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Abstract. It is shown that if G is a compact ergodic 

group of *-automorphisms on a unital c*-algebra A 

then the un1que G-invariant state is a trace. Hence 

if A is a von Neumann algebra then it is finite. 
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Compact er_godi?__&E.~S of aut~~phisms 

by 

R~ H¢egh-Krohn, M.B. Landstad, and E. St¢rmer 

1. Introduction. Let A be a unital c*-algebra, G a compact 

group and a a strongly continuous representation of G as an 

ergodic group of *-automorphisms of A, i.e. ag(x) = x for all 

g EG implies x lS a scalar operator. It was shown 1n [9] that 

if G lS abelian and A a von Neumann algebra then A is auto-

matically finite and the (necessarily unique) G-invariant state is 

a trace. Since then it has been an open problem whether the same 

is true without the assumption that G be abelian, see the intra-

duction to [6]. In the present paper we solve this problem to the 

affirmative by showing that if G acts ergodically on the unital 

C*-algebra A , then the G-invariant state is a trace. In the 

course of the proof of the theorem it will be shown that if D lS an 

irreducible representation of G and A(D) the corresponding 

spectral subspace in A , see below, then the multiplicity of D 

in A(D) is not greater than the dimension of D . A consequence 

of this is that if G 1s second countable acting on a C*-algebra 

then the action is cyclic if and only if it is ergodic. 

The problem solved in this paper immediately raises the problem 

of classification of compact ergodic actions on c*- or von Neumann 

algebras. If G is abelian this has been done completely in [1] 

and (6], and we can from those examples find nonabelian finite 

extensions of abelian ergodic actions on the hyperfinite TI 1-factor. 

Another construction is to let for each positive integer l ' G. 
l 

be 
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an ergodic compact group of automorphisms on the complex n. x n. 
l l 

matrices, and then let the product group G = 
00 

II G. 
i=1 l 

act on the 

infinite tensor product of the matrix algebras in the obvious way. 

Then the GNS-repreSentation due to the trace gives rise to an 

ergodic action of G on the hyperfinite factor. This is as far 

as we can go at present and we leave two basic problems open: 

( 1 ) If a compact group acts ergodically on a n: 1-factor M , is M 

hyperfini te ? (2) Find an example of a simple compact group 

acting ergodically on a n:1-factor. 

Many thanks go to our colleagues L.T. Gardner, C. Skau, 

T. Skjelbred, and T. Sund for their many helpful comments during 

our preparations of this paper. 

2. Compact ergodic groups. Let A be a unital c*-algebra, G a 

compact group, and suppose ~ is a strongly continuous representa-

tion of G as *-automorphisms of A , so g-+ CL (x) is norm contin·· g 

uous for all x E A We assume the action is ergodic on A , i.e. 

~ (x) = x for all g E G only if x is a scalar operator. Then g 

for each x E A, fag(x)dg is a scalar operator w(x)1 ) where dg 

is the normalized Haar measure on G . w so defined is the unique 

G-invariant state on A . 

If f E L1 (G) we denote by a(f) the operator on A defined 

by 

a(f)(x) = f£Cg)ag(x)dg. 

Let D be an irreducible unitary representation of G and its 

-I normalized character xD(g) = dimD Tr(Dg), where Tr is the usual 

trace on the Hilbert space of dimension dimD. Then a(xD) is a 
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projection of A onto a norm closed subspace A(D) of A called 

the spectral subs.Eace of D 1n A, see [3]. By [11, § 4.4.2] A(D) 

is the set of x E A such that the linear span of a. ( x) , g E G , is 
g 

finite dimensional and splits into a direct sum of irreducible compo~ 

nents all unitarily equivalent to D . 

Proposition 2.1. Let A be a unital c*-algebra, G a compact 

group and a a strongly continuous representation of G as an 

ergodic group of *-automorphisms of A . Let D be an irreducible 

unitary representation of G , A(D) the spectral subspace of D 1n 

A and m(D) the multiplicity of D 1n A(D) . Then we have 

(i) m(D) < d • 

(ii) dim A(D) < d2 . 

Proof. If E is an irreducible unitary representation of G either 

a. has no subrepresentation equivalent to E or there is an irre-

ducible subspace VE of A such that a.IVE 1s equivalent to E. 

