§ 0 . Introduction
Let $X=\mathbb{P}_{k}^{3}$ denote the projective 3-space over an algebraically closed field k of characteristic zero. Given an integer n, denote by $M(n)$ the moduli space for stable rank-2 vector bundles on X with Chern classes $c_{1}=0$ and $c_{2}=n$, see [9]. In his survey article [10], M. Schneider asks the following question: Are $M(3)$ and $M(4)$ nonsingular, and do they have only two components?

In this paper we answer this question affirmatively for $M(3)$, and we also prove that both components are rational. Our main tool in the proof will be a careful study of the restriction of a bundle to all lines through a fixed point P in X. By a theorem of Grothendieck [4] any vector bundle on a projective line is a direct sum of linebundles. In particular, if E is a rank-2 bundle on X with $c_{1}(E)=0$, and $L \subseteq X$ is a line, then $E_{L} \cong \theta_{L}(\gamma) \oplus \theta_{L}(-\gamma)$ for some integer $\gamma=\gamma(L) \geq 0$. Following Barth [1] we say that L is a jumping line for E if $\gamma(L) \neq 0$. A jumping line L is said to be multiple if $\gamma(\mathrm{L})>1$. The well-known theorem of GrasertMülich [1] states that if E is stable (in this case this is equivalent to $H^{0}(X, E)=0$), then the general line is not a jumping line.

If $P \in X(k)$ is a closed point, denote by $M^{P}(n)$ the open subscheme of $M(n)$ parametrizing bundles E satisfying the following two conditions:
(i) There exists a non-jumping line for E through P.
(ii) There are no multiple jumping lines for E through P.

Recall the α-invariant of Atiyah-Rees:
$\alpha(E):=\operatorname{dim}_{k} H^{1}(X, E(-2))$ mod 2. It is known [6, cor.2.4] that $\alpha \in \mathbb{Z} / ट \mathbf{Z}$ is constant in connected families. In particular, if $M_{\alpha}(n) \subseteq M(n)$ is the subscheme parametrizing bundles E with $\alpha(E)=\alpha$, then it follows that $M(n)$ is a disjoint union of $M_{0}(n)$ and $M_{1}(n)$.

For each $\alpha \in Z / 2 Z$ and each $P \in X(k)$, put $M_{\alpha}^{P}(n)=M^{P}(n) \cap M_{\alpha}(n)$. We can now state our main results:

Theorem 1. For each α and $P, M_{\alpha}^{P}(3)$ is a nonsingular, irreducible and rational variety of dimension 21.

Theorem 2. For each α, the $M_{\alpha}^{P}(3)$ form an open covering of $M_{\alpha}(3)$. As an immediate corollary follows

Theorem Both $M_{0}(3)$ and $M_{1}(3)$ are nonsingular, irreducible and rational varieties of dimension 21.

Remark With only slight modifications (due to the fact that $M_{Y} V^{(2)}$ is not a fine moduli space, [11]) the same method shows that $M(2)=M_{0}(2)$ is a nonsingular, irreducible and unirational variety of dimension 13. This was first proved by R. Hartshorne in [5].

The material is divided as follows:
$\S 1$ describes certain data characterizing a bundle corresponding to a point of $M^{P}(n)$.
$\S 2$ uses these data to prove theorem 1.
$\S 3$ contains a proof of theorem 2.
$\S 4$ contains a short discussion on the general case,
i.e. $n=c_{2}(E) \geq 4$.
$\S 1$
(1.1) Fix throughout this \S a closed point P of $X=\mathbb{P}_{k}^{3}$.

Denote by $f: \widetilde{X} \rightarrow X$ the blowing up of P, and let $g: \widetilde{X} \rightarrow Y=\mathbb{P}_{k}^{2}$ be the morphism induced by projecting X from P. If $G(1,3)$ denotes the Grassmannian of lines in X, we may identify Y with the special Schubert variety in $G(1,3)$ corresponding to lines containing P. Under this identification, $\mathbb{X} \subseteq X \times Y$ is the restriction of the incidence correspondence in $X \times G(1,3)$. The Picard group of \widetilde{X} is freely generated by two elements $\theta_{\tilde{X}}(\tau):=f^{*} \theta_{X}(1)$ and $\theta_{\widetilde{X}}(\sigma):=\mathrm{g}^{*} \theta_{Y}(1)$. Let $B=f^{-1}(P) \subseteq \widetilde{X}$ be the exceptional divisor; then the divisor class of B is ($\tau-\sigma$). Furthermore, $g: \widetilde{X} \rightarrow Y$ can be identified with the projective bundle $\mathbb{P}_{Y}\left(\theta_{Y} \oplus \theta_{Y}(1)\right)$ 。 In particular, there is a surjection $\theta_{\widetilde{X}}{ }^{\oplus} \theta_{\widetilde{X}}(\sigma) \rightarrow \theta_{\widetilde{X}}(\tau)$ inducing an isomorphism $\theta_{Y} \oplus \theta_{Y}(1) \rightarrow g_{*} \theta_{X}(\tau)$. Finally, the relative dualizing sheaf of \tilde{X} over Y is $\omega_{g}=\theta_{\mathbb{X}}(\sigma-2 \tau)$.
(1.2) Let E be a stable rank-2 vector bundle on X with Chern classes $c_{1}(E)=0$ and $c_{2}(E)=n$, satisfying the following two conditions:
(i) There exists a non-jumping line for E thorugh P.
(ii) There are no multiple jumping line for E through P. Put $\mathbb{E}=f^{*} E$, and $F=g_{*} \widetilde{E}$, and let $\psi: g^{*} F \rightarrow \widetilde{E}$ be the natural map.
(1.3) Lemma
(i) ψ is injective and $R^{1}{ }_{5} * \widetilde{E}=0$.
(ii) $\quad x(\widetilde{\mathbb{E}}(\mu \sigma))=(\mu+2)(\mu+1-n)$ for all $\mu \in Z$ 。
(iii) F is a rank--2 bundle on Y with Chern classes $c_{1}(F)=-n$ and $c_{2}(F)=\frac{1}{2} n(n+1)$

