Quasi~symmetric Domains and Derivative of Curvature.,

§ 1. Introduction.

In [4] we characterized quasi-symmetric\domains among bounded
homogeneous domains using socalled Jj-algebras associated to
bounded homogeneous domains. The conditions were translated into
curvature conditions in [5]. In this paper we translate (some of)
the conditions in another way into curvature conditions: Symmetric
domains are quasi-symmetric, and they are characterized by the
vanishing of VR, the covariant derivative of the curvature. Now
quasi-symmetric domains are "almost" symmetric, hence we look at VR,
It turns out that some of the quasi-symmetry conditions in [4] are
equivalent to the vanishing of VR on certain subspaces. In all
of these papers a bounded homogeneous domain is called quasi-
symmetric if it is biholomorphic to a quasi-symmetric Siegel domain
in the sense of Satake [3]. For notation, facts and terminology

we refer the reader to [4] and [5], of which this paper is a sequal.

§ 2. Derivative of Curvature.

Let the bounded homogeneous domain D be described by the nor-
mal j-algebra ¢ = ’ﬁ+§ 'ﬁa = '6’+ j’g +2% (L2], 41, [5]). Here g
is identified with the tangent space Té@ to gD at a (chosen)base
point o.The covariant derivative V and the curvature R were

computed in [5]. We had (5], lemma 2)
e -
1) R(X,H) = a(H)vy for HER, XeR_,

where Vy operates an-gj as VyY = +{[X,Y] - (ad X)'Y - (adY)' X},

' being the adjoint with respect to the Bergman metric (,)
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n

TOED . To compute VR, we use the formula

on(,:]

2)  (IgRI(TW,2) = Ty {R(Y,W)21 = R(V4Y,W)Z - R(Y, V)2 - R(Y,W)742.

This is to be understood as follows: There is a (simply connected)
split solvable Lie group ,9 , with Lie algebra ¢f , acting simply
transit‘ively on @ (2], [5]). Hence we can identify & with§ .
The elements of (:7 are left invariant vector fields on g , and
transferring the Bergman metric to g , 1t too becomes invariant
(i.e. elements of g are isometries). The metric defines the
Riemannién connection VvV, and V will be left invariant too, i.e.
VXY is a field in g if X and Y are. Similarly R(Y,W)Z€ gf
if Y,W,Z¢€ Cz] .- B0 when we compute VX{R(X,Y)Z}, we can use

lemma 1 of [5]. We also recall the mappings Ty €End (7, Ry € Endgl
for XE"(") :

TXY = —,jVXY, RXu = -jVXu,

(See Lemmas % and 10 of [5]). Here Jj is the complex structure
C" 5 ~ C{\l
on Too/J transferred to g = T ol - |
Recalling that ¢ is a sum of certain X 'S end that ’ﬁc “'f,

we have

Lemma 1. For XE?Z»C'f, YE’QP

. € Z/[ and HE}:, we have

B
e ()-8 [Ty, By )2 + [T, Ty if Z€ 7

(VR (Y,H,2) =
{a(@)-8(H)ILR ,RY]Z+[RJH,RXY]Z if Zel .

(Here XY = YX = TXY).

Proof. Using 1) and 2) and also lemma 1 of [5] we find
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(VgRI(Y,H,2) = 9¢{8(H)V4Z} - R(V4Y,H)Z - R(Y, - (H)X)Z - B(H)VyV5% =

= B(H)[VX,VY]Z+R(-;ijY,,jH)Z-a(H)R(X,Y)Z, by standard properties
of the curvature. (Recall that R(jU,jV) = R(U,V) since § is
Kshlerian). Now 7 is an abelian ideal of g7 » hence [X,Y] = O,
and so R(X,Y) = [V4,7,]. This gives

(VyR)(Y,H,2) = {p(H)~a(H)IR(X,Y)Z + R(-jv¢Y, JH)Z.
Since V commutes with J on a Kahlerian manifold, we have further
R(XaY)Z = VXVYZ - VYVXZ = (-ij)(‘ijZ) - (‘jvx)("ijZ)

Y(X2) -X(¥2) = [Ty,74)2 if z2el

=

[Ry,BylZ if Zew.

This gives the first term on the right hand side in the lemma.

It also gives the second, by applying it to R(-j VXY,jH)Z =

R(XY,JH)Z, since -jv4Y = XY¢€ 4, jHel . [
q.e.d.

