DIAMETERS OF STATE SPACES OF TYPE III FACTORS

Alain Connes Uffe Haagarup Erling Størmer

by the by

1. Introduction. Let M be a von Meamann algebra and $S_0(M)$ the norm closed set of its normal states. For each $\omega \in S_0(M)$ let $[\omega]$ be the norm closure of its orbit under the action of the inner *-automorphisms, Int(M), by $\omega \to u\omega u^{\lambda} = \omega o A du$. The orbit space $S_0(M)/Int(M)$ is a metric space with metric

 $d([\omega],[\psi]) = \operatorname{inf}[[\omega^* - \psi^*] \cdot \omega^* \in [\omega], \phi^* \in [\psi]].$

If M is not a factor the diameter of $S_0(M)/Int(M)$ is clearly equal to 2. However, if M is a factor it may be different.

Powers proved in [3] that if M is a factor of type I_n , n<∞, and $\phi = Tr(h \cdot), \phi = Tr(h \cdot)$ are states then .

$$d([\phi],[\phi]) = \sum_{\underline{i}=1}^{\infty} |\lambda_{\underline{i}} - \mu_{\underline{i}}|,$$

where $\lambda_1 > \lambda_2 > \ldots > \lambda_n$ are the eigenvalues of h, and $\mu_1 > \mu_2 > \cdots > \mu_n$ are the eigenvalues of k. From this one easily gets that

 $diam(S_0(M)/Int(M)) = 2(1 - \frac{1}{n}).$

The value $2(1-\frac{1}{n})$ is attained when ϕ is the tracial state and ϕ is a pure state.

The arguments of Powers can be extended to the case when M is a semifinite factor with faithful normal semifinite trace τ . If $\phi = \tau(h \cdot)$, $\psi = \tau(k \cdot)$ are two positive normal functionals given by two positive operators h and k in M, which have "joint diagonalization"

$$h = \sum_{i=1}^{n} \lambda_{i} p_{i}, \quad k = \sum_{i=1}^{n} \mu_{i} p_{i},$$

where p_1, \dots, p_n are orthogonal projections with sum 1 and $\lambda_1 > \lambda_2 > \dots > \lambda_n, \mu_1 > \mu_2 > \dots > \mu_n$, then

$$d([\phi], [\psi]) = \sum_{i=1}^{n} |\lambda_i - \mu_i| \tau(p_i) = \|\phi - \psi\|.$$

From this one derives easily that if ϕ, ψ are two states of the form

$$(x) = \frac{1}{\tau(p)} \tau(px), \quad \psi(x) = \frac{1}{\tau(q)} \tau(qx),$$

where p and q are two nonzero finite projections in M, and p < q, then

$$d([\phi], [\psi]) = 2(1 - \frac{\tau(p)}{\tau(q)}).$$

Hence for a factor of types I_{∞} or II we have

$$diam(S_{O}(M)/Int(M)) = 2$$

The main result of the present paper is a formula for the diameter when M is of type III. The result will be a characterization of factors of type III, $\lambda \in [0,1]$, purely in terms of the geometry of the state space and independent of Tomita-Takesaki theory.

Theorem. Let M be a σ -finite factor of type III, $\lambda \in [0,1]$.

Then

diam(S₀(M)/Int(M)) = 2
$$\frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$$
.

In particular for a factor of type III₀ the diameter is 2 and for a factor of type III₁ it is 0. The last statement was previously proved by two of us in [6]. In the case when $0 < \lambda < 1$ it was shown by Bion-Nadal [2] that $2(1-\lambda^{\frac{1}{2}})$ is an upper bound for the diameter, a result which inspired the present work. Our proof will be divided into two parts, namely to show the inequalities diam(S₀(M)/Int(M)) $\stackrel{>}{<} 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$ for $\lambda \in [0,1)$.

2. Proof of the inequality <.

The number 2 $\frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$ that gives the diameter appears as a consequence of the following function theoretic lemma.

Lemma 2.1. Let $0 \le 0$ be real numbers, and let $K_{a,b}$ denote the convex set of nonnegative decreasing functions f on [a,b] such that $\int fdt = 1$ and af(a) = bf(b). Then we have

$$\sup_{\substack{f, g \in K \\ a, b}} \int_{f^{\vee}gdt}^{b} = 2 \frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}} + b^{\frac{1}{2}}}$$

<u>Proof</u>. In order to show the lemma it suffices to consider step functions in $K_{a,b}$. If $\alpha \in [0,1]$ and $f_1, f_2, \in K_{a,b}$ then we have

$$(\alpha f_1 + (1-\alpha) f_2) \vee f \leq \alpha (f_1 \vee f) + (1-\alpha) (f_2 \vee f)$$
.

Hence it suffices to prove the lemma for extremal step functions in $K_{a,b}$. Let

$$f = \sum_{i=1}^{n-1} c_i \chi[a_i, a_{i+1})^{+c_n} \chi[a_n, a_{n+1}]^{\in K} a_i, b'$$

where $a = a_1 < a_2 < \ldots < a_{n+1} = b$, $c_1 > c_2 > \ldots > c_n = \frac{a}{b}c_1$. If n > 3 we can find $\epsilon > 0$ and $\eta > 0$ such that $(1-\epsilon)c_1 > (1+\eta)c_2, (1-\eta)c_2 > c_3, c_{n-1} > (1+\epsilon)c_n$ and such that the two functions

$$f_{\pm} = (1 \pm \varepsilon) c_1 \chi [a_1, a_2)^{+(1 + \eta)} c_2 \chi [a_2, a_3)^{+ \sum_{i=3}^{n-1} c_i \chi [a_i, a_{i+1})^{+(1 \pm \varepsilon)} c_n \chi [a_n, a_{n+1}]$$

belong to $K_{a,b}$. Since $f = \frac{1}{2}(f_++f_-)$, f is not extremal in $K_{a,b}$. Therefore it suffices to show the lemma for step functions of the form

$$f_{s} = \frac{b}{s(b-a)} \chi_{[a,s)} + \frac{a}{s(b-a)} \chi_{[s,b]},$$

where $s \in (a, b]$. If a < r < s < b we find

$$\int_{a}^{b} f_{r} \vee f_{s} dt = \frac{1}{b-a} \left(2b - b\frac{r}{s} - a\frac{s}{r} \right).$$

Since the maximum of this function of $\frac{s}{r}$ is obtained for $\frac{s}{r} = (\frac{b}{a})^{\frac{1}{2}}$ the proof is complete.

