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§0 Introduction

This paper will give a short review of forcing techniques in the
setting of E-Recursion without the use of indices (for the approach via
indices and detailed proofs of previous results mentioned here the
reader is directed to Sacks [1980] or Sacks - Slaman [19801). We follow
an approach which is index-free for the sake of clarity. The fundamen-
tally new tool in this setting, the Moschovakis Phenomenon (MP), was
first isolated by Sacks in showing that many generic extensions preserve
E~closure. Further applications of forcing in E-Recursion may be found

“

in Slaman {19811 and Griffor - Normann [19817].

E-Recursion was introduced by D. Normann {1978} as a natural ge-
neralization of normal Kleene recursion in objects of finite type in
order to facilitate the study of degrees of functionals. Normann's
index-free approach emphasized the role of computations as opposed to
hierarchies and indices which obscured that role.

In sections 1 -~ 3 we review the forcing technology briefly
without indices as well as the results of Sacks doncerning the preser-
vation of E-closure in extensions via posets with chain conditions or
closure conditions. Section 4 discusses the role of selection and
definability in Cohen extensions and in section 5 the independence of the
wel. l-foundedness of the%Ewdegrees of reals. Here we use the absolute-

ness results of Lévy for extensions via semi-homogeneous posets.
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Section 6 = 8 address the problem of extending l-sections,
while sections 9 - 11 develope the methods required for extending

. - k47 . ..
k-sections (for k>2) of K %E in a non-trivial way.

In section 12 we show that the RE-degrees of a ground model

are unaffected by set forcing with effective notions of forcing.

The author is grateful to D. Normann for suggestions and cri-

ticism.

The Forcing Technology

[¥7p)
[N

We say that a set D« is dense in P if for all r ¢ P
there exists a d & D such that r and d are competible (i.e. have

a common extension in ). A set G <P is P-generic over A

(P-generic/A) if

() G 1is a directed set;
(ii) g€ G and »p <p &, then p & Gj and
(iii) every dense D ¢ which is first order definable over

<A,&> with parameters from A satisfies G N D # Q.

A[G] is then the least E-closed set containing A with G as an ele-
ment (set forcing) restricted to sets of rank less than « = OR N A.

The ramified language will be given with an eye to questions of
effectiveness: é£* is defined effectively in A. The terms of 35*
are built using parameters from A such that those involving only

b € A are present in E(b).



- 3 -

Symbols: &, =; unranked variables x,y,°°°; ranked variables
A - \ . . - C A
X,y eee for A < K3 logical connectives &, 7|; and the quantifiler =.

Formulae are built up using these symbols and a class of con-

~

stants C, defined by induction, i.e. we will name all elements of

A[G] in A. TFor x € A we define C° by an induction of length

k = OR N A.
Definition

cx = {p|b & TC(x) v b = X}u{G}s
Cz+1 satisfies: Cz < C§+1 and if

{, f‘" . 2
@(vo,oooavn) is in £ with free variables 1n VetV and
quantifiers variables of the form xg9 B < o, then

~ o X .
X @(x " 4c1,°°°c.,c_ ) £ C if
@ 3%~1>s s n 01,+13
be
C,s°°°,c_ € C
13 ’n o

¢ = v Cf, if 1lim()\) and A < k
A o
<A
o® = U CX and C = ¢ CA and each
(&) .
a<K ZEA

N . . ‘K/;:':
c € C 1s a symbol in o

oo

We say that a formula ¢« c & is ranked, if all bound variables

in ¢ are ranked and assign an ordinal (rank(yp)) to each o < £ as

follows (in decreasing order of importance) :



L.Ll,...
(1) the number of unranked quantifiers;
(ii) ordinals associated with ranked quantifiers and
constant terms;

(iii) 1logical complexity.

The forcing relation p |~ ¢ is defined by induction on rank(g).

