"A symmetry-condition for quasi-symmetric domains.

1. Introduction

In [5] we gave a j-algebraic characterization of quasi-symmetric domains among bounded, homogeneous domains. In this paper we specialize to symmetric Siegel domains. We use the notation and definitions of [5]. A quasi-symmetric domain $\mathcal{D}(\Omega, F)=$ $\left\{(z, u) \in U_{\mathbb{C}} \times V \mid \operatorname{Im} z-F(u, u) \in \Omega\right\}$ (U is an \mathbb{R}-vector space, V is a R-vector space, $F: V \times V \rightarrow U_{C}$ is " Ω-hermitian", Ω is a "nice" cone in U) is symmetric precisely when

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{F}(\mathrm{~b}, \mathrm{~d})^{\mathrm{b}}=\mathrm{R}_{\mathrm{F}}\left(\mathrm{R}_{\mathrm{a}} \mathrm{~b}, \mathrm{~d}\right)^{\mathrm{b}} \quad \forall \mathrm{a} \in \mathrm{U}, \quad \forall \mathrm{~b}, \mathrm{~d} \in \mathrm{~V}, ., ~}^{\text {, }} \tag{1}
\end{equation*}
$$

where $U \ni a \rightarrow R_{a} \in \operatorname{End}(V)$ is Satake's linear map. See [3], [4]. Now in the j-algebraic description of $\mathscr{D}(\Omega, F)$ given in [2], we have $U=l$ and $V=u$, where $o f=l_{+} j l+\mathscr{l}$ is the caresponding j-algebra. Here $O \mathcal{J}$ is a Lie algebra, $j \in \operatorname{End}(\mathcal{O})$ satisfies $j^{2}=-I d$ and $[X, Y]+j[j X, Y]+j[X, j Y]-[j X, j Y]=O \forall X, Y \in \mathscr{G}$, \mathscr{U} is an abelian ideal of $O J, j \ell$ is a subalgebra, $[\mathscr{C}, \mathcal{U C}] \subset \mathscr{C}$, $[j \mathscr{l}, \mathscr{C}] \subset \mathscr{U}$ and $[\mathscr{C}, \mathcal{U}]=0$. Also there is a linear form ω on \mathscr{J} such that $\omega[j X, X]>0$ if $X \neq 0$ and $\omega[j X, j Y]=\omega[X, Y]$. Then we have the j-invariant positive definite inner product 〈X,Y〉 $:=\omega[j \mathrm{X}, \mathrm{Y}]$ on $0 \boldsymbol{J}$. Also ([2]) $0, k+\sum_{\alpha} k_{\alpha}$, vector space direct sum, where $\mathcal{R}_{h}=[0,0 \eta]^{\perp}$ is the \langle,$\left.\rangle -orthogonal complement to [0], O\right]$, and $[\sigma, \sigma]=\sum_{\alpha} k_{\alpha}$ with root spaces $k_{\alpha}=\{X \in[\sigma, O\}][H, X]=$ $\alpha(H) X \forall H \in\}$ where the root a is a linear form on \mathcal{H}. Here \hbar is an abelian subalgebra. It is shown in [2] that if $\alpha_{1}, \ldots, a_{p}$ are all the roots α such that $j k_{\alpha} \subset k$, then $h=j k_{\alpha_{1}}+\ldots+j k_{\alpha_{p}}$
and $\operatorname{dim} h=p$, and further that all roots are of the form $\alpha_{k}, \frac{1}{2} \alpha_{k}$ with $1 \leq k \leq p, \frac{1}{2}\left(\alpha_{k} \pm \alpha_{m}\right)$ with $1 \leq k<m \leq p$. We have
$j \hat{k}_{\frac{1}{2}\left(\alpha_{k}+\alpha_{m}\right)}=k_{\frac{1}{2}}\left(\alpha_{k}-\alpha_{m}\right)$ and $j k_{\frac{1}{2} \alpha_{k}}=k_{\frac{1}{2} \alpha_{k}}$. We put [2]
$l:=\sum_{k=1}^{p} k_{\alpha_{k}}+\sum_{1 \leq k<m \leq p} \hbar_{\frac{1}{2}\left(\alpha_{k}+\alpha_{m}\right)}$ and $\mathcal{C}:=\sum_{k=1}^{p} k_{\frac{1}{2} \alpha_{k}}$ and give \mathcal{C} the complex structure j. It is easy to see that $\left[k_{\alpha}, k_{\beta}\right] \subset k_{\alpha+\beta}$ and that $k_{\alpha} \perp \ell_{\beta}$ if $\alpha \neq \beta$. ($\hbar_{\alpha+\beta}:=(0)$ if $\alpha+\beta$ is no root)。 Also $\operatorname{dim} k_{\alpha_{k}}=1$, and there is a unique element $E_{k} \in k_{\alpha_{k}}-\{0\}$ such that $\left[j E_{k}, E_{k}\right]=E_{k}$. Put $E:=E_{1}+\ldots+E_{p}$. The adjoint representation of the subalgebra $j \mathscr{C}$ on the ideal \mathcal{C} gives a caresponding representation of the simply connected group $\mathcal{G} 0$ whose Lie algebra is $j \ell$. Then [2] $\Omega:=\mathcal{G}_{0} \circ \mathrm{E}$ is an open, convex cone in \mathscr{C} with vertex at the origin, and not containing an entire straight line. By construction Ω is homogeneous, ie. $G I(\Omega):=$ $\{g \in G I(\mathcal{U}) \mid g \Omega=\Omega\}$ is transitive on Ω. Finally,

