"A symmetry-condition for quasi-symmetric domainsg,

1 Introduction

In 5] we gave a J-algebraic characterization of quasi-symme-
tric domains among bounded, homogeneous domains. In this paper we
specialize to symmetric Siegel domains., We use the notation and
definitions of [5]., A quasi~-symmetric domain £(Q,F) =
{(z,W€Ug xV|Inz -F(u,u) €0} (U is an IR-vector space, V is a
§-vector space, F :VXV-’UG is "Q-hermitian", Q@ is a "nice"

cone in U) is symmetric precisely when

(1) R R

a F(b,d)b = RF(Rab,d>b VaEU, Vb,dEV,

where U3 a‘*RaEEnd(V) is Satake's linear map. See [3], [4].

Now in the j-algebraic description of L(Q,F) given in [2], we
have U = 4 and V = £, where QJ' =Ly 3% +74 1is the corre-
sponding j-algebra. Here oy is a Lie algebra, J€End(Qy)
satisfies j° = -Id and [X,Y]+3l3X,Y]+ jlX,3¥] - [4X,5Y] = OvX,Y €07,
"Zﬁ is an abelian ideal of (7, j'f is a subalgebra, [U,U]cC G ,
[jf,QL] c 7L and [’f,?ﬁ] = 0. Also there is a linear form w on ¢f
such that w[jX,X]>0 if X # 0 and w[jX,jY] = olX,Y]. Then we
have the j-invariant positive definite inner product <(X,Y)

: =wljX,Y] on o] « Also (ramn 07 = % +§ 7@(1 , vector space direct
sum, where ’f{ = [(7,43«1]"' is the <(,)-orthogonal complement to [0],@],

and [0f,07] = E‘Koc with root spaces £ = (Xe€lor,00]|[H,X] =
a(A)XVHE "F(,} where the root o is a linear form on 75. . Here

‘FL is an abelian subalgebra. It is shown in [2] that if Aqreeesty

are all the roots o such that j'ﬁq c o, then - jéa +'°°+jﬁa
A /] p
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end  dim fL = p, and further that all roots are of the form a, , -}ak
with 1<k=<p, 2(apfo ) with 1<k<m=<p. We have

"}
i = i = P w 2
IR (ap 40 ) Jé—%—(ak—am) and Jﬁ%ak ~lg%onk e put [2]
, P
ﬁ::Z‘ﬁ px Roa and U:= I and give L
kO 1<k<m<p REACIRE K1 2%
the complex structure Jj. It is easy to see that []@a,'f{B] CﬁowB

and that féa_[ji,s if o £8. (R

Also dim?ﬁOL = 1, end there is a unique element E, € 7\2 - {0}
k : k

such that [jEk,Ek] =E. Put E:= Ej+oee +Ep" The adjoint re-

0sBt = (0) if a+ B is no rToot).

presentation of the subalgebra "‘(f on the ideal ’57 gives a corre-
sponding representation of the simply connected group g o whose
Lie algebra is J’f . Then [2] Q: = go" E is an open, convex
cone in le with vertex at the origin, and not containing an entire
straight line. By construction Q is homogeneous, i.e. G1L(Q) =

(g€Gl(T)|gn = 0} is transitive on Q. Finally,

F(u,v) 2 = ;;[ju,v] +£—i [u,v] is an Q-hermitian form
FeUAx U~ 7%. Bea [2]. (Of course the %— is inessential),

We can now state

Theorem, If a quasi-symmetric, irreducible, bounded, homogeneous
domain ) is described by the j-algsbra (Of = T +3T +L,0),

then ) is symmetric if and only if
- '
RF(b,d)b = 0 whenever b€, , d€ll , m # n.
Remark. A similar theorem was proved by Dorfmeister [1] in his
big set up.

Since any bounded, homogeneous domain can be described by a Jj-

algebra [2] the theorem gives a simple algebraic characterization
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of the symmetric, bounded doﬁains, given the Jj-algebraic reali 2a-

tione.