Proof: (i) is just a translation of the conditions (i) and (ii) of (1.2). (ii) follows from the Riemann-Roch theorem on $\widetilde{\mathrm{X}}$. Then (iii) follows from (i) and (ii) and the Riemann-Roch theorem on Y. (1.4) It follows that ${ }_{\wedge}^{2}$ is a non-zero section of $\theta_{\widetilde{X}}(n \sigma)$. Let $S \subseteq \widetilde{X}$ be the zero-scheme of this section, and $C \subseteq Y$ the plane curve defined by the induced section of $\theta_{Y}(n)$. Then $S=g^{-1} C$. Let $h: S \rightarrow C$ be the restriction of g. Denote by K the cokernel of $\psi: g^{*} F \rightarrow$ E. Also, put $\theta=R^{1} g_{*}(-\tau-\sigma)$.
(1.5) Proposition
(i) K is an invertible θ_{S}-sheaf.
(ii) θ is an invertible θ_{C}-sheaf.
(iii) $K \cong h^{*} \theta(2 \sigma-\tau)$.
(iv) The restriction of F to C is $F_{C}=\theta^{-1}(-1) \oplus \theta^{-1}(-2)$.
(v) $\theta^{2}=\theta_{C}(n-3)=\omega_{C}$.

Proof: (i): Let $y \in C$ be a closed point. Since $R^{1} \mathrm{~g}_{*} \mathbb{E}=0$, it follows that $\mathrm{K}_{\mathrm{g}^{-1}(\mathrm{y})} \cong \theta_{\mathrm{g}^{-1}(\mathrm{y})}(-1)$. Hence K is locally generated by one element. Let $x \in S$ be a closed point, and put $\mathrm{A}=\theta_{\widetilde{\mathrm{x}}, \mathrm{x}}$.

The exact sequence
(*1) $\quad 0 \rightarrow \mathrm{~g}^{*} \mathrm{~F} \rightarrow \mathrm{E} \rightarrow \mathrm{K} \rightarrow 0$
gives, when localized at x, an exact sequence $0 \rightarrow 2 A \xrightarrow{\psi_{X}} 2 A \rightarrow K_{x} \rightarrow 0$ 。 So ψ_{x} is given by a 2×2 matrix. Since $\operatorname{dim}_{k} K \otimes k(x)=1$, not all entries are in the maximal ideal. Therefore one of them is a unit, and from this it is clear that $K_{X} \cong A / \operatorname{det}\left(\psi_{X}\right)=\theta_{S, X}$. (ii) and (iii): Note that $K(\tau)$ induces the trivial linebundle on the fibers of h. Therefore, if we temporarily put $L=h_{*} K(\tau)$, it follows that the natural map $h^{*} L \rightarrow K(\tau)$ is an isomorphism and that I is a linebundle on C. If we show that $\theta=L(-2)$, both (ii) and (iii) will follow. Twist (*1) by ($-\tau$) and apply $R^{1} g_{*}$ to get $\theta(1)=R^{1} g_{*} \tilde{E}(-\tau)=R^{1} g_{*} K(-\tau)=R^{1} h_{*} K(-\tau)$. Now relative duality gives

$$
R^{1} h_{*} K(-\tau)=R^{1}{ }_{h_{*}} h^{*} L(-2 \tau)=L(-1) \otimes R^{1} h_{*} \omega_{h}=L(-1),
$$

since $\omega_{h}=\theta_{S}(\sigma-2 \tau)$. Combining these two strings of equalities, we obtain $\theta(1)=I(-1)$.
(iv): The restriction of (*1) to S induces an exact sequence $0 \rightarrow N \rightarrow \widetilde{E}_{S} \rightarrow K \rightarrow 0$. Since $\lambda_{\Lambda} \widetilde{\mathrm{E}}=\theta_{\widetilde{\mathrm{X}}}$, it follows that $N=K^{-1}=h^{*} \theta^{-1}(\tau-2 \sigma)$. Taking h_{*}, we find the equality

$$
h_{*} \tilde{E}_{S}=h_{*} \mathbb{N}=\theta^{-1}(-2) \otimes\left(\theta_{C} \oplus \theta_{C}(1)\right)=\theta^{-1}(-1) \oplus \theta^{-1}(-2)
$$

On the other hand, since $\mathrm{R}^{1} \mathrm{~g}_{*} \widetilde{\mathrm{E}}=0$, the natural base change map $\mathrm{F}_{\mathrm{C}} \rightarrow \mathrm{h}_{*} \widetilde{\mathrm{E}}_{\mathrm{S}}$ is an isomorphism.
(v): From (iv) we have $\lambda_{\lambda} F_{C}=\theta^{-2}(-3)$. But by (1.3), $\lambda_{\lambda} \mathrm{F}_{\mathrm{C}}=\theta_{\mathrm{C}}(-\mathrm{n})$. Thus $\theta^{2}=\theta_{C}(n-3)$.
(1.6) Lemma There is a short exact sequence on Y

$$
\begin{equation*}
0 \rightarrow F \rightarrow 2 \theta_{Y} \rightarrow \theta(2) \rightarrow 0 \tag{*2}
\end{equation*}
$$

Proof Restrict (*1) to the exceptional divisor B and then push it down to Y via the isomorphism $\left.G\right|_{B}$ 。
(1.7) For technical reasons we also introduce the dual exact sequencesto (*1) and (*2). First note that

$$
\begin{aligned}
& \operatorname{Ext}_{Y}^{1}\left(\theta(2), \theta_{Y}\right)=\theta^{-1}(-2) \otimes \theta_{Y}(n)=\theta(1), \text { and } \\
& \operatorname{Ext}_{\widetilde{X}}^{1}\left(K, \theta_{\widetilde{X}}\right)=K^{-1} \otimes \theta_{\widetilde{X}}(n \sigma)=h^{*} \theta(\sigma+\tau) .
\end{aligned}
$$

Hence the sequences are
$(* 1)^{V}$
$0 \rightarrow \tilde{E}^{\vee} \rightarrow \mathrm{g}^{*} \mathrm{~F}^{\mathrm{V}} \rightarrow \mathrm{h}^{*} \theta(\sigma+\tau) \rightarrow 0$
$(* 2)^{v}$
$0 \rightarrow 2 \theta_{Y} \rightarrow F^{V} \rightarrow \theta(1) \rightarrow 0$.