Then VE c A(E) , as follows from the characterization of A(E) given 

above. Let D be as in the proposition. We may assume VD * 0 • 

Consider A as imbedded in the Hilbert space obtained in the 

GNS-representation due to the invariant state w . Thus (a,b) = w(b*a) 

is the inner product on A , Let d = dimD. Then we can choose 

in so they form an orthonormal basis for Then 

the map PD defined by 

d 
PD(a) = L (a 3 a.)a. 

i=1 l l 

lS a projection of A onto VD , and since w is G-invariant 

a. (PD(a)) = PD(a. (a)) for all a EA. g g Thus the subspace 
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(l-PD)(A(D)) of A, 1 denoting the identity map, is a closed 

G-invariant subspace of A orthogonal ·to VD . If ( t-PD) (A( D)) * 0 

it contains an irreducible subspace VE [7], and E 1s unitarily 

equivalent to D • Considering PD + PE we have found a norm contin-

uous projection onto VD +VE, and we can do this for any finite seT 

of irreducible representations D. equivalent to D , such 
], 

that the spaces Vn_ 
1 

are pairwise mutually orthogonal. 

We fix now a finite set J of unitarily equivalent irreducible 

representations D1 , ... ,DN such that their irreducible subspaces 

Vn of A(D) are nonzero and pairwise mutually orthogonal. We 
k 

shall show N ~ d , which will prove the proposition. 

Choose aik E Vnk, i =1 , .•• ,d, so that they form an ortho­

normal basis for VD , and such that they have the same action 
k 

under G , i.e. there is an irreducible unitary representation 

( 2 0 1 ) 

of G into the complex d x d matrices 

d 
a (a.k) = I: u .. (g)a.k , 

g 1 j =1 1] J 
k E J . 

For each pair j,k E J we have 

d * a ( I: a .. a.k) = ~a (a .. )*a (a.k) 
g i=1 1] 1 1 g 1] g 1 

= :r u. (g) a*. u. (g)a k . 1r rJ 1s s 1)r,s 

=I:a~ak 
r r] r 

H d 
satisfying 

Since G is ergodic I: a.!aik 1s a scalar operator, the scalar 
~ i 1] 

being found by the computation 

wO.: a.?a.k) = 
i 1] 1 

L(a.k,a . . ) = 
i 1 1] 

Thus we have ~hown 

( 2 0 2) 
d 
r. 

i=1 
* a .. a., 

l] L«: 
= 0 ... d 1 

JK 
j ,k E J , 
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Similarly we can find complex numbers 

( 2. 3) d * ! a .. a.k = 
lJ l i=1 

,-, d1 "'jk 

such that 

j,k E T u • 

The N x N matrix (cjk) lS clearly self-adjoint, so we can find 

a unitary N x N matrix ( CY.rs) such that 

N 
~ CY. cl CY.. 

l,m = 1 kl m Jm 
j,k E J 

N 
with A. E R 

J 
Let r a .. 

l] 
a! . E 
l] 

r: Vn , and 
k=1 k 

they form an orthonormal basis for 

a (a~.)= 
g l] 

d ! r u. (g)a . , 
r= 1 lr rJ 

Note that 

as is easily computed, hence we may replace a .. 
l] 

by r a. . , i = 1 , ••• ~d , 
lJ 

j EJ, and still have that (2.1) is satisfied. We shall therefore 

do this and thus assume (2.1), (2.2), and the diagonal form of (2.3) 

( 2. 4) 

where A. E R • 
J 

d * ~ a .. al. k = o. k A. d 1 , 
i=1 lJ J J 

j ,k E J , 

From (2.4) it is clear that A • > 0 • 
J 

Denote by e the d x d matrix operator 

Clearly e lS 

2 e = 

N 
e = { ~ a . , aJ.*k } E A ® M0, , 

k=1 lK 

self;,..adjoint~ and by ( 2 . 2) 

N d 
* * { '<" ~ "-· aik ask asl ajl} 

k,l = 1 s = 1 

l,J E {1, ... ,d}. 

it satisfies 

N 
* = { de :L a..;k a.kd} = 

k=1 .J.. J 
. 

Hence e = dp with p a projection, in particular 0 < e < d 1 • 

Let T denote the normalized trace on Md . 

state on A®Md' so by (2.4) we have 

Then w ® • is a 

_ 1 N d * N 
= d L w( :L aik aik) = :L A 

k=1 i=1 k=1 k 
( 2. 5) 
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We next assert that 

( 2 . 6 ) l,J €{1, ... ,d}, k,l EJ 

Indeed, fix k, 1 E J , and le·t s .. = w(a.k a.*1 ) 
l] l J 

Then ( !L.) 
l] 

is 

a d xd matrix which by (2.1) satisfies 

d 
Y- u. (g)B · = 

s= 1 lS SJ 

= w(a. (a.k)a.*1 ) 
g l J 

= w(a.k a _ 1 (a. 1 )*) 
l g J 

= ra . u . <g) • 
S lS SJ 

Therefore the matrix ( S .. ) commutes with (u. (g)) for all g E G. 
l] lS 

Since the representation g + (u. (g)) is irreducible (S .• ) is a 
lS l] 

scalar operator, so (2.6) follows from (2.4). 

