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ti 0 Int1•oduct ion 

Definability and Forcing ln 

E~Recursion 

E.R.Griffor 

University of Oslo 

Mathematics Institute 

This paper will give a short revlew of forcing techniques in the 

settins of E-Recursion without the use of indices (for the approach Vla 

indices and detailed proofs of previous results mentioned here the 

reader is directed to Sacks [ 19 80 J or Sacks -~ Slaman [ 19 80] ) . We follow 

an approach which is index-free for the sake of clarity. The fundamen

tally new tool ln this setting, the Moschovakis Phenomenon (MP), was 

first isolated by Sacks in showing that many generic extensions preserve 

Further applications of forcing in E-Recursion may be found 

ln Slaman [1981] and Griffor ~ Normann (1981). 

E-Recursion was intl'oduced by D. Normann [1978] as a natural ge~· 

neralization of normal Kleene recurslon in objects of finite type in 

order to facilitate the study of degrees of functionals. Normann's 

index~free approach emphasized the role of computations as opposed to 

hierarchies and indices which obscured that role. 

In sections 1 3 we review the forcing technology briefly 

without indices as well as the results of Sacks ~oncerning the preser-

vation of E-closure in extensions via posets with chain conditions or 

closure conditions. Section 4 discusses the role of selection and 

definability in Cohen extensions and in section 5 the independence of the 

we:t.l~foundedness of the 3JE-degrees of Peals. Here we use the absolute·~ 

ness results of L~vy for extensions via semi-homogeneous posets. 
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Section 6 8 address the problem of extending 1-sections, 

\vhile sections 9 11 develope the methods required for extending 

k-.. sections (for k > 2) of k+2 
JE in a non-trivial way. 

In section 12 we show that the RE-degrees of a ground model 

are unaffected by set forcing with effective notions of forcing. 

The author is grateful to D. Normann for suggestions and cri~ 

tic ism. 

§ 1 The Forcing Technology 

vJe say that a set D c.:JP is dense in JP if for all r l.JP ---

there exists a d '" D such that r and d are competible (i.e. have 

a common extension 1n JP) . A set G cJP is JP-generic over A 

OP-gener'ic/ A) if 

(~~ G lS a directed set; 

( .. ) 
ll, g C G and then p E G; and 

(iii) every dense D c: JP which is first order definable over 

<A 5 E> with parameters from A satisfies G n D ¢ 0. 

A[G] is then the least E~closed set containing A with as an ele·~ 

ment (set forcing) restricted to sets of rank less than K = OR n A. 

The ramified language will be given with an eye to questions of 
d) 1: 

effectiveness: ofY is defined effectively ln A. The terms of &f- l': 

are built using parameters from A such that those involving only 

b C A are present in E(b). 
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Sym?ols: E, =; unranked variables x,y,•••; ranked variables 

), A. • • . f. x ,y ••o for A< K; log1cal connect1ves A, 1; and the quant1 1er ~. 

Formulae are built up using these symbols and a class of con-

stants e, defined by induction, i.e. we will name all elements of 

A[ G] 1n A. For x E A we define ex by an induction of length 

K = OR 11 A. 

Definition 

v 

C\ = 

ex -

c E e 

ex = {b b f Te(x) 1 b = X} U {G}; 
0 

satisfies: ex 
a and if 

<.p(v o • o v ) is in !£/~ with free variables in 
o ' ' n 

quantifiers variables of the form 

~a 

<.p(x 
a ) E ex if X cl ooo c 

' ' ' n a+1' 

c 0 0 0 c E ex ; 
1' ' n a 

u d'{ if lim(;\) a.nd A < I( 
a' a< A. 

u ex and e = u ex and each 
a<K a xt.A 

is a symbol 1n 

v 0 0 0 v 
o ' ' n 

and 

~~e say -that a formula 0,) C fi!--:: lS !'anked, if all bound variables 

in <.p are ranked and assign an ordinal (rank((i))) to each ;_p C 1!..:': as 

follov.JS (in decreasing order of importance) 



( 
0 \ 

l; 

(ii) 

the number of unranked quantifier's; 

ordinals associated with ranked quantifiers and 

constant terms; 

(iii) logical complexity. 

The forcin_g_~lati_on p 1!-- '.P is defined by induction on l"ank.((l)). 

Apart from the clauses given by the schema tor of E-Recursion 5 all clauses 

are standard (see Sacks-Slaman [1980]). The symbol x denotes a term. 

\ve consider the bounding scheme and composition : 

First suppose 

{e} 8 (x 5 y) = 0 {{eo} 8 (z,y)}, then 
zEx 

[l r 1G( -?,, 
teoJ z,y)j = and 

(b) pjj- 'ia<A. :lzE~ 

{ } G + { }G { 1 G, -+) + e · (x,y) = eo ( e 1 J \x,y ,x,y), 

IJ I { }G' + I Pi,- i e (~,y) = a iff there exists 

0 . G _,. 
pi!- I {elr0 c~,:D I ·- al /~ {e 1} (~,y_ = II 

and nil~-
£ II 

I{ }G' -)>)I i eo '~'~,y = az, v.Jhere a 

then 

such that 

z --

= max(Ol 5 0z). 

Remark We have not explicitly defined what it means to say 

ho>,7ever for such a computation vJhich converges 

there is an index which gives the characteristic function of the set 



which is its value, Proceeding inductively this is the same as forcing 

that these functions values are the same as those of the term z on 

all appropriate arguments. (i.e. terms of lower rank). 

Applications are of-ten simplified by considering the 'weak 1 

forcing relation ij:k~ 
I defined by~ 

P 11 11,·~ (y iff 

We shall assume the standard result that if G cF is F-generic/A, 

then 

·'· 
A[G) ~- \.P iff 3p '::. G[p\~ :.p]. 

§ 2 Preserving E-closure: Closure Conditions 

Now assume that A is E-closed and F ( A. To show that 

E-closure is preserved by a generlc extension of A (A[G] is E-closed), 

Sacks shows that for for some n E w, the relation 

Lemma 2.0 (Sacks) Suppose y C OR n A, then the relation 

·'· I I " Pil- ,_p restricted to ~~s of ordinal rank < y and 

quantifiers restricted to E(z) for z e A is recursive ln 

y,z,JP. 