Now recall condition (A) of [4], §3: |

4) ¥Y(ZX)-(¥2)X =0 if X,Y and Z are elements of Tf con-

nected as follows: oLt—e—eSu (See (4]. So X,Y,z¢ 1 % Cﬁ,.
Y Z X | 1<k<m<p (k,m)

where %(k,m) = {%(akmm) and Cgsesesay are the basic roots).
In this situation XY =0 by [4], §3, so (v4R)(Y,H,Z) =
{a(H)—B(H)}[TX,TY]Z = {c(H)-B(H)H{X(YZ) - Y(XZ)].

We can choose H such that a(H) £ 0, 8(H) = O. Then, by the

commutativity of the product on f , we see that:
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Lemma 2: (A) is equivalent to

(Ag) (vy®)(Y,H,Z2) =0 for X,Y,Z¢ 7 connected as e—e——e and H€A..
Y Z2 X

We now check condition (B) of [4], § 3:

(B) (X¥)Z+ (XZ)Y = (YZ)X for elements X,Y,Z¢€ ’6) connected as
Z

, where a = %(abﬁxc}, B = %(aa«zb).

aY¥YbXece
Now (VXR)(Y,H,Z) = (o (H)-8(H) }{X(Y2)-Y(X2)} + (B (XY)Z)-(XY)((§H)Z).

2 3 '-‘ 3
Here (XY)Z¢€ (&’(b,c) = ff"a and XY € ﬁk’(a,c)’ by [4], 8§ 3.
Now let H = jEr’ where the jE,l,.,-.,jEp is a certain basis for ’ﬁj
(8ee [4], [5]).
If r # a,b,c, then (V3R)(Y,JE,,Z) =0, by [4].
If r = a, then (VXR)(Y,an,Z) = -2 {X(YZ)-Y(XZ)} + (XY)(EaZ)

F{-(Y2)X + (X2)Y + (XY)Z}, by [4].

If r =D, then (V4 R)(Y,JE,2) = O{X(Y2)-Y(X2)} - #(XY)Z + (X¥)(3Z) = 0,

by [4].

If r =c, then (V4R)(Y,JE_,2) = %{X(YZ)-»Y(XZ)]-EC((XY)Z)

= H{(YZ2)X - (X2)Y - (XY)Z}, by [4].
Hence we have

Lemma %, (B) is equivalent to

Z
(By) (4R)(Y,H,2) = 0 for X,Y,Z€ {> connected as QI"

and HE F.

Now in [4], § 4 quasi-symmetry was shown to be equivalent to
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(A), (B), (C), (D) and (Q). The condition (C) was tramslated to
a curvature condition in [5], and the condition (Q,) is equivalent
to

@) Ryy = ByRiy +RyRy for X,YeT,

~ P
by [3]. We try to express (]) by (Y4R)(Y,H,Z) with Ze€ = 5L
(See [5] for the decomposition of ?2£). In [4], §2 we calculated

that ~
(0) if + #£ a,b

RZ, €% %, if t =a , where WE ﬁ(a,b), Z,€® ., and that
b

U, it =b

3) ~
z {*0‘ if t £
BN PP .

t

—

Using this and the multiplication on € ({41, 83, [5]), we check

by Lemma 1
. g i , A
(TR, 3E,,8,) for X€ Ry = Kegpys YeRy, - K (o,a)r
If X and Y are disconnected (T -Yo), then we get zero, and

in this case also Ryy = R =0, RyRy = RyRy =0 (See 3)), so

(6) is satisfied.

aobBec
W -
If X and Y are connected as x 7y o then (VXR)(Y,JEr,Zt)=

o

unless r,t = a,b. Using 3) and Lemma 1, we find
(VR (Y, 3B,52,) = #{-RyRyZ, + RyyZ,} = #{-(RyRy+RyRy)Z, + RyyZ, 1,
since RyZ, = 0 by 3). Similarly,

(Y4BI(Y,3E,,2,) = F{(ByRy+RyRy)Z, - RyyZ. 1, and also the cases

with t =b go like this. Hence we have
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Lemma 4. i) (@) is satisfied for x 7 and (VXR)(Y,H,Z) =0
for He L, Z2€? in this case.
ii) (§) is satisfied for ey~ if and only if
(" R)(Y,1,2) =0 for HE T, Ze€L.

Now we have to check the case a é b . Assume a<hb,

We have (VXR)(Y,H,Z) = [RjH’RXYJZ in this case, by Lemma 1.
Since XY = YX, (VXR)(Y,H,Z) is symmetric in X and Y in this
case, and hence (VXR)(Y,H,Z) = 0 if we can prove that

(VX‘R)(X’HaZ) = 0.