Now consider the conjugate representation D to D • Since 

a E A(E) if and only if a(xE)(a) = a for E an irreducible re-

presentation, it is immediate from the definition of a.(xE) 

a E A(D) if and only if a* E A(D). Thus by (2.6) if b .. 
l] 

then {b .. : i = 1, ... ,d , j E J} form an orthonormal set in 
l] 

for which (2.1) is replaced by 

Since g + 

d 
a. (b.k) = L u .. (g)b.k 

g l j = 1 lJ J 

(u .. (g)) 
l] 

is irreducible the space spanned by 

that 

-l * =A. 2 a .. 
J l] 

A(D) 

{bik: i =1 , ••• ,d} is irreducible in A(D) for each k E J. Thus 

our previous discussion for D and the a .. 
l] 

is valid for D and 

the b ... 
l] 

We have in particular by the equations (2.2)- (2.5) 

( 2. 7) 
d 
L b .. b.~ = o.k1J·d1 

i= 1 l] lK J J 
j ,k E J , 
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N 
where ~ . > 0 and L: ~ • < d • 

J j~~1 J 
Computing He find by (2.2) 

d 
w( L: 

i=1 
= A-: 1 w (I: a . ! a .. ) = 

J i l] l] 

-1 t... d, 
J 

so that -1 
].I. = A. and therefore 

J J 

( 2. 8) 
N 
>: 

j =1 

-1 >... < d • 
J -

Since x+x- 1 > 2 whenever x >0 we have by (2.5) and (2.8) that 

N -1 
2N < L: (>...+>... ) _< 2d, so that N < d, as we wanted to show. 

- ]"=1 J J Q.E.D. 

Let A, G, and a be as in Proposition 2.1. Representing A 

in the GNS-representation defined by the G-invariant state w we 

may assume w(a) = (a~ 0 ,~ 0 ) for some cyclic vector ~ 0 for A in 

the Hilbert space. Furthermore there is a continuous unitary repre-

sentation of G H such that a (a) -1 and g -+ u on = u au 
g g g g 

ugl;o = .;0 for all g E G 
' 

a E A. Since w is the unique G-in-

variant state on A , w is the unique normal G-invariant state on 

the weak closure A- of A, hence by [5], G lS ergodic on A-

as well as A . Since the support projection for w is a G-invari-

ant projection in A- , it is 1 , hence w is faithful on A- , and 

; 0 is a separating vector for A- Let 6 denote the modular 

operator for Eo with respect to A- , and J the corresponding 

conjugation, so a*~ 

u 6 = flu and .Ju 
g g g 

dimensional subspace 

so under 6 recall 

( 2. 6) we have t-Ji th 

1 

= Jf12ae-
0 "'o 

= u J ' g g 

A(D)E 0 

A(D)E 0 = 

N = rn(D) 
~ 

for all a E A-, see [10]. By [8] 

E G , hence in particular the finite 
1 

is invariant under the action of 6 2 

{JxD(g)ug adg Eo: aE A}. By equation 

N 
so L: VD = A(D) , 

k=1 k 

0 "k 0 "l;:,. 
l J J 
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is an eigenvector for h with eigenvalue 

we have from (2.5) and (2.8) 

Corollary 2.2. Let A, G, a, D be as in Proposition 2.1. 

A • • 
J 

Hence 

Let t; 0 

be the cyclic vector in the GNS-representation defined by the G-

invariant state w • Then t; 0 is separating for A- , and if 6 

is its modular operator then 6 leaves the finite dimensional vector 

space A(D)t; 0 invariant. If A is an eigenvalue for hjA(D)t; 0 

then both A < dim D and A -l < dim D • 

We shall also need the probably well known observation 

Lemma 2.3. Let M be a von Neumann algebra and G an ergodic group 

of *-automorphisms of M • Suppose V is a nonzero globally G-

invariant linear subspace of M • If x E M , denote by r(x) and 

s(x) respectively the range and support projections of x • Then 

we have 

v r(x) = v s(x) = 1 . 
xEV xEV 

Proof. If a is a *-automorphism of H then a lS ultraweakly 

continuous, so by the construction of r(x) by spectral theory on 

the positive operator xx*, we see that a(r(x)) = r(a(x)) for 

x E M . Thus v r(x) 
xEV 

and v s(x) are nonzero G-invariant projec­
xEV 

tions ln H , hence are equal to 1 by ergodci ty. 
Q.E.D. 
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3. Tensor representations. In this section we shall apply Herman 

