step 1.

Step 2. For any faithful normal positive functional ϕ on a von Neumann algebra M we let $\|\cdot\| \frac{\#}{\#}$ be the norm

$$
\|x\|_{\phi}^{\#}=\phi\left(\frac{1}{2}\left(x^{\star} x+x x^{\star}\right)\right)^{\frac{1}{2}} .
$$

Note that if ϕ is a state and u is unitary then $\|u\| \|_{\phi}^{\#}=1$.

Lemma 3.3. Let M be a von Neumann algebra for which $T(M)$ is dense in R. Let ϕ be a faithful normal state on M, and let u be a unitary operator in M. For every $\varepsilon>0$ there exist a faithful normal state ω on M and a unitary operator $v \in M$ such that
(a) ϕ and ω commute,
(b) $\quad M_{\phi}=M_{\omega}$.
(c) $v \in M_{\omega}$ and $\|u-v\|_{\phi}^{\#}<\varepsilon$.

Proof. Let $\delta>0$. Since the function $t \rightarrow \sigma_{t}^{\phi}(u)$ is strong $-x$ continuous there is $t_{1}>0$ such that

$$
\left\|\sigma_{t}^{\phi}(u)-u\right\|_{\phi}^{\#}<\delta \text { for }|t| \leqslant t_{1} .
$$

Since $T(M)$ is dense in R we can therefore choose $t_{0}>0$, $t_{0} \in T(M)$ such that

$$
\left\|\sigma_{t}^{\phi}(u)-u\right\|_{\phi}^{\#}<\delta \quad \text { for } \quad|t| \leqslant t_{0} .
$$

Let $w \in M$ be a unitary operator such that

$$
\sigma_{t_{0}}^{\phi}(x)=w x w^{\star}, \quad x \in \mathbb{M}
$$

By $[4,1.3 .2] \quad w$ belongs to the center of M_{ϕ}. Hence

$$
\|u w-w u\|_{\phi}^{\#}=\left\|u-w u w_{\phi}^{\star}\right\|_{\phi}^{\#}<\delta \text {. }
$$

Let Arg be the branch of the argument function on $c-\{0\}$ that takes values in the half-open interval $[0,2 \pi)$. Then for $\theta \in \mathbb{R}$

$$
\operatorname{Arg} \theta(z)=\operatorname{Arg}\left(e^{-i \theta} z\right)+\theta
$$

is the branch of the argument function that takes values in $[\theta, 2 \pi+\theta)$. Put

$$
a_{\theta}=A r g_{\theta}(w), \quad \theta \in \mathbb{R}
$$

We shall show that θ can be chosen such that

$$
\left\|u a_{\theta}-a_{\theta} u\right\| \frac{\#}{\phi}<(2 \pi \delta)^{\frac{1}{2}} .
$$

Let H_{ϕ} denote the completion of M with respect to the norm $\left\|\|_{\phi}^{\#}\right.$. Let

$$
\langle x, y\rangle_{\phi}^{\#}=\frac{1}{2} \phi\left(y^{\star} x+x y^{\star}\right)
$$

be the corresponding inner product on M. Define a unitary representation π of Z^{2} on H_{ϕ} by

$$
\pi(n, m) x=w^{n} x^{m}
$$

(the representation is unitary since $w \in M_{\phi}$). By Bochner's theorem there exists a probability measure μ on $T^{2}=\left(\mathbf{z}^{2}\right)^{\wedge}$ such that

$$
\left\langle w^{n} u w^{m}, u\right\rangle_{\phi}^{\#}=\int_{r^{2}} \alpha_{\beta}^{n_{\beta} m} d \mu(\alpha, \beta) .
$$

Hence for any pair of bounded Borel functions f and g on T

$$
\langle f(w) u g(w), u\rangle_{\phi}^{\#}=\iint_{T^{2}} f(\alpha) g(\beta) d \mu(\alpha, \beta) .
$$