Since for two functions f and g, $|f-g| = 2f \vee g - f - g$, we have:

Corollary 2.2. In the above notation, if $0 < \lambda < 1$ we have

$$\sup_{f, g \in K_{\lambda, 1}} \int_{\lambda}^{1} |f-g| dt = 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}.$$

Lemma 2.3. Let M be a σ -finite factor of type III_{λ}, 0< λ <1, and let T = $-\frac{2\pi}{\log \lambda}$. Let ϕ_0 be a faithful normal state on M for

- 4 -

بالم أندروهم

which $\sigma_{\rm T}^{\phi_0}$ is the identity. Then for any faithful normal state ϕ on M there exists a positive operator h in the centralizer M_{ϕ_0} of ϕ_0 such that

(i) $Sph \subset [\lambda a, a]$ for some a > 0,

(ii) There exists a unitary $u \in M$ such that $\phi(uxu^*) = \phi_0(hx)$, x $\in M$.

<u>Proof</u>: Put $v = (D\phi: D\phi_0)_T$, see [4]. Then for $x \in M$

$$\sigma_{\mathrm{T}}^{\phi}(\mathbf{x}) = \mathbf{v}\sigma_{\mathrm{T}}^{\phi}(\mathbf{x})\mathbf{v}^{\star} = \mathbf{v}\mathbf{x}\mathbf{v}^{\star},$$

so in particular $\phi(vxv^*) = \phi(\sigma_T^{\phi}(x)) = \phi(x)$. Thus $v \in M_{\phi}$. By spectral theory and the Riesz representation theorem there is a unique probability measure μ on $\mathbf{T} = \{z \in \mathbf{C} : |z| = 1\}$ for which

$$\int f(z)d\mu(z) = \phi(f(v))$$

T

for any Borel function f on T. Let ν be the positive Borel measure on R obtained by "rewinding" μ , i.e. ν is determined by

$$v(B) = \mu(exp(iB)), B \subset [0, 2\pi), B Borel,$$

and

$$v(B+2\pi) = v(B), B \subset \mathbb{R}, B$$
 Borel.

Note that $v([s,s+2\pi)) = 1$ for all $s \in \mathbb{R}$. Put

$$g(s) = \int \exp(-\frac{t}{T})dv(t), \quad s \in \mathbb{R}.$$

$$[s, s+2\pi)$$

Since $\exp(-\frac{2\pi}{T}) = \lambda$ we have

$$\int_{\left[s,\infty\right)} \exp\left(-\frac{t}{T}\right) d\nu(t) = \sum_{n=0}^{\infty} \int_{\left[s+n2\pi, s+(n+1)2\pi\right]} \exp\left(-\frac{t}{T}\right) d\nu(t)$$
$$= \left(\sum_{n=0}^{\infty} \lambda^{n}\right) g(s) = \frac{1}{1-\lambda} g(s).$$

- 5 -

Hence we also have

(1)
$$g(s) = (1-\lambda) \int \exp(-\frac{t}{T}) dv(t).$$

This shows that g is a decreasing function on \mathbf{R} , continuous from left. Let g(s+) (resp. g(s-)) denote the limits of g(s') for s' + s from right (resp. left). Then

$$g(0+) = \int exp(-\frac{t}{T})dv(t) < 1, (0, 2\pi]$$

and

$$g((-2\pi)-) = \int \exp(-\frac{t}{T}) dv(t) > 1.$$

$$[-2\pi, 0)$$

Hence we can choose $r\in[-2\pi,0]$ such that

$$g(r+) \le 1 \le g(r-)$$
.

By (1) we have

$$g(r-)-g(r+) = (1-\lambda) \exp(-\frac{r}{T}) \vee (\{r\})$$
$$= (1-\lambda) \exp(-\frac{r}{T}) \mu (\{e^{ir}\}).$$

This shows that r is a point of continuity for g if and only if e^{ir} is not an eigenvalue for V. Moreover

$$g(r-)-g(r+) = (1-\lambda)\exp(-\frac{r}{T})\phi(p),$$

where p is the projection on the eigenspace of the vectors ξ such that $v\xi = e^{ir}\xi$. There are two cases to be considered.

Case]. Assume first that e^{ir} is not an eigenvalue for v. Let

$$\operatorname{Arg}_{r}: \mathbf{T} \{ e^{ir} \} \rightarrow (r, r+2\pi)$$

be the branch of the argument functions that takes values in $(r, r+2\pi)$, and put

$$a = \operatorname{Arg}_{r}(v)$$
$$k = \exp(\frac{1}{T}a).$$

Since $v \in M_{\phi}$ so are a and k. Moreover, a and k are self-adjoint, and their spectra satisfy

Spa
$$\subset$$
 $[r, r+2\pi]$
Spk \subset $[\exp(\frac{r}{T}), \lambda^{-1}\exp(\frac{r}{T})].$

Furthermore, since r is a continuity point for g,

$$\phi(k^{-1}) = \int \exp(-\frac{1}{T} \operatorname{Arg}_{r}(z)) d\mu(z)$$
$$= \int_{r}^{r+2\pi} \exp(-\frac{t}{T}) d\nu(t)$$
$$= 1.$$

Put $\psi(x) = \phi(k^{-1}x)$, x \in M. Then ψ is a faithful normal state on M. Since $k^{iT} = \exp(ia) = v$, we get, see [4],

$$\sigma_{\mathrm{T}}^{\psi}(\mathbf{x}) = \mathbf{k}^{-\mathrm{iT}} \sigma_{\mathrm{T}}^{\phi}(\mathbf{x}) \mathbf{k}^{\mathrm{iT}} = \mathbf{v}^{\star}(\mathbf{v} \mathbf{x} \mathbf{v}^{\star}) \mathbf{v} = \mathbf{x}, \quad \mathbf{x} \in \mathbf{M},$$

and

$$(D\psi:D\phi_0)_{T} = (D\psi:D\phi)_{T}(D\phi:D\phi_0)_{T} = k^{-iT}v = 1.$$

Since σ^{ϕ} and σ^{ϕ_0} both have period T we can conclude as in the proof of [4, 4.3.2] that there exists a unitary u(M such that $\phi(uxu^*) = \phi_0(x)$ for x(M. Hence, if $h = u^*ku$ we have

$$\phi(uxu^{*}) = \phi(kuxu^{*}) = \phi(uhxu^{*}) = \phi_{0}(hx).$$

Since Sph = Spk $\subset \left[\exp(\frac{r}{T}), \lambda^{-1}\exp(\frac{r}{T})\right]$, h and u satisfy the conditions in the lemma.

