DIAMETERS OF oF TYPE III FACTORS

algebra and SO(M)
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equal to 2 However, 1P ® 1= & faceor it may be different.
Powers praved in | 3] thazv 1F M 1w a factor of type In'

n<eo, and ¢ = Trih=), ¢ = Trik-! avs states then

1tlol. (o) = 5 Dayw,l

>

where A.3A,.>...7A a0 sioonvaluss of  h, and u]>u2>...>p

1 2 n ' - n

are the eigenvaluses of i, o whie ons sagily gets that

The value 2{1- =} iz atuzinzd whzn ¢ 12 the tracial state and

¢ is a pure state.



The arguments of Powers can bhe extended to the case when M
is a semifinite factor with faithful normal semifinite trace =,
If ¢ =‘w(h-), ¢ = (k) are two positive normal functionals
given by two positive operators h and k in M, which have

"joint diagonalization"

n n
h = A.p. = P

121 Py i£1p*p*
where py.....P, are orthogonal projections with sum 1 and
A_B3A G ] |
A,?uz?aes?hn. ul?pz?ﬁif?pn. then

n
d(fe],[e]) = i§1|xi~ui|v(pi)= o=l

From this one derjves easily that if ¢.,¢ are two states of the

form

o(x) = ¥%§7 t(px), ¢(x) = ;%ay 7 (gx),

where p and q are two nonzero finite projections in M, and

p<q, then
a([e].[¢]) = 2(1~ %%g%),,

Hence for a factor of types I or II we have
diam(s,(M)/Int(M)) = 2.

The main result of the present paper is a formula for the
diameter when M is of type ITI. The result will he a characr
terization of factors of type III,, ré[0,7], purely in terms‘Of
the geometry of the state space and independent of Tomita~Takesaki

theory.

Theorem. Let M Dbe a o-finite factor of type AN h6[0,1]§



Then

diam(SO(M)/Int(M)) = 2 —-
T4\

In particular for a factor of type III, the diameter is 2
and for a factor of type III1 it is 0. The last statement was
previously proved by two of us in [6]. 1In the case when O0¢A<]
it was shown by Bion-Nadal [2] that 2(1~x%) is an upper bound
for the diameter, a result which inspired the present work. Our

proof will be divided into two parts, namely to show the inequal-

1
L . > 1) 2
ities diam(s.(M)/Int(M)) 2 -—Lr for r€[0,1).
0 < L
T+A
2. Proof of the inequality <.
1
- 2
The number 2 l—ﬁg that gives the diameter appears as a
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consequence of the following function theoretic lemma,

Lemma 2.]. Let 0O<a<bh Dbe real numbers, and let Ka b denote the
o e ———po—— ’

convex set of nonnegative decreasing functions £ on [a,b] such

b
that [fdt =1 and af(a) = bf(b). Then we have

a
i 2 —'%'—'Tb%
sup fvgdt =
f,gEKa b a a b2

Proof. 1In order to show the lemma it suffices to consider step

functions in X_ . If «€{0,1] and £,,£,,€K_, then we have

(af1+(1—a)f2)Vf<a(f]vf)+(1—a)(fzvf).



Hence it suffices to prove the lemma for extremal step functions

in Ka,b' Let
n-1
£f= ) c.x +c ¥y €K '
i=1 1 [ai'ai+1) n [an’an+1] a,b
a
where a = a1<a2<...<an+] = D, CT>02>"'>cn = 3,0y If n»3 we

can find €?»0 and n>0 such that (1—s)c]>(1+n)c2,(1~n)c2?c3,

cn—1>(]+€)cn and such that the two functions

n-1
£f.=(1+e)e,x +(14n)c.x + ) c.x +(1te)c ¥
* 172y ,a,) 2"layiaz) 0y Hlagiag,,) 0l iang ]
1 = L i i
belong to Ka,b' Since f 2(f++f_), f is not extremal in Ka.b’

Therefore it suffices to show the lemma for step functions of the
form
T - + 2
'S s(b-a) *[a,s)” s(b-a) X[s,b]'
where s¢(a,b]. If a<r<s<b we find
b

JEVE dt =
r S
a

1 WL _ .8
B=a (2b-bg )

s

. . , . s .
Since the maximum of this function of 7 1s obtained for

= By
= (2)

8 .
T the proof is complete.