Again, (*2) ${ }^{V}$ can be obtained from (*1) ${ }^{\vee}$ by restricting to B and pushing down to $Y_{\text {. }}$
(1.8) Lemma: We have the following equality of cohomology groups:

$$
H^{1}(X, E(-2))=H^{O}\left(Y, F^{V}(-1)\right)=H^{O}(Y, \theta)
$$

Proof: Clearly, $H^{1}(X, E(-2))=H^{0}\left(Y, R^{1} g_{*} \widetilde{E}(-2 \tau)\right)$ by the Leray spectral sequence for g. On the other hand, since $R^{1} g_{*} \widetilde{E}=0$ the relative duality map

$$
\mathrm{R}^{1} \mathrm{~g}_{*}\left(\underline{\operatorname{Hom}}_{\theta_{\mathbb{X}}}\left(\widetilde{\mathrm{E}}, \omega_{\mathrm{g}}\right)\right) \rightarrow \underline{\operatorname{Hom}}_{\mathrm{Y}}\left(\mathrm{~g}_{*} \mathrm{E}, \theta_{\mathrm{Y}}\right)=\mathrm{F}^{\mathrm{V}}
$$

is an isomorphism [7, thm。(21)]. Noting that $\omega_{g}=\theta_{\widetilde{X}}(\sigma-2 \tau)$ and that $\widetilde{E} \widetilde{\mathbb{E}^{V}}$, we obtain $\widetilde{E}(-2 \tau) \cong{\underset{X o m}{\tilde{X}}}^{\operatorname{Hom}_{g}}\left(\widetilde{\omega_{g}}\right) \otimes \theta_{\widetilde{X}}(-\sigma)$. Putting
all this together, we get the first equality. The second is an immediate consequence of (*2) ${ }^{V}$.
(1.9) Proposition Assume that $H^{1}(E(-2))=0$. Then there is an exact sequence on Y

$$
0 \rightarrow n \theta_{Y}(-2) \xrightarrow{m} n \theta_{Y}(-1) \rightarrow \theta \rightarrow 0
$$

where the matrix of m can be taken to be symmetric.

Proof: It is well known that $\tilde{X} \subseteq Y \times X$ has a resolution of the form

$$
0 \rightarrow \theta_{Y}(-1) \Delta \theta_{X}(-2) \rightarrow \Omega_{Y}^{1}(1) \Delta \theta_{X}(-1) \rightarrow \theta_{Y X X} \rightarrow \theta_{\widetilde{X}} \rightarrow 0
$$

Tensor this by $\theta_{Y}(-1) \otimes E(-1)$ to get two exact sequences

$$
\begin{aligned}
& 0 \rightarrow \theta_{Y}(-2) \boxtimes E(-3) \rightarrow \Omega_{Y} \boxtimes E(-2) \rightarrow A \rightarrow 0 \\
& 0 \rightarrow A \rightarrow \theta_{Y}(-1) \boxtimes E(-1) \rightarrow \widetilde{E}(-\tau-\sigma) \rightarrow 0
\end{aligned}
$$

Taking the $R^{i} p r_{Y^{*}}$ sequences of these and using that $H^{i}(X, E(-2))=0$ for all i, we get an exact sequence

By Riemann-Roch, $\quad \operatorname{dim}_{k} H^{1}(E(-1))=\operatorname{dim}_{k} H^{2}(E(-3))=n$. Finally, since $\theta^{2}=\omega_{C}$, or equivalently Ext $\hat{\theta}_{Y}\left(\theta, \theta_{Y}\right)=\theta$, it is easily verified that the map m is selfadjoint, hence its matrix can be taken to be symmetric.
(1.10) In his paper [2], Barth introduces a certain condition called ($\alpha 2$) on selfadjoint maps $m: H_{k}^{\otimes} \theta_{Y}(-2) \rightarrow H^{*}{\underset{K}{X}}_{\underset{Y}{ }}^{\theta_{i}}(-1)$, where H is an n-dimensional k-vector space. Twist by $\theta_{Y}(2)$
and take global sections to get a map $H \rightarrow H^{*} \underset{\mathrm{~K}}{\otimes} \Gamma\left(\theta_{\mathrm{Y}}(1)\right)$. It induces a map $\alpha: \Gamma\left(Q_{Y}(1)\right)^{*}{ }_{k}^{\otimes} H \rightarrow H^{*}$, and the condition ($\alpha 2$) is that for each nonzero $h \in H$, the image of $\Gamma\left(\theta_{Y}(1)\right)^{*}{\underset{K}{K}}_{(h)}^{(h)}$ in H^{*} should have dimension at least 2. We claim that if m is injective and of rank $\geq n-1$ everywhere, then ($\alpha 2$) holds. In particular it holds for the map m in (1.9).

Indeed, choose coordinates Y_{0}, Y_{1}, Y_{2} in Y such that m has rank n at the point ($1,0,0$). We may then assume that the matrix of m can be written $Y_{0} I_{n}+Y_{1} A+Y_{2} B$, where I_{n} is the identity $n \times n$ matrix. If ($\alpha 2$) does not hold, let h be a column vector such that $\operatorname{dim}_{k} \operatorname{Span}\{h, A h, B h\}=1$. Then h is a common eigenvector for A and B. By a suitable orthogonal change of basis we may assume that $h=(1,0, \ldots, 0)^{t}$. It follows that the matrix of m can be written in the form

$$
Y_{0} I_{n}+Y_{1}\left[\begin{array}{cccc}
a & 0 & \ldots & 0 \\
0 & & \\
\vdots & A^{\prime} & \\
0 & &
\end{array}\right]+Y_{2}\left[\begin{array}{cccc}
b & 0 & \ldots & 0 \\
0 & & \\
\vdots & B^{\prime} & \\
0 & &
\end{array}\right]
$$

From this it is clear that rank $m \leq n-2$ at each point of intersection of the two curves $Y_{0}+a Y_{1}+b Y_{2}$ and $\operatorname{det}\left(Y_{0} I_{n-1}+Y_{1} A^{\prime}+Y_{2} B^{\prime}\right)$. (1.11) In the particular case $n=3$, it is trivial that also condition (a3) holds for m (see [2]). So by Barth's work, θ is the θ-characteristic of a uniquely determined vector bundle on Y^{\vee}, the projective plane dual to Y. We will use this later. (1.12) To sum up some of the results so far, the given bundle E determines the following data:
(i) A plane curve $C \subseteq Y$ of degree n.
(ii) A θ-characteristic θ on C, i.e. a linebundle θ with $\theta^{2}=\omega_{C}$.
(iii) A two-dimensional subspace V of $H^{0}(Y, \theta(2))$ generating $\theta(2)$, inducing an exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow 2 \theta_{Y} \rightarrow \theta(2) \rightarrow 0 \tag{*2}
\end{equation*}
$$

(iv) A surjection $\lambda: \mathrm{g}^{*} \mathrm{~F}^{\vee} \rightarrow \mathrm{g}^{*} \theta(\sigma+\tau)$, determined up to multiplication with a non-zero scalar.