Case 2. Assume next that e^{ir} is an eigenvalue for v, and let

p be the projection on the corresponding eigenspace. Clearly $p \in M_{\phi}$. Since

 $g(r+) \leq l \leq g(r-)$

we can choose $\alpha \in [0,1]$ such that

$$1 = (1-\alpha)g(r+)+\alpha g(r-).$$

Now $\sigma_{\mathbf{T}}^{\phi}(\mathbf{x}) = \mathbf{v}\mathbf{x}\mathbf{v}^{\star}$ for $\mathbf{x}\in \mathbb{M}$ and $\mathbf{p}\mathbf{v} = \mathbf{e}^{\mathbf{i}\mathbf{r}}\mathbf{p}$. Thus the restriction of $\sigma_{\mathbf{T}}^{\phi}$ to the reduced algebra pMp is trivial. Since M is σ finite of type III, pMp $\stackrel{\sim}{=}$ M, so is also a factor of type III_{λ}. Thus, as in the proof of [4, 4.2.6] the centralizer of the restriction $\phi | pMp$ is a factor of type II₁. Therefore we can choose a projection $\mathbf{p}' \leq \mathbf{p}$, $\mathbf{p}' \in \mathbf{M}_{\phi}$, such that $\phi(\mathbf{p}') = \alpha \phi(\mathbf{p})$. Define now self-adjoint operators a and k in \mathbf{M}_{ϕ} by

$$a = Arg_{r}(v(1-p)) + rp'+(r+2\pi)(p-p')$$

 $k = exp(\frac{1}{T}a).$

The operators are well defined since e^{ir} is not in the point spectrum of v(1-p). Clearly $Sp(a) \subset [r,r+2\pi]$; hence

$$\operatorname{Sp}(k) \subset \left[\exp(\frac{r}{T}), \lambda^{-1} \exp(\frac{r}{T}) \right].$$

Moreover, $k^{iT} = e^{ia} = v(1-p)+e^{ir}p = v$. Computing we find the following formulas:

$$\phi(k^{-1}) = \int \exp(-\frac{t}{T}) dv(t) + \alpha \phi(p) \exp(-\frac{r}{T}) + (1-\alpha)\phi(p) \exp(-\frac{r+2\pi}{T}),$$

$$(r, r+2\pi)$$

$$g(r+) = \int \exp(-\frac{t}{T}) d\nu(t) = \int \exp(-\frac{t}{T}) d\nu(t) + \phi(p) \exp(-\frac{r+2\pi}{T}),$$

$$(r, r+2\pi)$$

$$g(r-) = \int \exp(-\frac{t}{T}) d\nu(t) = \int \exp(-\frac{t}{T}) d\nu(t) + \phi(p) \exp(-\frac{r}{T}) d\nu(t) + \phi(p) \exp(-\frac{r}{T})$$

Adding we obtain $\phi(k^{-1}) = (1-\alpha)g(r+)+\alpha g(r-) = 1$. The proof can now be completed as in Case 1.

Proof of the inequality diam $(S_0(M)/Int(M)) \leq 2 \frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$

It suffices to show the inequality for faithful states. Let ϕ and ψ be faithful normal states on the factor M of type III_{λ}, $0 < \lambda < 1$. Let ϕ_0 be a faithful normal state such that $\sigma_T^{\phi_0}$ is the identity map. By Lemma 2.3 there are $\phi' \in [\phi]$, $\psi' \in [\psi]$ such that $\phi'(\mathbf{x}) = \phi_0(h\mathbf{x}), \ \psi'(\mathbf{x}) = \phi_0(k\mathbf{x}), \ \mathbf{x} \in M$, where $h, k \in M_{\phi_0}$ and $\lambda a < h < a$, $\lambda b < k < b$ for some a, b > 0.

If $\delta > 0$ we can by spectral theory find an integer n and orthogonal families $\{p_1, \ldots, p_n\}, \{q_1, \ldots, q_n\}$ of projections in M_{ϕ_0} with $\phi_0(p_i) = \phi_0(q_i) = \frac{1}{n}$, $i = 1, \ldots, n$, and constants $\alpha_1 > \alpha_2 > \ldots > \alpha_n = \lambda \alpha_1$, $\beta_1 > \beta_2 > \ldots > \beta_n = \lambda \beta_1$ satisfying $\sum \alpha_i = \sum \beta_i = n$ such that

$$\|h-\sum_{j=1}^{n} \alpha_{j} p_{j}\|_{1}^{<\delta}, \|k-\sum_{j=1}^{n} \beta_{j} q_{j}\|_{1}^{<\delta},$$

where $\|x\|_{1} = \phi_{0}(|x|)$ for $x \in M_{\phi_{0}}$. In order to show the desired estimate we may assume h and k are of this form, i.e. $h = \sum \alpha_{i} p_{i}, \ k = \sum \beta_{i} q_{i}$. Since $M_{\phi_{0}}$ is a factor of type II₁ there is a unitary $u \in M_{\phi_{0}}$ such that $u q_{i} u^{\star} = p_{i}$ for all i, hence $u k u^{\star} = \sum_{i=1}^{n} \beta_{i} p_{i}$. Thus the state ψ " defined by

$$\psi''(\mathbf{x}) = \phi_0(\mathbf{u}\mathbf{k}\mathbf{u}^{\star}\mathbf{x}) = \phi_0(\mathbf{k}\mathbf{u}^{\star}\mathbf{x}\mathbf{u})$$

belongs to $[\psi]$.

Let f and g be functions on the interval $[\lambda, 1]$ defined by $f = (1-\lambda)^{-1} \sum_{i=1}^{n} \alpha_i \chi_{I_i}$, $g = (1-\lambda)^{-1} \sum_{i=1}^{n} \beta_i \chi_{I_i}$, where

$$I_{i} = \begin{cases} \left[\lambda + (i-1) \frac{1-\lambda}{n}, \lambda + i \frac{1-\lambda}{n}\right] & \text{for } i = 1, \dots, n-1, \\ \left[\lambda + (n-1) \frac{1-\lambda}{n}, 1\right] & \text{for } i = n. \end{cases}$$

Then f and g are decreasing step functions with integrals 1 and satifying $f(1) = \lambda f(\lambda)$, $g(1) = \lambda g(\lambda)$, i.e. f,g belong to the set $K_{\lambda,1}$ of Lemma 2.1. Thus by Corollary 2.2 we have,

$$\|\phi' - \psi''\| = \|h - uku^{\star}\|_{1} = \sum_{i=1}^{n} |\alpha_{i} - \beta_{i}|\phi(p_{i}) = \int_{\lambda}^{1} |f - g| dt \leq 2 \frac{1 - \lambda^{\frac{1}{2}}}{1 + \lambda^{\frac{1}{2}}},$$

completing the proof. The case $\lambda = 0$ is trivial.

3. Proof of the inequality \geq .

The proof of the inequality

diam(S₀(M)/Int(M))>2
$$\frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$$

for a factor of type III, is based on the following theorem.

<u>Theorem 3.1</u>. Let M be a von Neumann algebra, let ϕ, ϕ be two faithful normal positive functionals on M, and let 0 < a < b be real numbers. Suppose (i) ϕ and ϕ commute and $a\phi < \phi < b\phi$, (ii) $Sp(\Delta_{\phi}) \cap (\frac{a}{b}, \frac{b}{a}) = \{1\}$, where Δ_{ϕ} is the modular operator of ϕ . Then $\|u\phi u^{\star} - \phi\| \ge \|\phi - \phi\|$ for all unitary operators u in M.

The proof of the above theorem will be divided into three steps:

Step 1: M is finite,

Step 2: $T(M) = \{t: \sigma_{t}^{\phi} \in Int(M)\}$ is dense in R,

Step 3: The general case.