Since for two functions f and g, |f-g| = 2fvg~f~g, we

have:

Corollary 2,2. In the above notation, if O0<A<1 we have

1 1/

2
sup [|f-glat = 2 lF&r-
£,9€K, A T4+1 72

Lerma 2.3. Let M be a o-finite factor of type IIIK, 0<A<1, and

2n Let

. b be a faithful normal state on M for
logh 0

let T = =




which o%o is the identity. Then for any faithful normal state
¢ on M there exists a positive operator h in the centralizer

of such that

M 6
% 0

(1) Sph = [Aa,a] for some a>O0,

(ii) There exists a unitary uéM such that 6 (uxu') = ¢O(hx),

xEMI

Proof: Put v = (D¢:D¢g), see [4]. Then for xeM

¢ = ] oo >
oT(x) VG m (x)v vxv ,

so in particular ¢(vxv’ ) ¢(cg(x)) = ¢(x). Thus veM, . By

spectral theory and the Riesz representation theorem there is a

unique probability measure p on T = {z€é€:|z| = 1} for which

[€(z)du(z) = ¢ (£(v))
T

for any Borel function £ on T. Let v Dbe the positive Borel

measure on R obtained by "rewinding" p, i.e. v 1is determined by

v(B) = p(exp(iB)), B« [0,2n),B Borel,

and

v(B+2n) = v(B), B < R, B Borel.
Note that v([s,s+2n)) =1 for all séR. Put

gl{s) = / exp(- %)dv(t), s€R.
[s,s+2n)

Since exp(- Z%) = A we have

o+

)dv (t)

et

[ exp(- F)av(t) = 7§ i exp(-
[s,=) n=0 [ s+n2mn,s+(n+l)2n)

+3]

@

= (] aMagls) = v5 als).

n=0



Hence we also have

(1) 9(s) = (1) ] exp(- Sav(e).
S,®

This shows that g is a decreasing function on R, continuous
from left, Let g(s+) (resp. g(s-)) denote the limits of g(s')

for s' »+ s from right (resp. left). Then

g(0+) = [ _exp(- %)dv(t) <1,
(0,2n])
and
g((=2n)=-) = i exp(~ %)dv(t) >1,
[-2n,0) '

Hence we can choose ré[-27n,0] such that

glr+)<i<g(r-).

By (1) we have

H

gr-)-g(r+) = (1-A)exp(- g)v({r})

I

(1-M)exp (- Eyp({e*)).

This shows that r is a point of continuity for g if and only
if e'" is not an eigenvalue for V.
Moreover

glr-)-g(r+) = (1-\)exp(~ £)6(p),

where p is the projection on the eigenspace of the vectors ¢ such
that Vg = alrg. There are two cases to be considered.

. ir .
Case 1. Assume first that e’ is not an eigenvalue for v. Let

Argr:Ts{elr} > (r,r+2m)

be the branch of the argument functions that takes values in

(r,r+2n), and put



o))
]

Argr(v)

~
|

]
= exp(ﬁa).

Since VGM¢ so are a and k. Moreover, a and X are gelf-

adjoint, and their spectra satisfy

Spa < [r,r+2n]

d

Spk « [exp(%), A exp(%)].

Furthermore, since r 1is a continuity point for g,

]

o071 = fexp(= 5 Arg (2))a(2)

r+2n e
[ exp(- Z)dv (t)
r

='|,

Put ¢(x) = ¢(k-]x), X€M. Then ¢ 1is a faithful normal state on

M. Since kT = exp(ia) = v, we get, see [4],

-1 i *
c%(x) = k ch%(x)le = V*(vxv v = x, Xx€M,

and
(Dy:Do o) o = (DG :D8) (D6 Do) o, = x 1Ty = 7.