From this equality we obtain that

$$
\begin{equation*}
\left(\|f(w) u-u f(w)\|_{\phi}^{\#}\right)^{2}=\int_{\mathbf{T}^{2}}|f(\alpha)-g(\beta)|^{2} d \mu(\alpha, \beta) \tag{1}
\end{equation*}
$$

for every bounded Borel function f on r (compare with the proof of Proposition 1.1 in [5]). In particular

$$
\int_{\boldsymbol{T}^{2}}|\alpha-\beta|^{2} d \mu(\alpha, \beta)=\left(\|w u-u w\|_{\phi}^{\#}\right)^{2}<\delta^{2} .
$$

Moreover,

$$
\begin{equation*}
\left(\left\|a_{\theta} u-u a_{\theta}\right\|_{\phi}^{\#}\right)^{2}=\int_{\mathbf{T}^{2}}\left|\operatorname{Arg}\left(\mathrm{e}^{-i \theta} \alpha\right)-\operatorname{Arg}\left(\mathrm{e}^{-i \theta} \beta\right)\right|^{2} \mathrm{~d} \mu(\alpha, \beta) . \tag{2}
\end{equation*}
$$

Therefore

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left\|a_{\theta} u-u a_{\theta}\right\|_{\phi}^{\#}\right)^{2} d \theta=\iint_{r^{2}} h(\alpha, \beta) d \mu(\alpha, \beta),
$$

where

$$
h(\alpha, \beta)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\operatorname{Arg}\left(e^{-i \theta} \alpha\right)-\operatorname{Arg}\left(e^{-i \theta} \beta\right)\right|^{2} d \theta .
$$

For $\alpha=1$ and $\beta=e^{i \sigma}, 0 \leqslant \sigma<2 \pi$, we have

$$
\begin{aligned}
& \operatorname{Arg}\left(e^{-i \theta} \alpha\right)=2 \pi-\theta, \\
& \operatorname{Arg}\left(e^{-i \theta} \beta\right)= \begin{cases}\sigma-\theta, & 0<\theta \leqslant 2 \pi \\
\sigma-\theta+2 \pi, & 0<\theta \leqslant \theta \leqslant 2 \pi\end{cases}
\end{aligned}
$$

Now the function

$$
f(\sigma)=4 \pi \sin \frac{\sigma}{2}-\sigma(2 \pi-\sigma)
$$

is continuous on the interval $[0,2 \pi]$ and $f(0)=f(2 \pi)=0$. Moreover, its derivative

$$
f^{\prime}(\sigma)=2 \pi\left(\cos \frac{\sigma}{2}-\left(1-\frac{\sigma}{\pi}\right)\right)
$$

is positive for $0<\sigma<\pi$ and negative for $\pi<\sigma<2 \pi$, because cos $\frac{\sigma}{2}$ is concave on $[0, \pi]$ and convex on $[\pi, 2 \pi]$. Hence

$$
4 \pi \sin \frac{\sigma}{2}-\sigma(2 \pi-\sigma)>0 \text { for } 0<\sigma<2 \pi
$$

We therefore find

$$
\begin{aligned}
h\left(1, e^{i \sigma}\right) & =\frac{1}{2 \pi}\left(\int_{0}^{\sigma}(2 \pi-\sigma)^{2} d \theta+\int_{\sigma}^{2 \pi} \sigma^{2} d \theta\right) \\
& =\sigma(2 \pi-\sigma) \\
& \leqslant 4 \pi \sin \frac{\sigma}{2} \\
& =2 \pi\left|1-e^{i \sigma}\right| .
\end{aligned}
$$

Thus

$$
h(1, \beta) \leqslant 2 \pi|1-\beta|, \quad \beta \in \mathbf{T} .
$$

It is clear that $h\left(e^{i t} \alpha, e^{i t} \beta\right)=h(\alpha, \beta), \quad t \in \boldsymbol{R}$. Therefore

$$
h(\alpha, \beta)=h\left(1, \frac{\beta}{\alpha}\right) \leqslant 2 \pi\left|1-\frac{\beta}{\alpha}\right|=2 \pi|\alpha-\beta|, \quad \alpha, \beta \in \mathbf{T} .
$$