Proof Sacks' proof proceeds by induction on the definition of the 

forcing relation. Consider only the cases I and .. 13 
:JX o Le·t 

'-fi : -,tp and suppose pj~- l/J, then by definition (iii) : 
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By induction hypothesis and the bounding principle we have the desired 

conclusion. 

NovJ let and suppose P!l- {j) r then by definition (v) 

for some hi here X is the parameter 

from A in 1J. By induction hypothesis Pl~~iJ (c) is l"ecurPive in 

''{' z ,F. C~ is recursive 1n x,S and by the bounding principle 

applied to that procedure Pli-i'J is recursive in y'lz5-lP. The remaining 

cases are routine. 

Definition Let <p ,a> and <q ,b> ' JP x C and let 

I' 1~ 
q~-'b is a subcomputation of a•. 

Lemma 2.1 (Sacks) Suppose JP lS well-orderable 1n A and that 

is well-founded below <p,a>'l ~iq:p :Jy<K, q and y uniformly 

recursive in p 5 a,F such that 

'l ·l: ·_r ..... t.G ! 

Clil--·luz; Ca1)l = Y 

_Cc::rollar_y 2. 2 The relation 
, ~~ G -+ 

pj~-- {e} (~,yH is RE lD JP. 

< s 

The procedure defined ln the lemma allows one to reduce the 

forcing of an apparently E1 (A) formula (i.e. there exists a well-

founded computation tree) effectively to a ranked formula. 



As Sacks and Slaman [1980] remark, what has been shown here lS that the 

lS recursive in p,a and bounds the value of <8 height of <q 0 ~a> 

I{ }G + I i e (X, y) 1 5 \rJhere G is F-generic/A extending q 0 • This result can 

be sharpened if F is homogeneous. 

Definition A partially ordered <x,< > 
X 

lS homogeneous, if for all 

p ~q E X there exists an automorphism Tr of <x,< > 
X 

such that 

n(p) = q . 

Under the assumption of the lemma and assuming JP 

homogeneous we get effectively q v 
:l I from p ,a ,IP such that 

and if G c F 

'{ }G(. ),A[G] 
1 ao a1 1 = y 

is 

Proof Take p,y as in the lemma and first mlnlmlze "[ < y such that 

for some q E JP 

(using the effectiveness of the foi'cing relation for formulae of 

bounded rank). Now minimize the condition for this 1' (='lo), i.e. 

take 
't:h 

qo = f.lq El!?[qJ~-i{a 0 }G(al)j = 'lo] 

(using the well-ordering of JP). 

generlc extending p l JP satisfies 

A(G] f= I {ao }8 Cal) j = 'lo 

Since JP is homogeneous, any 
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Countable cl~sure of F 1s one way of insuring the closure of 

A[G]. The virtue of countable closure is its ability to exploit the MP· 

Consider a procedure applied to a pair <p,-r>, where p E F is a forcing 

condition and T is a term in the associated forcing language : 

( i) if p !\-- T + , then we produce by induc·t ion a bound less 

tr1.an K on il -rll ; 

( ii) if pj~ T t 5 then we build a sequence 

<p T > such that n' n nEw· 

1s a subcomputation of T n] • 
n-1 

By countable closure we take p 00 such that Vn[p 00 ~ p pn] 3 then 

il n ., ..... - <T > 
J:Dol n nEw is a Hoschovakis Witness for T 11 • 

Lemma 2.4 (Sacks) Suppose F is countable closed 1n A and <s 1s 

not well-founded below <p,a>, then there exists a term t and a con~ 

dition q such that ql~' t is a MW for a' . 

Sacks' theorem on countable closure is now immediate. 

Theorem 2, 5 (Sacks) Suppose A is E-closed, A ~P, JP ·;:. A is well-

orderable in A such that 

A r' JP is countable closed I 

If G is F-generic/A, then A[G] is E-closed and satisfies MP. 



The existenc~ of F-generics over E-closed A lS not provable 

ln general for uncountable A. We say that G < F is 

F~bounded generic/A, if G is generic with respect to all sentences 

of bounded rank in £ ~,, (i.e. meets the associated dense subsets of 

F). Sacks [1980] first noticed that such a generic is often sufficient 

for applications. 

Lemma 2.6 (Sacks) Suppose A and F satisfy the conditions of the 

above theorem and that for some transitive set X 

A = E(X) (the E-closure of X) 

and tha·t X is well-orderable in A. If y C<1< =OR f1 A) lS the height 

of the shortest such well-ordering of X ln A and 

A\1== 11 y lS regular 11 , then a IP-bounded generlc ovel'"' A 

exists, where 

1P = {f: Y + {O,l}i fA< y}. 

Proof (sketch) Since A= E(X), every set z C A lS recursive ln some 

T < y (modulo the parameter giving the well-ordering of X in type y). 

Thus the senteces of bounded rank in £;i: can be recursively enumerated 

by y such that the enumeration restricted to an initial segment of y 

is bounded below 1<. 

The forcing relation for these sentences (essentially those giving 

co;nputation tuples) is RE ln 1P. Using the well-ordering of JP define 

by transfinite recursion p: y + y by T < y 

T = a+ 1 : ph) is the least p E: JP such that .p -~ p(a) 
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and p decides 4J•I II , if T+ and I '[I 
is the II T II th sentence of .#;:.A: 

limit(T) p(T) = J p(y) 
o<T 

p(T) 1s p(a) otherwise,where 

of bounded rank. 

Claim: For all C5 < y 5 p 11 CJ 1s bounded below y, 

Proof (claim) Given 0 < y we have that codes a 

convergen·t computation} is an element of A (vJe have identified X 

v1i th y 
l 

via the well~ordering), Using G p"cr 05 is an element of A 

and by the assump·tion that y lS :regular in A, p 11 0 1s bounded belovJ y. 

The first application of forcing 1n the setting of E-Recursion 

l-Jas due to Sacks [ 19 8 0] where he made use of the above result concePning 

forc~ng with countably closed posets. Sacks showed that if there exists 

a Pecursively regular ~:vell-oPdering of 2w recursive in 3:E and a real, 

·then the 2-sc(\:) is not RE 1n any Peal. 

§ 3 llltichain Conditions and E-closure 

Antichain conditions on F are yet anotheT' way of preserv1ng 

E-·closure, For the sake of completeness we mention the pesul ts of Sacks 

in this direction. 

