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OPERATOR ALGEB~~S ASSOCIATED WITH HNN-EXTENSIONS 

Introduction 

In [ I] we studied some properties of the reduced group c*-

algebra and of t.he group von Neumann algebra associated with free 

products of groups with amalgamation. One of the princpal tools in 

tJ1ese results \vas the implicit use of the natural under-

lying bipolar structure free products of groups with amalgama-

. A theorem of Stallings [8], in the generalized version of 

Lyndon-Schupp [ 5, p. 210] , states t.hat a group has a bipolar struc-

ture if and only if it is either a non-trivial free product with 

amalgamat (possibly an ordinary free product) or an HNN-exten-

sion, So, as conjectured to us by P. de la Harpe, it should be 

n<:rtural to expect that our 1r1ork in [ l] could be pushed to include 

HNN-extensions. 

The main purpose of this note is to establish the following: 

Theorem: Let B = <H,t;t-lAt=B,~> be an HNN-extension and 

~e that H has an element z such t~hat: 

zAz~l n A= {l} and z q B 

Then 
~k 

Cr(_G~)~-=i~s~s~i~m~p~l~e~-w~i~t~h __ a~-u~n_i~q~u_e~-t~r~a_c~i~a~l~. __ s_t_a_t_e __ a_n __ d ___ U_(~G_) 

is a rr 1-factor which does not possess property r of Murray 

and von Neumann. 

One should not.e that the conclusion of the theorem does not need 

to hold for all HNN-extensions: for example the group G c 

<s t;t- 1 st=s> is abelian and so c*(G) 
r 

is certainly not simple, 

neither is U(G) a factor. However, the conclusion of the theorem 

is true when G is a group having a presentation with at least 3 

generators and a single defin relation; this follows because, 
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[ 5 §IV" 5 and p. 293-294] , one can always view such a G 

a.s an HNI:J~-extension of a one relator group H which possess an 

element z satisfying a slightly stronger condition than(*). 

In a recent v1ork [ 2] , de la introduces the notion of a 

Powers group as a pass more natural definition than the one of 

satisfying Powers property". 1tJr~ conclude this note by 

how the groups cor:us in this note and in [1] can 

be seen to be Pov;ers groups" 

For notation not specif in. the seque 1, \r.Je refer to [ l] , 

v.1e also refer to for furlher refero:::n1ces and some more infor-

mation on the subjeci:. See also [ 2] . 

We are J.rtuch indebted to P. de la Harpe for his sugges-

and for us a preliminary version of [2]. 

reference about HNN-extensions is [ 5], from which 

we quote here some definitions and results. 

Let H be a group and let A and B be subgroups of H 

th w : l"' ,.;. B an :t smo 'The HNN-extension of H relative 

to A, B and ci? the group ven 

which we denote 

In the note, the letter h (or k), with or without subscripts, 

will denote an elemen·t of H. If h is thought of as a word, it 

a word on the gen-erators of H; that is h contains no 

occurences of 
+ l 

t- . The letter E (or o), with or without sub~ 

scripts, will denote or -1 . 
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A sequence ( n> 0) is said to be 

~ if there is no consecutive subsequence t-1 ,hi~'t \'lith 

h. E A or t, h . , t-1 with h. E B. 
~ J J 

One way to state the Normal Form Theorem for HtJN-e~tensions 

~B the following: 

i) 'I'he group H is embedded in G qy the map h _,. h. 

E E 

ii) If h0 t 1 ••• t n hn = in G where n ;;. I , then 

It is usual to be rather sloppy in formally distinguishing 

between a sequence and the product 
e 

•• t n h . So, if w is an element of G, a normal form of w is 
n 

E: IS 

any sequence h 0 t 1 ••• t n hn = w such that 
IS I e: n 

h 0 ,t , ... ,t ·,h , n is 

reduced. 

From the Normal Form Theorem one obtains that, if u and v 

E I e: fj 

G have no mal forms ho 
n h and k t 1 u = t ... t v ::;:: 

n 0 
0 

6 G t ~ m such that u = v in G, then n = m and e;. :::;: o. , 
1 ]. 

i =I, ... ,n. This allows to define the length of w, written lwl 
tor each element w of G, as the number of occurences of t±l 

in any nonnal form of w. If w E H, then I wl = 0. 

At last, if u and v in G have·normal forms ll = 

and 
fJ I fJ 

v = k 0t ... t ~m, one says that there is 

cancellation in forming the product uv if either e; = .-1 
n ' 

e:: = I. h k. O E B, and fJ I = -1 • n · n 
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Proof of the theorem 

element z such that 

zAz- 1 n A= { 1} ang z ~B. 

Observe first that ('l\ ) implies that z f/ A. Indeed, if z E A, 

then zAz-1 n A= { 1} implies that A • {I}, so z = l which is 

not compatible with z ~ B. 