In order to prove Step 1 we assume M is finite and that ϕ, ϕ, a, b satisfy the above conditions (i) and (ii). Since M has a faithful normal state it also has a faithful normal tracial state τ . There exist two positive operators h and k affiliated with M such that

$$\phi = \tau(h \cdot)$$
 and $\psi = \tau(k \cdot)$.

By the usual identification of M_{\star} and $L^{1}(M,\tau)$ the inequality stated in Theorem 3.1 is equivalent to

$$\|uhu^{*}-k\|_{1} \ge \|h-k\|_{1}$$

for all unitary operators $u \in M$. To prove this we shall need

Lemma 3.2. Let M be a finite von Neumann algebra with a faithful normal tracial state τ and let h,k \in M be two positive operators with bounded inverses such that

(i) h and k commute and $ah \leq k \leq bh$,

(ii) with $\phi = \tau(h \cdot)$, $\operatorname{Sp}(\Delta_{\phi}) \cap (\frac{a}{b}, \frac{b}{a}) = \{1\}$. Then $\|uhu^* - k\|_1 \ge \|h - k\|_1$ for all unitary operators $u \in M$.

<u>Proof</u>. The modular automorphism group asociated with ϕ is, see [10],

$$\sigma_t^{\phi}(x) = h^{it}xh^{-it}, \quad x \in M.$$

Moreover M acts standardly on $L^2(M,\tau)$. Let $Sp(\sigma^{\phi})$ denote the Arveson spectrum of the one parameter group σ^{ϕ} . We shall consider $Sp(\sigma^{\phi})$ as a subset of the multiplicative group \mathbf{R}_{+} . Since

h is bounded and has bounded inverse, $0 \notin Sp(\Delta_{\phi})$ and therefore

 $\operatorname{Sp}(\sigma^{\phi}) = \operatorname{Sp}(\Delta_{\phi}),$

By [10] if J is the conjugation on $L^2(M,\tau)$ defined by σ^{ϕ} such that JMJ = M', we have $\Delta_{\phi} = hJh^{-1}J$. We first assume M is a factor; then

$$Sp(\Delta_{\phi}) = Sp(h) \cdot Sp(h)^{-1}$$
.

By condition (ii) we therefore get that if $\mu_1, \mu_2 \in Sp(h)$ and μ_1, μ_2 then

$$\frac{\frac{\mu}{2}}{\frac{\mu}{1}} \leqslant \frac{a}{b}.$$

Since Sp(h) is a compact subset of $(0,\infty)$ it follows that Sp(h) is finite.

By (i) we have k = mh, where $m \in M$ commutes with h, and

al≤m≤bl.

By continuity it is enough to prove the inequality $\|uhu^{*}-k\|_{1} > \|h + k\|_{1}$ in the case when the spectrum of m is a finite subset of the interval [a,b]. In this case k also has finite spectrum, and h and k have a "joint diagonalization"

$$h = \sum_{i=1}^{n} \lambda_{i} p_{i}, \quad k = \sum_{i=1}^{n} \mu_{i} p_{i},$$

where p_1, \ldots, p_n are nonzero orthogonal projections with sum 1. By permuting the indices $\{1, \ldots, n\}$ we may assume that

 $\lambda_1 > \lambda_2 > \cdots > \lambda_n$

Let $i_1 < i_2 < \cdots < i_q$ be the values of i for which $\lambda_i > \lambda_{i+1}$. By permuting the indices inside each of the q+1 sets on which the

 λ_{L} 's are constant we may also obtain that

$$\mu_1 \stackrel{\flat}{\longrightarrow} \cdots \stackrel{\flat}{\rightarrow} \mu_1 \stackrel{\mu}{\longrightarrow} \mu_1 + \mu \stackrel{\flat}{\longrightarrow} \cdots \stackrel{\flat}{\rightarrow} \mu_2 \stackrel{\mu}{\longrightarrow} \mu_q + \mu \stackrel{\flat}{\longrightarrow} \cdots \stackrel{\flat}{\rightarrow} \mu_n$$

However, since

$$\lambda_{i_{k}+1} \leq \frac{a}{b} \lambda_{i_{k}'}$$

and since by (i)

we also have

$${}^{\mu}i_{1}{}^{\mu}i_{1}{}^{+1}{}^{\mu}i_{2}{}^{>\mu}i_{2}{}^{+1}{}^{\prime}{}^{\prime}{}^{\prime}i_{q}{}^{+1}{}^{>\mu}i_{q}$$

Hence by the extension of Powers' result mentioned in the introduction, we get

$$\|uhu^{*}-k\|_{1} \ge \sum_{i=1}^{n} |\lambda_{i}-\mu_{i}| \tau(p_{i}) = \|h-k\|_{1}$$

for all unitary operators $u \in M$. This completes the proof in the case when M is a factor.

Let now M be general, and let $T:M \rightarrow Z$ be the center valued trace on M, where Z denotes the center of M. For every pure state ω on Z

$$\tau_{\omega} = \omega \circ T$$

is a (possibly nonnormal) tracial state on M. Put

$$I_{(i)} = \{ x \in M : \tau_{(i)} (x^* x) = 0 \}.$$

Then I is a maximal ideal in M, and

$$M_{\omega} = M/I_{\omega}$$

is a finite factor, see [9, Ch. II]. The tracial state on M_{ω}

 $\pi_{\omega}: M \rightarrow M_{\omega}$, put

 $h_{\omega} = \pi_{\omega}(h), \quad k_{\omega} = \pi_{\omega}(k),$

and put $\phi_{\omega} = \tau_{\omega}(h_{\omega} \cdot)$. By Arveson's definition of $Sp(\sigma^{\phi})$, see [1], we have

 $\int_{-\infty}^{\infty} f(t)h^{it}xh^{-it}dt = 0 \quad \text{for every } x \in M$

if $f \in L^1(\mathbb{R})$ and $supp(\hat{f}) \cap Sp(\sigma^{\phi}) = \emptyset$, where the Fourier transform \hat{f} of f is considered as a function on (\mathbb{R}_+, \cdot) . Since $t \to h^{it}$ is norm continuous it follows that under the same condition on f,

$$\int_{-\infty}^{\infty} f(t) h_{\omega}^{it} y h_{\omega}^{-it} dt = 0 \quad \text{for every } y \in M_{\omega}$$

Hence $\operatorname{Sp}(\sigma^{\phi}) \subset \operatorname{Sp}(\sigma^{\phi})$. Therefore h_{ω} and k_{ω} satisfy the conditions of Lemma 3.2, so by the first part of the proof

$$\| vh_{\omega} v^{\star} - k_{\omega} \|_{1} \ge \| h_{\omega} - k_{\omega} \|_{1}$$

for every unitary $v \in M_{\omega}$. By the spectral theorem $Z \cong C(\hat{Z})$. Thus if v is the probability measure on \hat{Z} which corresponds to the restriction of τ to Z, we have for $x \in M$:

$$\tau(\mathbf{x}) = \tau \circ T(\mathbf{x}) = \int \tau_{\omega} \circ T(\mathbf{x}) d\nu(\omega) = \int \tau_{\omega}(\mathbf{x}) d\nu(\omega).$$

Hence for any unitary operator uEM,

$$\| uhu^{\star} - k \|_{1} = \int \| \pi_{\omega} (u)h_{\omega}\pi_{\omega} (u)^{\star} - k_{\omega} \|_{1} dv (\omega)$$

$$\geq \int \| h_{\omega} - k_{\omega} \|_{1} dv (\omega)$$

$$\geq \int \| h - k \|_{1} dv (\omega)$$

This completes the proof of Lemma 3.2.