- x|° 2 2 .
We have X° = %—(Ea+%), (Here n=|E l"=...= |Ep| , assuming
condition (C). See [4],§3). Let H = JE.., 7 = Zt € t&Cy. Then
("yR)(X,JE,Z,) = O wunless r,t = a,b, by 3). We have

(R, 55, ,2,42) = - E o (g 25 )(2,42,)) -

(R +REb)(REa(Za+Zb))1 = - %{Ezafﬁfza} = 0, and similarly
(VXR)(X9ij,Za+Zb) = 0. So (VXR)(YsHsZ) =

The condition (Q) in this case is equivalent to R , = 2R}2(,
X
by symmetry in X and Y. Let 2 = ,Gqut. Then

2 2
|
) R 7 - %_(RE;REb)z - X ).
Also RX"LC =0 for r # a,b, by 3), and 4) shows that
U &
R o = 2f on Qr_ for T # a,b.

In general RXZ = +{[3X,2] + (adjx)'2} by [4],§2. Also

. 2 . . 3 3 .
RyZ, = #(ad jX)! Z, €%, and 2RyZ, = 3[jX,(ad jX)' za] €U, , by [4],§2.
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Let UG‘?.La. If R, 2RX on ‘ZL then by 4)
X

>
1,0y = K5, (ad D) 2,1,1) = ((ad )" Z,, (ad 33)'TY,

So ——-—“F”l (ad jx)°' WUy~ Q’Cb is an isometry. Conversely, if this
X

mep is -an isometry, then RX2 = 2R}2{ on "u:a, By [4], §4, we see
that the isometric nature of the above map is equivalent to con-

dition (D).

Finally, RyZ, = #[JX,5, )€1, and 2R3Z =#(ad gX)' [§X,2,] €%y,
by [4],§2. Let Ueuy. If X2 = 21232( on 04, then by 4)

2
oz 0y = K(aa 30" [3%,2, 1,05 = H3%,5],03%,0D),

so —=tag X ‘rii‘b-' (UCa is an isometry. Conversely, if this map is
X
an isometry, then R , = 2R}2( on .. By (2], p. 61, this map is
X

always an isometry. Hence we have

Lemma 5. (Q) is satisfied for é if and only if (D) holds.

| Y ‘
Also (YgR)(Y,H,Z) =0 for «>» , Heh, Ze.
X

It remains to check (Q) if one or both of X and Y are of the

form E_. (Recall that ’ﬁ:% + T : by [2], [4] or [5].
T t"qmt ’l<k<m_pfé(k,m)’ ’ ;

i) If X=E_, Ye¢ ’i%(c a)s then
2

Is’
if v £ ¢,d
XY = —z-Y if r = c,d? by [4] S 3.

0 if t £ a,b

Let 2_¢€ « Then R =+ ,
€% Xt {%Rth if t = a,b.
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0 if 1,t £ a,b

R-v-x = f
aa L RyZ, if T,t = a,b.

0 if r,t # a,b

Further, by 3), R +R Z, =
’ R S R 3RyZ, if 1t = a,b.

(One of the terms on the left will always vanish). So ('QJ) holds
in tilis case,

O if r £ s
ii) If X=E, Y=L, then EE_ = , by [4], § 3.

T .
E r = s
rlf

0 if r#£t or s£t ;
Let Z_€?(,. Then Z, = by 3).
t © PErEst 2Z, if r=s=% ’ _

f 0 if TAt or sit
Purther, by 3), Rp e %+ Fp Bg By -

S % {‘;thqrzt:%zt if r=s=1%.

So (Q) holds in this case t00.

Putting together all the above, we get

Proposition 1. Quasi-symmetry is equivalent to the conditions (C),

(D), (5) together with the vanishing of (VXR)(Y,H,Z) for He"ﬁ,

and
p Z
i) X,Y,2€¢ 7 connected as m& and Q—}—(—‘ ,
ii) X, ¢ (1 )< c{, zelh,
1<k<msp oo

We want to simplify the statement of the proposition by having
the venishing of (VR)(Y,H,2) for X,Ye<C, Hef, 2€¢ . In

2

1Ry

o

the proposition X,Ye€ T fﬁ,<k n)? while 4 also contains,C
1<k<m<p ’
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where ’ﬁt==IzEt (the basic root spaces). So we have to check

("4R)(Y,H,Z) in the cases

(1) == — s, (2) - —, (3) e—b—= o

X Z Y X 7 Y X Y Z

k]