$$
F(u, v):=\frac{1}{4}[j u, v]+\frac{1}{4} i[u, v] \text { is an } \Omega \text {-hermitian form }
$$

$F: \mathfrak{U} \times u \rightarrow \mathcal{C}_{\mathbb{C}}$. See [2]. (Of course the $\frac{1}{4}$ is inessential). We can now state

Theorem. If a quasi-symmetric, irreducible, bounded, homogeneous domain D is described by the j-algebra $(\mathcal{O}=\mathcal{C}+j \mathscr{C}+\mathcal{C}, w)$, then \mathscr{D} is symmetric if and only if

$$
R_{F(b, a)} b=0 \text { whenever } b \in \mathcal{U}_{m}, d \in \mathcal{U}_{n}, \quad m \neq n
$$

Remark. A similar theorem was proved by Dorfmeister [1] in his big set up 。

Since any bounded, homogeneous domain can be described by a jalgebra [2] the theorem gives a simple algebraic characterization
of the symmetric，bounded domains，given the j－algebraic reali a－ tion．

The rest of this paper is devoted to proving the theorem j－alge－ braically，using notation and results from［5］．The proof is rather computational．

2．Proof of the theorem．

I．Assume the condition is satisfied．We show that（1）is satis－ fied．
（a）If $b \in \mathcal{U}_{n}, a \in \mathcal{X}_{m}, m<n$ ，then $R_{F\left(R_{a} b, a\right)} b=0 \forall a \in \ell$ Indeed，considering cases，we use［5］，§ 2：
（2）

$$
R_{E_{k}}\left(\Sigma u_{l}\right)=\frac{1}{2} u_{k}, R_{L_{k n}}\left(\Sigma u_{l}\right)=\frac{1}{2}\left[j I_{k n}, u_{n}\right]+
$$

$$
\frac{1}{2}\left(\operatorname{adj} I_{k n}\right)^{\prime} u_{k} \in u_{k}+\mathcal{C}_{n} \quad \forall L_{k n} \in K_{(k, n)}:=k_{\frac{1}{2}\left(\alpha_{k}+\alpha_{n}\right)},
$$ where（ ）＇means transpose worst．〈，〉．Then：