¢

Since o and o0

both have period T we can conclude as in
the proof of [4, 4.3.2] that there exists a unitary uéM such

that ¢ (uxu™) = ¢O(x) for xeM. Hence, if h = W ku we have

o (uxu®) = ¢ (kuxu') = ¢ (uhxu’) = b o (hx) .

-1

Since Sph = Spk « [exp(=),\ exp(%)], h and u satisfy the

r
T

conditions in the lerma.

i . .
Case 2. Assume next that e r is an eigenvalue for v, and let
' .



p Dbe the projection on the corresponding eigenspace. Clearly

p€M¢. Since

g(r+)<i<g(r-)
we can choose a€[0,1] such that
1 = (1-a)gl(r+)+ag(r-).

. \
Now c%(x) = VXV for x€M and pv = elrp. Thus the restriction

of c% to the reduced algebra pMp is trivial. Since M is o-

finite of type III, pMp = M, so is also a factor of type ITI, .
Thus, as in the proof of [4, 4.2.6] the centralizer of the
restriction ¢|pMp is a factor of type II,. Therefore we can

choose a projection p'<p, p'éM such that ¢(p') = a¢(p).

¢ ’

Define now self-adjoint operators a and %k in M¢ by

7]
Il

Argr(V(1-p)) + rp'+{(r+2n)(p-p')
1
k = exp(Ea).

: . ir | . .
The operators are well defined since e is not in the point

spectrum of v(1-p). Clearly Sp(a) < [r,r+2n]; hence
Sp(k) < [exp(%),A_ exp(%)].
Moreover, kiT = eia = v()—p)+eirp = v. Computing we find the
following formulas:
(k)= [ exp(~ S)av(t)+as (pexp(~ 2)+(1-a) (p)exp(- Z2F),
(r,r+27n)
glr+) = / exp(-%)dv(t) = / exP(-%)dV(t)+¢(p)exp(~ r+%n),
(r,r+2ﬂi] (r,r+2TE)
t t r
glr-) = Ji exp(-Z)dv(t) = [ exp(-z)av (t)+o (p)exp(-7) .
[r,r+2n) (r,r+2n)



-1

Adding we obtain ¢(k ) = (1-a)g{r+)+ag(r-) = 1. The proof can

now be completed as in Case 1.

]72
Proof of the inequality diam (SO(M)/Int(M))<2 ! XL.
T+ 72

It suffices to show the inequalitv for faithful states. Let ¢
and ¢ be faithful normal states on the factor M of tvpe IIIK,

O<A<1. Let be a faithful normal state such that 0%0 is the

%

identity map. By Lemma 2.3 there are ¢’€[¢], ¢'E[¢] such that

o' (x) = ¢O(hx), b (x) = ¢O(kx), X€M, where h,k€M¢ and Aa<h<a,
0

Ab<k<b for some a,br0.

If 6>0 we can by spectral theory find an integer n and

orthogonal families {p],...,p },{q1,...,qn} of projections in

Si—o

with ¢O(pi) = ¢O(q.) =—, i=1,...,n, and constants

M
¢0 1

a1>a2>...>an = ka1, B1>62>"'>B = KB1 satisfying Xai = Eﬁi = n

n

such that

n n
Hh—%aipiﬂ]<6, Hk—?ﬁiqiﬂl<6,

1

estimate we may assume h and Xk are of this form, i.e.

where lxl. = ¢O(|x|) for x€M, . In order to show the desired
0

h = Zaipi, k = Zsiqi. Since M¢0 is a factor of type II, there

. . * .
is a unitary uEM¢ such that ug,u = py for all i, hence
0

n
uku® = zsipi. Thus the state ¢" defined by
1

$"(x) = ¢O(uku*x) = (bo(ku*xu)

belongs to [¢].

