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OFPERATOR ALGERRAS ASSOCIATED WITH HNN-EXTENSIONS

Introduction

In [ 1], we studied some propaerties of the reduced group c* -
algebra and of the group von Neumann algebra associated with free
products of groups with amalgamation. One of the princpal tools in

ining these results was the implicit use of the natural under-

oot

o

lying bipolar structure of free products of groups with amalgama-
tion. A theorem of Stallings {8]; in the generalized version of
Lyndon-Schupp [S,p.BEQ], states that a group has a bipolar struc-
ture if and only if it is either a non-trivial free product with
amalgamation (possibly an ordinary free product) or an HNN.exten~
gion. So, as conjectured to us by P. de la Harpe, it should be
natural to expsct that our work in [l] could be pushed to include
Hi-extensions.

The main purpose of this note is to establish the following:

Theorem: Let B = <H,t;t”lAt=B,®> be an HNN-extension and

guppoee that H has an element 2z such that:

{x) zhz=l na ={1}] and =z ¢ B

x .
Then C _(G) is simple with a unique tracial state and U(G)

is a Hlufactor which does not possess property TI' of Murray

and von Neumann.

One should note that the conclusion of the theorem does not need
to hold for all HNN-extensions: for example the group G =
<g,t:;t"lst=s> is abelian and so C;(G) is certainly not simple,
neither is U(G) a factor. However, £he conclusion of the theorem
is true when G 1is & group having a presentation with at least 3

generators and a single defining relation; this follows because,



as shown in [ 5:§IV.5 and pv@9?m294], one can always view such a G
as an HNH-asxtension of a one relator group H which possess an
element =z satisfying a slightly stronger condition than (x).

In a recent work | 2]. de la Harpe introduces the notion of a
Powers group as a ponssibly more natural definition than the one of
a "group satisfying Powers property". We conclude this note by

in this note and in [1] can

ied in the sequel, we refer to [ 1],
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For notation not sp

witich we also refer tc for further references and some more infor-

) s P [ I
mation on the subject. See also [ 2].
We are very much indebted to P. de la Harpe for his sugges-

=

tions and for sending us a preliminary version of [2].

Preliminaries

Our basic reference about HNM-extensions is [5], from which
we gquote here some definitions and results.
Let H Dbe a group and let A and B be subgroups of H

with ®: A + B an izomorphism. The Hill-exteusion of H relative

to A, B and @& i1is the group ¢ given by

G = <H,t; t~lat=e(a), acA>,
which we denote by G = <H,t; t71at=p, &>,

In the note, the letter h (or k), with or without subscripts,
will denote an element of H. If h 1is thought of as a word, it
is a word on the gensrators of H; that is h contains no
occurences of ti‘. The letter e (or 8), with or without sub-

scripts, will denote 1 or ~=1.



£ £
segquence hO s b E,hl,...,t n,hn (n>0) 1is said to be

reduced if there is no consecutive subsequence t“lihi,t with
hy € A or t,h,,t7l with hy € B.
One way to state the Normal Form Theorem for HNN-extensions
is the following:
i} The group H 1is embedded in G by the map h + h.

[ €

iij} If hO t l...t n hn = 1 in & where n > 1, then

€ €

ho,t l,a..,t n,hn is not reduced.

It is usual to be rather sloppy in formally distinguishing

£ £ €
between a sequence ho,t l,...,t n,hn and the product ho t ]..

&
Lot 1 hn' So, 1f w 1is an element of G, a normal form of w is

€ € £ €
any sequence hot Eo..t n hn = w such that ho,t ],...,t n,hn is

reduced.

From the Normal Form Theorem one obtains that, if u and v

€ £ 1o}
in G 'have normal forms u = ho t I.e.t n hn and v = kOt ‘..
)
oot mkm such that u = v in G, then n = m and e, = 6i ’
i=1l,...,n. This allows to define the length of w, written |w]|,

+ 1
for each element w of G, as the number of occurences of t

in any normal form of w. If w € H, then |w| = 0.

At last, if u and v in G ‘'have normal forms uy =

€ € 5 )
1 .
ho t }...t n hn and v = kot ...t mkm » one says that there 1s

cancellation in forming the product uv if either En = -1,

hmko € A, and 61 =1, or if e = 1, hnko € B, and él = -].



Proof of the theorem

Let G = <H,t; t-lAt=B,®> and suppose that H has an
element = such that
{*) zAz=l n A = {1} and =z ¢ B.

Observe first that (*) implies that =z ¢ A. Indeed, if 1z € A,
then zAz"! n A = {1} implies that A = {1}, so =z = 1 which is
not compatible with z ¢ B.