<u>Completion of Step 1</u>. To complete the proof of Theorem 3.1 in the case when M is finite we need to extend Lemma 3.2 to the case when h and k are (possibly unbounded) positive operators in $L^{1}(M, \tau)$ with trivial nullspaces.

Let p_n be the spectral projection of h corresponding to the interval $\left[\frac{1}{n},n\right]$, n \in N. Then $h_n = p_n h$ and $k_n = p_n k$ satisfy the conditions of Lemma 3.2 with respect to the von Neumann algebra $p_n M p_n$. For every unitary $u \in M$ we can find a sequence of partial isometries $u_n \in M$ with support and range projections equal to p_n such that $u_n \neq u$ in the strong-* topology (for instance write u in the form $u = \exp(ia)$ and put $u_n = p_n \exp(ip_n ap_n)$). Then

$$\|uhu^{\star} - k\|_{1} = \lim_{n \to \infty} \|u_{n}h_{n}u^{\star}_{n} - k_{n}\|_{1}$$

$$\geq \lim_{n \to \infty} \|h_{n} - k_{n}\|_{1} = \|h - k\|_{1}$$

This completes the proof of Step 1.

Step 2. For any faithful normal positive functional ϕ on a von Neumann algebra M we let $\|\cdot\|_{\phi}^{\#}$ be the norm

$$\| x \|_{\phi}^{\#} = \phi \left(\frac{1}{2} (x^{*} x + x x^{*}) \right)^{\frac{1}{2}}.$$

Note that if ϕ is a state and u is unitary then $\|u\|_{\phi}^{\#} = 1$.

Lemma 3.3. Let M be a von Neumann algebra for which T(M) is dense in **R**. Let ϕ be a faithful normal state on M, and let u be a unitary operator in M. For every $\varepsilon > 0$ there exist a faithful normal state ω on M and a unitary operator v \in M such that (a) ϕ and ω commute,

- (b) $M_{\phi} \subset M_{\omega}$,
- (c) $v \in M_{\omega}$ and $\|u v\|_{\phi}^{\#} < \varepsilon$.

<u>Proof</u>. Let $\delta > 0$. Since the function $t \to \sigma_t^{\phi}(u)$ is strong-* continuous there is $t_1 > 0$ such that

$$\|\sigma_{t}^{\phi}(u)-u\|_{\phi}^{\#}<\delta \quad \text{for } |t|$$

Since T(M) is dense in R we can therefore choose $t_0^{>0}$, $t_0 \in T(M)$ such that

$$\|\sigma_{t}^{\phi}(u)-u\|_{\phi}^{\#} < \delta \quad \text{for } |t| < t_{0}.$$

Let wEM be a unitary operator such that

$$\sigma_{t_0}^{\phi}(\mathbf{x}) = \mathbf{w} \mathbf{x} \mathbf{w}^{\star}, \quad \mathbf{x} \in \mathbf{M}.$$

By [4, 1.3.2] w belongs to the center of M_{ϕ} . Hence

$$\|uw-wu\|_{\phi}^{\#} = \|u-wuw^{*}\|_{\phi}^{\#} < \delta$$
.

Let Arg be the branch of the argument function on $\mathbb{C} \setminus \{0\}$ that takes values in the half-open interval $[0, 2\pi)$. Then for $\theta \in \mathbb{R}$

$$\operatorname{Arg}_{o}(z) = \operatorname{Arg}(e^{-i\theta}z) + \theta$$

is the branch of the argument function that takes values in $[\theta, 2\pi + \theta)$. Put

$$a_{\alpha} = Arg_{\alpha}(w), \quad \theta \in \mathbb{R}.$$

We shall show that θ can be chosen such that

$$\| ua_{\theta} - a_{\theta} u \|_{\phi}^{\#} < (2\pi\delta)^{\frac{1}{2}}.$$

Let H_{ϕ} denote the completion of M with respect to the norm $\| \|_{\phi}^{\#}$. Let

$$\langle x, y \rangle_{\phi}^{\#} = \frac{1}{2}\phi (y^{\star} x + xy^{\star})$$

$$\pi(n,m)x = w^n x w^m$$

(the representation is unitary since $w \in M_{\phi}$). By Bochner's theorem there exists a probability measure μ on $T^2 = (Z^2)^{\wedge}$ such that

$$\langle w^{n}uw^{m}, u \rangle_{\phi}^{\#} = \int_{\Gamma^{2}} \alpha^{n}\beta^{m}d\mu(\alpha, \beta),$$

Hence for any pair of bounded Borel functions f and g on T

$$\langle \mathbf{f}(\mathbf{w})\mathbf{u}\mathbf{g}(\mathbf{w}),\mathbf{u}\rangle_{\Phi}^{\#} = \iint_{\mathbf{T}^2} \mathbf{f}(\alpha)\mathbf{g}(\beta)\mathbf{d}\mu(\alpha,\beta).$$

From this equality we obtain that

(1)
$$(\|f(w)u-uf(w)\|_{\phi}^{\#})^{2} = \iint_{\mathbf{T}^{2}} |f(\alpha)-g(\beta)|^{2} d\mu (\alpha,\beta)$$

for every bounded Borel function f on T (compare with the proof of Proposition 1.1 in [5]). In particular

$$\int_{\mathbf{T}^2} |\alpha - \beta|^2 d\mu (\alpha, \beta) = (\|wu - uw\|_{\phi}^{\#})^2 < \delta^2.$$

Moreover,

(2)
$$(\|\mathbf{a}_{\theta}\mathbf{u}-\mathbf{u}\mathbf{a}_{\theta}\|_{\phi}^{\#})^{2} = \iint_{\mathbf{T}^{2}} |\operatorname{Arg}(e^{-i\theta}\alpha)-\operatorname{Arg}(e^{-i\theta}\beta)|^{2} d\mu(\alpha,\beta).$$

Therefore

$$\frac{1}{2\pi} \int_{0}^{2\pi} (\|\mathbf{a}_{\theta} \mathbf{u} - \mathbf{u} \mathbf{a}_{\theta}\|_{\theta}^{\#})^{2} d\theta = \iint_{\mathbf{T}^{2}} h(\alpha, \beta) d\mu(\alpha, \beta),$$

where

$$h(\alpha,\beta) = \frac{1}{2\pi} \int_{0}^{2\pi} |\operatorname{Arg}(e^{-i\theta}\alpha) - \operatorname{Arg}(e^{-i\theta}\beta)|^2 d\theta.$$