Using that $\mu(1)=1$ we therefore get

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left\|a_{\theta} u-u a_{\theta}\right\|_{\phi}^{\#}\right)^{2} d \theta & \leqslant 2 \pi \int_{\mathbf{T}^{2}}|\alpha-\beta| d \mu(\alpha, \beta) \\
& \leqslant 2 \pi\left(\int_{\mathbf{T}^{2}}|\alpha-\beta|^{2} d \mu(\alpha, \beta)\right)^{\frac{1}{2}} \\
& =2 \pi\|w u-u w\|_{\phi}^{\#} \\
& <2 \pi \delta .
\end{aligned}
$$

Hence we can choose $\theta \in[0,2 \pi)$ such that with $a=a_{\theta}$

$$
\left(\| \text { au-ua } \|_{\phi}^{\#}\right)^{2}<2 \pi \delta .
$$

For $\sigma_{1}, \sigma_{2} \in \boldsymbol{R},\left|e^{i \sigma_{1}}-e^{i \sigma_{2}}\right| \leqslant\left|\sigma_{1}-\sigma_{2}\right|$. Using formulas (1),
and the fact that $a=\operatorname{Arg}_{\theta}(w)$ we therefore have

$$
\begin{aligned}
& \| \exp (\text { isa }) u-u \exp (i s a) \|_{\phi}^{\#}= \\
= & \left(\int_{\mathbf{T}^{2}}\left|\exp \left(\operatorname{isArg}_{\theta}(\alpha)\right)-\exp \left(\operatorname{isArg}_{\theta}(\beta)\right)\right|^{2} \mathrm{~d} \mu(\alpha, \beta)\right)^{\frac{1}{2}} \\
\leqslant & |s|\left(\int_{\mathbf{T}^{2}}\left|\operatorname{Arg}_{\theta}(\alpha)-\operatorname{Arg}_{\theta}(\beta)\right|^{2} \mathrm{~d} \mu(\alpha, \beta)\right)^{\frac{1}{2}} \\
= & |\mathbf{s}| \| \text { au-ua } \|_{\phi^{\prime}}^{\#}
\end{aligned}
$$

for all $\mathbf{s} \in \mathbf{R}$.
Put $h=\exp \left(\frac{1}{t_{0}} a\right)$ and

$$
\omega(x)=\frac{1}{\phi\left(h^{-1}\right)} \phi\left(h^{-1} x\right), \quad x \in M .
$$

Since w belongs to the center of M_{ϕ} so does h. Therefore ω is a faithful normal state on M, ω commutes with ϕ, and

$$
M_{\phi} \subset M_{\omega} .
$$

Moreover, we have

$$
\sigma_{t}^{\omega}(x)=h^{-i t} \sigma_{t}^{\phi}(x) h^{i t}=\sigma_{t}^{\phi}\left(h^{-i t} x h^{i t}\right), \quad x \in M
$$

Since $h^{i t_{0}}=w$ we get in particular

$$
\sigma_{t_{0}}^{\omega}(x)=x, \quad x \in M .
$$

Therefore we can define a conditional expectation E_{ω} of M onto ${ }^{H} \omega$ by

$$
E_{\omega}(x)=\frac{1}{t_{0}} \int_{0}^{t_{0}} \sigma_{t}^{\omega}(x) d t, \quad x \in M .
$$