Conversely, it is clear that the bundle E is uniquely determined by these data, as $\tilde{\mathbb{E}}^{V} \cong$ ker λ. In fact, given any data (i)-(iv), we claim that they arise from a unique bundle on X. Indeed, define $\tilde{E}=(\operatorname{ker} \lambda)^{\vee}$. To compute the restriction of \tilde{E} to B, we restrict λ to B to get a surjection $F^{V} \xrightarrow{\lambda_{B}} \theta(1)$, where we identify B with Y via g. Restricted to C, this gives an exact sequence

$$
0 \rightarrow \theta(2) \rightarrow F_{C}^{v} \rightarrow \theta(1) \rightarrow 0
$$

from which we easily compute

$$
\operatorname{Hom}\left(F^{\vee}, \theta(1)\right)=\operatorname{Hom}\left(F_{C}^{V}, \theta(1)\right)=\operatorname{Hom}(\theta(1), \theta(1))=k
$$

On the other hand, the dual (*2) of (*2) gives

$$
0 \rightarrow 2 \theta_{Y} \rightarrow F^{\vee} \xrightarrow{\lambda^{\prime}} \theta(1) \rightarrow 0
$$

It follows that λ_{B} is a scalar multiple of λ^{\prime} 。 In particular, $\widetilde{\mathrm{E}}_{\mathrm{B}} \cong\left(\operatorname{ker} \lambda_{\mathrm{B}}\right)^{\mathrm{V}} \cong 2 \theta_{\mathrm{B}}$ is the trivial bundle. The proof of the claim is now completed by the following proposition:
(1.13) Proposition (See also [11, for the case of a surface) Let \tilde{E} be a rank-2 bundle on $\tilde{\mathrm{X}}$ such that $\tilde{E}_{\mathrm{B}} \cong 2 \theta_{\mathrm{B}}$. Then $\mathrm{E}:=\mathrm{f}_{*} \mathbb{E}$ is locally free and the natural map $\mathrm{f}^{*} \mathrm{E} \rightarrow \tilde{\mathrm{E}}$ is an isomorphism.

Proof: The question being local on X, we may replace X by any open affine \tilde{u} containing P, and \tilde{X} by $\tilde{u}=f^{-1} u$. Consider the exact sequence

$$
0 \rightarrow \theta_{\widetilde{u}_{u}}(-B) \rightarrow \theta_{\widetilde{u}^{\prime}} \rightarrow \theta_{B} \rightarrow 0
$$

Tensor by \tilde{E}. and take global sections to get

$$
H^{0}(\tilde{u}, \tilde{\mathbb{E}}) \rightarrow \mathrm{H}^{0}\left(\mathrm{~B}, \tilde{\mathbb{E}}_{\mathrm{B}}\right) \rightarrow \mathrm{H}^{1}(\tilde{u}, \widetilde{\mathbb{E}}(-B)) .
$$

Since U is affine, $H^{1}(\widetilde{U}, \widetilde{E}(-B))=H^{0}\left(\mathcal{U}_{,} R^{1} f_{*} \widetilde{E}(-B)\right)$.
Now Grothendieck's "theorem on formal functions" [5,III, 11.1] implies that $R^{1} f_{*} \tilde{E}(-B)=0$, since $H^{1}\left(E_{\mu B}(-B)\right)=0$ for all μ, where μB denotes the μ-tuple scheme structure on the divisor $B \subseteq F$. This follows by induction on μ, the exact sequence $0 \rightarrow \theta_{B}(-\mu B) \rightarrow \theta_{(\mu+1) B} \rightarrow \theta_{\mu B} \rightarrow 0$ and the fact that $\theta_{B}(-B)$ is the positive generator of PicB. Since $H^{1}(\widetilde{u}, \widetilde{E}(-B))=0$, the isomorphism $2 \theta_{B} \rightarrow \widetilde{\mathbb{E}}_{B}$ can be extended to a map $2 \theta_{\tilde{u}} \rightarrow \tilde{\mathbb{E}}$ on \tilde{u}. This map must be an isomorphism on some open set of \tilde{u} containing B. Now the proposition follows easily.
(1.14) Proposition Assume given data (i), (ii) and (iii) as in (1.12). Then there exist surjections $\lambda: \mathrm{g}^{*} \mathrm{~F}^{\vee} \rightarrow \mathrm{g}^{*} \theta\left(\sigma_{+} \tau\right)$ if and only if $F_{C} \cong \theta^{-1}(-1) \oplus \theta^{-1}(-2)$. In this case,

$$
\operatorname{dim}_{k} \operatorname{Hom}\left(\mathrm{~g}^{*} \mathrm{~F}^{\vee}, \mathrm{g}^{*} \theta(\sigma+\tau)\right)=\left\{\begin{array}{lll}
4 & \text { if } & \mathrm{n}=1 \\
5 & \text { if } & \mathrm{n} \geq 2 .
\end{array}\right.
$$