Apart from the clauses given by the schemator of E-Recursion, all clauses
are standard (see Sacks-Slaman {[1980]). The symbol x denotes a term.
We consider the bounding scheme and composition

First suppose

(e1%(x,9) = ¢ {{e0}%(2,5)}, then

{I{eo}G(z,i)i = yvl: and
(b)) pl— VYo<h Hzex

[l{eo}G(z,§)§ ol. If we have

v

{e}G(x,§) = {eo}G({el}G(xj§),x,§)5 then
- {{e}G(Eji)l = ¢ iff there exists 01,0, < o such that
r—" 4
- [{e1}%6, 7] = oy 4 {e1}®(x,y = z
A 1 1 G, > - e .
and pil= {{eo}(z,x,y)| = 02, where o = max(01,0,).

Remark We have not explicitly defined what it means to say
T S > . .
pl— {ei} (x,y) = z, however for such a computation which converges

there is an index which gives the characteristic function of the set



which is #s value. Proceeding inductively this is the same as forcing
that these functions values are the same as those of the term 2z on
all appropriate arguments. (i.e. terms of lower rankj.

Applications are often simplified by considering the ‘weak’

forcing relation || defined by,

% . .
Pl—o iff o» [l—~ 0.

We shall assume the standard result that if G <P 1is P-generic/A,

then
AlGl = ¢ iff dp « Glpl— ol.
§ 2 Preserving E-closure: Closure Conditions

Now assume that A is E-closed and T & A. To show that
E-closure is preserved by a generic extension of A (A[{G] 1is E-closed),
> .
Sacks shows that for x A, y A" for some n € w, the relation

p”f—{e}6(§9§)+ is RE.

Lemma 2.0 (Sacks) Suppose Yy € OR 01 A, then the reilation

Dli—— @ restricted to ©'s of ordinal rank < y and
Pii =

quantifiers restricted to E(z) for =z & A 1is recursive in

Ys2Z,oP.
Proof Sacks' proof proceeds by induction on the definition of the
forcing relation. Consider only the cases 71 and ixB. Let

¥ = 7'¢ and suppose pl— ¥, then by definition (iii)



vg < pp 71 (d0).
By induction hypothesis and the bounding principle we have the desired

conclusion.

Now let @ = :xgw and suppose pl—¢, then by definition (v)

' - b . ’ e
pll—w{c) for some c = C where x 1s the parameter

B
from A in . By induction hypothesis pl—¢ (c) 1is recursive in
X . . . . .
¥ oZ P CB is recursive in x,8 and by the bounding principle

applied to that procedure pl—w is recursive in v,z,P. The remaining

cases are routine.
Definition Let <p,a> and <g,b> £ PxC and let

<p,a> >,<q,b> 1ff A< pP

E S and

s
%

gll—'> is a subcomputation of a'.

Lemma 2.1 (Sacks) Suppose P is well-orderable in A and that <g

is well-founded below <p.,a>, =q “F =Zy<k, g and v uniformly

recursive in p,a,P such that

a® G |
Qi ;" {a1)| = v , where g = <ag,ai> .

Corollary 2.2 The relation p}i»{e}b(§3£)+ is RE in P.

The procedure defined in the lemma allows one to reduce the
forcing of an apparently I,(A) formula (i.e. there exists a well-

founded computation tree)} effectively to a ranked formula.



As Sacks and Slaman {[1980] remark, what has been shown here is that the
<g height of <q,,a> is recursive in p,a and bounds the value of

‘ G >y N . . o

{{e} (x,v)|, where ¢ is IP-generic/A extending ¢o. This result can

be sharpened if P 1is homogeneous.

Definition A partially ordered <X,< 2 is homogeneous, 1f for all

p,g € X there exists an automorphism m of <x,<x> such that N

m(p) = q .

Proposition 2.3 Under the assumption of the lemma and assuming P 1is

homogeneous we get effectively g,y from p,a,P such that

.

at

%F;~f{ao}g(a1)§ =y and if G <P
is any P-generic/A extending p, then
1G, TALG
!{ao}G(al)]A[ ] =Y

Proof Take p,y as in the lemma and first minimize <t < y such that
for some g € P

kS

A= {as3®a1) |

T

{using the effectiveness of the forcing relation for formulae of

bounded rank). Now minimize the condition for this 1T (=T,), i.e.
take
- g € Plall—— !£a 15¢, -
qQo = HQ © -[q,, —jiag s (al)] = Tg)
(using the well=-ordering of ). Since I 1s homogeneous, any

generic extending p ¢ P satisfies :

AfLG] F=}{ao}e(a1)} = Ty .