Defini t.~ .. '1 Let A be E-closed and F E A be a poset, then 

(i) x .:::F lS an antichain if all elements of x aPe incomparable 

via )p; 

(ii) an antichain x is maximal if evePy element of F is com-

parable via ]p with some element of x; 

(iii) F satisfies the 8-chain condition (8-cc) in A, if evepy 

F-antichain in A has A-cardinality less than 8. 
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Fo:e example, if has the A then every IP-antichain 

ln A has A-cardinality less than or equal to a. As a consequence any 

effective phenomenon ln A[G] can be restricted to at most 8 many 

possibilities in A. 

Theorem 3.0 (Sacks) Let A beE-closed, IP ~A, yEA such that 

Then if 

( i) 1P + has the y ~cc ln 

(ii) there is an a C A cuch that <a,x> selects from y 

for all x t:: A; 

(iii) each x € A is well-orderable in A. 

(' 

"" is IP-generic/A we have that A[G] is E-closed. 

Remar'k (a) Sacks' argument proceeds by approximating computations ln 

A[G] by building antichains ln A. The reader is directed to Slaman 

[1981] for the proof. 

(b) Slaman notices that Sacks' proof actually yields that if 

a r A and a c OR, then a,G a 
K :;; K 
r r 

C.c.c. (i(.i-cc) set forcing (with (iii) of the 

theorem) preserves E-closure. 

Proof Use Gandy Selection. 

§ 4 Cohen Reals 

In this section we consider the result of adding Cohen reals to 

E(x). First we address the question posed ln the previous section con-

cerning the preservation of E-closure. 
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Let X~ V be infinite and transitive and consider E(x). Let the 

poset 

F = {f: w + {0~1}\ f is a partial function and 

dam(f) is finite} 

and for p ~q c.:. F ~ let p ~q iff p extends q set--theoretically. 

F is just the Cohen poset for adding a new real and F ~ E(x) satisfying 

F <,.-. 0 
-L 

Lemma LJ .• C (Sacks) vVi th JP as above let G c F be F·-generic IE (x) then 

( .; \ 
-'-1 

C ii) E (x )[ f] is E~closed; and 

( iii) ( f)E(x)[f] _ ( 0,E(x) 
Ko - Ko; 

( ii) follows immediately from (iii) s v.1hile ( i) is a standard density 

ar·gument. Using the fact that ·the forcing relation is RE: assume 

{ e } ( f )+ ln E ( X ) [ f ) ~ 

then letting G be the term for f we have that there exists a 

p E: G such that 

{e} ( H . 

The set of integers (under some standard coding of F as integers) 

{p '::; F I pj!-{e} (f ) +} lS RE and, by Gandy Selection, we 

can effectively select such a p. 

The proof that E-closure is preserved by generic extension in 

Lemma 4. 0 only required selecti_cm over subsets of F: we h:&t:Ve selection 

over subsets of JP if there exists a function ~ E-recursive in some 

p C E(x) such that for all A ~F, if A is RE in some p' E E(x) 



and non .,empty then In particular tp(pi) is defined and 

gives a non-empty recursive subset of A. 

Proposition 4.1 --------·--- Suppose FE E(x), x lS transitive and we have selec-

tion over subse·ts of F . If G c: F is F~generic/E(x), then 

(K 80_,)E(x) [G] _ 1P E(x) 
( K 0 ) 

(in particular E(x)[G] 1s E-closed. 

1:) ~ J.roor As before consider {e}(GH 1n E(x)[ G] ; then there exists a 

p C G such that p\f-{e}(G)+. Consider 

F(e) = {p E: Flpi~--{e}(G)+}, which is I-ZE and a subset of 

1P. If Q is the selection fun~tion over subsets of 1P and a E E(x) 

is an index for 1P(e) ~ then lp(a) lS a non-empty REC subset of 1P(e). 

The bounding principle applied to the computation giving the height 

forced by some element of ~(a) on {e}(G) yields a bound on the height 

(for any G) recursive in F. 

I'.Jo;;,J consider the case of l<leene recurs ion in \:. Harrington [ 19 7 3] 

showed that Let the 1-section of ~ be defined by: 

::i . (;.) 
Lsc(JE) ={a:= wi a_2_1£2 }. 

LK ~(2w) = L 3m-, and a 
1 Kl .l.L 

generic /L ;r, satisfies 
K 1 ..w::.. 

If every real 

natural question 

b 'E: 1-sc(1£) 

is constructable 5 then 

lS \vhether a real b Cohen~ 

in L \:[a]. K L 

1 

Sacks showed that such a real computes no more ordinals than 0 

in the ground model. A result of Levy [1970] will allow us to answer 

this question negatively in a strong sense. 
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Definition If F 1s a poset we say that F lS semi-homogeneous 

iff Vp ,p 1 :.=~ F there exists an automorphism of F TI: lP + JP such that 

rr(p) and p 1 are compatible (i.e. ·.·q E F such that q < n(p) and 

Using this condition on F, L~vy shows the following remarkable 

result about generic extensions Vla F. 

Theorem 4.2 ( L~vy) Assume JP is ------- semi-homogeneous and let l'1 be a 

countable model of ZF with F 
•. 

1'1 • Let Gc: JP be F-generic 11'1 and .. 

N = H[ G]. Then vJe have that for every X E N and y i,.: l'1 : 

X ~[HOD(y)]N + X 1 • ...:_ Mo 

Remark HOD(y) are those sets hereditarily ordinal definable from y. 

A closer look at L~vy's proof reveals that the same ordinal parameters 

suffice to define x ln M as did in N. The proofs of L~vy's result is a 

transfinite induction on rank (see L~vy (1970]). 

Lemma 4, 3 Let JP be the Cohen poset for adding a real, then F lS 

semi-homogeneous. 

Proof F = {f: w + {0,1}1 f partial with finite domain 

so g1ven p,p 1 i IP: if p and p' are compatible, the identity automor-

phism will suffice. Otherwise let 

B = {n ':;:: wjn ;: dom(p) n dom(p') 1\ p(n) # p'(n)} 

and consider the case where B = {n 0 } (the general case is similar). Let 

m = max(dom(p),dom(p') 

and define a permutation p: w ~ w by .-z '- ()) 
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r. 1, 
if z = no 

p(z) = no ' if z = m+1 

lz otherwise. 