For $\alpha = 1$ and $\beta = e^{i\sigma}$, $0 \le \sigma \le 2\pi$, we have

$$\operatorname{Arg}(e^{-i\theta}\alpha) = 2\pi - \theta, \quad 0 < \theta < 2\pi,$$
$$\operatorname{Arg}(e^{-i\theta}\beta) = \begin{cases} \sigma - \theta, & 0 < \theta < \sigma \\ \sigma - \theta + 2\pi, & \sigma < \theta < 2\pi \end{cases}$$

Now the function

$$f(\sigma) = 4\pi \sin \frac{\sigma}{2} - \sigma(2\pi - \sigma)$$

is continuous on the interval $[0,2\pi]$ and $f(0) = f(2\pi) = 0$. Moreover, its derivative

$$f'(\sigma) = 2\pi \left(\cos \frac{\sigma}{2} - (1 - \frac{\sigma}{\pi})\right)$$

is positive for $0 < \sigma < \pi$ and negative for $\pi < \sigma < 2\pi$, because $\cos \frac{\sigma}{2}$ is concave on $[0,\pi]$ and convex on $[\pi, 2\pi]$. Hence

$$4\pi \sin \frac{\sigma}{2} - \sigma(2\pi - \sigma) > 0$$
 for $0 < \sigma < 2\pi$.

We therefore find

$$h(1, e^{i\sigma}) = \frac{1}{2\pi} \left(\int_{0}^{\sigma} (2\pi - \sigma)^{2} d\theta + \int_{\sigma}^{2\pi} \sigma^{2} d\theta \right)$$
$$= \sigma (2\pi - \sigma)$$
$$\leq 4\pi \sin \frac{\sigma}{2}$$
$$= 2\pi |1 - e^{i\sigma}|.$$

Thus

$$h(1,\beta) \leq 2\pi |1-\beta|, \beta \in \mathbf{T}.$$

It is clear that $h(e^{it}\alpha, e^{it}\beta) = h(\alpha, \beta)$, terefore

$$h(\alpha,\beta) = h(1,\frac{\beta}{\alpha}) \le 2\pi |1-\frac{\beta}{\alpha}| = 2\pi |\alpha-\beta|, \quad \alpha,\beta \in \mathbb{T}$$

Using that $\mu(1) = 1$ we therefore get

$$\frac{1}{2\pi} \int_{0}^{2\pi} (\|\mathbf{a}_{\theta}\mathbf{u}-\mathbf{u}\mathbf{a}_{\theta}\|_{\phi}^{\#})^{2} d\theta \leq 2\pi \int_{\mathbf{T}^{2}} |\alpha-\beta| d\mu (\alpha,\beta)$$

$$\leq 2\pi (\int_{\mathbf{T}^{2}} |\alpha-\beta|^{2} d\mu (\alpha,\beta))^{\frac{1}{2}}$$

$$= 2\pi \|\mathbf{w}\mathbf{u}-\mathbf{u}\mathbf{w}\|_{\phi}^{\#}$$

$$\leq 2\pi \delta.$$

Hence we can choose $\theta \in [0, 2\pi)$ such that with $a = a_{\theta}$ $(\|au-ua\|_{\phi}^{\#})^2 < 2\pi\delta$.

For $\sigma_1, \sigma_2 \in \mathbb{R}$, $|e^{i\sigma_1} - e^{i\sigma_2}| \le |\sigma_1 - \sigma_2|$. Using formulas (1), (2) and the fact that $a = \operatorname{Arg}_{\theta}(w)$ we therefore have

 $\| \exp(isa) u - u \exp(isa) \|_{\phi}^{\#} =$ $= \left(\iint_{\mathbf{T}^{2}} | \exp(isArg_{\theta}(\alpha)) - \exp(isArg_{\theta}(\beta)) |^{2} d\mu(\alpha,\beta) \right)^{\frac{1}{2}}$ $< \| s \| \left(\iint_{\mathbf{T}^{2}} | Arg_{\theta}(\alpha) - Arg_{\theta}(\beta) |^{2} d\mu(\alpha,\beta) \right)^{\frac{1}{2}}$ $= \| s \| \| au - ua \|_{\phi}^{\#},$

for all $s \in \mathbb{R}$.

Put $h = \exp(\frac{1}{t_0}a)$ and

$$\omega(\mathbf{x}) = \frac{1}{\phi(\mathbf{h}^{-1})} \phi(\mathbf{h}^{-1}\mathbf{x}), \quad \mathbf{x} \in \mathbf{M}.$$

Since w belongs to the center of M_{ϕ} so does h. Therefore ω is a faithful normal state on M, ω commutes with ϕ , and

$$M_{\phi} \subset M_{\omega}$$
.

Moreover, we have

$$\sigma_{t}^{\omega}(\mathbf{x}) = \mathbf{h}^{-it} \sigma_{t}^{\phi}(\mathbf{x}) \mathbf{h}^{it} = \sigma_{t}^{\phi}(\mathbf{h}^{-it} \mathbf{x} \mathbf{h}^{it}), \quad \mathbf{x} \in \mathbf{M}.$$

Since $h^{it_0} = w$ we get in particular

$$\sigma_{t_0}^{\omega}(\mathbf{x}) = \mathbf{x}, \quad \mathbf{x} \in \mathbf{M}.$$

$$E_{\omega}(\mathbf{x}) = \frac{1}{t_0} \int_0^{t_0} \sigma_t^{\omega}(\mathbf{x}) dt, \quad \mathbf{x} \in \mathbf{M}.$$

Since $\sigma_t^{\omega}(u) - u = \sigma_t^{\phi}(h^{-it}uh^{it}-u) + \sigma_t^{\phi}(u) - u$, and since $h^{-it} = \exp(-i\frac{t}{t_0}a)$, we get for $0 \le t \le t_0$,

$$\|\sigma_{t}^{\omega}(u)-u\|_{\phi}^{\#} \leq \|h^{-it}uh^{it}-u\|_{\phi}^{\#}+\|\sigma_{t}^{\phi}(u)-u\|_{\phi}^{\#}$$
$$= \|h^{-it}u-uh^{-it}\|_{\phi}^{\#}+\|\sigma_{t}^{\phi}(u)-u\|_{\phi}^{\#}$$
$$\leq \frac{t}{t_{0}}\|au-ua\|_{\phi}^{\#}+\delta$$
$$< (2\pi\delta)^{\frac{1}{2}}+\delta.$$

Therefore we also have

$$\|\mathbf{E}_{\omega}(\mathbf{u})-\mathbf{u}\|_{\phi}^{\#} < (2\pi\delta)^{\frac{1}{2}} + \delta.$$