The rest of this paper is devoted to proving the theorem j-alge-
braically, using notation and results from [5]. The proof is

rather computational.

2. Proof of the theorem,

I. Assume the condition is satisfied. We show that (1) is satis-

fied,

G - % -
(a) If bel,, A€, m<n, then RF(Rab,d)b =ovae €
Indeed, considering cases, we use [5], § 2:

R, (Zu,)=72u,_, (Zu,) = 2030, ,u_]
" £, (5 Uy RL]{m Uy Jyp o upd +

a . ' ) £ " ; o
2(&6. J LkIl) U.k € ak + \,Cn VLkIl € ﬁ(k,l’l) « = ﬁ.’%{akwn) [
where ( )' means transpose w.r.t. ¢,». Then:

i) If a =E k # n, then Rb = O,

k)

b=O.

. ® - = —l
ii) If a =E_, then RF(Rab,d)b = Bp(ap,a)® = *Fr(p,a)

L

iii) If a e

161%(1{,1)’ n £ k,1, then R = O,

iv) If a =1L, then Rb = 3[jL,_ ,bl €U, so

s ;"7 T <
F(Rab,d)éiF(é%K,ggn)E {Q(k,m)G’ Here k,m<n. Now

RD -0 for aeﬁ(k’mw, > a=R, €Endy(U) is extended

lhwmﬂyto’ﬁC”Em%CKN,

v) If a€L,y, then RD = #(adjl ;) belly, F<Rabsd)€ﬁ(m,1)®'

nl?

and RF(Rab,d) b = 0 again, as in iv).
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(b) Suppose m = n. We have F(b,d)¢€ ﬁn@ , Where ﬁ‘n : = ﬁ/an ,
and RF(b,d) b€ ZCD . Then
i) If a =E, k #n, then R (I, ) =0 implies that both sides
of 1) vanish,
ii) If a = E , then RaJZC = #Id, hence
n

- A - =
Fa"p(b,a) ® = *Fr(v,a) ® = Fr(4v,a) P = PR p,a) P

0, so both

. 0w _ f-. /7
iii) If a =TI € ﬂ,(k,n, n £ k,1, then Ra(«in)

sides of 1) vanish.

iv) If a = Ly, then by 2) we have RaRF(b,d)b =
5L ,RF(b,d)b] €U, , and Rb = F[JL,_ ,bl €, , and we

want to show that

(2) [T 2 Be(p,a)®Y = Be(ryn,_,b3,)0.

Now [jb,d] = AE , some X. Applying w, we get
[4b,d] = SE?{Q.ZEn

for an irreducible, quasi-symmetric domain, by [5]). Using

, where x = w(En) (independent of n

the form of P, we see 4F(b,d) = +{(b,a - i{jb,a)}E_.
By 2) we see R4F(b P = é%{(b,d)-—i(jb,d)}b, where
9

ib: = jb. We get
. 1 . . . .
Further, using 2) and the form of F, we get

(5) BRF([‘ijIl’b]‘id)b = [j[j[ijn’b]’d]’b]+J[J[[3Lkn’b]’d]’b]°




(6)

(7)

(8)

(9

(10)

(11)

(12)

-5~
We have
Lju,v] = [jv,ul] for WEIL,, VEU, & # Db, and

ULy, b = gL ,db] for I, € ﬁ(k,n), b €20, .
Both of these identities are proved by the four-term defining
relation for a j-algebra, by considering the root-spaces
(some of which may be zero) in which the terms lie,
A particular case of 6) is
[j[jI’m,b]ad] = -[[,ijn,b],jd].
Further, by Leibniz identity, one proves, using above results
and the fact ([5], § 2) that [jL E ) = I e

. : . ib,d
[[4Ly,,b1,a] = [[4L,,al,p]- SB.82p
Using 8), 9) and 7), and the j-invariance of (,), we find
[303030,,01,81,0] = ~[303030,;,a1,01,0] #2251, b3,
Again, by 7) and 9), we have

GL3L03Ly,,01,a1,0] = JL300IT,,,ad,0,b] - a2 ryr, o1,

By 4) and 5) we get now, using 10 and 11):

8B (g1, ,03,0)° * FlinsBr(p,a)P )
= [303030,,41,0]1,0] - 505004, ,4],0],b].

