ISBN 82-553-0484-3 Mathematics May 25 No.8 1982 PLURISUBHARMONIC FUNCTIONS ON SMOOTH DOMAINS by John Erik Fornæss ## Plurisubharmonic functions on smooth domains by ## John Erik Fornæss 1. In this short note we will discuss regularization of plurisubharmonic functions. More precisely, we will address the following problem: Question. Assume Ω is a bounded domain in \mathbb{C}^n ($n \ge 2$) with smooth (\mathcal{C}^{∞}) boundary and that $\rho: \Omega \to \mathbb{R} \cup \{-\infty\}$ is a (discontinuous) plurisubharmonic function. Does there exist a sequence $$\{\rho_n\}_{n=1}^{\infty}$$, $\rho_n:\Omega\to \mathbb{R}$, of C^{∞} plurisubharmonic functions such that If ρ is continuous, the answer to the above question is yes (see Richberg [3]). On the other hand, when ρ is allowed to be discontinuous and Ω is not required to have a smooth boundary, the answer is in general no (see [1], [2] for this and related questions). Our result in this paper is that the answer to the above question is no. We present a counterexample in the next section. The construction leaves open what happens if we make the further requirement that Ω has real analytic boundary. Another question, suggested to the author by Grauert, is obtained by replacing Ω by a compact complex manifold with smooth boundary, and assuming continuity of p. In the next section we need of course both to construct the domain Ω and the function ρ . These constructions are intertwined and therefore we need at first to define approximate solutions Ω_1 and ρ_1 and then use both to define Ω and ρ . The geometric properties we seek of Ω are the following. There exists an annulus $A \subset \overline{\Omega}$ such that $\partial A \subset \Omega$. Furthermore there exist concentric circles C_1 , C_2 , C_3 in the relative interior of A arranged by increasing radii such that C_1 , $C_3 \subset \partial \Omega$ and $C_2 \subset \Omega$. Finally there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of annuli such that $A_n \to A$ and $A_n \subset \Omega \lor n$. The properties we seek of ρ are as follows. The function ρ is strictly positive on C_2 and is strictly negative on ∂A . A simple application of the maximum principle now shows that smoothing is impossible. The example we construct is in \mathbb{C}^2 . This is with no loss of generality as one obtains then an example in \mathbb{C}^n by crossing with a smooth domain in \mathbb{C}^{n-2} , rounding off the edges and pulling back ρ to the new domain. 2. All domains and functions which we will consider in $\mathbb{C}^2(z,w)$ will be invariant under rotations in the z-plane, i.e. will depend only on |z|. They will also be invariant under the map $(z,w) \rightarrow (1/z,w)$. Because of the latter we will describe only those points (z,w) in these domains or domains of definitions for which $|z| \leq 1$. If U is a domain in $\mathbb{C}^2(z,w)$, we let U_z denote the part of U over z, i.e. $U_z := \{(n,w) \in \mathbb{C}^2 : n = z \text{ and } (n,w) \in \mathbb{U}\}$. Abusing notation we will also take U_z to mean the set $\{w \in \mathbb{C} : (z,w) \in \mathbb{U}\}$. Similarly, if $\sigma:\, U\,\to\, {\rm I\!R}\, u\{-\infty\}$ is a function, then $\sigma_{_{\bf Z}}$ denotes the restriction of σ to $\,U_{_{\bf Z}}.$ Let A be the annulus in \mathbb{C}^2 given by $A=\{(z,w);\ w=0\ \text{and}\ 1/2\le |z|\le 2\}.$ This is then the limit of a sequence of annuli $\{A_n\}_{n=1}$ where $A_n = \{(z,w); w = 1/n \text{ and } 1/2 \le |z| \le 2\}.