i）If $a=E_{k}, k \neq n$ ，then $R_{a} b=0$ 。
ii）If $a=E_{n}$ ，then $\left.\left.R_{F(R} b, a\right)^{b}=R_{F\left(\frac{1}{2} b\right.}, a\right)^{b}=\frac{1}{2} R_{F}(b, a)^{b}=0$ ．
iii）If $a=L_{k l} \in f_{(k, 1)}, n \neq k, 1$ ，then $R_{a} b=0$ 。
iv）If $a=I_{k n}$ ，then $R_{a} b=\frac{1}{2}\left[j I_{k n}, b\right] \in C_{k}$ ，so $F\left(R_{a} b, d\right) \in F\left(C_{k}, \mathscr{C}_{m}\right) \in R_{(k, m) \in \text { ．Here } k, m<n \text { ．Now }}$
 linearly to $\mathscr{C}_{\mathbb{C}} \rightarrow \operatorname{End}_{\mathbb{C}}(20)$ ．
v）If $a \in I_{n l}$ ，then $R_{a} b=\frac{1}{2}\left(a d j I_{n l}\right)^{\prime} b \in \mathcal{U}_{1}, F\left(R_{a} b, d\right) \in K_{(m, I)} \mathbb{C}^{\prime}$ and $R_{F}\left(R_{a} b, d\right) b=0$ again，as in iv）．
(b) Suppose $m=n$. We have $F(b, d) \in k_{n c}$, where $k_{n}:=k_{\alpha_{n}}$, and $R_{F(b, d)} b \in \mathcal{C}_{n}$. Then
i) If $a=E_{k}, k \neq n$, then $R_{a}\left(U_{n}\right)=0$ implies that both sides of 1) vanish.
ii) If $a=E_{n}$, then $\left.R_{a}\right|_{i C_{n}}=\frac{1}{2} I d$, hence
$\left.R_{a} R_{F(b, d)} b=\frac{1}{2} R_{F(b, d)} b=R_{F\left(\frac{1}{2} b\right.}, d\right) b=R_{F\left(R_{a} b, d\right)} b$
iii) If $a=I_{k l} \in k_{(k, 1)}, n \neq k, 1$, then $R_{a}\left(\mathscr{C l}_{n}\right)=0$, so both sides of 1) vanish.
iv) If $a=L_{k n}$, then by 2) we have $R_{a} R_{F(b, a)^{b}}=$ $\frac{1}{2}\left[j I_{k n}, R_{F(b, a)} b\right] \in \mathcal{C}_{k}$, and $R_{a} b=\frac{1}{2}\left[j I_{k n}, b\right] \in \mathcal{U} C_{k}$, and we want to show that

$$
\begin{equation*}
\left[j I_{k n}, R_{F(b, d}\right)^{b]}=R_{F\left(\left[j I_{k n}, b\right], d\right)^{b}} \tag{3}
\end{equation*}
$$

Now $[j b, d]=\lambda E_{n}$, some λ. Applying ω, we get $[j b, a]=\frac{\langle b, d\rangle}{x} E_{n}$, where $x=w\left(E_{n}\right)$ (independent of n for an irreducible, quasi-symmetric domain, by [5]). Using the form of F, we see $4 F(b, d)=\frac{1}{x}\{\langle b, d\rangle-i\langle j b, d\rangle\} E_{n}$. By 2) we see $R_{4 F(b, a)} b=\frac{1}{2 x}\{\langle b, a\rangle-i\langle j b, d\rangle\} b$, where ib: $=j b$. We get
(4) $8\left[j I_{k n}, R_{F(b, d)} b\right]=\frac{1}{x}\left\{\langle b, a\rangle\left[j I_{k n}, b\right]-\langle j b, a\rangle\left[j I_{k n}, j b\right]\right\}$. Further, using 2) and the form of F, we get

$$
\begin{equation*}
8 R_{F\left(\left[j L_{k n}, b\right], a\right)^{b}}=\left[j\left[j\left[j I_{k n}, b\right], a\right], b\right]+j\left[j\left[\left[j L_{k n}, b\right], d\right], b\right] . \tag{5}
\end{equation*}
$$

We have
(6) $[j u, v]=[j v, u]$ for $u \in \mathscr{C} C_{a}, v \in \mathcal{C _ { b }}, a \neq b$, and
(7) $j\left[j L_{k n}, b\right]=\left[j L_{k n}, j b\right]$ for $L_{k n} \in k_{(k, n)}, b \in 2 C_{n}$.