Then p induces an automorphism n:JP+JP 

dom(n(q)) = {p(n) In E dom(q)} 

and for z E dom(n(q)) we let 

~l 

n(q)(z) = q(p (z)), 

Then if we consider n 0 above, we have 

given by q E JP 

n 0 ~ dom(n(p)) and 

-1 
n(p)(p(n 0 )) = p(p (p(n 0 ))) = p(n 0 ) and so n(p) and p' 

are compa.t ib le with ext ens ion q = 1T ( p) U p 1 • 

Thus if we force with tnis JP over L, the following fact shows 

that there is no hope of extending 1-sc(1E). 

Fact 4.4 Let M be a transitive model of ZF and let 

X E (k- DC(k+~)), then 

X E HODM. To see this notice that for any n, type (n) is definable and 

the ordinal of the computation X itself is ordinal definable in M. 

Combining these results we can now show, 

Theorem 4.5 Let JP be the Cohen poset for adding a real to L and let 

a < w be JP-generic/L, then 
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I)roof and suppose that' 

b 
Ul 

_::~ 2 ln T.traJ1 • t'nen b ,_::: ODL(a) ~nd Sl·nce b -- () wr ll"'Ve t'r1at ~ J . C!. ::::J~ <::! q, 

b HODL[ a] . By theorem 4.2 b E L, contradicting the choice of b. 

If b E L such that 

then by Lemma 4.0 , 2w 
D _::~ 5 

2 (!) L 
for some y < ( 1<: ) and by t:he remark 

0 

following Theorem 4.2 we have w 
b <~ 2 ,y 
-~ 

ln L, as desired. 

§ 5 ~-Degrees of Reals 

We will use L~vy 1 s res~lt to show that the well-foundedness of 

the set of degrees of reals moC.ulo \: under the induced ordering lS 

independent of ZF. This answers a question of Normann and also one 

of Sacks concernlng the relative computability of mutually Cohen generlc 

reals. 

Definition 

and 

such that 

If a c u;, then the degree of a mod ·\: 

[a] 
~ 

= {b c w! a 

{[a}0 Ja c w}. Therefore 
'1E -

[a]') < 
1E 

a 0 < b - _Q - 0 0 

'JE 

iff 

[a]~ [b]~ 

lS 



Let 

. . 
lS recurslve in 
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(v = L) lS \>Jell-founded. 

< deno·te the vJell-ordering of L~ then. <- f'c2w)L 
--L -L 

3.rr,,(2oJ) 1 , Given. aC (2w)L He can effectively compute lL) 

lal< , the height of a in the well-ordering, and a counting of 
-L 

vJith b lS recursive ln and 

soms integer (b's place in the counting of iaj<). This shoYs that in L 
-L 

-clc.e degree ordering follows < 
L 

and is therefore well-founded. 

_g_oro llary -~_! Con(ZF) + Con(ZF + <t.?; (\:) ,5_> is well-founded), 

We will now show that the mildest possible extension of L adding 

reaJ_s 5 namely adding a single Cohen real, yields an infinite descending 

path through this ordering. 

Theorem 5. 2 Let H be a countable~ transitive model of ZF + V = L and 

let a c w be Cohen~generic/M, then 

M fulfils the condition of L~vy 1 s theorem and the Cohen 

poset for adding a rent is semi-homogeneous as we 1 ve shown. Define the 

following splitting of the Cohen real a: 

a 0 0 = even part of a 
~ 

a 0 1 = odd part of a and 
~ 

ln general at stage n: 

a -'-"'1 0 n. ~ ... even part of 

a = odd part of n+1,l 

a 
n ,0 

a 0 n, 
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A [ t:c::mdard argument .._;hovw that a n, 0 
and 

By 

The sequence 

Levy's result we have 1n L[a] 

a .1- a and 
n~O .:t') n,1 1E 

a 
n~1 

.{ 

.L~ 
a 
n~O 

. As a result 

and 

{a0 . I iEw] E N and hence 
,l 

Vn E. w 

Ht=' ';!<f£!(1£),.:::_> 1s not well-founded". 

• ( C{ 
§ 6 Extend1ng the 1-sc 1E) 

are rnutually Cohen 

Recall that the extension via a Cohen real a 1n the previous 

section satisfies : 

If we are willing to g::;_'le up this constraint vJe can extend the 1-sc ( ~~) 

by forcing over a well-known partially ordered set. 

Theorem 6.0 Le-t l 11 be a countable, -transitive model of ZF + V = L 

and let a c: w be Col((u,S'\)-·generic/M .. (Col(w,C(1) is the Levy poset 

for collapsing ~1 to ' W)' Then 

Proof Define the complete set of integers relative to \: by 

C = {<e,m>l {e}C1£m}l-}, then 



but ln lS recurslve in 

and therefore 

ln H[a 1 . 

Thus if we denote by eM the interpretation of e lD M, then USlng 

eM is recursive ln ~~ 2w in H[a], 

as desired. 

A reasonable question is VIhether we can extend the 1-sc(~) as 

a_bove ~ without violating K1 of the ground model. In the next section 

v1e provide such an example. 

§ 7 Jensen~ Johnsbraten l\eals and 1-sc ( ~) 

Here we consider a forcing extension preserving 

3 the 1~sc( IE). 

~ 
K1 ; -but extending 

The relevant theorem is an improvement of Solovay 1 s result [1967] 

(that it is consistent with ZF to assume that there is a non-constructable 

6 1 subset of w 
3 

by J-ensen ~Johns bra ten [ 197 4] . 

Theorem 7. 0 (Jensen- Johnsbraten) : There exists a 

that the following are provab]_e in ZF : 

formula tp such 
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(a) ~(x) ~ x = w ; 

(b) V = L -;c.!JxqJ(x) 

(c) 

(d) 

(e) 

If 

<1 
wf = w1 ~ J- x~(x) 

Con(ZF)-+ Con(ZF + GCH + wt = w1 + ::Ja(\p(a) "V = L[a])) ; 

If and N is a cardinal preserving 

extension of M, then N~(a), 

{a} t: rr' 
2 

(i.e. a is implicitly rr~-definable) 5 then a E ~~-

It is this definability (a E ~~ clearly implies that a ~1E0) and the 

chain condition on the necessary it~rated forcing that gives the desired 

result. For the proof of Theorem 7.0 consult Jensen-JohnsbrAten [1974] 

or Devlin-JohnsbrAten [1975]. 