Let f and g be functions on the interval [A,1] defined

= _ -1 ¢
by £ = (1-1) ) Xy 9= (1=1) .Z BixI , where

i=] i i=1 i



—_
i
>
=)
>
~

, AFL

I. =4
1

([x+(im1)
[ )

+(n=1

’.3]! Sl
>

-

Then f and g are decreasing step functions with integrals |1

and satifying f(1) = x£f{)r), g(1) = rg(r), i.e. f,g belong to the

set KK . of Lemma 2.1. Thus by Corollary 2.2 we have,
. n 1 .
o' =¢"l = uh—uku*uT = ) Jo,.-B.|o(p.) = [|f-g|dt<c 2 o
=t * 0t * A 1427
completing the proof. The case X = 0 1is trivial.

3. Proof of the inequality >.

The procf of the inequality

1
5 2
diam(SO(M)/int(M))>2 l—ﬁ;
T+ 72
for a factor of type IIIK is based on the following theorem.
Theorem 3.1. Let M be a von Neumann algebra, let ¢,¢ be two

faithful normal positive functionals on M, and let 0O<a<b be

real numbers. Suppose
(i) ¢ and ¢ commute and ad<P<bo,
. a b, _
(ii) Sp(Aq))r](B,—a') = {1}5
where A¢ is the modular operator of ¢.
*
Then lugpu =¢hi>tte-¢h for all unitary operators u in M.

The proof of the above theorem will be divided into three



Step 1: M is finite,

Step 2: T(M) {t:ctélnt(M)} is dense in R,
Step 3: The general case.

In order to prove Step 1 we assume M 1is finite and that
$,4,a,b satisfy the above conditions (i) and (ii). Since M has
a faithful normal state it also has a faithful normal tracial

state 1. There exist two positive operators h and %k affilia-

ted with M such that
¢ = t(he) and ¢ = t(ke).

By the usual identification of M, and L!(M,1) the inequality

stated in Theorem 3.1 is equivalent to
*
I uhu —kil]>llh—kll1

for all unitary operators uéM. To prove this we shall need

Lemma 3.2. Let M be a finite von Neumann algebra with a faith-
ful normal tracial state <t and let h,kéM Dbe two positive ope-
rators with bounded inverses such that
(i) h and %k commute and ah<k<bh,

(11) with o = 5(n-), spa n(E2) = (1}.

Then Huhu*wku1>uh-knl for all unitary operators ugM.

Proof. The modular automorphism group asociated with ¢ is, see

[10],
ci(x) = hltxh—lt, XEM.,
Moreover M acts standardly on L?(M,t). Let Sp(c¢) denote the

Arveson spectrum of the one parameter group c¢. We shall con-

sider Sp(c¢) as a subset of the multiplicative group R _. Since



h is bounded and has bounded inverse, OéSp(A¢) and therefore

Sp(c¢) = Sp(A¢).

By [10] if J 1is the conjugation on L2(M,t) defined by o

such that JMJ = M', we have A¢ = th—1J. We first assume M 1is

a factor; then

sp(s,) = sp(h)«Sp(h) .

By condition (ii) we therefore get that if u1,u2€Sp(h) and

u1>u2 then

Since Sp(h) 1is a compact subset of (0,») it follows that
Sp(h) is finite.

By (i) we have k = mh, where mM commutes with h, and
al<m<bl,

By continuity it is enough to prove the inequality
"uhu*~k"]>"th"1 in the case when the spectrum of m is a finite
subset of the interval [a,b]. 1In this case X also has finite

spectrum, and h and %k have a "joint diagonalization"

? ?

h = X.p., = , BLPL

i=1 L i=1 1t 1

where P1""'Pn are nonzero orthogonal projections with sum 1.

By permuting the indices {1,...,n} we may assume that

?\]>7\2>...>7\n.

Let ;1<12<...<lq be the values of i for which Ki>ki+1f ’By

permuting the indices inside each of the qg+1 sets on which the



xk's are constant we may also obtain that

Y . . 2402 P ) ' P »

1 1 2

However, since

and since by (i)
LSA LS .
a“l Kl bul.
we also have

Bo ZH. b 2R rreo by U,
i 11+1 i, 12+1 1q+1 lq

Hence by the extension of Powers' result mentioned in the intro-
duction, we get

" n
luhu =kl > ]

l_1lxi-ui|r(pi) = Ih-kil,

for all unitary operators u€M. This completes the proof in the

case when M is a factor.