Both of these identities are proved by the four-term defining relation for a j-algebra, by considering the root-spaces (some of which may be zero) in which the terms lie. A particular case of 6) is
(8) $\left[j\left[j I_{\mathrm{kn}}, \mathrm{b}\right], \mathrm{d}\right]=-\left[\left[j L_{\mathrm{kn}}, \mathrm{b}\right], j \mathrm{~d}\right]$ 。

Further, by Leibniz identity, one proves, using above results and the fact $([5], \S 2)$ that $\left[j I_{k n}, E_{n}\right]=I_{k n}$:
(9) $\left[\left[j I_{k n}, b\right], d\right]=\left[\left[j I_{k n}, d\right], b\right]-\frac{\langle j b, d\rangle}{x} I_{k n}$. Using 8), 9) and 7), and the j-invariance of \langle,$\rangle , we find$
(10) $\left[j\left[j\left[j I_{k n}, b\right], a\right], b\right]=-\left[j\left[j\left[j I_{k n}, d\right], b\right], b\right]+\frac{\langle b, d\rangle}{x}\left[j I_{k n}, b\right]$. Again, by 7) and 9), we have
(11) $j\left[j\left[\left[j L_{k n}, b\right], d\right], b\right]=j\left[j\left[\left[j L_{k n}, d\right], b\right], b\right]-\frac{\langle j b, d\rangle}{x}\left[j L_{k n}, j b\right]$ 。 By 4) and 5) we get now, using 10 and 11):
(12) $\quad 8\left\{-\mathrm{R}_{\mathrm{F}}\left(\left[j \mathrm{I}_{\mathrm{kn}}, \mathrm{b}\right], \mathrm{d}\right)^{\mathrm{b}}+\left[. j \mathrm{I}_{\mathrm{kn}}, \mathrm{R}_{\mathrm{F}}(\mathrm{b}, \mathrm{d})^{\mathrm{b}}\right]\right\}$
$=\left[j\left[j\left[j L_{k n}, a\right], b\right], b\right]-j\left[j\left[\left[j L_{k n}, a\right], b\right], b\right]$.
Now let $\mathrm{v}:=\left[j I_{\mathrm{kn}}, d\right] \in \mathcal{Z}_{k},(\mathrm{k}<\mathrm{n})$. Then by assumption, and using 2) and 6):

$$
\begin{aligned}
0 & \left.=8 R_{F(b, v)} b=2 R_{[j b}, v\right]^{b+2 j R}[b, v]^{b} \\
& =[j[j b, v], b]+j[j[b, v], b]=[j[j v, b], b]-j[j[v, b], b]
\end{aligned}
$$

$=$ right hand side of 12). This proves 3).
v) If $a=L_{n l} \in k_{(n, I)},(n<l)$, then the calculation is similar. Instead of adja, we must use, according to 2), (adja)'. So we want to prove

$$
\begin{equation*}
\left.\left.\left.\left(a d j L_{n l}\right)^{\prime} R_{F(b, d}\right)^{b}=R_{F\left(\left(a d j I_{n l}\right)\right.}\right)^{\prime}, a\right)^{b} . \tag{13}
\end{equation*}
$$

In place of 4) we have
(14) $\left.8\left(a d j I_{n l}\right)^{\prime} R_{F(b, d}\right)^{b}=\frac{1}{n}\left\{\langle b, d\rangle\left(a d j I_{n l}\right)^{\prime} b-\langle j b, a\rangle\left(a d j I_{n l}\right)^{\prime}(j b)\right\}$, and in place of 5) we have
(15) $\left.\left.8 R_{F(a d j} I_{n l}\right)^{\prime \prime} b, a\right)^{b}=\left(\operatorname{adj}\left[j\left(a d j L_{n l}\right)^{\prime} b, a\right]\right)^{\prime} b+j\left(a d j\left[\left(a d j L_{n l}\right)^{\prime} b, d\right]\right)^{\prime} b$. In place of 7) we have, by [5], § 2,
(16) $j\left(a d j L_{n l}\right)^{\prime} u=\left(\operatorname{adj} I_{n l}\right)^{\prime}(j u)$ for $u \in \mathcal{V}_{n}$.