Theor~m 7.1 There is a countable chain condition (c.c.c.) iterated 

forcing (set forcing) JP such that if G lS JP -generic/L ~, then 
w W K1 , 

' . \ 1 L(\;' c_-;: 
1··SC L[G] ( ~); and ~l ... ·-sc -) 

=f: 

(ii) LKl \; ( G] is E-closed. 

Proof Jensen-JohnsbrAten show that the necessary trees are 
Cl 

and are hence recursuve in "E in L. The real coding <b jn Ew > the 
n 

sequence of branches through these w-many trees is ~\ and also recursive 

lil ~' which gives (i). 

( ii) foll0\'178 from theorem 3. 0 and each stage 1n the iteration 1s 

c.c.c .. The iteration 1s g1ven by: 

= To (under the reverse ordering) 

over M - T ( <b • • o b '-] "· +1 - .Ll 0' ' 1" 5 n n+ 
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then 

JP = lim<IP In E cu> w _,_ n 

Each JP is c.c.c. and hence the direct limit is also c.c.c .. The 
n 

desired model is thus the direct limit of M = L. [ <b o o o b >] 
n K 1 3_n:: 0 5 'n 

and lS g1ven by a true iteration. 

§ 8 Almost Disjoint Codes and 1-sc(k+~) 

We consider here the effect of adding reals which are almost 

disjoint codes for subsets of 3 upon the 1-sc( E) as a characte-

ristic case. First we give a brief outline of this notion of forcing. 

Let 01 = {Aa I a < w1 } be a family of almost disjoint subsets of 

w and let Define as follmvs : 

A condition lS a function from a subset of w into {0,1} such 

that 

a (i) dom(p) rl A is finite for every a :r: X; a 

(ii) {njp(n) = 1} lS finite. 

The set JP 6'\ X is partially ordered by inverse indusion 

p extends q. If p and q are incompatible, then 

p < q 

{nip(n) = 1} ~ {njq(n) = 1} and so JP 01" satisfies the c.c.c. 
,A 

if and is JP Oi,X-generic/1~ then 

LK
1

3:£[f] is E~closed by Sacks (see Slaman [1981]). 

iff 

Thus 



k+2-This example of a generlc cannot extend 1-sc ( -Jt:) , k > 1. 

Them-:oem 8. 0 Suppose JP (}1 ,X E L k+ 2 
K l JE 

then 

We consider the case k - 1 .. '- - ..L and X c 

As before we use the result of L~vy and Fact 4.4. 

,~ L 
<..'- i 

J .,.;,.# 

for simplicity. 

Suppose that f -~~0, then f :::: ODN by lemma . Since 

f ~ w, f is an element of HODN. All that remains is to show that 

F~ v satisfies the hypothesis of L~vy's theorem. 
V'! 'A 

Lemma 8.1 The poset JP 07X for almost disjoint coding is semi-
' 

homogeneous. 

Proof We can Vlew two conditions as 

where k and h are finite subsets of w and the A. and B. 
l J 

( . < n~ J < m) are finite subsets of {A 1 a E X}. \l ·al 

We find a permutation p: JN-+JN as follmvs let 

A = -.._: A. and B = ,, ,_, B. then 
i<n l j<m J 

X E k -+ p(x) E h \/ p(x) ¢ B 

-1 _l 
¢ X "- h -+ D (x) r k \/ p (x) A. 'C 

·' 
,. 
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Let s < s < s be integers such that 
0 1 2 

(i) X ( k 0 h =1> X < S 
0 

( ... 1 
lll, 

Define as follows : 

x _;: s 2 , let p(x) = x thus p vJill be a permuta·tion 

on [O,s 2 ) 

X r k n h, let p(x) = X c. 

X E k ' h, let [p(x) E [s 0 ,s 1 )-.....B 

} _1 pH 
X E h ·-... k, let p (x) c: [s 1 ,s 2 ) -....A ..... 

By taking in (ii) and (iii) above p gives a permutation. 

To define the automorphism 1T: JP + JP take 1T (p) for p = <k ,A> 

to be 

<p(k),p(A)> where 

p(k) = {p(n) !n C k} and 

p(A) = {{p(n) jn E b}jb E A}. 

thus by Lemma 2 

f C H which is absUJ::>d since f v.Jas taken JP 01 ,X-generic/JVL 

If we take to be the generalization of almost 

disjoint codes to regular K over L by taking the appropriate family 

OJ \'llhere K = , .:in E cu 
Il 

rtJhere 

X c type(n) and 

G is JP 0/,X~generic/L 

r:, d~ 1. (n+2.,.,.,) )L[GJ 
a 'f· ~.n-sc lL 

then 
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Proc;f Using the fact that 

is HODL(GJ, so if 

L 1s the ground model and every element 

of 
,. 
LJ 

The argument that this JP ()f,X satisfies semi-homogeneity 1s suitably 

altered to handle the limit ordinals involved. The argument G preserves 

E-closure uses Theorem 3.0 and selection over type(n-1). 

Until now we have been primarily concerned with 1-sections. In 

the next section we study n-sections for n > 1 for the Kleene func

t ionals k+~ fol" k > 2, The 2 -sc (31E) is determined completely by 

the reals and thus cannot be extended without adding new reals. 

§ 9 Extending the 2-·sc( 4JE) 

We shall argue here that we can by forcing add an element of the 

4 2-··sc( JE) ·- X 
. . 
1s 1•ecurs1ve 1n over L 'vvithout 

violating The techniques involved had to confront the obstacle 

posed by Levy 1 s result concerning posets satisfying semi-homogeneity 

which states that forcing with such a poset cannot add new elements of 

HOD(x) for any ground model set x. 

The natural solution here is to resort to a poset JP which has 

the identi~y as its only automorphism. We force over the rigid 

Souslin tree constructed by Jensen [1968] in L and using his methods 

for showing that the resulting w1 -tree is Souslin we show that the 

only w1 -path in the extension is the generic path. This yields the 



defi~ability requi~ed for arguing that this path (viewed as a subset 

of (.-,ul)L 
\ "'· via lS reCUPSlVe 1n 

If we work over 1 5 then if we force with a semi-homogeneous 

poset JP Levy 1 s result and lemma show that there is no hope of 

4 extending the 2-sc( E) without adding new reals (and hence having done 

so trivially). To see this suppose N is such a generic extension of 

L and 

Then X E ODN and if no new reals were .added in forcing over L, we 

would have that X E HODN. By Levy and semi-homogeneity X E L and 

definable in the same ordinal parameteT'S, hence 

Fact: 

4 L X E (2-sc( lE)) , 

If JP is a notion of forcing such that the only automorphism 

1s the identity~ then JP does not satisfy semi-homogeneity (just take' 

p and q 1n JP incompatible). 

gives 

The following theorem of Jensen (see Devlin-JohnsbrAten [1975] 

4 
us the required notion of forcing for extending the 2-sc( E). 