Let now M Dbe general, and let T:M > Z Dbe the center
valued trace on M, where Z denotes the center of M. For every

pure state w on 2

T = woT
w
is a (possibly nonnormal) tracial state on M. Put
I = {xeM:t (X x) = 0}.
Tw w
Then Iw is a maximal ideal in M, and
M, = M/T

w

is a finite factor, see [9, Ch. II]. The tracial state on Mw

will also be denoted by T, Let L be the quotient map



mw:M - Mw' put

hw=7\2w(h): ku):“' (k),

and put o, = ° (h «). By Arveson's definition of Sp(c¢)

w , See

[1], we have |
ff(t)hltxh~ltdt = 0 for every xtM

—30 |

d>) = ¢, where the Fourier transform

if feL'(R) and supp(¥)nsplo
£ of f 1is considered as a function on (R+,-). Since t » hlt
is norm continuous it follows that under the same condition on f,

m L] 1
ff(t)hjtyh;ltdt = 0 for every yeM .
—c0

¢
Hence Splo ) « Sp(c¢). Therefore h and k  satisfy the

conditions of Lemma 3.2, so by the first part of the proof

Ivh v =k I,>1h =k 1
w w 1 w w1l

?

for every unitary véM . By the spectral theorem Z C(Q). Thus
. . g s A .
if v 1is the probability measure on Z which corresponds to the

restriction of t to Z, we have for xeM:

t(x) = 10T(x) = fton(x)dv(w) = ftw(x)dv(m).

2 %

Hence for any unitary operator u€M,

* *
huhu' -k, = fﬂnw(u)hwnw(u) —kwu1dv(w)

p

> fuhm—kwn]dv(w)
p)

= Jh-kl ..

1

This completes the proof of Lemma 3.2.



Completion of Step 1. To complete the proof of Theorem 3.1 in the

case when M 1is finite we need to extend Lemma 3.2 to the case
when h and k are (possibly unbounded) positive operators in
L1(M,t) with trivial nullspaces.

Let Py be the spectral projection of h corresponding to
the interval [%,n], néN. Then h = ph and k_ = p k satisfy
the conditions of Lemma 3.2 with respect to the von Neumann alge-
bra pnMpn. For every unitary wM we can find a sequence of
partial isometries unem with support and range projections equal
to p_ such that u_ =+ u in the strong-* topology (for instance
write u in the form u = exp(ia) and put u = pnexp(ipnapn)).
Then

fuha” ~kl, = limlu h o -k I
nnn n

1 1
r-»w

> limth -k | = lh-kl .
n nl 1
n->w

This completes the proof of Step 1.

Step 2. For any faithful normal positive functional ¢ on a von

- #
Neumann algebra M we let u-u¢ be the norm

L
! xllﬁ = 4 (l/z(x’k x+xx* )) 2.

Note that if ¢ 1is a state and u 1is unitary then Huuz = 1,

Lemma 3.3, Let M be a von Neumann algebra for which T(M) 1is
dense in R. Let ¢ be a faithful normal state on M, and let u
be a unitary operator in M. For every >0 there exist a faith-
ful normal state w on M and a unitary operator veM such that
(a) ¢ and w commute, |

(b) M, =M,

U]
(c) veEM and uu—vn#<e.
w U]



Proof. Let 62>0., Since the function t =» ci(u) is strong=*

continuous there is t1>0 such that ‘
O ¢y ray # |
hoy (u) ulf <6 for [tl<t,. '

Since T(M) is dense in R we can therefore choose to>0,

tOGT(M) such that

¢
Hct(u)—uﬂi<5 for [tlet,.

Let wéM Dbe a unitary operator such that
o (x) = wxw , X€M.
o

By [4, 1.3.2] w belongs to the center of M

. "Hence
6 N
# o= Y
Huw—wu"¢ = | u~wuw H¢<6.