Furthermore, if $n \leq 3$, then F_{C} always splits as above.
Proof If there exists a surjection λ, then F_{C} splits by (1.12) and (1.5,iv). Conversely, suppose $F_{C} \cong \theta^{-1}(-1) \oplus \theta^{-1}(-2)$. Then $\operatorname{Hom}_{\widetilde{\mathrm{X}}}\left(\mathrm{g}^{*} \mathrm{~F}^{\vee}, \mathrm{g}^{*} \theta(\sigma+\tau)\right)=\operatorname{Hom}_{\mathrm{S}}\left(\mathrm{g}^{*} \mathrm{~F}_{\mathrm{C}}, \mathrm{g}^{*} \theta(\sigma+\tau)\right) \cong$
$\operatorname{Hom}_{S}\left(g^{*} \theta(\sigma) \oplus g^{*} \theta(2 \sigma), g^{*} \theta(\sigma+\tau)\right)=\operatorname{Hom}_{S}\left(\theta_{S} \oplus \theta_{S}(\sigma), \theta_{S}(\tau)\right)$, surjections corresponding to surjections. By (1.1), surjections
$\theta_{S} \oplus \theta_{S}(\sigma) \rightarrow \theta_{S}(\tau)$ exist. To compute the dimension, we have $\operatorname{Hom}_{S}\left(\theta_{S} \oplus \theta_{S}(\sigma), \theta_{S}(\tau)\right)=H^{0}\left(\theta_{S}(\tau) \oplus \theta_{S}(\tau-\sigma)\right)=H^{0}\left(\theta_{C} \oplus \theta_{C}(1) \oplus \theta_{C}(-1) \oplus \theta_{C}\right)$ from which the assertion follows. To prove the last claim, note that there is always an exact sequence

$$
0 \rightarrow \theta^{-1}(-1) \rightarrow F_{C} \rightarrow \theta^{-1}(-2) \rightarrow 0
$$

The obstruction for splitting this sequence lies in $H^{1}\left(\theta_{C}(1)\right)$, which is zero for $n \leq 3$.
§ 2. The universal family.
(2.1) In this \S we study the spaces $M_{o}^{P}(3)$ and $M_{1}^{P}(3)$. Keep all the notation from (1.1). The construction is based on the results of § 1. We describe $M_{0}^{P}(3)$ in detail first, and afterwards we point out the changes needed to get a similar descripttion of $M_{\gamma}^{P}(3)$.
(2.2) Let $M_{Y} V$ denote the fine moduli space of stable rank-2 vector bundles on the projective plane Y^{V} dual to Y [9,thm.7.17]. Since $M_{Y} \vee$ carries a universal family, there is a corresponding universal θ-characteristic θ_{1} which is a sheaf on $\underset{Y}{ } \underset{Y}{ } V$, flat over $M_{Y} V^{*}$ Let $C_{1} \subseteq Y \times M_{Y} V$ be defined by the
zero-th Fitting ideal of θ_{1}. Let $N \subseteq M_{Y} \vee$ be the maximal open subset such that θ is a line-bundle on C, where θ (resp. C) denotes the restriction of θ_{1} (resp. C_{1}) to $Y \times N \subseteq Y \times M_{Y} \vee$. Now $\mathrm{pr}_{\mathrm{N}^{*}}(\theta(2))$ is locally free of rank 6 on N and its formation commutes with base change on N_{0}. Let $G_{1}=\operatorname{Grass}\left(2,\left(\operatorname{pr}_{N^{*}}(\theta(2))\right)^{v}\right)$ denote the Grassmanian of 2 -subbundles of $\mathrm{pr}_{\mathrm{N}^{*}}\left(\theta(2)\right.$), and let K_{1} denote the universal subbundle. Now there is a natural map $\mu: \operatorname{pr}_{G_{1}}^{*} K_{1} \rightarrow \theta(2)_{Y \times G_{1}}$ on $Y \times G_{1}$. Let $G \subseteq G_{1}$ be the maximal open subset of G_{1} such that μ is surjective over G, and let K be the restriction of K_{1} to G, and put $F=\operatorname{ker} \mu$, a sheaf on $Y \times G$. Abusing notation, also denote by θ the pullback of θ to $Y \times G$.

On G, define a sheaf R as follows:

$$
R=\mathrm{pr}_{G} *{\underset{X}{H o m}}_{\tilde{X} \times G}\left((g \times 1)^{*} F^{V},(g \times 1)^{*} \theta(\sigma+\tau)\right)
$$

and put $Q_{1}=\mathbb{P}_{G}\left(R^{V}\right)$. It is easily checked that R commutes with base change and is locally free of rank 5, by (1.14). Let $Q \subseteq Q_{1}$ denote the open subvariety corresponding to surjections. It is clear that we get a rank-2 bundle \widetilde{E} on $\widetilde{X} \times Q$ by taking the kernel of the universal homomorphism coming from the universal 1-quotient on $\mathbb{P}_{G}\left(R^{V}\right)$.
(2.3) Proposition Q is a nonsingular, irreducible and rational variety of dimension 21.

Proof: By [2], \mathbb{N} is a nonsingular, irreducible and rational variety of dimension 9. The fibers of $G \rightarrow N$ have dimension 8 and the fibers of $Q \rightarrow G$ have dimension 4. Also, both $G \rightarrow N$ and $Q \rightarrow G$ are constructed as open subvarieties of Grassmanians
on locally free sheaves, which clearly implies the proposition.
(2.4) Proposition Let Q be any nonsingular variety and \widetilde{E} a rank-2 vector bundle on $\tilde{X} \times Q$ such that for each closed point q of Q, the restriction of \widetilde{E} to $B \times\{q\} \subseteq \widetilde{X} \times Q$ is trivial. Then $E:=(f \times 1)_{*} \widetilde{E}$ is locally free on $X \times Q$ and the natural map $(\mathrm{f} \times 1)^{*} \mathrm{E} \rightarrow \widetilde{\mathrm{E}}$ is an isomorphism.

Proof: The question being local on Q, we may replace Q by SpecA, A a regular local ring. We proceed by induction on dim A, the case $\operatorname{dim} A=0$ being (1.13). If $\operatorname{dim} A>0$, let t be a regular parameter.