Since $\sigma_{t}^{\omega}(u)-u=\sigma_{t}^{\phi}\left(h^{-i t} u h^{i t}-u\right)+\sigma_{t}^{\phi}(u)-u$, and since $h^{-i t}=$ $\exp \left(-i \frac{t}{t_{0}} a\right)$, we get for $0 \leqslant t \leqslant t_{0}$,

$$
\begin{aligned}
\left\|\sigma_{t}^{\omega}(u)-u\right\|_{\phi}^{\#} & \leqslant\left\|h^{-i t} u h^{i t}-u\right\|_{\phi}^{\#}+\left\|\sigma_{t}^{\phi}(u)-u\right\|_{\phi}^{\#} \\
& =\left\|h^{-i t} u-u h^{-i t_{\|} \#}+\right\| \sigma_{t}^{\phi}(u)-u \|_{\phi}^{\#} \\
& \leqslant \frac{t}{t_{0}}\|a u-u a\|_{\phi}^{\#}+\delta \\
& <(2 \pi \delta)^{\frac{1}{2}+\delta} .
\end{aligned}
$$

Therefore we also have

$$
\left\|E_{\omega}(u)-u\right\|_{\phi}^{\#}<(2 \pi \delta)^{\frac{1}{2}}+\delta .
$$

Put $y=E_{\omega}(u)$ and $\delta^{\prime}=(2 \pi \delta)^{\frac{1}{2}}+\delta$. Since M_{ω} is a finite von Neumann algebra the partial isometry in the polar decomposition of y can be extended to a unitary operator $v \in M_{\omega}$. Clearly $y=v|y|=\left|y^{*}\right| v$. Using the inequality $(1-t)^{2} \leqslant 1-t^{2}$ for $t \in[0,1]$ we get

$$
\phi\left((v-y)^{\star}(v-y)\right)=\phi\left((1-|y|)^{2}\right) \leqslant \phi\left(1-|y|^{2}\right),
$$

and

$$
\phi\left((v-y)(v-y)^{\star}\right)=\phi\left(\left(1-\left|y^{\star}\right|\right)^{2}\right) \leqslant \phi\left(1-\left|y^{*}\right|^{2}\right) .
$$

Hence

$$
\left(\|v-y\|_{\phi}^{\#}\right)^{2} \leqslant \frac{1}{2} \phi\left(2-y^{\star} y-y y^{\star}\right)=1-\left(\|y\|_{\phi}^{\#}\right)^{2} .
$$

On the other hand

$$
\|y\|_{\phi}^{\#} \geqslant\|u\|_{\phi}^{\#}-\| u-y^{\|}{ }_{\phi}^{\#}>1-\delta^{\prime} .
$$

Thus

$$
\left(\|v-y\|_{\phi}^{\#}\right)^{2}<1-\left(1-\delta^{\prime}\right)^{2} \leqslant 2 \delta^{\prime} .
$$

Therefore

$$
\|u-v\|_{\phi}^{\#} \leqslant\left\|u-y^{\|}{ }_{\phi}^{\#}+\right\| y-v \|_{\phi}^{\#}<\delta^{\prime}+\left(2 \delta^{\prime}\right)^{\frac{1}{2}} .
$$

Since δ was arbitrary we have proved Lemma 3.3.

Completion of step 2. Assume that $T(M)$ is dense in \mathbb{R}. Let ϕ and ψ be commuting faithful normal positive functionals on M such that there are positive real numbers a and b with

$$
a \phi \leqslant \psi \leqslant b \phi
$$

and such that

$$
\operatorname{Sp}\left(\Delta_{\phi}\right) \cap\left(\frac{\mathrm{a}}{\mathrm{~b}}, \frac{\mathrm{~b}}{\mathrm{a}}\right)=\{1\} .
$$

We shall prove that

$$
\left\|u \phi u^{*}-\psi\right\| \geqslant\|\phi-\phi\|
$$

for every unitary operator $u \in M$. Clearly it is enough to prove the inequality for a strongly dense set of unitaries. Hence by Lemma 3.3 we may assume that there exists a faithful normal state ω on $M_{1} \phi$ and ω commute, $M_{\phi} \subset M_{\omega}$, and such that $u \in M_{\omega}$. Let ϕ_{1} and ψ_{1} be the restrictions of ϕ and ψ to M_{ω}. Since $\omega o \sigma_{t}^{\phi}=\omega, M_{\omega}$ is a σ_{t}^{ϕ}-invariant subalgebra of M, and therefore σ_{t}^{ϕ} is simply the restriction of σ_{t}^{ϕ} to M_{ω}. In particular