Let Arg be the branch of the argument function on C~{O} that

takes values in the half-open interval [0,2r). Then for 6¢R

Arge(z) = Arg(e—lez)+e

is the branch of the argument function that takes values in

[6,2n+6). Put

a. = Arge(W), PER.

8
We shall show that 6 can be chosen such that

4 5
Huae-aeuﬂ¢<(2n6) .

Let H¢ denote the completion of M with respect to the

norm | Hﬁ. Let

* *
<x,y>§ = b (y xtxy )



- 17 -

be the corresponding inner product on M. Define a unitary repre-

sentation n of Z%2 on H, by

m
n(n,m)x = wixw

(the representation is unitary since w€M¢). By Bochner's theorem

o A
there exists a probability measure u on T2 = (z2) such that

< tuw ,u> fganﬁmdu(a,ﬁ).
T

Hence for any pair of bounded Borel functions f and g on T

£f(w)ug(w), f{f(a g(g)du(a,p).
T

From this eguality we obtain that

(1) (Mf(w)u-uf(w)ﬂf)2 = f{|f(a)*g(8)l2du(a,ﬁ)
T

for every bounded Borel function £ on T (compare with the

proof of Proposition 1.1 in [5]). In particular

f£|a—5|2du(a,ﬁ) = (nwu~uwﬂg)2<62=

T
Moreover,
(2) (llaeu—uaeng)2 = f{lArg(e_lea)~Arg(e-leB)Izdu(a.ﬁ)-
T
Therefore
1 2n # )
-— I 17)2ae ha,p)du(a,B),
> é (lagu-uagi?) ££ («,8)du(a,B)
where
o -i6 -18
h(a,8) = 5 [ |Arg(e Ya)-arg(e™* s ) |2a0 .
0

ic
e, 0<o<2n, we have

il

For a« = 1 and B8



- 18 -

Arg(e—lea) = 2n-6, 0<o< 27,
-i0 _ f}—e, 0<8<a
Arg(e B) = L?—9+2n, o< 21 °
Now the function
f(g) = 47 sin % - o(2n~0)

is continuous on the interval [0,2n] and f£(0) = £(2=n) = 0,

Moreover, its derivative

is positive for 0<s<m and negative for n<o<2n, because ¢os

is concave on [0,n] and convex on [=n,2n]. Hence

4n sin % - o(21-0)>0 for O0<g<2x,

We therefore find

io __1 S 2 27';2
h(l,e”) = T (f[(2n-0)2de+[ o2d6)
0 o
= g(2n-0)

< 4n sin %

= 2n]1-"7].
Thus
h(1,8)<2n|1-8|, BET.
it it
x,e

It is clear that h(e , B) = h(a,B), tE€R. Therefore

na,p) = h(],%)<2n|1— %} = 2n|a-B|, a,pET.

Using that u(1) = 1 we therefore get

oja



A

("aeu—uae

mn

1 #12
5 u¢) de

O —N

2nf[|a=p|dp («,B)
2

< 2n<fgioc—fslzdu(aa,s))’*2
T

= 271l wa-uwl

#
¢
< 2nb.

Hence we can choose 6¢[0,2r) such that with a = a

(Hau—ua"§)2<2n6.
For 6],62€R, Iélcl-é162|<|61-dzl- Using formulas (1), (2)

and the fact that a = Arge(w) we therefore have

Hexp(isa)u—uexp(isa)ng =

(4“[|exp(:'le\.rc_:;e(oc))—exp(isArge(B))|2d\u(oc,ﬁ3));i

Ta

|51 (/[ 1arg, (a)-Argy (¢) |2du(a,p))
T

#

[s]"au-uaﬂ¢,

]

for all se€R.

Put h = exp(%—a) and
0

w(x) = -—l:T— ¢(h—1x). XEM.

¢(h )

Since w belongs to the center of M¢ so does h, Therefore w

is a faithful normal state on M, w commutes with ¢, and

M <o M

Moreover, we have

ci(x) = hqltci(x)h = cﬁ(h— xh™ "), =xEM.