We now define E c: G by 

E ""' { gEG-A} if g has a normal form 

then h 0 E H-A, or h 0 E A and e: 1:;= ... l}, 

and further, for l = 1,2, .•• , we define 

E G and ZJ. <::_ G by 

-1 
t ( z-1 t-1 ) ••• ( z""1 t-l ) CJ. -· t(tz) = and 

ZJ. = { gEG I CJ. g E E} • 

We are going to show that the z 's 
J. 

are pairwise disjoint subsets 

of G and that the following is true: 

For every finite subset F of G-{ l} and for every 

natural number N ~ one has that bJ. :fb;l y E Z;_ , 

(*'\) for all f E F, y E G-Z1 , J. E {I ( ••• ,N}, where, for 

j = !+max I fi, we have defined b;_ as 
fE F 

by_= (tz) 1 t-l(zt)j, 1 = 1,2, ••• ,N. 

This will show that G possess Powers prq:perty ( ( I] • [ 3]) wnich in 

turn will show the first assertion of the theorem. 

Lemma I: The ZJ. 's are pairwise disjoint. 

Proof: Suppose 1,.!' EN, 1' = 1+n where 

Then 
-..t, .... n I -~ 

c,t ,y::::: t(tz) y :c: t(tz) t- t(tz) y 

n E IN an.d y E Z 1 • 

-n ~ ;;;; t(tz) t- c,_y. 
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Since y E z1 , i.e. c1 y E E there can ~ np cancellation in 

forming the product of t(tz)-nt-1 and c1 y, so c1 ,y has a 
£ 

normal form c1 • y = th1 ••• t "bm , i.e. c..t. y f/ E, i.e, y f/Z..t, 

To ease our exposition we make the following definition; 

Let w f G. If w has a normal form of t~e following type: 

(I) zth 1 ••• hn ... J t-1 z ... l, n ll! 2. 

( 2) ( zt) P = zt zt ••• zt for a p E IN) , 

(3) (zt)-p = t-1 z-1 t-1 z-1 .nt-1z .... l for a p E IN), 

II 

(resp. 

( resp. 

(resp. 

(resp. 

(4) (zt)Ph = zt •.. zt h for a p E IN and a n E H .... A), 

(5} h(zt)-p = h t-1 z-1 ••• t-lz-1 for a p E IN and a 

h E H-A) I 

{resp. (6) h, where hE H-A), 

then we say that 

w is of type I, (resp. type 2), (resp. txee 3), 

( resp. type 4), ( resp. type 5), ( resp. type 6) ~ 

Lemma 2: Let w E G. If w is of one of t'he types 1 -6, then 

w(zt)-1 (resp. (zt)w) is of one of the types 1-6 unless 

w = zt (resp. w=(zt)-l.l· . 'I 1'. , ll 

' '· '·· Proof: If w is of type I ( resp. type 3), (resp. type 5), then 

w{zt)-1 , then w is clearly of type I (resp. t,ype 3) i (~esp. 

type 5). ', ! . ' 

If w is of type 6, then w(zt)-1 is of typen5,., 

If w is of type 4, i.e. w = (zt)Ph = (zt) ••• (zt)h for a P E 

and a h E H-A, then 

w(zt) ... l = (zt) .•. (zt)h t ... 1z-1 • 

IN 
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If 'h E , then w(zt)-1 is of type I. 

Othendse, h E B-{ I}, let h = .p-1 (h) = tht""l € A-{ I} • Then 

) impli~s that zhz- 1 E H-A, which giVE:l~ that w(zt,)-1 is of 

type 6 if p = l or of type 4 otherwise. 

If w is of type 2, then w(zt)-l is of type 2 unless w ::::: zt. 

We can proceed in the same way for ( zt) w. 

II 

Lemma 3: Let r = zt E G. For mE~ u{o}, let P(m) be the 

following assertion: for all g E G ... { I}, such that 191 = m. 

one has that m+l - (m+l) 
r g r is of one of the types 1~6, 

Then P(m) is true for all mE N U{O}. 

Proof: 

i) Let g E H-{ 1}. Then rgr-1 = ztgt~lz-1 is of type l if 

g E H~B. If g E Be then set g = ~-l(g) ~ tgt-1 E A-{ I}; 

(*) implies that zgz-1 E H-A, 'Which gives that rgr- 1 is 

of type 6. Thus P(O) is true. 

ii) Suppose g E G-{i} has a normal form g = k 0t k 1 , so 

If k 1 E H-B, then r 2 gr-2 is clearly of type 1 . 

Suppose so that k 1 E B and set i 1 = ~-1 (K 1 ) = tk 1t-l E A. 