Weyl's classical theory for representations of groups, to obtain 

estimates for the dimensions of irreducible subspaces of powers of 

G-invariant subspaces of an ergodic group 

If V is a finite dimensional complex vector space we denote 

by V (m) the tensor product V ® • • • ® V ( m times) . If 1r is a 

representation of a group G on V , 1r has a corresponding repre­

sentation 1rm of G on V (m) defined by 7Tm(g) = 1r(g) ® • o • ® 1rCg) . 

Lemma 3.1. Let V be a finite dimensional complex vector space 

with dim V = n. Consider Gl(n,~) as acting on V and consider 

the corresponding representation of Gl(n,l'£) 

v<m) 
on v<m) =Vf!i!J•••®V. 

Then any irreducible subspace U of 

n(n-1) 
dim U < ( 1 +m) 2 

satisfies 

Proof. Let 1r denote the representation of Gl(n,~) on V • By 

[2, p. 192] we can decompose the representation 1rm of Gl(n,~) on 

v<m) into irreducible components as follows: 

where A = (>.. 1 , ••• ,An) 

i E {1, ... ,n}, 

m! 
IT h .. 

i,j l] 

>..i is a nonnegative integer for each 

h .. 
l] 

= 1+A.+~.-(i+j) 
l J 

- . h b ~ b h .th 1 . h y and A· lS t e num er o~ exes 1n t e J co umn 1n t e oung 
J 

tableau corresponding to A [2, p.192, eq. (23)]. lAD>.. means that 

the irreducible representation D>.. is repeated lA times, and DA 

is the irreducible representation of Gl(n,~) with highest weight 



- 10 -

Set now 1. = .:\. +n-.j and 1~ = n-J 
J J J 

Then the Weyl formula, 

see [2, p. 283, eq. (32)] gives that 

dim D>.. 

Hence 

11 (l.-1.) 
= i<j l J 

11 (1~-1~) 
i<j l J 

n(n-1) 
< ( 1 +m) 2 

Q.E.D. 

Proposition 3.2. Let G be a group of *-automorphisms on a c*-

algebra A, and suppose V lS a finite dimensional linear subspace 

of A which is globally invariant under G . Let dim V = n , and 

let for m Elli, Vm denote the linear subspace of A generated by 

products of m elements in V . Then Vm is again globally invari-

and under G and for each subspace U c Vm globally invariant and 

irreducible under the action of G we have 

dim U < (1+m) 

n(n-1) 
2 

Proof. Let ~ be the representation of G on V and ~m the 

corresponding representation on v<m) 

map of V(m) onto vm given by 

Let 

j (x ®•••®X) = m 1 m xI •• • xm • 

be the m-linear 

Then Jm intertwines the representation ~m and the action of G 

Vm • on , l. e. 

g E G • 

Therefore jm takes invariant subspaces of V(m) onto invariant 
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b f Vm • su spaces o Since the dimension of the image of a subspace 

is not greater than the dimension of the subspace, it suffices to 

show that for any invariant subspace 

the action of 7Tm( G) we have dim U < 

u of v<m) 
n(n-1) 

( 1 +m) 2 

irreducible under 

Denote by 1 the representation of Gl(n,~) on V , and 1m 

the corresponding representation on V (m) . Then 7Tm(G) c lm(Gl(n,O.::)) . 

By Lerrrna 3.1 any irreducible invariant subspace for tm(Gl(n,¢)) has d:imension 
n(n-1) 

at most (1+m) 2 Hence any subgroup and especially 7Tm(G) 

also has the property that 
n(n-1) 

at most (1+m) 2 Thus 

4. The maln results. 

any irreducible invariant subspace has dimension 
n(n-1) 

dimU < (1+m) 2 
Q.E.D. 

Theorem 4.1. Let A be a unital c*-algebra, G a compact group, 

and a a strongly continuous representation of G as an ergodic 

group of *-automorphisms of A . Then the unique G-invariant state 

on A is a trace. 