Put $y = E_{\omega}(u)$ and $\delta' = (2\pi\delta)^{\frac{1}{2}} + \delta$. Since M_{ω} is a finite von Neumann algebra the partial isometry in the polar decomposition of y can be extended to a unitary operator $v \in M_{\omega}$. Clearly $y = v|y| = |y^{\star}|v$. Using the inequality $(1-t)^{2} \leq 1-t^{2}$ for $t \in [0,1]$ we get

$$\phi((v-y)^{*}(v-y)) = \phi((1-|y|)^{2}) \leq \phi(1-|y|^{2}),$$

and

$$\phi((v-y)(v-y)^{*}) = \phi((1-|y^{*}|)^{2}) \le \phi(1-|y^{*}|^{2}).$$

Hence

$$(\|v-y\|_{\phi}^{\#})^{2} \leq \frac{1}{2\phi} (2-y^{*}y-yy^{*}) = 1-(\|y\|_{\phi}^{\#})^{2}.$$

On the other hand

$$\|y\|_{\phi}^{\#} \ge \|u\|_{\phi}^{\#} - \|u-y\|_{\phi}^{\#} > 1 - \delta'$$
.

Thus

$$(\| \mathbf{v} - \mathbf{y} \|_{\Phi}^{\#})^2 < 1 - (1 - \delta')^2 \leq 2\delta'$$
.

Therefore

$$\| u - v \|_{\phi}^{\#} \le \| u - y \|_{\phi}^{\#} + \| y - v \|_{\phi}^{\#} < \delta' + (2\delta')^{\frac{1}{2}}.$$

Since δ was arbitrary we have proved Lemma 3.3.

Completion of step 2. Assume that T(M) is dense in R. Let ϕ and ϕ be commuting faithful normal positive functionals on M such that there are positive real numbers a and b with

 $a\phi \leq \psi \leq b\phi$,

and such that

$$\operatorname{Sp}(\Delta_{\phi}) \cap (\frac{a}{b}, \frac{b}{a}) = \{1\}.$$

We shall prove that

 $\| u \phi u^{\star} - \psi \| \ge \| \phi - \psi \|$

for every unitary operator u(M. Clearly it is enough to prove the inequality for a strongly dense set of unitaries. Hence by Lemma 3.3 we may assume that there exists a faithful normal state ω on M, ϕ and ω commute, $M_{\phi} \subset M_{\omega}$, and such that $u(M_{\omega})$. Let ϕ_{1} and ϕ_{1} be the restrictions of ϕ and ψ to M_{ω} . Since $\omega \circ \sigma_{t}^{\phi} = \omega$, M_{ω} is a σ_{t}^{ϕ} -invariant subalgebra of M, and therefore $\sigma_{t}^{\phi_{1}}$ is simply the restriction of σ_{t}^{ϕ} to M_{ω} . In particular

$$\operatorname{Sp}(\Delta_{\phi_1}) \subset \operatorname{Sp}(\Delta_{\phi}),$$

hence

$$\operatorname{Sp}(\Delta_{\phi_1}) \cap (\frac{a}{b}, \frac{b}{a}) = \{1\}.$$

We have $\psi = \phi(\mathbf{m} \cdot)$ for some positive operator $\mathbf{m} \in \mathbf{M}_{\phi}$. Since $\mathbf{M}_{\phi} \subset \mathbf{M}_{\omega}, \psi_{1} = \phi_{1}(\mathbf{m} \cdot), \text{ so } \phi_{1}$ and ψ_{1} also commute. Clearly $a\phi_{1} \leqslant \psi_{1} \leqslant b\phi_{1}$, so by step 1

Let $E_{\omega}: M \to M_{\omega}$ be the conditional expectation for which $\omega \circ E_{\omega} = \omega$. Since ϕ and ψ can be written in the form

$$\phi = \omega(\mathbf{h} \circ), \quad \psi = \omega(\mathbf{k} \circ),$$

$$\phi = \phi_1 \circ \mathbf{E}_{\omega}, \quad \psi = \psi_1 \circ \mathbf{E}_{\omega}.$$

Therefore

$$\|\phi-\psi\| = \|(\phi_{j}-\phi_{j})\circ \mathbf{E}_{\omega}\| = \|\phi_{j}-\phi_{j}\|,$$

which implies that

This completes the proof of step 2.

 -10 ± 1

Step 3. Let now M be an arbitrary von Neumann algebra and let ϕ and ϕ be normal positive functionals on M which satisfy the condition of Theorem 3.1. We can assume that M acts on a Hilbert space H with a separating and cyclic vector ξ_0 such that $\phi(x) = (x\xi_0, \xi_0)$, xEM. Let G be a countable dense subgroup of R and let

$$M = M \times G_{\sigma^{\phi}}$$

be the crossed product of M with the discrete group $\{\sigma_t^{\phi}:t\in G\}$ of automorphisms. N is the von Neumann algebra on $\ell^2(G,H)$ generated by $\pi(M)$ and $\lambda(G)$, where

$$(\pi(x)\xi)(t) = \sigma_{-t}^{\phi}(x)\xi(t), x \in M, \xi \in l^2(G, H),$$

 $(\lambda(s)\xi)(t) = \xi(t-s), s \in G, \xi \in l^2(G, H).$

For this and the following the reader may consult [7] and [3], see also [11]. Since G is discrete there is a faithful normal conditional expectation ε of N onto $\pi(M)$ such that

$$\varepsilon(\lambda(s)\pi(x)) = \begin{cases} \pi(x) & \text{if } s = 0 \\ 0 & \text{if } s \neq 0 \end{cases}$$

Put $\tilde{\phi} = \phi \circ \pi^{-1} \circ \epsilon$. Then $\tilde{\phi}$ is the "dual weight" of ϕ , so we have

$$\sigma_{\pm}^{\widetilde{\phi}}(\pi(\mathbf{x})) = \pi(\sigma_{\pm}^{\phi}(\mathbf{x})), \quad \mathbf{x} \in \mathbf{M},$$
$$\sigma_{\pm}^{\widetilde{\phi}}(\Lambda(\mathbf{s})) = \lambda(\mathbf{s}), \quad \mathbf{s} \in \mathbf{G}.$$

Moreover, the vector $\left. \widetilde{\xi}_{0}^{-} \varepsilon t^{2}\left(\mathrm{G},\mathrm{H}\right) \right.$ given by

$$\tilde{\xi}_{0}(t) = \begin{cases} \xi_{0} & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}$$

is cyclic and separating for N,

$$\phi(y) = (y \xi_0, \xi_0), y \in \mathbb{N},$$

and

$$(\Delta_{\phi}^{it}\xi)(t) = \Delta_{\phi}^{it}\xi(t), \quad \xi \in \mathfrak{L}^{2}(G,H),$$

where $\Delta_{\widetilde{\varphi}}^{\text{it}}$ is computed with respect to $\widetilde{\xi}_0^{}.$