$ We will next describe a bounded domain Ω_1 in \mathbb{C}^2 with \mathbb{C}^∞ boundary containing all A_n 's (and hence A) in it's closure. It will suffice to describe $\Omega_{1,z}$ for various z's. That these can be made to add up to a domain with \mathbb{C}^∞ boundary will be clear throughout. Choose a sequence of positive numbers $\{r_k\}_{k=1}^\infty$, $0 < r_1 < r_2 < \ldots < 1$, with $r_3 = 1/2$. We let $\Omega_{1,z} = \emptyset$ if $|z| \le r_1$ and $\Omega_{1,z}$ be a nonempty disc, concentric about the origin if $r_1 < |z| \le r_4$. Recall that $\Omega_{1,z} = \Omega_{1,|z|}$ for all z. If $r_2 \le |z| \le r_4$ we make the extra assumption that $\Omega_{1,z}$ has radius 2. For $|z| > r_4$ we will break the symmetry in the w-direction at first by letting $\Omega_{1,z}$ gradually approach the shape of an upper-disc. (This is a rough description to be made more precise below.) Increasing |z| further we will rotate this approximate upper half disc 180° clockwise until it becomes approximately a lower half disc. Then we proceed by reversing the process, first by rotating counterclockwise back to an approximate upper half disc and then expanding this back to a disc of radius 2 near |z| = 1. As mentioned earlier, if |z| > 1, then $\Omega_{1,z} := \Omega_{1,1/z}$. We now return to the more precise description of $\Omega_{1,z}$ for $|z|>r_4$. Writing w = u + iv in real coordinates u,v, let v = f(u) be a \mathcal{C}^{∞} function defined for uCIR with f(u) = 0 if u \leq 0 or $u \ge 2$, $f \ge 0$ and f(u) = 0 on (0,2) if and only if u = 1/n for some positive integer n. We may assume that |f|, |f'|, |f''| are very small and therefore in particular that the graph of f only intersects the boundary of any disc $\Delta(0;R) = \{|w| < R\}$ in exactly two points. If $r_{\Delta} < |z| < r_{5}$, we let $\Omega_{1,z}$ be a subdomain of $\Delta(0;2)$ containing those $u + iv \in \Delta (0; 3/2)$ for which $v \ge f(u)$. When $r_5 \le |z| \le r_6$ we choose $\Omega_{1,z}$ independent of z with the properties that $\Omega_{1,z} \subset \Delta(0;7/4) \cap \{v > f(u)\}$ and $\Delta(0;3/2) \cap \{v > f(u)\} \subset \Omega_{1,z}$. Let $\Theta(x)$ be a real C^{∞} function on \mathbb{R} with $\Theta(x) = 0$ if $x \le r_6$, $\Theta(x) = \pi$ if $x \ge r_7$ and $\Theta'(x) > 0$ if $r_6 < x < r_7$. Then we can rotate $\Omega_{1,z}$ 180° clockwise for $r_6 \le |z| \le r_7$ by defining $\Omega_{1,z} = e^{-i\Theta(|z|)} \Omega_{1,r_6}$ for such z. Further, we let $\Omega_{1,z} = \Omega_{1,r_7}$ when $r_7 \le |z| \le r_8$. Reversing the procedure, we rotate $\Omega_{1,z}$ back 180° when $r_8 \leq |z| \leq r_9$ so that Ω_{1,r_0} again equals Ω_{1,r_0} . Continuing, we let $\Omega_{1,z} = \Omega_{1,r_0}$ whenever $r_9 \le |z| \le r_{10}$. Reversing the procedure between r_4 and r_5 we obtain $\Omega_{1,z}$'s, $r_{10} \le |z| \le r_{11}$ so that in particular $\Omega_{1,r_{11}}$ is the disc $\Delta(0,2)$. When $r_{11} < |z| \le 1$, we let $\Omega_{1,z}$ always be this same disc. This completes the construction of Ω_1 . The next step is to define an (almost) plurisubharmonic function ρ_1 . Let $\{\varepsilon_n\}_{n=1}^\infty$ be a sufficiently rapidly decreasing sequence of positive numbers, $\varepsilon_n \searrow 0$. Then $\sigma_1(w) := \sum\limits_{n=1}^\infty \varepsilon_n \log |w - \frac{1}{n}|$ is a subharmonic function on the complex plane and $\sigma_1(0) \in (-\infty,0)$. Letting $\sigma(w) = \sigma_1(w) + 1 - \sigma_1(0)$ we obtain a subharmonic function on $\mathbb{C}(w)$ with $\sigma(0) = 1$ and $\sigma(1/n) = -\infty \ \forall n \in \mathbb{Z}^+$. If the constant $\mathbb{K} > 0$ is chosen large enough, the plurisubharmonic function $\sigma(w) + \mathbb{K} \log(|z|/r_5)$ will be strictly less than -1 at all points $(z,w) \in \Omega_1$ for which $|z| \leq r_4$. The function $\rho_1:\Omega_1 \to \mathbb{R}$ is defined by the equations $\rho_1(z,w) = \rho_1(1/z,w)$ and $\rho_1(z,w) = \max\{\sigma(w) + \mathbb{K} \log(|z|/r_5), -1\}$ when $|z| \leq 1$. Then ρ_1 is