$$
\operatorname{sp}\left(\Delta_{\phi_{1}}\right) \subset \operatorname{sp}\left(\Delta_{\phi}\right)
$$

hence

$$
\operatorname{Sp}\left(\Delta_{\phi_{1}}\right) \cap\left(\frac{\mathrm{a}}{\mathrm{~b}}, \frac{\mathrm{~b}}{\mathrm{a}}\right)=\{1\}
$$

We have $\psi=\phi\left(m^{\circ}\right)$ for some positive operator $m \in M_{\phi}$. Since $M_{\phi} \subset M_{\omega}, \psi_{1}=\phi_{1}\left(\mathrm{r}^{\circ}\right)$, so ϕ_{1} and ϕ_{1} also commute. Clearly $a \phi_{1} \leqslant \psi_{1} \leqslant b \phi_{1}$, so by step 1

$$
\left\|u \phi_{1} u^{*}-\psi_{1}\right\| \geqslant\left\|\phi_{1}-\psi_{1}\right\| .
$$

Let $E_{\omega}: M \rightarrow M_{\omega}$ be the conditional expectation for which $\omega 0 \mathrm{E}_{\omega}=\omega$. Since ϕ and ψ can be written in the form

$$
\phi=\omega\left(h^{\circ}\right), \quad \psi=\omega\left(k_{0}\right),
$$

where h and k are positive operators affiliated with M_{ω}, we have

$$
\phi=\phi, \circ \mathrm{E}_{\omega}, \quad \psi=\psi_{7} \circ \mathrm{E}_{\omega} .
$$

Therefore

$$
\|\phi-\psi\|=\left\|\left(\phi_{1}-\psi_{1}\right) \circ E_{\omega}\right\|=\left\|\phi_{7}-\psi_{1}\right\|,
$$

which implies that

$$
\left\|u \phi u^{\star}-\psi\right\| \geqslant\|\phi-\phi\| .
$$

This completes the proof of step 2.

Step 3. Let now M be an arbitrary von Neumann algebra and let ϕ and ψ be normal positive functionals on M which satisfy the condition of Theorem 3.1. We can assume that M acts on a Hilbert space H with a separating and cyclic vector ξ_{0} such that $\phi(x)=\left(x \xi_{0}, \xi_{0}\right), x \in M$. Let G be a countable dense subgroup of \mathbf{R} and let

$$
N=M_{\sigma^{\phi}}{ }^{G}
$$

be the crossed product of M with the discrete group $\left\{\sigma_{t}^{\phi}: t \in G\right\}$ of automorphisms. N is the von Neumann algebra on $\ell^{2}(G, H)$ generated by $\pi(M)$ and $\lambda(G)$, where

$$
\begin{array}{ll}
(\pi(x) \xi)(t)=\sigma_{-t}^{\phi}(x) \xi(t), & x \in M, \quad \xi \in l^{2}(G, H) \\
(\lambda(s) \xi)(t)=\xi(t-s), & s \in G, \quad \xi \in l^{2}(G, H) .
\end{array}
$$

For this and the following the reader may consult [7] and [3], see also [11]. Since G is diectete there is a faithful normal conditional expectation E of N onco $\pi(M)$ such that

$$
\varepsilon(\lambda(s) \pi(x))= \begin{cases}\pi(x) & \text { if } s=0 \\ 0 & \text { if } s \neq 0\end{cases}
$$

Put $\tilde{\phi}=\phi 0 \pi^{-1} 0 \varepsilon$. Then ${ }^{-1}$ is the "dual weight" of ϕ, so we have

$$
\begin{array}{ll}
\sigma_{0}^{d}(\pi(x))=\pi\left(\sigma^{\phi}(x),\right. & x \in M \\
\sigma^{6}(\lambda(s))=\lambda(\theta, & s \in G
\end{array}
$$