- 20 -

. it . .
Since h™ 0 = w we get in particular

w

cto(x) = x, X€EM.

Therefore we can define a conditional expectation Ew of M onto

Mw by
1 Yooy
E (x) = — [ o.(x)dt, x€M.
w = 0 t
. -1 it . -it
Since ct(u)—u = ci(h ltuhl —u)+ci(u)—u, and since h T- =
.t
exp(-i toa), we get for O<t<t,,
W o # -it it_ 4 o) o #
Hdt(u) uu¢ < Ih uh uH¢+H6t(u) uH¢
= | h’ltu—uh"ltng‘ﬂl c‘i(u)—uui‘
t #
< —l au~-ual’7+8
to u-u (b
1
< (2m8) *+5.
Therefore we also have
1
IIEw(u)-ullz<(2né)6+6.

Put vy = Ew(u) and &' = (Zné)%+6. Since M, is a finite von
Neumann algebra the partial isometry in the polar decomposition of
y can be extended to a unitary operator vGMw. Clearly

y = v]y| = ly*]v. Using the inequality (1-t)2<1-t2 for t€[0,1]

we get

Il

o ((v=y)" (v=y)) = ¢ ((1-]y])2)<s (1-]y]?),

and
o ((v=y) (v=y)") = 6 ((1=]y" [12)<6 (1=]¥ |2),
Hence
(1 v—yllﬁ)2<1§¢(2—y* v-yy ) = 1-(I yllz )2,



On the other hand

# # # '
Eyt 7 st an? =nu-yi7>1-5".
yly2huly=tu=yl >1-6
Thus
(Hv—y"§)2<1—(1—6')2<26'.
Therefore
1 . l/
I u—vll§<ll u—ylig+lly—vlli<6 (26 ') 2.

Since 8 was arbitrary we have proved Lemma 3.3.

Completion of step 2. Assume that T(M) is dense in R. Let ¢

and ¢ be commuting faithful normal positive functionals on M

such that there are positive real numbers a and b with

ap<Y<bo,

and such that

We shall prove that

Hugu' =41 > 1 6=l

for every unitary operator uéM. Clearly it is enough to prove
the inequality for a strongly dense set of unitaries. Hence by
Lemma 3.3 we may assume that there exists a faithful normal state
w on M ¢ and v commute, M¢ ot Mw, and such that uEMw. Let

¢] and ¢y be the restrictions of ¢ and ¢ to Mw. Since

woci = w, Mw is a oi—invariant subalgebra of M, and therefore
cil is simply the restriction of ci to Mw. In particular
Sp(A. ) = sp(a ),
o ¢
hence

a
Sp(Aq)l) N (b,



We have ¢ = ¢(me) for some positive operator méM,. Since

¢

M¢ < B%, ¢y = ¢1(mw), so ¢, and p also commute. Clearly

a¢]<¢]<b¢], so by step 1

) ud>1u*-q)]”>llqb]—¢] .

Let Ew:M > Mw be the conditional expectation for which

onw = w. Since ¢ and ¢ can be written in the form
¢ = wihe), o = wike),

where h and k are positive operators affiliated with Mw' we
have
p = ¢10E p v = (b1OEw'
Therefore
- = =/ 3 = -
o=t 11(@1 Q])OEU)” l|¢] q,]n,
which implies that

Fupd ~ol >0 o=-ol .

by

This completes the proof of step

Step 3. Let now M ©be an arbitrary von Neumann algebra and let

¢ and ¢ be normal positive functionals on M which satisfy the
condition of Theorem 3.1. We can assume that M acts on a
Hilbert space H with a zeparating and cyclic vector 50 such
that ¢(x) = (xéo,go), *€M. Let G Dbe a countable dense subgroup

of R and let

N = Mx G
o0
be the crossed product of M with the discrete group {ci:tEG}
of automorphisms. N is the von Neumann algebra on 22(G,H)

generated by =wn(M) and Ar{G), where



(m(xie)(e) = o
(Mg (el = ¢

For this and the fcllowing €
o)

also [11]. Since & iz dis

ditional expectation = of

i

[0}

Put ¢ = ¢on oe. Then

Morecover, ths

"" ! Lo
is cyclic and £
by
and
cow
LA & @
o
it
where A is WL

ER
T
=]
Az

b ; \
U?{yf AT
T
Hence G < T{N}, vhence TN
applicable. Since & ig
)
clear that sp(a } = =pia 1,