We now define E < G by
€ €

- ~ - i n,
E = {géGuA} if g has a normal form g = hot N n

then h, € H-A, or h, € A and e,= -1},
and further, for & =1,2,... , we define

<y € G and Zk < G by

; -2

¢, = t{tz) = t(z-le-l)y...(z"'t~l) and

Z, = {thickg € E}.
We are going to show that the Zx's are pairwise disjoint subsets

of G

(%)

This will

turn will

and that the following is true:

For every finite subset F of G-{1} and for every

natural number N > | one has that blbeIY € Z

’

L

for all f¢€¢ F, y€ G-2, , & € {t,...,N}, where, for

j = l+max |£[, we have defined b, as
feF
b, = (tz)' e l(zt)?, 2 = 1,2,...,0.

show that G possess Powers property ([ 1],[3]) which in

show the first assertion of the theorem,

Lemma l: The Zl's are pairwise disjoint.
Proof: Suppose 1,1' € N, 2' = 2+n where n€ N and vy € Zk.
Then ¢y,y = t(tz)-l y = t(tz)qnt“lt(tz)—ly = t(tz)_nt'lcly.



Since y € Z i.e. c,y € E there can be no cancellation in

2 1
forming the product of t(tz)-nt‘1 and C,¥» 80 Cp,Y has a

€
|y = th] --ot ]nhm ’ i-e. Cx |y 6/ E, itel Y dzll .

|

normal form Cy

To ease our exposition we make the following definition:

Let w € G. If w has a normal form of the following type:

(1) zth ...h t=! z=1, n> 2.

n-1
(resp. (2) (zt)P = zt zt...zt for a p €N,
(resp. (3) (z2t) P = ¢-lg-le-lz-1, ¢-12-1 gor a p € N),
(resp. (4) (ztPh=zt...zt h fora p€ N and a h € H-A),
(resp. (5) h{zt) P =n t1z-1...t"1z=! fora p€ N and a
h € H=-A), |
(resp. (6) h, where h € H-A),

then we say that

w is of type |, (resp. type 2), (resp. type 3),
(resp. type 4), (resp. type 5), (resp. type 6).

Lemma 2: Let w € G. If w_is of one of the types 1-6, then

w(zt)~l (resp. (zt)w) is of one of the types 1-6 unless

w = zt (resp. w={zt)~!).

Proof: If w is of type 1 (resp. t&pe 3), (resp,‘EyﬁékS). then
w(zt)~l, then w 1is clearly of type | (resp. typej3)if(resp.

type 5).

If w is of type 6, then w(zt)~l is of type 5. a

If w is of type 4, i.e. w = (zt)ph = (zt)...{zt)h for a p€ N

and a h € H-A, then

w(zt)=! = (zt)...(zt)h t-1z-1.



if ’h”€ Hé§y then w(zt)~! is of type |.
Otherwise, if h € B-{1}, let h = 3~1(n) = tht-! ¢ A-{1} . Then
(x) implies that =zhz~! ¢ H-A, which gives that w(zt)~! is of
type 6 if p =1 or of type 4 otherwise.
If w is of type 2, then w(zt)~! is of type 2 unless w = zt.

We can proceed in the same way for (zt)w.

Lemma 3: Let r = zt € G, For m € W U{0}, let P(m) be the

following assertion: for all g € G-{1}, such that |g| = m,

one has that rm+lg r-(m+l)

is of one of the types 1-6,

Then P{m) is true for all m ¢ N U{O0}.

Proof:

i} Let g € H-{1}. Then rgr~! = ztgt~lz-! is of type | if
g € H-B. If g ¢ B, then set g =0~l(g) = tgt~! ¢ a-{1};

(x) implies that zgz~! ¢ H-A, which gives that rgr-! is

of type 6. Thus P(0) is true.
ii) Suppose g € G-{i} has a normal form g = kot Xk, » so

r?gr-? = zt zt kot k]t‘lz“lt“lzwl.

If kI € H-B, then r2gr—? is clearly of type 1.

Suppose so that k, € B and set i] = @“1(K]) = tklt"'1 € A.
Define then g' = kgt klt"lz"1 = koﬁiz‘l € H.

If g' =1 then rzgr‘z = zt, i.e. of type 2, else as in i) .
we obtain that zt g't-lz-l ig of type | or of type 6 which
gives that r2gr~? = ztzt g't~lz-l is of type | or of type 4.
If we suppose so that g € G-{1} has a normal form g =
kot‘lk] ., We can proceed in the same way and obtain that
r?gr=2 is either of type |, type 3 of type 5.