Moreover, the veotor $\xi_{0} \operatorname{ci}^{2}(0, G)$ given by

$$
\hat{s}_{0}(t)=\left\{\begin{array}{lll}
b & i z & t=0 \\
0 & i t & t \neq 0
\end{array}\right.
$$

is cyclic and seberactag iom \quad a

$$
\bar{T}(y)=\left(y \xi_{0} \cdot \xi_{0}\right) \quad Y \in N
$$

and

$$
\left(\Delta_{\tilde{\phi}}^{t t}, t\right)=\Delta t_{\dot{\theta}} \xi(t), \quad \xi \in l^{2}(G, H),
$$

where $\Delta_{\tilde{\phi}}^{\text {it }}$ is computed with respect to $\tilde{\xi}_{0}$.
From the above Formatas it Eollows that

$$
\tilde{\sigma}_{t}^{\tilde{\phi}}(y)=\lambda(t) y \lambda(t)^{*}, \quad t \in G_{s} \quad y \in \mathbb{N} .
$$

Hence $G \subset T(M)$, wence $T M$ dense $i n \mathbb{R}^{\prime}$ and step 2 is applicable since $\Delta_{\tilde{0}}$ is Just an amplification of Δ_{ϕ} it is

$$
\operatorname{sp}\left(\Delta_{\widetilde{\phi}}\right) \cap\left(\frac{\mathrm{a}}{\mathrm{~b}}, \frac{\mathrm{~b}}{\mathrm{a}}\right)=\{1\} .
$$

Put $\tilde{\phi}=\psi 0 \pi^{-1}$ oع. Then clearly $\tilde{a} \tilde{\phi} \leqslant \tilde{\psi} \leqslant \boldsymbol{b} \boldsymbol{\phi}$. Moreover one verifies easily that

$$
\pi^{-1} \circ \varepsilon \circ \sigma_{t}^{\tilde{\phi}}=\sigma_{t}^{\phi} \circ \pi^{-1} \circ \varepsilon .
$$

Indeed, it is easily checked that the formula holds on elements in N of the form $\lambda(s) \pi(x), s \in G, x \in M$. Since $\psi \circ \sigma_{t}^{\phi}=\psi$ it follows that $\tilde{\psi} \circ \sigma_{t} \tilde{\phi}=\tilde{\phi}$, i.e. $\tilde{\phi}$ and $\tilde{\psi}$ commute. Therefore $\tilde{\phi}$ and $\tilde{\psi}$ also satisfy the conditions of the theorem, whence by step 2 we have

$$
\left\|v \widetilde{\phi} v^{\star}-\widetilde{\psi}\right\| \geqslant\|\tilde{\phi}-\widetilde{\psi}\|
$$

for all unitaries $v \in N$.
Let $u \in M$ be a unitary operator. Then

$$
\pi(u) \tilde{\phi} \pi(u)^{\star}-\tilde{\phi}=\left(u \phi u^{\star}-\psi\right) o \pi^{-1} o \varepsilon .
$$

Thus

$$
\left\|u \phi u^{\star}-\psi\right\| \geqslant\left\|\pi(u) \tilde{\phi} \pi(u)^{\star}-\tilde{\psi}\right\| \geqslant\|\tilde{\phi}-\tilde{\phi}\|=\|\phi-\phi\| .
$$

This completes the proof of Theorem 3.1.

The proof of the main theorem follows from section 2 and the following result.