Countable clusure of T 1is one way of insuring the closure of
A[Gl. The virtue of countable closure is its ability to exploit the Mp.
Consider a procedure applied to a pair <p,t>, where p € P is a forcing

condition and T 1is a term in the associated forcing language

(i) if pj—1+¥, then we produce Dy induction a bound less

than k on |1
(ii) if pll~T1 4, then we build a sequence

5T such that

<pn

> ;
n new

Vn[(pn+1 < Pn) and

H]°

i n 3 :
pnw— 1, 1is a subcomputation of T__,

By countable closure we take p_  such that Vn{pw < pn], then

D <T > . is a Moschovakis Witness for t"
n ntw

Lemma 2.4 (Sacks) Suppose I is countable closed in A and <g is
not well-founded below <p,a>, then there exists a term t and a con-
dition q such that qHﬁ—' t is a Mw for a'.

Sacks' theorem on countable closure is now immediate.

Theorem 2.5 (Sacks) Suppose A 1s E-closed, AFMP, P € A 1is well-

orderable in A such that
AFT is countable closed’

If G 1is P-generic/A, then A[G] 1is E-closed and satisfies MP.



The existencs of P-generics over E-closed A 1is not provable
in general for uncountable A. We say that G <P is

P-bounded generic/A, 1if G 1is generic with respect to all sentences

of bounded rank in &% (i.e. G meets the associated dense subsets of
). Sacks [1980] first noticed that such a generic is often sufficient

for applications.
Lemma 2.6 (Sacks) Suppose A and P satisfy the conditions of the
above theorem and that for some transitive set X

A E(X) (the E-closure of X)

and that X 1is well-orderable in A. If vy &k=0RMNA) is the height

of the shortest such well-ordering of X in A and
AlF= "y is regular", then a IP-bounded generic over A

exists, where
A

=l

P = {f: vy > {0,1}] < v},

Proof (sketch) Since A = E(X), every set z ¢ A 1is recursive in some
T < v (modulo the parameter giving the well=-ordering of X in type 7v).
Thus the senteces of bounded rank in &% can be recursively enumerated
by vy such that the enumeration restricted to an initial segment of vy
is bounded below K.

The forcing relation for these sentences (essentially those giving
computation tuples) is RE din . Using the well-ordering of TP define
by transfinite recursion p: y =+ Yy by T < ¥

T =ag+1 : p(t) is the least p € P such that P $p p(a)
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and p decides w”T“, if T+ and p(r) 1is pla) otherwise,whers

wnrﬂ is the “Tﬁth sentence of &£# of bounded rank.

limit(t) : p(t) = o ply’
a<T

Claim: Ffor all o < vy, p"o 1is bounded below Y.

Proof (claim) Given o < Yy we have that Gy = {t<o| 1 codes a
convergent computation} 1s an element of A (we have identified X
with Y via the well-ordering). Using GOS p"oc 1s an element of A

and by the assumption that vy is regular in A, p"o 1is bounded below Y.
The first application of forcing in the setting of E-~Recursion

was due to Sacks {1980] where he made use of the above result concerning

forcing with countably closed posets. Sacks showed that if there exists

a recursively regular well-ordering of 2Y  pecursive in 3E and a real,

then the 2—sc(%E) is not RE in any real.

§ 3 Antichain Conditions and E-closure

Antichain conditions on P are yet another way of preserving
E-closure. TFor the sake of completeness we mention the results of Sacks

in this direction.

Definiti n Let A be E-closed and P & A Dbe a poset, then
(1) x @« 1is an antichain if all elements of x are incomparable
via p 3
(ii) an antichain x is maximal if every element of P is com-

parable via P with some element of x;

(1ii) P satisfies the 8=-chain condition (8-cc) in A, 1f every

P-antichain in A has A-cardinality less than .
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For example, if P has the B+~cc in A then every F=-antichain
in A has A-cardinality less than or equal to B. As a consequence any
effective phenomenon in A[G] can be restricted to at most B many

possibilities in A,

Theorem 3.0 (Sacks) Let A Dbe E~closed, P < A, vy € A such that

(i) I has the Y+~cc in Aj

(ii) there is an a © A cuch that <a,x> selects from vy
for all x € Aj

(iii) each x € A 1is well-orderable in A.