From the above formulas it follows that

$$\sigma_{t}^{\widetilde{\phi}}(\gamma) = \lambda(t)\gamma\lambda(t)^{*}, \quad t \in G, \quad y \in \mathbb{N}.$$

Hence $G \subset T(N)$, whence T(N) is dense in \mathbb{R} , and step 2 is applicable. Since Δ_{ϕ} is just an amplification of Δ_{ϕ} it is clear that $sp(\Delta_{\phi}) = sp(\Delta_{\phi})$, so also

$$\operatorname{sp}(\Delta_{\widetilde{\phi}}) \cap (\frac{a}{b}, \frac{b}{a}) = \{1\}.$$

Put $\tilde{\psi} = \psi \circ \pi^{-1} \circ \epsilon$. Then clearly $a \tilde{\phi} \leq \tilde{\psi} \leq b \tilde{\phi}$. Moreover one verifies easily that

$$\pi^{-1}\circ\varepsilon\circ\sigma_{t}^{\widetilde{\phi}} = \sigma_{t}^{\phi}\circ\pi^{-1}\circ\varepsilon.$$

Indeed, it is easily checked that the formula holds on elements in N of the form $\lambda(s)\pi(x)$, $s\in G$, $x\in M$. Since $\psi \circ \sigma_t^{\phi} = \psi$ it follows that $\widetilde{\psi} \circ \sigma_t^{\widetilde{\phi}} = \widetilde{\psi}$, i.e. $\widetilde{\phi}$ and $\widetilde{\psi}$ commute. Therefore $\widetilde{\phi}$ and $\widetilde{\psi}$ also satisfy the conditions of the theorem, whence by step 2 we have

$$\| v \widetilde{\phi} v^{\star} - \widetilde{\psi} \| \ge \| \widetilde{\phi} - \widetilde{\psi} \|$$

for all unitaries $v \in \mathbb{N}$.

Let $u \in M$ be a unitary operator. Then

$$\pi(\mathbf{u})\widetilde{\phi}\pi(\mathbf{u})^{\star}-\widetilde{\psi} = (\mathbf{u}\phi\mathbf{u}^{\star}-\psi)\circ\pi^{-1}\circ\varepsilon.$$

Thus

$$\| u \varphi u^{\star} - \psi \| \geq \| \pi (u) \widetilde{\phi} \pi (u)^{\star} - \widetilde{\psi} \| \geq \| \widetilde{\phi} - \widetilde{\psi} \| = \| \varphi - \psi \| .$$

This completes the proof of Theorem 3.1.

The proof of the main theorem follows from section 2 and the following result.

Corollary 3.4. Let M be a σ -finite factor of type III, 0<1
(). Then

diam(S₀(M)/Int(M))>2
$$\frac{1-\lambda^{\frac{1}{2}}}{1+\lambda^{\frac{1}{2}}}$$
.

Proof. For $\lambda = 1$ there is nothing to prove.

Suppose $0 < \lambda < 1$. Then we can choose a faithful normal state

 $\operatorname{Sp}(\Delta_{\phi}) = \{\lambda^{n}: n \in \mathbb{Z}\} \cup \{0\}.$

Thus $Sp(\Delta_{\phi})\cap(\lambda,\lambda^{-1}) = 1$. Moreover, the centralizer M_{ϕ} of ϕ is a type II₁ factor [4, 4.2.6]. Hence we can choose a projection $p\in M_{\phi}$ such that

$$\phi(\mathbf{p}) = \frac{1}{1+\lambda^{\frac{1}{2}}}.$$

Put $m = \lambda^{\frac{1}{2}} p + \lambda^{-\frac{1}{2}} (1-p) \in M_{\phi}$. Then $\lambda^{\frac{1}{2}} 1 \le m \le \lambda^{-\frac{1}{2}} 1$, and $\phi(m) = 1$. Thus

$$\psi(\mathbf{x}) = \phi(\mathbf{m}\mathbf{x}), \quad \mathbf{x} \in \mathbf{M}$$

defines a normal state on M such that ϕ and ψ commute, and $\lambda^{\frac{1}{2}}\phi \leq \psi \leq \lambda^{-\frac{1}{2}}$. By Theorem 3.1 it follows that

for every unitary operator u in M. Let ϕ_1 and ψ_1 be the restrictions of ϕ and ψ to M_{ϕ} . Since ϕ is a trace on M_{ϕ} we can identify $(M_{\phi})_{\star}$ with $L^1(M_{\phi},\phi_1)$. Therefore

$$\|\phi - \psi\| \ge \|\phi_1 - \psi_1\| = \phi_1(|1 - m|) = 2 \frac{1 - \lambda^{\frac{1}{2}}}{1 + \lambda^{\frac{1}{2}}},$$

proving the corollary when $0 < \lambda < 1$.

Finally if $\lambda = 0$ we can for every $\mu \in (0,1)$ choose a faithful normal state ϕ such that

$$\operatorname{Sp}(\Delta_{\phi}) \cap (\mu, \mu^{-1}) = \{1\}.$$

As in [4, 3.2.7] one gets that the centralizer of ϕ is a type II₁ von Neumann algebra with diffuse center. Hence we can choose a projection $p \in M_{\phi}$ such that

$$\phi(\mathbf{p}) = \frac{1}{1+\lambda^{\frac{1}{2}}}.$$

Arguing as above we get that

diam(S₀(M)/Int(M))>2
$$\frac{1-\mu^{\frac{1}{2}}}{1+\mu^{\frac{1}{2}}}$$
,

so in the limit as $\mu \rightarrow 0$ we find that the diameter is (at least) 2. The proof is complete.

References

- <u>W. Arveson</u>, On groups of automorphisms of operator algebras, J. Fnal. Anal., 15 (1974), 217-243.
- 2. <u>J. Bion-Nadal</u>, Espace des états normaux d'une facteur de type III_{λ} , $0 < \lambda < 1$, et d'un facteur de type III_{0} , Canadian J. Math. (to appear).
- <u>O. Bratteli</u> and <u>U. Haagerup</u>, Unbounded derivations and invariant states, Comm. Math. Phys., 59 (1978), 79-95.
- 4. <u>A. Connes</u>, Une classification des facteurs de type III, Ann. Ec. Norm. Sup., 6 (1973), 133-252.
- 5. <u>A. Connes</u>, Classification of injective factors, Ann. Math., 104 (1976), 73-115.
- 6. <u>A. Connes</u> and <u>E. Størmer</u>, Homogeneity of the state space of factors of type III, J. Fnal. Anal., 28 (1978), 187-196.
- 7. <u>U. Haagerup</u>, On the dual weights for crossed products of von Neumann algebras, II, Math. Scand., 43 (1978), 119-140.
- <u>R. Powers</u>, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. Math., 86 (1967), 138-171.
- S. Sakai, The theory of W^{*}-algebras, Lecture notes, Yale University Press, New Haven, 1962.
- 10. <u>M. Takesaki</u>, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., No. 128, 1970.
- 11. <u>M. Takesaki</u>, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249-310.