Applying ($f \times 1$)* to the exact sequence

$$
\begin{aligned}
& 0 \rightarrow \widetilde{E} \xrightarrow{t} \widetilde{E} \rightarrow \widetilde{E} / t \widetilde{E} \rightarrow 0 \quad \text { we get } \\
& 0 \rightarrow(f \times 1)_{*} \widetilde{E} \xrightarrow{t}(f \times 1)_{*} \widetilde{E} \rightarrow(f \times 1)_{*}(\tilde{E} / t \widetilde{E}) \rightarrow 0
\end{aligned}
$$

By induction, $(f \times 1)_{*}(\widetilde{\mathbb{E}} / \mathrm{t} \widetilde{\mathbb{E}})$ is locally free of rank 2 on $X \times \operatorname{Spec}(A / t)$. Nakayamas lemma concludes the proof。

Remark This proposition is still valid if Q is singular. (2.5) By (2.2), (2.3) and (2.4), there is a vectorbundle E on $X \times Q$ such that $\widetilde{E}=(f \times 1)^{*} E$. It is easily checked that E induces stable bundles with $c_{1}=0, c_{2}=3$ on each closed fibre of $X \times Q \rightarrow Q$. So by the universal property of a coarse moduli space, there is induced a morphism $Q \stackrel{i}{\Rightarrow} M(3)$. It is easily checked that i is an open embedding, and that its image is precisely $M_{0}^{P}(3)$ 。
(2.6) The construction of $\mathbb{M}_{1}^{P}(3)$ follows the same general lines; in fact (1.8) implies that $a=1$ if and only if $H^{\circ}(\theta)=1$.

This follows from the fact that if $n=3, \operatorname{dim}_{k} H^{1}(E(-2)) \leq 1$ [3,Prop.3.5]. But on any curve C of degree 3, the only θ-characteristic with a section is θ_{C}^{\prime} itself. This shows that the only necessary changes are the following:

Let \mathbb{N} be \mathbb{P}^{9}, parametrizing cubic curves in Y, let $C \subseteq Y \times \mathbb{N}$ be the universal curve, and let $\theta=\theta_{C}$. The rest of the construction goes through with no change, including the assertions about base chenge. In this way we get $M_{1}^{P}(3)$. The proof of Theorem 1 of the introduction is now complete.

§ 3. Proof of theorem 2.

(3.1) Let X^{V} denote the projective 3 -space dual to X, let $\Sigma \subseteq X \times X^{\vee}$ be the incidence correspondence, and let $p: \Sigma \rightarrow X$, $q: \Sigma \rightarrow X^{V}$ denote the natural maps. If P is a closed point of X, let $P^{V}=q\left(p^{-1}(P)\right) \subseteq X^{V}$ be the dual plane. Similarly, if $I \subseteq X$ is a line, let $L^{V} \subseteq X^{V}$ be the dual line, corresponding to the pencil of planes containing L. Let $\Sigma=q^{-1}\left(L^{V}\right)$ and let $\vec{p}: \Sigma \rightarrow X$ and $\bar{q}: \Sigma \rightarrow I^{V}$ be the restrictions of p and q to $\bar{\Sigma}_{0}$ Then $\overline{\mathrm{p}}$ is the blowing up of X with center L, and the divisor class of the exceptional divisor is $\bar{p}^{*} \hat{X}_{X}(1) \otimes \bar{q}^{*} \hat{\sigma}^{\prime}{ }^{\prime}(-1)$ 。 In particular, there is an inclusion $\overline{\mathrm{p}}^{*} \theta_{\mathrm{X}}(-1) \otimes \bar{q}^{*} \theta_{\mathrm{L}} \mathrm{V}(1) \xrightarrow{\perp} \theta_{\bar{\Sigma}}$ 。 (3.2) Let E be a stable rank-2 vector bundle on X with $c_{1}(E)=0$ and $c_{2}(E)=3$. For each integer i, let $W_{i} \subseteq X^{V}$ be the closed subset corresponding to planes H such that $H^{\circ}\left(H, E_{H}(-i)\right) \neq 0$. Then $W_{1} \subseteq W_{0} \subseteq X^{V}$. By a theorem of Barth [1,thm. 3] it follows that $W_{0} \neq X^{V}$. Abusing language, we will say that a plane H is stable if it corresponds to a point
of $X^{V}-W_{0}$, which really means that the restriction E_{H} of E to H is stable. Similarly, a point of $X^{V}-W_{1}$ is called semistable. Points of W_{o} are called not stable, and points of W_{1} are called unstable.
(3.3) Lemma If E_{H} is stable, then there is at most one multiple jumping line in H.

Proof By the Riemann-Roch theorem it follows that the first twist $\mathrm{E}_{\mathrm{H}}(1)$ has a section. Pick one, and let $\mathrm{Z} \subseteq H$ be its zero-scheme. \mathbf{Z} is a group of points of degree 4. It is easily seen that a line I with $E_{I}=\theta_{I}(\gamma) \oplus \theta_{L}(-\gamma)$ must intersect Z in $(\gamma+1)$ points if $\gamma \geq 2$. Since Z can have at most one trisecant, the lemma follows.
(3.4) Lemma If F_{H} is semistable, then there are only a finite number (in fact, at most 3) multiple jumping lines in H.

Proof: Similar to the proof of (3.3).
(3.5) Lemma Let $W \subseteq X^{\bigvee}$ be a proper closed subset with the property that $L_{C W}^{U} L_{C}=X$. Then there is a point P_{0} in X such that $P_{0}^{\vee} \subseteq W_{0}$

Proof $W e$ may assume that W is irreducible. It is clear that W is a surface. Let P be a general point of X, then $W \cap P^{V}=\Gamma$ is an irreducible curve. On the other hand there exists a line I containing P such that $L^{V} \subseteq W$. It follows that $L^{V} \subseteq \Gamma$. Since I is irreducible, $\Gamma=L_{\text {。 }}$ Therefore W must be a plane.
(3.6) Lemma There is at most one unstable plane.