A :
Ll- [SUN WY 6
( ) b 9 (5) 9 ( ) 9 (7) ‘?———Z—‘ 9

X Y Z X Y Z
and in the cases

(8) X =F, Y=3, 3=F, (9 X=E, T=8, 2¢Ry .,

a" C’
(10)X=E,, Y=E, Zex,, (1) X-=E, Ye’ﬁﬂc,m), Z = E,,
(12) X = Ea’ Ye ﬁ(l«:,m)’ Z € /{Ji(c,d)’ (/]5) X=Ea, Te ﬁ'(k,m)’ ZE?—Lt,

(14) X ¢ fé(a’b), Ye 7%(1{,111), z = E,.

The remaining cases are covered by observing that according
to Lemma 1 (V4R)(Y,H,Z) is symmetric in X and Y in the cases
we consider. We also let H = jE,.. Using 3) and the descripticn
of the multiplication on ‘ﬁ) given in [4], § 3, it turns out that
(VXR)(Y,jEr,Z) vanishes identically in most of the cases. As an

example consider case (6):

X/ o\I

ab——c, W) - AL X, T2Y (B 4B, ) = 5k XY, 2) (B 4B, ),

~LXY, ) (B, +E ), (see [4],§3),

]

T(XZ) = md T, X8 (B +E )
so [Ty,Ty)% = mKXY,Z)(E,-E ). Also (XY)Z = %{H,Z)(Eaﬂgé),

so by Lemma 1 (VXR)(Y,jEr,Z)

Hag(3B,) - 0 (38,01 KXY, 2) (E,-B,) - B (XQ2) + (XD (E,2).
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This expression vanishes if 1 £ a,c, and it equals

o 1 5 1 .
Z%ﬁ-(XY,A)(Ea-EC)-?-‘}-C(XY,Z>Ea+-2’- XL, ZY(E+E ) =0 if r = a
and similarly for o = c.

In the remeining cases of the list (Y4R)(Y,H,Z) vanishes
exactly when the quasi-symmetry conditions (4), (B) are satisfied.

2B ¢ 4 hth o= a,c (we have for

X Y 2z
Z
instance (VXR)(Y,J:E&,Z> = +{X(YZ2) - (XY)2}). ( The case ?‘T‘

These are the cases (4)

is not in the list because the symmetry in X and Y reduces it

to a case in Proposition 1).

So now the vanishing of (V4R)(Y,H,Z2) in Proposition 1 can

be stated for X,Ye T , Heh , Z¢ t. + 7L, We now observe that

O ("f +j 'ﬁ+ 2L and that (VXR)(Y,Hy'jZ) =

&

it

VX{R(Y,H)jZ} -R(V,Y,H)jZ - R(Y,VXH)jz - R(Y,H)VXJ‘Z

3 {93 R(Y,H)2) - R(V4Y,H)Z - R(Y,73H)Z - R(Y,H)938}

il

J(Vy®)(Y,H,Z2), where we use the fact that because 4 is

Kghlerian, both V and R commute with j (seel[1]).

So then the vanishing in Proposition 1 can be stated for

X,ye ¥ , He TP, Zeg .

Letting (VR)(X,Y,H,2) = (V4R)(Y,H,Z), and using [5] and

the theorem there together with the definition of a triangular
subgroup of Aut & used in [5], we can now restate Proposition 1

as

Theorem 1. Let & Dbe an indecomposable bounded homogeneous

. & . 4
domain, and let Y be a triangular subgroup of Aut

<
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(= biholomorphic automorphisms) with Lie algebra g. Choose a
base point o of & and give %7 the structure of a Jj-algebra
by cj: To"@ , the complex stmc;:ure on TO@ and the Bergman
metric on Tog) . Then Q} is quasi-symmetric (i.e. biholomorphic
to a quasi-symmetric Siegel domain in the sense of Satake) if and

only if the following conditions hold:

0,

(v) vR; L, -
’fx T x Tux g]

(cY) max IK(Y)! = dim f. min |K(Y)| , where
Yef, | Y= YeRr, | Y] =1
K(Y) = (R(Y,jY)jY,Y) (holomorphic sectional curvature),
dim @ ‘(__

D . .. ]

(D) 124 dim 2o 4 is independent of k

(D) dim%_ is independent of k.
k

(Here T = [07-.,63]1', of = ’ﬁL+Z 'gl = 'L&+jf+"ai as in [2], [4], (5],

a o
and the root spaces are found as described after condition (C')

in the text of [5] for the case that (C') is satisfied).
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