Thus P(l1) is true.



iii) Suppose P(m) is true for m&€ N and let g€ G-{1},

£ €
. i . _ 1 m+1
lgl = m+l, have a normal form g = Kot kyeeok o ko -
We consider
g
f =
m+2 -(m+2) m 1 €t 1 l,=14e=1,-1,."M
r T = ¢ ztzt kot k¥@@°k t km+l t™rz7 ez e

If there is no cancellation in forming the product (zt)g

R . - {(m+
arnd in forming ths product gi{t=lz~l), then rm+2g r (m+2)

is clearly of type I.

- If there is cancellation in forming (zt)g, that is we have
e = e ’ = Py = -1 = -1
e i and k, € B, then set k5 = @7 (k,) = tkyt™ € A
and define k' = ztkot'ikl = ziok1 € H. Furthermore, define
€2 e
) 2 ;
g' = %'t “...t k.. = {ztig e G, so |g'] = m and g's 1.

How we can use that P(m) is supposed to be true to obtain

m+l , ~{m+l)

that g'n is of one of the types 1-6. Since

lgl » 2 and rm+2g r_(m+2) = (rm+]g‘r-(m+‘))(zt)‘l, it
follows from Lemma 2 that rm+2g r_(m+2) is of one of the
types 1-6.

-~ If there is cancellation in forming o(t~!2z-l), we can define

g" = g{t~lz~l} and proceed in the same way.

Thus we have shown that P{(m+!) is true and the proof of the

lemma is achieved by induction,

|

Lemma 4: Let F Dbe a finite subset of G-{1} and let

j = l+max|£|. Then (zt)?f(zt)” ) is of one of the types 1-6,

for all f ¢ F.

Proof: If £ = (zt)P (resp. f=(zt) P) ¢ F for a p € N, then
(z£)d£(zt)7 )  is obviously of type 2 (resp. type 3)}. Otherwise,

the result follows easily from Lemma 3 and repeated use of Lemma 2,
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Let now g ¢ B, so g has a normai form g = hOt S nhn where
h, € H=&, or h, € A and & = =].
0 Ly O 0 an

We want to show that
aga“l, Bgﬂ“l, 5"1aga“18 g B

which will imply that

i

G, (BER“'INE = ¢ =znd («Be=l)n(pE-!) = &,

£

(¢Ea=!inm

i.e. i1} is true.

w«, B and B'la =

The clue here is to observe that,

{tzt-lz=le=-ly(tzt=t) = wge-le-d and" with t-!, there

can be no cancellation in forming ¢y, Bg oOr (B“la)g. Further-

more, the cancellations in aga“l, BgB“l or

L o= ) e 1 Iy n T . I T EF [ T, B 3

B yge T will always stop bifore Teating up" the whole thing.

5 =1 -1

*hegin” with +, so will aga™",
ggp=l and B-lage=lp and we are donsa.

As a sample, we show that Bop~t 4 ®.

If g = ho € H-~&4&, then Bg6”1 has a normal form BgS‘l =

e R S cep=1 5 T
tztz~le ln ezt~ ezl e, s pygpt 4 =

[ 45]

| = n»t.

0 O

Suppose |

We have that

B P i . i . . -
Bgp~! = tzitz=it~in t ‘n ...k & h tzt~lz-le-l,
| I T

As pointed out above, szince h, ¢ H=&, or h, € &2 and e, = -1,

there can be nco cancellsat

=

on in rorming Bg.

If there is no cancellation in formii

&
O
wm
I
A

0]
H.
F
=
0
[
ot
5
o
]
0
|_.J
o
Q
K
H
N

Bgs~! €E.

Otherwise, we must have that ¢ = =-! and h_ € A, so let
[ Y omm gl . S VO T 3 Tt o

L3 ¢(hn) t hnt and h’ . kizZ

[Before going further it may be helpful o have the following

picture in mind:



n=2 tzez=te=l p

[ |
. 1tT  then

herwise we must

R R T el

pgp=l = tzts

have that e_ . = 1 ond < g own let kI, o= 97H(h! ) =

th%mitml and h' ==

pgp =t = tzezlemlnet.

&

If n =2 +then Bg{%“1 has a normal
Suppecse at last n » 3.

If there is no cancellati

BeB“l has a normal form




Otherwise we must have ¢ =1 and h' € B, so let
n-2 n-2
) - -] ' = ' -] 1 = ' -1
has a normal form
BgB"l = tztz'lt'lhé if n =3 or

€ E
BgB™l = tztz lt7Ingt Lo ? 3hé_3 if n > 3.