Proof. Since G is compact A lS generated by the spectral sub-

spaces A(D) , as D runs through the irreducible unitary represen-

tations of G [7]. Thus it suffices to show that each A(D) is 
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contained in the centralizer of the invariant state, or equivalently 

by Corollary 2.2 and [10], to show that all the eigenvalues of 6 

restricted to A(D)~ 0 are equal to 1 , ~ 0 being the G-invariant 

separating and cyclic vector in the GNS-representation due to the 

invariant state. Suppose A is one of them. By Corollary 2.2 we 

may assume A > 1 . Let V be a G-invariant subspace of A(D) 

such that 6a~ 0 = Aa~ 0 for all a E V and such that V is irredu-

cible under the action of G . This is possible since 6u - u ~ g - g 

for all g E G . For each m EIN, if Vm is the space generated 

by products of m elements 1n V , for each a E vm , a~ 0 is an 

6 with eigenvalue Am as 1s easily seen since eigenvector for 

y + 6it y6-it is an automorphism of the weak closure of A . Since 

G is ergodic an easy induction argument based on Lemma 2.3 shows 

that vm * 0 , and by Proposition 3.2 each subspace U of vm 

which is globally invariant and irreducible under· the action of G 
n~ 9-1) 

has dimension dimU < (1+m) ·· -
' vJhere n =dim V . By Corollary - n(n-12 

2.2 Am .:;: dim U , hence Am < ( 1 +m) 2 Thus -

0 < log A n(n-1) 
< - 2m- log ( 1 +m) , 

which is arbitrarily small for large m , so that log A = 0 , and 

A = 1 • Since A was an arbitrary eigenvalue for 6 restricted 

to an arbitrary subspace A(D)~ 0 with D an irreducible represen-

tation of G , 6 = 1 , and ~ 0 1s a trace vector for A • 
Q.E.D. 

If M 1s a von Neumann algebra, G a topological group and 

a a representation if G as *-automorphisms of M , we· say a 1s 

continuous if g + p(ag(x)) is continuous on G for each p E M* , 

x E M • 
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Corollary 4.2. Let M be a von Neumann algebra and G a compact 

group. If there is a continuous representation of G as an ergodic 

group of *-automorphisms on M then M is finite. 

Proof. It is well known that the set A of X E M such that the 

function g-+ a (x) is norm continuous on G is a c*-algebra globally 
g 

invariant under G and weakly dense in M. Let w be a normal 

G-invariant state on M. Then w iA is G-invariant, hence is a 

trace by Theorem 4.1. By density of A 1n M, w is a trace on M. 

Since by ergodicity w is faithful, M 1s finite. Q.E.D. 

The next result is a generalization of Corollary 4.2 and shows 

that compact automorphism groups in general have very large fixed 

point algebras. 

Corollary 4. 3. Let M be a von Neumann algebra of type ill , G a 

compact group, and a a continuous representation of G as *-auto~ 

morphisms of M . Then the fixed point algebra MG of G in M 

contains no minimal projections. 

Proof. G 
M ={xEM:a(x)=x,gEG}. 

g Suppose to the contrary that 

e is a nonzero minimal projection in MG Then G acts ergodically 

on the reduced algebra M e by By Corollary 4. 2 

M is finite contradicting the fact that it is of type IIT e since 

M is. Q.E.D. 

Let A be a c*-algebra, G a group, and a a representation 

of G as *-automorphisms of A . Suppose w is a G-invariant 

state. We say a is cyclic with respect to w if there is x E A 
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such that w{yag(X)) = 0 for all g E G 

see below that if G is compact and a 

implies y = 0 . We shall 

is a continuous represen-

tation of G as an ergodic group, then cyclicity of G means that 

the orbit of x~ 0 under G in the GNS-representation due to the 

unique G-invariant trace, is dense in the Hilbert space. 

Lemma 4.4. Let A be a unital c*-algebra, G a compact group 

and a a strongly continuous representation of G as *-automor-

phisms of A . Suppose w is a G-invariant state such that a 

is cyclic with respect to w • Then a is an ergodic representa-

tion, and w is the unique G-invariant state. 

Proof. Let AG denote the fixed point algebra of G 1n A. Since 

G is compact the adjoint of the map 

y + f a (y)dg 
G g 

of A onto AG defines an affine isomorphism between the G-invari-

ant states of A and the state space of AG . Suppose there is 

x E A such that w(yag(x)) = 0 for all g E G implies y = 0 . 