Now let v:= [jL,,dl€%, (k<n). Then by assumption, and

Im?
using 2) and 6):

L303,v1p1+ 303Mp,v]el= [304v,0],0] - jLilv,b],D]



= right hand side of 12). This proves 3).

v) If a = Ibl.efﬁ(n,l)’ (n<1), then the calculation is similar,

Instead of adja, we must use, according to 2), (adja)'. So

we want to prove
. f
(13) (2d30n1) Re(,a)® = Be((aasn ;) b,a)° -
In place of 4) we have

(1) 8(adLy; ) By, 3P = 7 Kb, (adglyy)'d - {3b,a) (adiTy; ) (30)1,

and in place of 5) we have -
" » - - ' ' 3 3 . l '
(15) 8RF«adjLnl)b,d)b = (ada[,j(adJLnl)b,d])b+J(ad3[(adJLnl) b,d]) b.
In place of 7) we have, by [5], § 2,
(16)  §(addly)'u = (adjL ) (Ju) for uell.

In place of the Leibnitz identity we have, in the quasi-symme-

tric case, the condition (Q') of [5], § 4:
(adjL)'[b,d] = [(adjL)'b,d] + [b,(adjL)'a] for b,ae€ll, LET.

Using this and the fact ([5], § &) that (adjLnl)'En = E_,

we obtain in place of 9):
. 1 . ' Si'lb:dz
(17) [(adJLnl) bad] = [(adJLnl> d’b]"' % Lnl .
We then get, in place of 10) and 11):
0 . . ' ' o " o - ' ' 0 '
(18) (adjlj(adjL, )b,dl) b =-(adjlj(adjL, ,)d,b1)b + %Q(adgl,nl) b,

(19) 3(adjl(adsL, ) 0,a1)b = j(adjl(aasl ) a,bD'b - $B282(aazr  Y(5b).
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In place of 12) we get

(20) 8{-RF((adjLnl>ub,d)b+(adjLnl)'RF(b,d)b}
= (adjl3(adjL,;)'a,b1)"d - j(adjl(adsL ;) 'a,b1) b .

Letting v : = (adjLnl)'dEZK, (1>n), we get as before

(using assumptions)

0 = 8Rpp )b = (adjlgb,v1) ' b+ j(adilb,v1)'d

(b,
= (adjljv,p1)'v - j(adjlv,b])'d = right hand side of 20).

This proves 13).

(c) Suppose m>n. One proves easily, practically the same way

as in (a), that RF(Rab,d)b = 0 Ya in this case,

(d) Now since condition 1) is not linear in b, we still have
something to do. Suppose b = Ib, with bkeiﬁf. Expanding

RaRF(Zbk,d)Zbl and RF(RaZbk,d)Zbl’ and noting that we have
1pti i i R_.R b, =R b
proved that our assumption implies R, F(bk,d) K F(Rabk,d)-k’

we need to establish the equality

(21) %ar(b, ,a)P1 ¥ FalF (b, , )% 7 BR(R b, ,a)P1 FEE(R b, @)k Y KT

(By symmetry, and by what we have proved, 21) will then hold
for VYk,1l).
We can assume 4 = Qné’qg.