Thus in all the possible cases that may occur, we see that
Bgp~! ¢ E.

[The corresponding pictures for age~! and B~ lage~lB are as
follows:

For aga~l:

£
- -1 1 -1,-1
n tzt '\?Ot hl t%’,t
1 € ®n-1 Enh1 14-1
n» 2 tzt™® h,yt "'Pn—Zt h .t h, tf’ t, .
~ ~e— _ - 7
\\\ //
For B~ laga~!p: -7
——
n=| tzt~lt=! h t 'n ttz"lel
———— AN \\O ]’/ /
\\ -—_ - P
1,-1 L €2 14-1
n= tzt71 7l hot (hyt “hy ttz7le
~N N . - Vd
~ //
1 1' E] €n°2 En-—l en ' 1 1
n>3  tzt™lt7h hgt L.h ot TTh ot T h it U h gzl
\‘ ~ ~ 7 /
AN ~ \‘_/ P /
\\ \\\‘_——// 7
~N -~
~ -
\\ //

(End of the proof of the theorem)



Remarks:

1)

2)

3)

We are also able to prove that the coonclusion of the theorem
is true if we replace (x) by

(') (zAz=l1)nB ={1}, z¢ A and z ¢ B.

Since the proof follows roughly the same lines as in the
above, we Jjust mention the following: Given a finite subset
F of G-{1}, then one can show that (zt)jg(zt)'_j has a
normal form of one of the types zt...t~lz-l, (zt)p = zt,..z2t

or (zt§) ¥ = t-lz-!...t-1z-! where j = 2+max|f|; one then
fe P

defines E, S, Zx and b’Q as before (with j=2+max| f|);
for the last part one defines a« and B as before and one

shows that G-{1} =EU ((ztz)~-lE(ztz)).

A consequence of the theorem is that, invoquing [7,Prop.l.6],
any group which may be described as in the theorem contains no
non-trivial amenable normal subgroup. This generalizes a
result of Karrass and Solitar in [4] where they show that a

group having a presentation with at least 3 generators and a

'single defining relation, contains no non-trivial abelian

normal subgroup.

A group G is called a Powers group in [2] if it satisfies

the following property:
Given a finite subset F < G-{1} and N € N, there exist a

., b in G such that

N

partition G = Y Z and elements bl"

a) fYynyvy=¢ for all f € F

b) sz N blz =@ for all k,2 =1,,.,,N with k # &.



4)

Clearly a Powers group is a group possessing Powers property

(back to old notation with ZQ = plz).

Let now G be a group given as in the theorem. We indicate
how G can be seen to be a Powers group. With the same nota-
tion as in the proof of the theorem, given a finite subset F <

G-{1} one defines Z = {geG|(zt))g ¢E} where 3§ = l+max|f|,
feF

Y = G-Z2 and bQ = (tz)xt‘l(zt)J for L. =1,2,... .

Then a) follows easily from Lemma 4.

Further, if 2 = k+n, where A&,k,n € N, then bi{'lbJZ =

t(tz) el (zt) Ig,

(zt) Te(tz)"t-1(zt) 7, and thus (zt)7bglp, g
g € G. So, if g€ 2z, i.e. (zt)Jg € E, there is no cancella-
tion in forming the product t-!((zt)Jg). This gives that

(zt)J(b;lbxg) d E, i.e. bilbxg ¢ 7, and b) follows.

If G = HzK is an amalgam possessing a blocking pair for A
in one of the factors of G, we can also show, using a result
of [1], that G is a Powers group.

Suppose {x],xz} is a blocking pair for A in K and

@« € H-A. Set r =ax, and s = XX, Given a finite subset
Fc G-{1}, define 2z = {gEGlsrjg has a normal form which
begins with an element of H-A} where 3j = l+max|f|, Y = G-Z

fer

and b, = 22, 0= 1,2,...

Then a) follows now from [1,Lemma 2] without difficulty.

Further, if & = k+n, where £,k,n ¢ N, then bilbzg =

-1 . .
(x‘élx])arn s srjg, g€ G. So, if g € Z, i.e. g has a

normal form g = PR where 9, € H-A, we see that
srj(bilblg) has a normal form which begins with le € K-A
(since {xl,xz} is a blocking pair far-A in K), so bilbxg g z

and b) follows.



5) Using a more geometrical approach, P. de la Harpe has obtained
in [2] some results which are nearly related to those obtained

in this note. He also gives other examples of Powers groups.
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