<y P
LxiE

23 -
(ty, =xeM, E€2?2(G,H),

5€G, E€R2(G,H).

he reader may consult [7] and [3], see
crete theve is a faithful normal con-
N w{M} such that
_ gwfzﬁ s = 0
s 5 % 07
is trhe "dual weight" of ¢, so we have
0 . ;
TR 3 I ze M,
5€ 6.
oL Lf =0
} T
|0 it & 0
a
B
(vEnrEpds  yEN,
Tt s a0
poELEr, £€2°(G,H),
TEe3naTL T EOU
it foilows that
TS ER N £€G, VYEN.
iz dense in R, and step 2 1is
st an amplification of A¢ it is
o alea




Put E = won—]oe. Then clearly aE<$<b~. Moreover one verifies
easily that

- 4 -

T 0e00, oLO0T oe

Indeed, it is easily checked that the formula holds on elements in

N of the form A(s)n(x), s€G, xtM. Since ¢oci = ¢ it follows

~
~

that Eoci = a, i,e. ¢ and 5 commute. Therefore $ and a
also satisfy the conditions of the theorem, whence by step 2 we
have
~ % o~ ~ o~
Nvov =Gl >l o—¢l

for all unitaries veéN.

Let wéM Dbe a unitary operator. Then

n(w)en (u) -7 = (u¢ﬁ*—¢)0ﬁ_1oa.

Thus

Tueu =eh >0 (w)37 (W) =312 1F-01 = 16 —¢l .

This completes the proof of Theorem 3.1.

The proof of the main theorem follows from section 2 and the

following result.

Corollary 3.4. Let M be a o-finite factor of type IIIK, OsAg 1,

Then
1
. 1-A 72
diam(5,(M)/Int(M))> 2 T
T\ 2
Proof. For A = 1 there is nothing to prove.

Suppose 0<\<l1. Then we can choose a faithful normal state



- 25 -

¢ on M such that

Sp(a,) = [2»Mnez} u {o0}.

Thus Sp(A¢)ﬂ(K,A_1) = 1. Moreover, the centralizer M of ¢

¢
is a type II, factor [4, 4.2.6]. Hence we can choose a projec-
tion pEM¢ such that
1
6(p) = —.
T+\ 72
Put m = A “p+A 2(1~p)em¢. Then A21<m<A 1, and ¢(m) = 1, Thus

¢(x) = 6(mx), xEM

defines a normal state on M such that ¢ and ¢ commute, and

i -k
A2%6<¢sh 2., By Theorem 3.1 it follows that

®
fugu ~¢i >0 o—dl

for every unitary operator u in M. Let ¢1 and ¢1 be the

restrictions of ¢ and ¢ to M¢. Since ¢ is a trace on M¢
we can identify (M¢)* with Ll(M¢,¢1). Therefore
Y
lo-g1308 =61 = ¢ (|1-m]) = 2 ‘fXL,
14\ 2

proving the corollary when 0<ic<1.
Finally if A = 0 we can for every p€(0,1) choose a faith-

ful normal state ¢ such that
-1
sp(a )n(w,e” ) = {1},

As in [4, 3,2.7] one gets that the centralizer of ¢ 1is a type

111 von Neumann algebra with diffuse center. Hence we can choose

a projection p€M¢ such that

1
6 (p) = —.
T+A 2



Arguing as above we get that

L

2 ‘
diam(s, (M) /Int(M))>2 T, |
T4y 2

so in the limit as pu » 0 we find that the diameter is (at least)

11.

2. The proof is complete.
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