In place of the Leibnitz identity we have, in the quasi-symmetric case, the condition ($Q^{\prime \prime}$) of [5], § 4:
$(a d j L)^{\prime}[b, a]=\left[(a d j L)^{\prime} b, d\right]+\left[b,(a d j L)^{\prime} d\right]$ for $b, a \in \hat{C}, L \in \mathscr{C}$ 。 Using this and the fact $([5], \S 4)$ that $\left(a d j I_{n l}\right)^{\prime} E_{n}=E_{n}$, we obtain in place of 9):
(17) $\left[\left(a d j I_{n l}\right)^{\prime} b, d\right]=\left[\left(a d j I_{n l}\right)^{\prime} d, b\right]-\frac{\left\langle j b_{a}, d\right\rangle}{\mu} I_{n l}$.

We then get, in place of 10) and 11):
(18) $\left(\operatorname{adj}\left[j\left(a d j I_{n l}\right)^{\prime} b, d\right]\right)^{\prime} b=-\left(\operatorname{adj}\left[j\left(a d j L_{n l}\right)^{\prime} d, b\right]\right)^{\prime} b+\frac{\langle b, d\rangle}{x}\left(\operatorname{adj} I_{n l}\right)^{\prime} b$,
(19) $j\left(\operatorname{adj}\left[\left(a d j I_{n l}\right)^{\prime} b, d\right]\right)^{\prime} b=j\left(\operatorname{adj}\left[\left(a d j I_{n l}\right)^{\prime} a, b\right]\right)^{\prime} b-\frac{\langle j b, a\rangle}{x}\left(a d j I_{n l}\right)^{\prime}(j b)$.

In place of 12) we get
(20)

$$
\begin{aligned}
& 8\left\{-R_{F}\left(\left(a d j L_{n l}\right)^{\prime} b, d\right)^{\left.b+\left(a d j I_{n l}\right)^{\prime} R_{F}(b, d)^{b}\right\}}\right. \\
& =\left(\operatorname{adj}\left[j\left(a d j L_{n l}\right)^{\prime} d, b\right]\right)^{\prime} b-j\left(\operatorname{adj}\left[\left(a d j L_{n l}\right)^{\prime} d, b\right]\right)^{\prime} b
\end{aligned}
$$

Letting $v:=\left(a d j I_{n l}\right)^{\prime} d \in \mathcal{K}_{I},(I>n)$, we get as before (using assumptions)

$$
\begin{aligned}
0 & =8 R_{F(b, v)^{b}=(\operatorname{adj}[j b, v])^{\prime} b+j(\operatorname{adj}[b, v])^{\prime} b} \\
& \left.=(\operatorname{adj}[j v, b])^{\prime} b-j(\operatorname{adj}[v, b])^{\prime} b=\text { right hand side of } 20\right) .
\end{aligned}
$$

This proves 13).
(c) Suppose $m>n$. One proves easily, practically the same way as in (a), that $R_{F\left(R_{a} b, d\right)} b=0 \forall a$ in this case.
(d) Now since condition 1) is not linear in b, we still have something to do. Suppose $\mathrm{b}=\Sigma \mathrm{b}_{k}$ with $\mathrm{b}_{k} \in \mathcal{V}_{k}$. Expanding $R_{a} R_{F}\left(\Sigma b_{k}, d\right)^{\Sigma b_{l}}$ and $R_{F}\left(R_{a} \Sigma b_{k}, d\right)^{\Sigma b_{l}}$, and noting that we have proved that our assumption implies $R_{a} R_{F}\left(b_{k}, d\right){ }^{b_{k}}=R_{F}\left(R_{a} b_{k}, a\right)^{b_{k}}$, we need to establish the equality
(21) $\left.\left.\left.\left.\quad R_{a} R_{F\left(b_{k}\right.}, d\right)^{b_{I}}+R_{a} R_{F\left(b_{I}\right.}, d\right)_{k} b_{k}=R_{F\left(R_{a} b_{k}\right.}, d\right)^{b_{I}}+R_{F\left(R_{a} b_{I}\right.}, d\right)_{k} b_{k} \forall 1$ 。 (By symmetry, and by what we have proved, 21) will then hold for $\forall k, I)$.