Proof: By Serre duality, $\mathrm{H}^{0}\left(\mathrm{E}_{\mathrm{H}}(-1)\right)$ is dual to $\mathrm{H}^{2}\left(\mathrm{E}_{\mathrm{H}}(-2)\right)$. Therefore $W_{1}=\operatorname{Supp} R^{2} q_{*}\left(p^{*} E(-2)\right)$ 。
The resolution $0 \rightarrow \theta_{X}(-1) \otimes \theta_{X} v(-1) \rightarrow \theta_{X \times X} \vee \rightarrow \theta_{\Sigma} \rightarrow 0$ induces an exact sequence on X^{\vee} :
$H^{2}(E(-3)) \otimes \mathcal{O}_{X} v(-1) \rightarrow H^{2}(E(-2)) \otimes \theta_{X} V \rightarrow R^{2} q_{q_{*}}\left({ }^{*} E(-2)\right) \rightarrow H^{3}(E(-3)) \otimes \theta_{X}(-1)$.
By Serre duality, $H^{3}(E(-3))=0$. The group $H^{2}(E(-3))$ has dimension 3, and $H^{2}(E(-2))$ has dimension at most 1 by [3,prop.3.5]. It follows that W_{1} is empty or the intersection of three planes in X^{V}. It remains only to show that W_{1} contains no line. Assume there is a line L in X such that $L^{V} \subseteq W_{1}$. In the notation of (3.1) this means that $\overline{\mathrm{q}}_{*}\left(\overline{\mathrm{p}}^{*} \mathrm{E}(-1)\right) \neq 0$. On the other hand, the resolution.

$$
0 \rightarrow \theta_{X}(-1) \otimes_{I} \theta_{V}(-1) \rightarrow \theta_{X \times I} V \rightarrow \theta_{\Sigma} \rightarrow 0
$$

gives an exact sequence

$$
0 \rightarrow \bar{q}_{*}\left(\bar{p}^{*} E(-1)\right) \rightarrow H^{1}(E(-2)) \otimes \theta_{L^{2}}(-1) \rightarrow H^{1}(E(-1)) \otimes \theta_{V^{\bullet}}
$$

Since $\operatorname{dim}_{k} H^{1}(E(-2))=1$ it follows that $\overline{\mathrm{q}}_{*}\left(\bar{p}^{*} E(-1)\right) \cong \theta_{L} V^{(-1)}$. In particular, $\overline{\mathrm{p}}^{*} \mathrm{E}(-1) \otimes \overline{\mathrm{q}}^{*} \theta_{\mathrm{L}} \mathrm{V}(1)$ has a global section. But since $\overline{\mathrm{p}}^{*} \theta_{\mathrm{X}}(-1) \otimes \overline{\mathrm{q}}^{*} \theta_{\mathrm{L}} \mathrm{V}(1) \subseteq \theta_{\Sigma} \quad$ is the ideal of the exceptional divisor $\overline{\mathrm{p}}^{-1}(\mathrm{~L})$, we get a global section of E itself, which is impossible.

Remark The last part of this proof was pointed out to us by L. Ein and T. Sauer; they also showed us the similarity with Barth's proof of condition ($\alpha 2$) [2, p.67].
(3.7) Proposition There exists a point P of X such that no multiple jumping lines for E contain P.

Proof Consider the closed subset $\wedge \subseteq G(1,3)$ corresponding to multiple jumping lines. If L is any line, let $\sigma_{L} \subseteq G(1,3)$ be the special linear complex of lines intersecting L. For each $L \in \wedge$, we define a morphism $\varphi_{L}: \sigma_{L} \cap \wedge-\{L\} \rightarrow L^{\vee} \subseteq X^{\vee}$ via $\varphi_{L}\left(L^{\prime}\right)=$ plane spanned by L and L^{V}. Define two closed subsets of \wedge by $\Lambda_{1}=$ closure of $\left\{L \in \wedge\right.$ such that φ_{L} is dominating\}, and $\wedge_{2}=$ closure of $\wedge-\wedge_{1}$.

The assertion of the proposition is $L \in \wedge^{L} \neq X$. Assume the contrary, then either $L E \wedge_{1} I=X$ or $L E \wedge_{2} I=X$.

First case: $L \in \wedge_{1} I=X$. By (3.3) we have that $L^{V} \subseteq W_{0}$ for each $L \in \wedge_{1}$. Now (3.5) implies that $W_{o}=P_{1}^{V} U \ldots U P_{r}^{V} U W^{1}$ for some points P_{1}, \ldots, P_{r} of X and such that W^{1} contains no plane. For each $j=1, \ldots, r$ put $\wedge_{1, j}=\left\{L \in \wedge_{1}\right.$ such that $\left.P_{j} \in I\right\}$. It follows that there exists an index $\dot{\mathcal{j}}$ such that $L \in \wedge_{1} I_{j}=X$, i.e. all lines through P_{j} are multiple jumping lines. Since there is at most one unstable plane (3.6) we can find a semistable plane containing P_{j}. But this contradicts (3.4).

Second case: $L \in \wedge_{2} I=X$. For a general $L \in \wedge_{2}$, φ_{L} is not dominating. Since \wedge_{2} must have at least one component of dimension 2 , it follows that $\sigma_{L} \cap \wedge-\{L\}$ is infinite, so φ_{L} must have at least one infinite closed fibre. In other words, there exists a plane H containing L with infinitely many multiple jumping lines. By (3.4) and (3.6) there is only one such plane H_{2}, and hence $L U_{\wedge_{2}} L \subseteq H_{1} \neq X$, which gives the desired contradiction.
(3.8) Combining (3.7) with the Grauert-Mülich theorem, the proof of Theorem 2 is now complete.
§ 4.
(4.1) If we try to generalize the methods of $\S 2$ and $\S 3$ to higher values of $n=c_{2}(E)$, we immediately encounter difficulties of various kinds, to be pointed out presently. First of all, the proof of theorem 2 does no longer hold if $n \geq 4$, although we conjecture that the theorem still holds true, at least for bundles with $H^{1}(E(-2))=0$, the socalled mathematical instantons. More serious is the fact that we do not have a firm grip on the set of plane curves C occurring. Also, given C and θ, the problem of classifying surjections $2 \theta_{Y} \rightarrow \theta(2)$ such that the kemel F satisfies $F_{C} \cong \theta^{-1}(-1) \oplus \theta^{-1}(-2)$ seems difficult.

One is tempted to conjecture that, for mathematical instantons, θ always satisfies the condition ($\alpha 3$) of Barth (compare (1.11)). This would imply that $M_{i n s t}^{P}(n)$ is irreducible, non-singular and unirational of dimension ($8 n-3$), where $M_{\text {inst }}(n) \subseteq M_{o}(n)$ corresponds to mathematical instantons. Unfortunately, this conjecture is false, as we will show presently.
(4.2) Let $C \subseteq Y$ be any nonsingular curve of degree 4, and let θ be a θ-characteristic on C, i.e. a linebundle with $\theta^{2}=\theta_{C}(1)$ 。 Then there exists a surjection $2 \theta_{Y} \rightarrow \theta(2)$ such that the kernel F restricts to $\theta^{-1}(-1) \oplus \theta^{-1}(-2)$ on C.