Define then g' =kat k 1t-lz-l = k 0'k 1z-1 E H. 

If g' = I then r 2gr-2 = zt, i.e. of type 2, else as in i} 

we obtain that zt g't-1 z-1 is of type I or of type 6 which 

gives that r2gr-2 = ztzt g't-lz-l is of type I or of type 4. 

If we suppose so that g E G-{ 1} has a normal form g = 
k 0t-1k 1 , we can proceed in the same way ~nd obtain that 

r 2gr-2 is either of type l, type 3 of type 5. 

Thus P(l) is true. 
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iii) s P(m) is true for mE I.N and let g E G-{ I}, 

lgl = m+l, have a normal form 

He consider 

m+2 -(m+2) r g r 

If there is no cancellation 

t l € +I 
g = K 0 t k I • • .l<m m km+ I 

forming the product (zt)g 

and forming the product g r.&~lz-1) m+2 -(m+2) , •- , then r g r 

is clearly of type l . 

- If there is cancellation in forming (zt)g, that is we have 

£ 1 =~I and k 0 EB, thenset k:0 =1f>-l(k0 );=tk0 t-1EA 

and define k' = ztk0 t-1 k 1 = zk0 k 1 E H. Furthermore, define 

1 = ( zt) g E G, so I g' I = m and g ':f I • 

Now we can use that P(m) is supposed to be true to obtain 

that 
m+ l , "~ ( m+! ) 

r g r 

m+2 2 and r g 

is of one of the types 1-6. Since 

-(m+2:) ( m+l , -(m+l ))( t)-1 't r = r g r z , 1 

follows from Lemma 2 that rm+2g r-(m+2 ) is of one of the 

types 1-6. 

~If there is cancellation in forming g(t-,..lz-1 ), we can define 

g" = g(t-lz-1} and proceed the same way. 

Thus we have shm,rn that P (rn+! ) is true and the proof of the 

lemma is achieved by induction. 
II 

Lemma 4: Let F be a finite subset of G-{ 1} and let 

j = l+maxjfi. Then (zt)jf(zt)-j is of one of the types l-6, 

for all f E F. 

Proof~ If f = (zt)p (resp. f=(zt)-p) E F for a p E ~. then 

(zt)jf(zt)-j is obviously of type 2 (resp. type 3). Otherwise, 

the result follows easily from Lemma 3 and repeated use of Lemma 2. 

II 
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has: a no:r:Tttal form 

So 

sa_t::t 

6] 

~ !_ 

E 

..,.,._., l 

i 



E 

g E E, so g has a normal form ... t ~ where 
n 

E or h 0 E A and El = -1 

We v;ant to show that. 

which will imply that 

i.e. ii) is true. 

( tzt- 1 z- 1 e- 1 ) ( tzt-l) = tzt-1 t~ 1 11 three '"end" with t-1 , there 

can be no cancellation ~g or (~- 1 o:)g. Further-

more, the cancellat that rnay occur in a go: -l , p g~ -1 or 

ll up" the whole thing. 

s "' with t ' s 0 w i 11 0: go: -1 ' 

and •ve are done. 

a sample, we shmv that 

If g ""' 11 0 E H-A, then ~ g~ -l has a norrnal form ~ g~ -l = 

tztz~lt- 1 h0 tzt-lz~lt~l, so p 

Suppose lgl = n;.l. 

~ve have that 

As pointed out above, s 

there can be no cancellat:.ion in 

or E A and £ l = - I , 

If there is no cancellat.ion in forming g~ - 1 either, then clearly 

~gp-l EE. 

Otherwise, we must have that € = -! and h E 
n 

so let 
n 

k' = ~(h ) = t-1h t and h' = n n n n 

[Before going further it may be ful to have the following 

picture in mind: 
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n=2 tztz~l t.~l h t t:: i '"._, 
·, 0 ! 't 2 

' ', 

n>3 

The arcs ar'? ment:. there 

is cancellatlon at 

If n = ·then 

Suppose now n > 2 .. 

no c.::ncz n-Ih, then 

has a norrna1 form 

r~~- "h ~ ot.herv;1.se vle must 
n~ 

have that En-l ""' 
= ¢ ~1 (h' ) ::::: 

I n-1 

and 

If n = 2 then has a normal form = .... ':>:t..,.- 1 t- 1 h' t-1 1_.,_. .w 0 

Suppose at last n) 3e 

If there is no cancel in then 

~g~-1 has a normal form 
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Otherwise we must have En_ 2 = I 

k~_2 = $- 1 (h~_2 ) = th~_2 t- 1 and 

has a normal form 

and h 1 2 E B, so let n-

E E 
~g~-l = tztz-It-1h 0t 1 ••• t n~Jh~_3 if n > 3. 