Then if G 1is P-generic/A we have that A[G] is E-closed.

Remark (a) Sacks' argument proceeds by approximating computations in
A[G] by building antichains in A. The reader is directed to Slaman

{1981] for the proof.

(b) Slaman notices that Sacks' proof actually yields that if

a € A and a < OR, then K?9G = Ki

Corollary 3.1 {(3acks) C.c.c. (Qiiﬂcc) set forcing (with (iii) of the
theorem) preserves E-closure.

Proof  Use Gandy Selection.

§ 4 Cohen Reals

In this section we consider the result of adding Cohen reals to
E{(x). Tirst we address the question posed in the previous section con-

cerning the preservation of E-closure.



let X #£ V be infinite and transitive and consider E(x). Let the
poset
P = {f: w~-+ {0,1}] £ is a partial function and
dom (f) is finitel
and for p.,q £P, let p EPq iff p extends q set-theoretically.

P is just the Cohen poset for adding a new real and T ¢ E(x) satisfying

P <9

Lemma 4.C (Sacks) With P as above let G <P be IP-generic/E(x) then

(i) ué = f: w » {0,1} ;
(i1) EI){f]l is E=closed; and

(iii) (DHEGOLE]

(K%)E(x)

(ii) follows immediately from (iii), while (i) is a standard density

argument. Using the fact that the forcing relation is RE: assume

{el(£)¥ in E(x)If],
then letting G Dbe the term for f in &% we have that there exists a
P € G such that

{e}C )¢

The set of integers (under some standard coding of P as integers)

{p ¢ Plpll—{e})+} is RE and, by Gandy Selection, we
can effectively select such a p.

The proof that E-closure is preserved by generic extension in

Lemma 4.0 only required selection over subsets of IP: we Have selection

over subsets of TP if there exists a function <« E-recursive in some

p & E(x) such that for all A <P, if A is RE in some p' € E(x)



§

IR

«w
i

and non-empty then @(p') < A, In particular o(p') is defined and

gives a non-empty recursive subset of A,

Proposition 4.1 Suppose P & E(x), x is transitive and we have selec~-

tion over subsets of T . If G ¢l is P-generic/E(x), then

E(x) 18 ¢
BGOLE] o BOO

(k) = ()
(in particular E(x)[G] is E-closed.

Proof As before consider {e}(G)¥ in E(x)[G]; then there exists a

p € G such that pl—{e}l(Gr+. Consider

P(e) = {p € Plp}-{e}(E)+}, which is RE and a subset of
P. If ¢ 1is the selection function over subsets of P and a & E(x)
is an index for IP(e), then (a) is a non-empty REC subset of P(e).
The bounding principle applied to the computation giving the height
forced by scome element of ¢(a) on {e}(G) vyields a bound on the height
of {e}(8) (for any G) recursive in P.
Now consider the case of Kleene recursion in %Ea Harrington [1973]

showed that E(2%) = L(;E(Zw)° Let the 1-section of %E be defined by:
~1

1.8¢CE) ={a < wla<, 2”}. If every real is constructabie, then
L3 w . .
Ky E(2) = LK %E and a naturalquestion is whether a real b Cohen-
1

generic/L . satisfies : £ 1- i I .
g / K1§E ¢ fi b 1 sc(%E) in JKIQE[a]

Sacks showed that such a real computes no more ordinals than @
in the ground model. A result of Levy [1970] will allow us to answer

this question negatively in a strong sense.
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Daefinition If P is a poset we say that P 1is semi~homogeneous

iff wp,p' € P there exists an autombrphism of P w: I =+ such that
m(p) and p' are compatible (i.e. %q £ P such that g < w(p) and
g <p").

Using this conditicn on P, Lévy shows the following remarkable

result about generic extensions via .

Theorem 4.2 (Lévy) Assume P 1is semi-homogeneous and let M Dbe a

countable model of ZF with P ¢ M. Let G& P be P-generic/M and

N = MIG]. Then we have that for every x € N and y ¢ M
- N .
x [HOD(y)] =-» x < M.