Proof: Let G_{1} be the Grassmannian of 2-planes in the 8-dimensional vector-space $H^{\circ}(\theta(2))$, and let $K \subseteq \theta_{G_{1}} \otimes_{K} H^{\circ}(\theta(2))$ be the
universal subspace。
Write $\mathcal{L}=\theta(2)$ ．On $C \times G_{1}$ there is induced a natural map $\varphi: \theta_{C} \boxtimes K \rightarrow d \boxtimes \theta_{G_{1}} ;$ let $W \subseteq C \times G_{1}$ be the zero－scheme of φ 。 Then codim $W=2$ ，and the class of W is $c_{2}\left(\alpha \times K^{V}\right)=$ $\operatorname{pr}_{G}^{*}\left(c_{2} K^{V}\right)+\operatorname{pr}_{Y}^{*}(\alpha)^{\circ} \operatorname{pr}_{G_{1}}^{*}\left(c_{1} K^{V}\right)$ in the ring $A^{\circ}\left(C \times G_{1}\right)$ of cycles modulo numerical equivalence．The projection formula then gives the following expression for the class of $\operatorname{pr}_{G_{1}}(W)$ in $A^{\circ}\left(G_{1}\right)$ ：

$$
\left[p r_{G}(W)\right]=p r_{G^{*}}[W]=\operatorname{degree}(\alpha) \circ c_{1}\left(K^{V}\right)=10 c_{1}\left(K^{V}\right)
$$

Furthermore，we claim that W is irreducible．Indeed，let $\Delta \subseteq C \times C$ be the diagonal，and put $\varepsilon=\operatorname{pr}_{1^{*}}\left(\Theta_{C \times C}(-\Delta) \otimes \mathrm{pr}_{2}{ }^{*}\right)$ ．The formation of θ commutes with base change．There is a natural map $\theta_{6} \theta_{\mathrm{C}}^{\otimes} \mathrm{H}^{\circ}(\alpha)$ inducing a map $\operatorname{Grass}\left(2, \varepsilon^{v}\right) \rightarrow \mathrm{C} \times \mathrm{G}_{1}$ ．It is straightforward to check that the image is exactly W ，and that it is birational onto W ．Therefore W is irreducible（and reduced）．In particular，$p(W)$ is irreducible．Put $G=G_{1}-p(W)$ ． By the exact sequence $Z \stackrel{\alpha}{\rightarrow}$ Pic $G_{1} \rightarrow$ Pic $G \rightarrow 0$ where $\alpha(1)=$ $[p(W)]=10 c_{1}\left(K^{V}\right)$ ，and the fact that $c_{1}\left(K^{V}\right)$ generates Pic $G_{1} \cong \mathbf{Z}$ ，it follows that Pic $G \cong \mathbf{Z} / 10 \mathbf{Z}$ and is generated by the restriction of $c_{1}\left(K^{V}\right)$ 。 Let K also denote the restriction of K to G ，then there is an exact sequence on $Y \times G$ ：

$$
0 \rightarrow F \rightarrow \theta_{\mathrm{Y}} \otimes K \rightarrow \infty \otimes \theta_{\mathrm{G}} \rightarrow 0
$$

Restricting this sequence to $C \times G$ we get an induced sequence

$$
0 \rightarrow \alpha^{-1}(1) \boxtimes \theta_{G} \rightarrow F_{C \times G} \rightarrow d^{-1} \otimes \wedge^{2} K \rightarrow 0
$$

 $\delta: \theta_{G} \rightarrow\left(\wedge_{K}\right)^{-1}$ ．Since all this commutes with base change，it is clear that at any closed point of G where δ vanishes，the
corresponding induced F will split on C as stated in (4.2). But by what we have computed above, $\left({ }_{\wedge}^{2} K\right)^{-1}=\wedge\left(K^{\vee}\right)$ is non-zero in Pic G. In other words, δ does have zeroes in G, and we are finished.
(4.1) Remark By [2,prop.5], a general quartic curve can not be the divisor of jumping lines for a stable rank-2 vector bundle on $\mathbb{P}^{2}=Y^{\vee}$. Stated differently, (4.2) may be phrased as follows: $G(1,3)$ is, at the same time, also the Grassmannian of lines in the dual projective 3 -space X^{V} 。 If $\Delta \subseteq G(1,3)$ is a divisor of degree $n \geq 4$, it is not true that Δ is the jumping line divisor of a 2-bundle on X if and only if it is a jumping line divisor of a 2-bundle on X^{V}. In other words, the set of possible Δ is not compatible with the intrinsique symmetry of $G(1,3)$.

References:

[1] Barth, W.: Some properties of stable rank-2 vector bundles on \mathbb{P}_{n}, Math. Ann. 226 (1977) 125-150.
[2] Barth, W: Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977) 63-91.
[3] Barth, W, and Elencwajg, G.: Concernant la cohomologie des fibrés algebriques stables sur $\mathbb{P}_{n}(C)$, Springer Lecture Notes 683 (1978) 1-24.
[4] Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1956) 121-138.
[5] Hartshorne, R.: Algebraic Geometry, Graduate Texts in Math 52, Springer 1977.
[6] Hartshorne, R.: Stable vector bundles of rank 2 on \mathbb{P}^{3}, Math. Ann. 238 (1978) 229-280.
[7] Kleiman, S.: Relative duality for quasi-coherent sheaves, Preprint.
[8] Le Potier, J.: Fibrés stables de rang 2 sur $\mathbb{P}_{2}(C)$, Math. Ann. 241, (1979) 217-256.
[9] Maruyama, M. : Moduli of stable sheaves, J. Math. Kyoto Univ. 18 (1978) 557-614.
[10] Schneider, M.: Holomorphic vector bundles on \mathbb{P}_{n}, Sem. Bourbaki 530 (1978-79).
[11] Schwarzenberger,R.I.E:Vector bundles on the projective plane. Proc. London Math. Soc. 11, 623-640 (1961).