(a) Suppose n # k,l. Then F(bk’dn)‘sﬁ%k,n)c implies

RF(-bk’dn)bl= O, and similarly RF(bl,dn)bk = 0, Hence left

hand side of 21) equals zero.
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i) If a =E_, , then Rpb, =4b,_ if r =k, and RDb, =0 if

r ke Similarly f 1 d si = =
# imi y for 1, and since RF(bk,dn)bl 0

RF(bl’dﬁ>bk,the right hand side of 21) vanishes.

ii) If a = Lsteé(s,t)’ and if n<k<1l, then a possibly non-
zero right hand side can occur only when s or t equals
k or 1by 2). In fact 2) shows that we need only check
the case s =k, t =1, since otherwise both terms on the
right hand side vanish. Now in terms of the Jordan product -
on U (see [3], [4]) we have L°F(u,v) = F(Bu,v)+F(u,Rv),

because of quasi-symmetry. Furthermore (see [3])

Rroy

I

RRy +ByRp o So the right hand side of 21) equals

B

o b, +R
F(bk’dn)“F(bk’RL d -1 F(RL by,4, ) k

kl k1 Kkl

>b

Ry by -
RLkl a1~ Fr(v, R a )P1

k1

lr 9

b, + R

+ {Bp F(b,,d )" "1 T Br(R, by,0 )% 1.

k1 1

The first two terms vanish since F(bk,dn) Gﬁ(n’k)@ and

=0 (see 2)). Putting b, :=R. b, €Y, the
% K L, 01 ¢ %

expression equals
%5 (b, ,a )gk'*RF( ,a. )Pk = Br(o 48, ,a_ yOtD)-Bpey, 4 YPrRp(s dﬁ§£=o’
k' %n 1Py 1% 1

by assumptions,.

The cases k<n<l and k<1<n are similar.

(B) Suppose k < n<1l. Then F(bk,dk) Efék@ , SO RF(bk,dk)bl =0,




i)

ii)
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Further RF(bl,dkjbkegﬁ. since F(bl’dk)esﬁkk,l)ﬁ’ and

the left hand side of 21) is RaRF(bl,dk)bk°

If a = E,, then the left hand side of 21) is contained
in R&T(ﬁﬁl),which is non-zero only if r = 1, and in that

Kol 1 ulk _
case the left hand side equals ZRF(bl,dk)bk = F(%bl,dk)bk

’_=Oe

)bk = right hand side of 21), since Ra .

= TF(R by Ay
For r # k,1 the right hand side equals zero, as we want.
For r =k we have Rb; =0, Rpb, = %bk, so the right

. - — .
hand side equals ZRF(bk,dk)bl = 0, since F(bk,dk)Gzﬁkg,

again as we want,

If a = Lstezﬁ(s,t)’ we have to check that

R R b = b, + R b °
a F(bl’dk) k F(Rabk’dk) 1 F(Rabl’dk) k

Here the right hand side equals

. b
Pycrdy) asF(by,d, ) - F(by,R 4, )k

= b, +R_R b, +R R.b, =R b, .
F(R,by 41 )°1 * & F (b, ,4, )"k ¥ ¥ (g ,4, ) "8 k T P (b R4, )k

So we have to check that
R b, +R R b, = b, e
F<Rabk’dk> 1 F(bl,dk) a'k F(bl,Radk) k

Here the left hand side is non-zero only if (s,t) = (k,1)
(see 2)), in which case it equals zero, since, letting
b, : = R b, €Uy, we have RF(Ei,dk)bl'FRF(bl,dk)ﬁl = 0,
just as in case a) ii) above. The right hand side is non-

zero only if R4, # O and F(bl’Radk)esé(k,l)G'
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But this is impossible (see 2)).
(v) If k<1 = n, the argument is as in case (B). This proves

one way of tThe theorem.

Now suppose we have symmetry. Then in 1) let 136&%, dael.,
k £ 1, and thus RF(b,djbe‘ﬁ_ (see 2)).

Let a = El° Then left hand side of 1) equals %BF(b,d)b’
and the right hand side vanishes since Réb = O,

Hence RF(b,d)b = Oo q‘endo
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