We can assume $d=d_{n} \in 2 C$.
(α) Suppose $n \neq k$, 1 . Then $F\left(b_{k}, d_{n}\right) \in k_{(k, n) \mathbb{C}}$ implies
 hand side of 21) equals zero.
i）If $a=E_{r}$ ，then $R_{a} b_{k}=\frac{1}{2} b_{k}$ if $r=k$ ，and $R_{a} b_{k}=0$ if $r \neq k$ ．Similarly for 1 ，and since $\left.R_{F\left(b_{k}\right.}, d_{M}\right)^{b_{l}}=0=$ $R_{F\left(b_{1}, d_{n}\right.} b_{1}$ ，the right hand side of 21）vanishes．
ii）If $a=L_{s t} \in k_{(s, t)}$ ，and if $n<k<1$ ，then a possibly non－ zero right hand side can occur only when s or t equals k or 1 by 2）．In fact 2）shows that we need only check the case $s=k, \quad t=l$ ，since otherwise both terms on the right hand side vanish．Now in terms of the Jordan product 。 on U（see［3］，［4］）we have $L \circ F(u, v)=F\left(R_{L} u, v\right)+F\left(u, R_{L} v\right)$ ， because of quasi－symmetry．Furthermore（see［3］）
$R_{L \circ M}=R_{L} R_{M}+R_{M} R_{L}$ 。 So the right hand side of 21）equals

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}_{k I}} \cdot \mathrm{~F}\left(\mathrm{~b}_{k}, \mathrm{a}_{\mathrm{n}}\right)-\mathrm{F}\left(\mathrm{~b}_{k}, \mathrm{R}_{\mathrm{I}_{k l}} \mathrm{a}_{\mathrm{n}}\right)^{\mathrm{b}_{\mathrm{l}}}+\mathrm{R}_{\mathrm{F}}\left(\mathrm{R}_{\mathrm{L}_{k l}} \mathrm{~b}_{\mathrm{l}}, \mathrm{~d}_{\mathrm{n}}\right)^{\mathrm{b}_{k}} \\
& \left.\left.=R_{L_{k I}} R_{F\left(b_{k}\right.}, d_{n}\right)^{b_{l}}-R_{F\left(b_{k}\right.}, R_{L_{k l}} d_{n}\right)^{b_{l}} \\
& \left.+\left\{R_{F\left(b_{l f}\right.}, a_{n}\right) \mathrm{R}_{\mathrm{L}_{k l}} \mathrm{~b}_{1}+\mathrm{R}_{\mathrm{F}}\left(\mathrm{R}_{\mathrm{L}_{k l}} \mathrm{~b}_{1}, \mathrm{a}_{\mathrm{n}}\right) \mathrm{b}_{k}\right\} .
\end{aligned}
$$

The first two terms vanish since $F\left(b_{k}, d_{n}\right) \in k_{(n, k) \mathbb{C}}$ and $R_{L_{k l}} a_{n}=0$（see 2））．Putting $\tilde{b}_{k}:=R_{L_{k l}} b_{l} \in \mathcal{C}_{k}$ ，the expression equals

$$
\left.\left.R_{F\left(b_{k}\right.}, a_{n}\right) \tilde{b}_{k}+R_{F\left(\tilde{b}_{k}, a_{n}\right)} b_{k}=R_{F\left(b_{k}+\tilde{b}_{k}, a_{n}\right)}\left(b_{k}+\tilde{b}_{k}\right)-R_{F\left(b_{k}\right.}, a_{n}\right) b_{k}-R_{F\left(\tilde{b}_{k}\right.}, a_{n} \tilde{S}_{k}=0
$$

by assumptions．
The cases $k<n<1$ and $k<1<n$ are similar．
（ β ）Suppose $k<n<1$ ．Then $F\left(b_{k}, a_{k}\right) \in \mathscr{C}_{k \mathbb{C}}$ ，so $\left.R_{F\left(b_{k}\right.}, a_{k}\right) b_{1}=0$ 。