Definition A partially ordered set X = <X,~> 1s rigid 5 if id~X is 

the only automorphism on X. 

Theoi'em _9. 0 (,Jensen) Assume 0, Then there exists a rigid Souslin tree. 

for our purposes wor·k in L, then 0 holds and there exists a rigid 

Souslin tree T, which is in fact ~ 1 (1 ) and hence recursive in 
(l)l 

L. Viewing T as its coding 

so let us consider the result of forcing with the poset corresponding 
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to over L (we also use T to refer to the Souslin algebra derived 

from T). T satisfies the c.c.c., so if G lS T-generic/L, then 

L[ is a cardinal and cofinality preserving extension of L. By the 

following lemma we have a bit more. 

Lc:::mma 9.1 If G is T-generic/L, then 

~~,oof Suppose not and let f; w -+ w be a term for a real 

f t:• ( 2°J) L [ G ],( 2 w) L, In L [ G] consider the following map defined by 

induc·tion on w: 

given 

Claim 

= leas-t p ~: G such that 3m E w 

. 
p It- f(o) = m 

P 0 0 0 p 
o ' '- n let 

P = least · n+1 y E G such that 

with 

0 

q < p and 
- n 

q it- f)n+1) = m 

F: w -+ w1 defined by 

F(n) = C dom(c ) lS unbounded in w1 ·n 

Proof Otherwise 

U F(n) < 8. 
nEtu 

such that 

But then f: w ->- w is definable from G ~8 + 1 E L contradicting the 

choice of f. 

Clean F up by taking F 1 : (u ----+ w 1 and let F 1 (n) = a • 
n 

a is countable via some a E WO and letting a code the family n n 

Each 
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{an} tlCW ln a standard vJay t.ve get in L [ G] g: w ++- lJj 1 contradicting 

the fact that L[G] was a cardinal preserving extension of L. 

Thus no new reals are added and if we can show that UG 

is definable from T ln L[G], then the following theorem, giving the 

u~1iqueness of UG as a path, will yield the desired non-trivial exten

sion of 2-sc(\:) ln L[G], 

'f1·reorem 9 , 2 Let G be T-generic/L, then UG is the only branch 

through T ln L[G]. 

Proof Suppose not and let b E L[G] be a branch through T such that 

b ~ UG. Then there exists an a< w1 such that b(a) # UG(a), take the 

least such a 0 • Let T be a term ln LST such that for 
+ a a finite vector 

of ordinals! 

(take the least such in the sense of <1 ). 

By the same argument showing that no new reals are added we have that 

(\/a,<w 1 )(b~·aE L) and :JS<w 1 such that b .t'ct 0 +1C:L 13 • 

The term t E Lw 2 so proceeds now as in the proof of rigidity 

including t and a 0 + 1 in the chain of elementary substructures used 

in Devlin-Johnsbraten [1975]. 

cm~ollary 9. 3 

w L (2 ) and 

If we denote by {ay I y < w1 } the well-ordering of 

G~'• = {a h E G} y 

and (' 
\:J- is T-generi9/L, then 



The predicate 

1s a path through T 

J_s recursive 1n 4JE (using uJ 1 ~JE0) and hence, so 1s the set 

{X I ~ ( T 'X ) } = { G} 

by the above theorem. Again using the well-ordering of (2 00 ) 1 

l:<>cursive in ~ we compute G•', from G. 

§ j 0 E . (k+?- \ _ xtend1ng the k-sc -lliJ 

In this section we generalize the methods used to extend the 

2~sc(\:) to all finite types. We modify the proof of Jensen [1972] 

that there exists a rigid Souslin tree in L to prove the existence 

of a rigid K-tree which is K~Souslin in L. We then force over that 
k+~ 

tree preserving K1 for the appropriate k. Using the definability 

of the resulting K-branch (actually its uniqueness in the extension) we 

conclude that it is recursive 1n k+~,0 and hence clearly extends the 

k·-·sc ( 1<:+~). Thr'oughout we consider the case of the 3 -sc ( ~) . The 

generalization to all finite types is straightforward. We show that 

the extension of the section is non-trivial by showing that we add no 

new sets of lower type. 

In Jensen [1972] one constructs w2 -trees which are w2 Souslin, but 

the resulting tree is not obviously rigid. We modify that construction 

here using the main idea of the proof as presented in Devlin-Johnsbraten 

[1974] to produce an w2 -Souslin tree which is rigid and later use the 



strj~~gy for showing that the tree is rigid to argue that forcing over 

that tree yields a model in which there is only one branch. We include 

a p::'oof for those uninterested in Souslin trees, but curious about the 

CC>ding, 

1'1 :::_c;;~_r:m ~_Q_ (V = L) There exists an w2-tree which is w2-Souslin and 

Proof Let <S !a<w 2 > 
a' 

be the sequence glven by 0 ln L. We 

wish to construct a Souslin tree T. The points of T will be ordinals 

less than (Jj2, We shall construct T ln stages T (1..::_a<w 2 ) where 
a 

T is to be the restriction of T to points of rank < a. Hence T a a 

vvill be a normal tree of length a and TB will be an end extension of 

T for B >a . VJe define T by induction on a as follows. a 

Case 1. a = 1' Tl = {0}. 