the restriction to Ω_1 of the similarly defined function on \mathbb{C}^2 and ρ_1 is plurisubharmonic at all points (z,w) with $|z| \neq 1$. This completes the construction of ρ_1 . We have two main problems left. The annuli A_n all lie partly in the boundary of Ω_1 , so Ω_1 has to be bumped slightly so that they all lie in the interior. However, this bumping should not change the extent to which A lies in the boundary. The other main problem is the failure of plurisubharmonicity of ρ_1 at |z|=1. We will change ρ_1 near |z|=1 so that it will equal $\max\{\sigma(w),-1\}$ in a neighbourhood of this set. In order to deal with both these problems, we will at first construct a subharmonic function $\tau(w)$ which can be used for patching purposes. Our first approximation to τ will be τ_1 . The domain of τ_1 will be $D:=\{w;\; |w|<2,\; w\not\in (-2,0],\; w\not\in \{1/n\}\}. \;\; \text{The properties we will}$ require of τ_1 are that $\tau_1(u+iv)=0$ when $v\geq f(u)$, $\tau_1(u+iv)\geq 1$ when $v\leq 0$, τ_1 is \mathcal{C}^∞ and τ_1 is strongly subharmonic at all points u + iv with v < f(u). Let K_O denote the compact set $\{w = u + iv; |w| \le 2 \text{ and } v \ge f(u)\}$. Since K_O is polynomially convex, there exists a C^∞ subharmonic function $\lambda_O: \mathbb{C} \to [0,\infty)$ which vanishes precisely on K_O and which is strongly subharmonic on $\mathbb{C} - K_O$. Choose an increasing sequence of compact sets $F_1 \subset \text{int } F_2 \subset F_2 \subset \text{int } F_3 \subset \ldots \subset D, \quad D = \mathbb{U} F_\ell. \quad \text{Letting } K_\ell = K_O \mathbb{V} F_\ell$ we may even assume that each bounded component of $\mathbb{C} - K_\ell$ clusters at some 1/n and in particular therefore that there are only finitely many of these components. With these choices it is possible for each $\ell \ge 1$ to find a non-negative C^∞ function λ_ℓ such that $\lambda_\ell | K_\ell = 0$, $\lambda_\ell \ge 1$ and strongly subharmonic on $\{u+iv \in K_{\ell+2} - int K_{\ell+1}: v \le 0\}$ and λ_ℓ fails to be subharmonic only on a relatively compact subset of $(int K_{\ell+3} - K_{\ell+2}) \cap \{v < 0\}$. But then, if $\{C_\ell\}_{\ell=0}^\infty$ is a sufficiently rapidly increasing sequence, $\tau_1 := \sum_{\ell=0}^\infty C_\ell \lambda_\ell$ has all the desired properties. 1/n over to the origin. First, let us choose discs $\Delta_n=\Delta(1/n,\rho_n)$ small enough so that $\sigma(w)+K\log 1/r_5<-1$ on each Δ_n . We will first perturbe τ_1 inside each Δ_n . We can make a small perturbation of the situation by making a small translation parallel1 to the v-axis in the negative direction in a smaller disc about 1/n patched with the identity outside a slightly larger disc in Δ_n to obtain a new C^∞ function $\tau_2 \ge 0$ and a new C^∞ function $v=f_1(u)$ with the properties that $f_1 \le f$, $f_1 < f$ near 1/n, $f_1=f$ away from 1/n and $\tau_2=0$ when $v\ge f_1(u)$, $\tau_2\ge 1$ when $v\le 0$ except in very small discs about 1/n and We next want to push the singularities of τ_1 at the points $\tau_{3} = \begin{cases} 0 & \text{when } v \geq f_{1}(u) \\ & \text{is strongly subharmonic when } v \leq f_{1}(u). \\ \tau_{2} + (v - f_{1}(u))^{2} & \text{otherwise} \end{cases}$ The singularities of τ_1 at the points 1/n have thus been moved down to the points ρ_n = 1/n + if₁(i/n). Let Δ_n^* = Δ (1/n, ρ_n^*), $0 < \rho_n^* << \rho_n$ be discs on which $\tau_3 \equiv 0$. We may assume that $\rho_n \notin \overline{\Delta}_n^*$. Let γ be a curve from p_1 to 0 passing in the lower half plane through all the $\,p_{n}^{\, \text{!`}}\,\, s\,\,$ and avoiding all the $\,\, \bar{\Delta}_{n}^{\, \text{!`}}\,\, \bar{}\,\, s\,.