Corollary 3.4, Let M be a σ-finite factor of type $I I_{\lambda}, 0 \leqslant \lambda \leqslant 1$. Then

$$
\operatorname{diam}\left(S_{0}(M) / \operatorname{Int}(M)\right) \geqslant 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}} .
$$

Proof. For $\lambda=1$ there is nothing to prove.
Suppose $0<\lambda<1$. Then we can choose a faithful normal state
ϕ on M such that

$$
\operatorname{Sp}\left(\Delta_{\phi}\right)=\left\{\lambda^{n}: n \in Z\right\} \cup\{0\} .
$$

Thus $\operatorname{Sp}\left(\Delta_{\phi}\right) \cap\left(\lambda, \lambda^{-1}\right)=1$. Moreover, the centralizer M_{ϕ} of ϕ is a type II_{1} factor $[4,4.2 .6]$. Hence we can choose a projection $p \in M_{\phi}$ such that

$$
\phi(p)=\frac{1}{1+\lambda^{\frac{1}{2}}} .
$$

Put $m=\lambda^{\frac{1}{2}} p+\lambda^{-\frac{1}{2}}(1-p) \in M_{\phi}$. Then $\lambda^{\frac{1}{2}} 1 \leqslant m \leqslant \lambda^{-\frac{1}{2}} 1$, and $\phi(m)=1$. Thus

$$
\psi(x)=\phi(m x), \quad x \in M
$$

defines a normal state on M such that ϕ and ψ commute, and $\lambda^{\frac{1}{2}} \phi \leqslant \psi \leqslant \lambda^{-\frac{1}{2}}$. By Theorem 3.1 it follows that

$$
\left\|u \phi u^{\star}-\psi\right\| \geqslant\|\phi-\psi\|
$$

for every unitary operator u in M. Let ϕ_{1} and ψ_{1} be the restrictions of ϕ and ψ to M_{ϕ}. Since ϕ is a trace on M_{ϕ} we can identify $\left(M_{\phi}\right)_{\star}$ with $L^{l}\left(M_{\phi}, \phi_{1}\right)$. Therefore

$$
\|\phi-\psi\| \geqslant\left\|\phi_{1}-\psi_{1}\right\|=\phi_{1}(|1-m|)=2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}
$$

proving the corollary when $0<\lambda<1$.
Finally if $\lambda=0$ we can for every $\mu \in(0,1)$ choose a faithful normal state ϕ such that

$$
\operatorname{sp}\left(\Delta_{\phi}\right) \cap\left(\mu, \mu^{-1}\right)=\{1\} .
$$

As in [4, 3.2.7] one gets that the centralizer of ϕ is a type II, von Neumann algebra with diffuse center. Hence we can choose a projection $p \in M_{\phi}$ such that

$$
\phi(p)=\frac{1}{1+\lambda^{\frac{1}{2}}} .
$$

Arguing as above we get that

$$
\operatorname{diam}\left(S_{0}(M) / \operatorname{Int}(M)\right) \geqslant 2 \frac{1-\mu^{\frac{1}{2}}}{1+\mu^{\frac{1}{2}}},
$$

so in the limit as $\mu \rightarrow 0$ we find that the diameter is (at least)
2. The proof is complete.

References

1. W. Arveson, On groups of automorphisms of operator algebras, J. Fnal. Anal., 15 (1974), 217-243.

2, J. Bion-Nadal, Espace des états normaux d'une facteur de type $I I I_{\lambda}, 0<\lambda<1$, et d'un facteur de type $I I I_{0}$, Canadian J. Math. (to appear).
3. O. Bratteli and U. Haagerup, Unbounded derivations and invariant states, Comm. Math. Phys., 59 (1978), 79-95.
4. A. Connes, Une classification des facteurs de type III, Ann. Ec. Norm. Sup., 6 (1973), 133-252.
5. A. Connes, Classification of injective factors, Ann. Math., 104 (1976), 73-115.
6. A. Connes and E. Størmer, Homogeneity of the state space of factors of type III, J. Fnal. Anal., 28 (1978), 187-196.
7. U. Haagerup, on the dual weights for crossed products of von Neumann algebras, II, Math. Scand., 43 (1978), 119-140.
8. R. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. Math., 86 (1967), 138-17.
9. S. Sakai, The theory of W^{\star}-algebras, Lecture notes, Yale University Press, New Haven, 1962.
10. M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., No. 128, 1970.
11. M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249310.