Case 2' T a+1 is defined. Define T a+2 by appointing to immediate 

successors for each maximal point of T 1' a+ 

Case 3. lim( a) and T 
\) 

is defined for v < a. Set 

T = u Tv a v>a 

Case 4. lim(a) and T a is defined. We must define 

If cf(a) = (Jj then define T a+1 by appointing 

each maximal point of T . Our work is to be done at 
a 

cf(a) = (Jjl. By induc·tion on a< w2 let o(a) be the 

8 > a such that~ 

ra+1' 

a sucessor for 

a such that 

least ordinal 
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(i) and 

(ii) <o(v) lv <a> c L 
I 0 and 

s e t: M a = L 0 ( a ) , Then M a· has s i z e < L.'< 1 for a < w 2 • If a < w 2 and 

l~n(a) and cf(a) = w1 , assume that T EM . 
a a 

To define T 
ct+1 

we force over M a 
with JP = .<JP ~> E M 

a 
given by: 

JP = {pl3a<w1 (!al <w 1 i\ p: a-rT)} - a 

Hith . p ~ q +-+ dom(p) :: dom(q) t\ Vet E dom(q) 

[pa:: qa] 

Notice that M ~ :tvf = £'(1 and also t1 l=='JP a+1 a a f 
is countably close~~ 

Let GcJP be the <1-least ]?-generic/ t1 
a set. Since 

and ~f E Ma+i f: w1 ~ Ma and since JP is countably closed generics 

exists in and by elementarity also ln M 1' a+ 

lim(S) will be trivial. 

CJeim 

For y < w1 ~ let 

b 
y 

I 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

= {pyjp E G} 

each b is an a-branch of m 
l. y a 

each b lS T -generic/M y a a 

b f y to for y # q less than w1; 

if a 1 ooo a 
' ' n 

are distinct, then 

b xo o o x b lS (T )n-generic/M 
0:.1 ctn a a 

T a 

Hence for 



anr.l let 

(i), (ii) and (iii) follow easily from (iv) : 

let be distinct ordinals less than w 1' ···.' 

D c (T )n be dense and closed under extensions. Let 
()', 

D·;,t: :: 

then D* lS dense in F so let p E G n D*. By the choice of p 

as desired. 

then D' lS 

Then 

so 

To see ( v) ' let cr ,. T c. 
C(. 

D1 = {p E F[3y E dom(p) (py 

dense ln F so let p r c. G 

=i E dom(p) -y such that 

E b 
y 

and 

b 
()', 

n 

and 

:::::> 

n 

n D 

define 

cr) } 

D', 

Now set Ta+1 = {Jba.[a < 11ld ~ then by (v) Tj (a+1) is still normal 

and so T = U T lS a normal tree of length w2 • 
()', 

Claim 

Proof 

X c T 

limit 

in w2. 

a<w2 

T is w2 -Souslin. 

It suffices to show that T has no w2 -antichains so let 

be a maximal antichain. 

a < w2 such that xna 

We show x .:_ i<1 . Let A 

lS a maximal antichain in 

be thG set of 

T • 
()', 

A is club 
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K = OR n M ' for y < W2 • y y 

E ·- {a I y < w2} is also club in w2 , hence there exists a E A n E y 

"' r,;L. that 

s = X n a by a 

P,; -::he cons·truction of Ta+l' then we have : 

Every X of level a lies above an element of X n a. Hence X n a 

1s a maximal antichain 1n T and X = X n a has cardinality 
\) 

< t..:"-1.' 

The proof that T is rigid proceeds as in Jensen's proof for the 

rigid w1 -Souslin tree. 

Re0LJrk (i) Obvious modifications show that ~vith (;';J(l we construct a 

rigid 
1,) 
C'ti'l- Souslin tree. 

(ii) T has the ~2.. -cc. by the above. By the construction at 

cf(a) = w stages and the fact that F at cf(a) = w1 stages was 

countably closed, T itself is countably closed. For K as in (i) 

equal to ~fl for n > 2 T will have the K-c.c. and be ,\{n-z -closed. 

This fact will prove indispensable. 

(iii) It is an inter>esting question whether 0 is enough to 

produce a K-Souslin tree for all K not Mahlo. Jensen does so using a. 

§ 11 Forcing with Rigid w2 Souslin Trees 

We will vwrk over L ~ and force ~t;i th the w2 -Souslin tree con
Kl 

structed 1n the previous section to extend non-·trivially the 3-sc ( ~), 

The tPee T is recurs1ve 1n ~,0 Let G be 

T-generic, then the theorem guarantees that 0G preserves the E-closure. 

of L ~ and more. 
I( l 



We shall argue that G 2 ~0 on 

the only path through T ln 

L ~-[G] by showing that 
K1 JE 

Theorem 11.0 If G is T-generic/L, then UG is the only branch 

through T in L[G]. 

G is 

Proof Suppose not and let b E [T] ln L[G] such that b ~ 0G. 

Then as before there exists a term T E L such that 
W3 

TL[G] = b, where T depends on G and finitely many 

or'dinal parameters, There also exists a p C G such that 

PI!- 1 T .ls a branch through T different from G 1 • 

Now argue as in Jensen 1 s proof of rigidity that, at some stage a < w2 

in the construction, T gives a branch through Ta different from 

G l\ and that 
a 

TEI"'[G~] a a 

but as branches we extended through the ath stage 

T X G ~ 
a 

is (T ) 2 -generic/M and hence by the product 
a a 

lemma 

Corollary 11.1 UG < 0 in 
-~ 

Proof UG is the unlque branch through T and vve test 

all such candidates. 
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Corollary 11.2 ( 3- sc 

extension of 3-sc( 5E) is achieved. 

Proof Interpret UG as a subset of 
w 

( 2 2 )L 

and hence the 

In order to argue ·that the extension of 3 -sc ( 5_rr:) lS non-trivial~ 

the follm.;;ing lemmae suffices. 

Lemma 11.3 

Proof 

In L s_ [G] 
K 1 -JE 

( l. ) \.">l- . 
t.. '1 lS 

. . \?L . 
( 11) c' 7- 1s 

preserved 

preserved 

(i) follows from the construction of T at lim(ct) with 

cf(a) = w where we extended all branches and the fact that F at 

lim(ct) with cf(ct) = w, was countably closed. Hence st is preserved . 
...., 

(ii) follows from ;)_1 ~c, C; which T satisfies . ..-

Countable closure of T insures that, in addition~ no new reals 

ar'e added. Thus a new subset of the reals would be a new subset 0 +' 
.L 

The following argument shows that no new subsets of the reals are added 

and hence that we have extended 3~sc(~) non-trivially. 