Then if y E A8 we have w(ya (x)) = w(a- 1 (y)x) = w(yx) , so the 
g g 

functional y + wCyx) lS injective on AG . But this is only 

possible if A8 is the scalars. Q.E.D. 

The next theorem is a direct analogue for representations of 

compact groups as *-automorphisms on c*-algebras, of a result of 

Greenleaf and Moskowitz on unitary representations on Hilbert space 

[ 4] . 
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Theorem 4.5. Let A be a unital c*-algebra and G a second 

countable compact group. Suppose a is a strongly continuous 

representation of G as *-automorphisms of A . Then a is an 

ergodic representation if and only if a is cyclic with respect 

to some G-invariant state. 

Proof. By Lemma 4.4 we only have to show that if a is ergodic 

and w is the unique G-invariant state, then a is cyclic with 

respect to w • By Proposition 2.1 if D 1s an irreducible repre-

sentation of G then its multiplicity in the spectral subspace A(D) 

of A is not greater than dim D . Thus there is xD E A(D) of 

norm one such that the linear span of ag(xD) , g E G , equals A(D) . 

Indeed, in the notation of the proof of Proposition 2.1 we may 
m(D) 

choose x = c I: a.. for a suitable scalar c > 0 • Since G is 
D i=1 11 

A 

second countable and compact its dual G is countable, hence there 

is a countable number of spectral subspaces A(D) . Number them by 

A(Dk) ' k EJN • For each k choose xDk E A(Dk) of norm one as 
co -k above, and let X = I: 2 XD (if 

k=1 k 

A 

G is finite let the sum be 

finite). Then II X II < 1 and X E A . - We show that the linear span 

of the orbit of x~ 0 ~ 0 being the G-invariant separating and 

cyclic vector in the GNS-representation due to w , is dense in the 

underlying Hilbert space H , hence in particular that a is cyclic 

with respect to w . 

Let s EH satisfy Cs;,a.g(x)s; 0 ) = 0 for all g E G. 

denote the unitary representation of G on H such that 

- 1 u au = a. (a) g g g and for all g E G , a E A • 

Let u 

Let D 

be an irreducible representation of G and xD the corresponding 

normalized character. Then u(xD) = fxD(g)ug dg is the orthogonal 

projection of H onto the subspace A(D)s 0 • Let D - D - k be one 
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of the irreducible representations described above. Then 

hence we have 

( u (X D) ~ ' uh XD ~ 0 ) = ( ~ 'u (X D) uh XD ~ 0 ) 

k = 2 (~,a<xn)ah(x)~ 0 ) 

= 2kfxn(g)(~,agh(x)~o)dg 

= 0 

by assumption on .; . Since span{uh xD~O: hE G} = A(D)~ 0 , 

u(xD)~ = 0 for each D = Dk . Since the subspaces A(Dk)~ 0 are 
00 

mutually orthogonal and span H , ~ = I: u( xn ) ~ = 0 • 
k=1 k Q.E.D. 



- 17 -

References 

1. S. Albeverio and R. H¢egh-Krohn, Ergodic actions by compact 

groups on c*-algebras, Math. Zeitschrift, to appear. 

2. A.D. Barut and R. Raczka, Theory of group representations 

and applications, PWN-Polish Scientific Publishers, 

Warszawa 1977. 

3. D.E. Evans and T. Sund, Spectral subspaces for compact 

actions, Reports 1n Math. Phys., to appear. 

4. F. Greenleaf and M. Moskowitz, Cyclic vectors for represen­

tations of locally compact groups, Math. Annalen 190 (1971), 

265-288. 

5. I. Kovacs and J. Szucs, Ergodic type theorems 1n von Neumann 

algebras, Acta Sci. Math. 27 (1966), 233-246. 

6. D. Olesen, G.K. Pedersen, and M. Takesaki, Ergodic actions of 

compact abelian groups, to appear. 

7. K. Shiga, Representations of a compact group on a Banach space, 

J. Math. Soc. Japan, 7 (1955), 224-248. 

8. E. St¢rmer, Automorphisms and invariant states of operator 

algebras, Acta Math. 127 (1971), 1-9. 

9. E. St¢rrner, Spectra of ergodic transformations, J. Funct. Anal. 

15 (1974), 202-215. 

10. M. Takesaki, Tomita's theory of modular Hilbert algebras and 

its applications, Springer-Verlag, Lecture notes in Math, 

128 (1970). 

11. G. Warner, Harmonic analysis on semi-simple Lie groups, I, 

Springer-Verlag 1972. 