\,\,$ We can assume say that γ is linear between p_n and p_{n+1} . Let V be a narrow tubular neighbourhood of γ - {0} also lying in the lower half-plane and avoiding all the $\bar{\Delta}_n^{\text{!}}$'s. The restriction $\tau_3 | \text{V}$ is C^{∞} , subharmonic and \geq 1 except for singularities at each p_n. Let $\tau_4^{\geq 1}$ be a $\ensuremath{\text{C}}^\infty$ function on V which agrees with $\tau_3 \, | \, \text{V}$ on V \cap V', V' some open set containing ∂V - $\{0\}$. A construction similar to the one for τ_1 yields a C^{∞} subharmonic function $\tau_5 \ge 0$ on C - (0)which vanishes outside V and is such that τ_4 + τ_5 is subharmonic on V. Finally, let τ : {(w) < 2, $w \notin [-2,0]$ } $\rightarrow \mathbb{R}^+$ be the \mathcal{C}^{∞} subharmonic function given by $\tau = \tau_3$ outside V and $\tau = \tau_4 + \tau_5$ on V. Then $\tau = 0$ on each Δ_n^* and $\tau(w) = 0$ when $v \ge f_1(u)$ except possibly on a concentric disc Δ_n' , $\Delta_n' \subset \Delta_n'' \subset \Delta_n$. Also, $\tau(w) \ge 1$ when $v \le 0$, $w \notin U \land_{\Pi}^{"}$. This completes the construction of the patching function τ . The construction of Ω can now be completed. A point $(z,1/n)\in A_n$ lies in the boundary of Ω_1 only when |z| or 1/|z| is in $[r_5,r_6]\cup [r_7,r_8]\cup [r_9,r_{10}]$. This set is contained in the open set $\{(z,w); |z| \text{ or } 1/|z| \in (r_4,r_{11}) \text{ and } w \in \Delta_n'\} = : \cup_n$. We let Ω be a domain with \textit{C}^{∞} boundary which agrees with Ω_1 outside U U and which contains all A s in it's interior. Next we define the plurisubharmonic function $\rho : \Omega \to \mathbb{R}$. Let $\sigma' = \max \{\sigma, -1\}$ and choose a constant L >> 1 such that $\rho_1 \le L - 1$ on $\overline{\Omega}$. If $|z| \le r_6$, let $\rho_z := \rho_{1,z}$. For $r_5 \le |z| \le r_6$, this definition agrees with $\rho_z = \max\{\rho_{1,z}, \sigma' + L\tau'\}$ since τ is then 0 and $\rho_1 = \sigma' + K \log(|z|/r_5)$. If $r_6 < |z| \le r_8$ let $\rho_z := \max\{\rho_{1,z}, \sigma' + L\tau\}$. For $r_7 \leq |z| \leq r_8$, this definition agrees with $\rho_{_{\rm Z}}$ = $\sigma^{\,\prime}$ + L τ . To see this, observe that if $w \in \Delta_n''$, then $\rho_{1,z} = -1$ and $\sigma' = -1$ while $\tau \ge 0$. If on the If $r_8 < |z| \le r_{10}$, let $\rho_z := \sigma' + L\tau$. For $r_9 \le |z| \le r_{10}$ this definition agrees with ρ_z = σ' since τ = 0. Also, if $r_{10} \le |z| \le 1$, let $\rho_z := \sigma'$, and if |z| > 1, let $\rho_z := \rho_{1/z}$. Then ρ is plurisubharmonic on $\Omega_{},~\rho_{}\left(e^{\mbox{i}\,\Theta}_{},0\right)$ = 1 $\forall\theta\in\mathbb{R}$ and $\rho(e^{i\Theta}/2,0) = \rho(2e^{i\Theta},0) = -1 \quad \forall \theta \in \mathbb{R}$. If there exists a sequence of \textbf{C}^{∞} plurisubharmonic functions $\rho_{\textbf{m}}$: Ω + \mathbb{R} , $\rho_{\textbf{m}}$ \searrow ρ , then there exists an $\,m\,$ for which $\,\rho_m^{}\,(e^{{\bf i}\,\Theta}/2,0)\,,\,\,\rho_m^{}\,(2e^{{\bf i}\,\Theta},0)\,<\,0\,$ $\,\forall\,\,\theta\in\,{\rm I\!R}$. Hence, for all large enough n, $\rho_{m}(e^{i\Theta}/2, 1/n)$, $\rho_{m}(2e^{i\Theta}, 1/n) < 0$ $\forall \theta \in \mathbb{R}$. By the maximum principle applied to the annuli $A_n \subset \Omega$, it follows that $\rho_m(e^{i\Theta},1/n)<0$ $\forall\;\theta\in\mathbb{R}$ and all large enough n. Hence, by continuity of ρ_{m} , $\rho_{m}(e^{i\Theta},0) \leq 0 \quad \forall \, \theta \in \mathbb{R}$. This contradicts the assumption that $~\rho_{\,\text{m}}~ {\scriptstyle \geq}~ \rho~$ and therefore completes the counterexample. ## REFERENCES - 1. Bedford, E.: The operator $(dd^{c})^{n}$ on complex spaces (preprint) - 2. Fornæss, J.E.: Regularizations of plurisubharmonic functions. Math. Ann. (to appear). - 3. Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 251 286 (1968).