Lemma 11.4 

Proof Suppose not and let X c L~1 satisfy 

7 7 
v c ( 2.c"-.1)L[G] ( 2 0.1,1 
A ~ ' I 

We will show that ,7 L is collapsed L[ G] , giving contradiction. (._.\'].,. 1n a 

7 / -, 
By recursion on 2\1 define f:z-:r+ c:.? from G in L[ G) : 
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f(y) = ~Po E G such that 

0 > 
P 0 IF X c 2\ 1 and p 0 I 0 ·Z X 

f(~+1) = 11p < p 
'"' T+1 ·- ~ 

such that 

jp ... 11-~+1 :~ x 
~ +.L 

G or 

~T+11~- Hi ¢ X . 

If ~ is limit ordered and f ( y) has been defined Vy < T let 

(Since 

that 

T 

f ( ~) = llP < 
~ 

is coun·table and 

P E. G and 
~ 

I o 

p 1 ~EX 
~ 

T is countable closed 

NoVJ define 
., 7 

F: t"-1 + f>&-- by taking 

F(y) = Udom(py) 

E T) such 

yf11 < A <~V?, then X E L VJere done. OtherVJise define 
7 1-1 

F 1 : 2<1 + ~ )_ by recurs ion from F. Placing together the collapses 
") 7 

of ordinals less than (:'. 2- to 01 in the range of F 1 yields a 

7 L collapse of 0z_ 1n L[ G] ~ a contradiction. 

As remarked above a straightforVJard generalization gives a VJay of 

non-trivially extending the k-sc (k+~) and as a result the n-sc ck+~), 

for 1 < n < k. This is best possible since the k+1-sc(k+~) cannot be 

altered VJithout changing the set of objects of type (k). 
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§ 12 Forcing and Reduction Procedures 1n E-Recursion 

Since the question of Post's Problem was first posed for recursion 

1n higher types some progress has been made, both positive and negative. 

In the presence of well-orderings Sacks has g1ven a positive solution 

without a priority argument. Later Griffor gave a positive solution 

us1ng a natural combinatorial principle which is consistent with the 

absence of well-orderings. On the negative side Normann [1979] showed 

that AD implies a negative answer and later Griffor [1981] strengthened 

Normann's result to show that under AD any regular RE set is REC. 

Sacks asked whether it was possible to show that it 1s consistent 

with ZF that Post's Problem for 1£ has a negative answer. In particular 

he asked whether it was possible to use forcing to produce a model of ZF 

where Post's Problem fails for 1£. In this section we offer some evi-

dence to the effect that new techniques will be required. 

Definition Let JP be a notion of forcing such that then 

JP is an effective notion of forcing iff the relation, 

for p E JP and ~ a formula 1s recursive 1n 1£~,y when restricted to 

£ = { I.P I rank ( tp) < y} • y -

Effectiveness is often used to prove that the generic over the 

poset preserves the closure one had in the ground model. An example is 

the Cohen poset for adding a real to 

as are most set forcings. 

L 1E we saw in section 
K1 



Our maln result is, 

Theorem :1.2 , 0 Let W E L 1E be an effective notion of forcing and 
K1 

A~B c:: such that A and B are both regular and hyperregular. 

If G c: JP lS JP··generic/L, then : 
T 1E r..,, 
.w d .. l:JJ 

B) K 1 • .c 
l.J. (A :_3. 

JE 
(with parameter), 

then 

Remark In this case regularity corresponds to Jensen's [1972] 

amenability and hyperregularity to LK 1 1r:[A] and L :-L[B] 
K 1 -Jt: being 

E-closed. Note that if B is RE and hyperregular, then B is also 

regular. 

Proof We shall show that if B c.: L 3 lS 
K1 JE 

REC 

where G lS JP-generic/L, then B lS REC on L L. 
I( 1 -Jt: 

The -theorem 

will then follow from this fact by realativizing the argument to B 

and using the fact that B is regular and ~yperregular. 

Suppose that B c: L ::L~ and ::Je E w 
K 1 -Jt: 

::Jp E L, L[ G) such 
K1-.lL 

that ln 

(i) is total; and 

(ii) Vz E L :L[G] , 
K1 JE 

{e}(p~1E,z) = B(z) 

Now p is glven by some term in the forcing language T (a 1 , • • o ,am9.}), 

v-I here a ••o a can be taken to be reals in 
1' ' n L and~ is an unary 

predicate symbol denoting the set to be added Vla JP. 
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Remcn'"'k Here Wcl assume that the language for recurslon on 

(/' 
AJ' has been expanded to Jev by introducing the new predicate 

symbol B (using regularity and hyperregularity of B) denoting B. 

By the genericity of G, 3q C G such that, 

Using JP 5 Q. ,e as parameters \rJe can now compute B on if 

then. 

' ') 

rank ( { e} C T (LY) 5 'JE 9 Y) n) = o 

depending on the parameters a occurring ln T. 
n 

Since JP is an 

effective notion of forcing, the relation 

q' .::_ q ,\ q' ~~ { e} (-r( ~ ~ y) "\: 'y) = n = R ( q ~ ) 

1s a relation recursive in q~,o 9 where we lmaglne o as encoding ln 

addition the finite sequence -+ 
a. 

\rJe know 3q 1 <,p q 
-:u: 

such that for some n E {0,1}, 

I 'I { . } ( ( ->- ) L ' q It-·· e T ~, Y , -.J.t.;, Y' = n 

Furthe.C'more any q' ~q ~>vhich forces convergence, must force the correct 

value (i.e. B(y)). Since we consider only extensions of q, which forces 

that B is given by e ,p. Thus to compute B on L : y E L \: then 
K1 

B(y)=i++:lq 1 EJP[q' ~qhq 7 \~{e}(T(~,y)\:,y) = i]. 

The matrix on the right hand side is recursive in ~~,q,o since JP is 

an effective notion of forcing and so by the bounding principle is 

closed under the quantifier Jq' ~ JP. 
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The proof he.:'"~e is forrnulated in terms of L, but the only 

necessary condition was that F be an effective notion of forcing. 

We made no use of the strong selection present in the setting of L 

and its definable well-ordering. Thus a forcing argument designed to 

establish the relative consistency of a failure of Post's Problem for 

to will be forced to resort to non-effective posets and, 
'"\ 

hence, have difficulty in preserving 1<: 1 '1E. The proof can be altered 

in such a way that the result also holds for a class notion of forcing 

which can be 1 localized 1 , i. s. such that vJe require only a ~et_ of con·-

ditions to decide a given set of sentences. The Steel-collapse of a 

countable admissible ordinal is such a notion of forcing. 
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