~ g~ -1 

Thus in all the possible cases that may occur, we see that 

[The corresponding pictures for o:go:-1 and ~-lo:ga-1 ~ are as 

follows: 

For o:go:- 1 : 

E 

n=l tzt-l,h0 t 1h 1 tz-;.t-1 
..... / ---

n>2 
E I E n-1 E 

tzt-l h t h t h t ~ t -lt-1 
0 • • • n-2 , n-1 · n z " / ' / 

" 
..... .., / 

" / 

' ..... ..... 
- - -For 

n=l 

n=2 

.._ ----
n>3 E I E n-2 E I E ] h 0t ... hn_ 3 t h t n- h t n h ttz-1 t-11 

" n-2 ' n-1 n , · / ' ' ....... / / / \, -.,...-
........ '"":'-- ..... / / 

' ----- / ' / -- --- II 
(End of the proof of the theorem) 



.,. 12 .,. 

Remarks: 

I ) We are also able to prove that the coonclus:Lon ot the theorem 

is true if we replace (* ) by 

( * ' ) ( zAz -l ) n B = { l } , z (/ A and :?: t/ B • 

Since the proof follows roughly the same lines as in the 

above, we just mention the following: Give~ a finite subset 

F of G-{1}, then one can snow that (zt)jg(zt)~j has a 

normal form of one of the types zt •.. t-~z~lf (zt)P = zt ••• zt 

or (zt)P = t-1 z-1 ••• t-1 z-1 where j = 2+m~xl ~~; one then 
fE F 

defines E, c1 , z1 and b1 as before (with j=~+~axlflb 

for the last part one defines a and ~ as ~efore and one 

shows that G,...{J} =EU((ztz)-1 E(ztz)). 

2) A consequence of the theorem is thatf invoquing [7,Prop.l .6], 

any group which may be described as in t~e theorem contains no 

non-trivial amenable normal subgroup. This generalizes a 

result of Karrass and Solitar in (4] where they show that a 

group having a presentation with at least 3 generators and a 

single defining relation, contains no non~triv~al abelian 

normal subgroup. 

3) A group G is called a Powers grou:e in [2] if it satisfies 

the following property: 

Given a finite subset F c · G-{ I} and N E IN, there e:x;ist a 

partition G = Y .U z and elements bl , ... , bN in G such that 

a) fY n y = ¢ for all f E F 
i '··.: 

b) bKZ n b1 Z = ¢ for all k,i = I , • •• , N with k * 1. 
'"j i ' 
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Clearly a Powers group is a group possessing Powers property 

(back to old notation with Z,t = b,t Z). 

Let now G be a group given as in the theorem. We indicate 

how G can be seen to be a Powers group. With the same no~a-

tion as in the proof of the theorem, given a finite subset Fe 

G-{ I} one defines z = { gE G I ( zt) jg E E} where j = 1 +max If I , 
fE F 

y ::::: G-Z and b,t = (tz)J't-1 (zt) j for ,t = l , 2 , ••• 

Then a) follows easily from Lemma 4. 

Further, if 1 = k+n, where 1,k,n E IN, then bk1b1 = 
(zt)-jt(tz)nt-1 (zt)j, and thus (zt)jbklb1 g = t(tz)nt-1 (zt) jg, 

g E G. So, if g E Z, i.e. (zt) jg E E, there is no cancella

tion in forming the product t-1 ((zt)jg). This gives that 

(zt)j(bklb1 g) r/ E, i.e. bk_lb1 g r/ Z, and b) follows. 

4) If G = H*K is an amalgam possessing a blocking pair for A 
A 

in one of the factors of G, we can also show, using a result 

of [1], that G is a Powers group. 

Suppose {x 1 ,x2 } is a blocking pair for A in K and 

a E H-A. Set r = ax 1 and s = ax 2 • Given a finite subset 

F c G-{1}, define Z = {gEGI srjg has a normal form which 

begins with an element of H-A} where j = !+maxi fl, Y = G-Z 
fE F 

and 
1 2 . 

bl = r s rJ, J. = l, 2, •.. 

Then a) follows now from [I ,Lemma 2] without difficulty. 

Further, if 1 = k+n, where 1,k,n E N, then b- 1 b g = k 1 
1 n-1 j 

(x2 x 1 )ar s sr g, g E G. So, if g E Z, i.e. g has a 

normal form where g 1 E H-A, we see that 

srj (b- 1 b g) has a normal form which begins with 
k ! 

(since {x 1 ,x2 } is a blocking pair fQI;" A inK), so 

and b) follows. 

x2l E K-A 

bklb" g r/ z 
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5) Using a more geometrical approach, P. de la Harpe has obtained 

in [ 2] some results which are nearly related to those obtained 

in this note. He also gives other examples of Powers groups. 
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