Further $\left.R_{F\left(b_{1}, d_{k}\right)}\right)_{k} \in T C_{1}$ since $F\left(b_{1}, d_{k}\right) \in K_{(k, I) \mathbb{C}}$, and the left hand side of 21) is $\left.R_{a} R_{F\left(b_{1}\right.}, d_{k}\right)^{b_{k}}{ }^{\circ}$
i) If $a=E_{r}$, then the left hand side of 21) is contained in $R_{k_{r}}\left({ }^{\left(2 L_{1}\right.}\right)$, which is non-zero only if $r=1$, and in that
 $\left.=R_{F\left(R_{a} b_{工}\right.}, d_{k}\right)^{b_{k}}=$ right hand side of 21), since $R_{a} b_{k}=0$. For $r \neq k, 1$ the right hand side equals zero, as we want. For $r=k$ we have $R_{a} b_{I}=0, R_{a} b_{k}=\frac{1}{2} b_{k}$, so the right hand side equals $\left.\frac{1}{2} R_{F\left(b_{k}\right.}, d_{k}\right)^{b_{l}}=0$, since $F\left(b_{k}, d_{k}\right) \in \mathbb{l}_{k \mathbb{C}}$, again as we want.
ii) If $a=I_{s t} \in k_{(s, t)}$, we have to check that

Here the right hand side equals

$$
\begin{aligned}
& \left.R_{F\left(R_{a} b_{k}\right.}, d_{k}\right)^{b_{l}}+R_{a \cdot F\left(b_{I}, d_{k}\right)-F\left(b_{I}, R_{a} d_{k}\right)_{k} b_{k}}^{\left.\left.\left.\left.=R_{F\left(R_{a} b_{k}\right.}, d_{l k}\right)^{b_{I}}+R_{a} R_{F\left(b_{1}\right.}, d_{k}\right)_{k} b_{k}+R_{F\left(b_{1}\right.}, d_{k}\right) R_{a} b_{k}-R_{F\left(b_{I}\right.}, R_{a} d_{k}\right)^{b_{k}} .}
\end{aligned}
$$

So we have to check that
$\left.\left.\left.R_{F\left(R_{a} b_{k}\right.}, a_{k}\right)^{b_{1}}+R_{F\left(b_{1}\right.}, d_{k}\right)^{R_{a}} b_{k}=R_{F\left(b_{1}\right.}, R_{a} a_{k}\right)^{b_{k}}$.

Here the left hand side is non-zero only if (s, t) $=(k, l)$ (see 2)), in which case it equals zero, since, letting
 just as in case α) ii) above. The right hand side is nonzero only if $R_{a} d_{k} \neq 0$ and $F\left(b_{1}, R_{a} d_{k}\right) \in \mathcal{R}_{(k, 1) C} \cdot$

But this is impossible（see 2））．
（ γ ）If $k<l=n$ ，the argument is as in case（ β ）．This proves one way of the theorem．

II．Now suppose we have symmetry．Then in 1）let $b \in \mathscr{U}_{K}, d \in \mathbb{K}_{1}$ ， $k \neq 1$ ，and thus $R_{F(b, d)} \in_{\mathcal{U}}$（see 2））．
Let $a=E_{1}$ ．Then left hand side of 1）equals $\frac{1}{2} R_{F}(b, d)^{b}$ ， and the right hand side vanishes since $R_{a} b=0$ ．
Hence $\quad R_{F(b, a)} b=0$ 。

Bibliography．

［1］J．Dorfmeister：Homogene Siegel－Gebiete．Habilitationsschrift． Münster 1979.
［2］I．I．Pyatetskii－Shapiro：Automorphic Functions and the Geometry of Classical Domains．Gordon and Breach， New York－London－Paris，1969．
［3］I．Satake：On classification of quasi－symmetric domains． Nagoya Math．J．62（1976），pp．1－12。
［4］R．Zelow（Iundquist）：Curvature of Quasi－symmetric Domains． To appear in J。Diff．Geom．
［5］R．Zelow（Lundquist）：Quasi－symmetric Domains and j－algebras． To appear．