Remark HOD(y) are those sets hereditarily ordinal definable from y.

A closer look at Lévy's proof reveals that the same ordinal parameters
suffice to define x in M as did in N. The proofs of Lévy's result is a

transfinite induction on rank (see Lévy [1970]).

Lemma 4.3 Let P be the Cchen poset for adding a real, then P 1is

semi~-homogeneous.

Proof P = {f: w~ {0,1}] £ partial with finite domain
so given p,p' =« P: if p and p' are compatible, the identity automor-
phism will suffice. Otherwise let

B=1{n ¢ wjn ¢ dom(p)ndom(p') » p(n) # p'(n)}

and consider the case where B = {n,} (the general case is similar). Let

m = max(dom(p) ,dom(p")

and define a permutation p: w ® w by 2z £



m+1l, 1if =z = ng
p(z) = n, , if z = m+1
(} , otherwise.

Then p induces an automorphism w: P =+ TP given by : q £ P

dom(m(g)) = {p(n)|n € dom(qg)}
and for z € dom(m(q)) we let
-1
m(q)(z) = q(p (z)).
Then if we consider n, above, we have

n, £ dom(n(p)) and
m(p)(p(ny)) = p(p " (p(ny))) = p(n,) and so n(p) and p'
are compatible with extension q = w(p) U p'.
Thus if we force with tnis P over L, the following fact shows

that there is no hope of extending 1~sc(%E),

Fact 4.4 Let M be a transitive model of ZF and let

1-
X € (x-dCc(**'E)), then
N
X € HODA. To see this notice that for any n, type (n) is definable and
the ordinal of the computation X itself is ordinal definable in M.

Combining these results we can now show,

Theorem 4.5 Let TP Dbe the Cohen poset for adding a real to L and let

a < w be P-generic/L, then

(1-scCEntal o (1 -3t
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Proof Assumc that Db & (Qw)bta]\(Zw}L and suppose that'
W B , . Lial . -

b i3E4 in Liaj, then b € 0D and since b <« w, we have that

b HODL[aj By theorem 4.2 b &€ L, contradicting the choice of b.

If b € L such that

b e (1-sc(pyybial

(6]
I T ] " w 4
then by Lemma 4.0 b <4 27, for some vy < (KD )7 and by the remark
fcllowing Theorem 4.2 we have b <, 27,y 1in L, as desired.

—E

§ 5 %E=—Degrees of Reals

We will use Lévy's result to show that the well-foundedness of
the set of degrees of reals moculo 3 under the induced ordering 1is
independent of ZF. This answers a question of Normann and also one

of Sacks concerning the relative computability of mutually Cohen generic

reals.
Definiticn If a < w, then the degree of a mod %E is
[a]%F = {b cowla i%Eb Ab <, al
ana D Cp) = {[a}am}a < w}. Therefore [a]l, [Db] € i@(%E)
E “IE *E
{a}%E < [b]3~E iff da, € [al, 3b € [b]%E
such that a iaﬁbo°



2
L) <§'B(“‘IB)9_<_> is well-founded.

Promosition 5.0 (v

denote the well-ordering of L, then iLP(Qw)L‘

L

Proof Let <

L

AW

is recursive in %ES(ZM)L° Given a® (2) we can effectively compute

o

, the height of a in the well-ordering, and a counting of {a§<
-L —L

- WL . . . . . 3 wy L
Thus for every b € (Zw)I with b <a, b is recursive in %E,(Z ) and

L

some integer (b's place in the counting of |a|_). This shows that in L
—L

the degree ordering follows < ., and is therefore well-founded.

i

Corollary 5.1 Con(ZF) - Con(ZF-+<§D(%E),i> is well-founded).

We will now show that the mildest possible extension of L adding
reals, namely adding a single Cohen real, yields an infinite descending

path through this ordering.

Theorem 5.2 Let M be a countable, transitive model of ZF+V = L and

let a <« w be Cohen=-generic/M, then

. . &2 .
Mia]kmm<fﬂ(%m),f} is not well~founded”.

I'coof M fulfils the condition of Lévy's theorem and the Cohen
poset for adding a rent is semi-homogeneous as we've shown. Define the
following splitting of the Cohen real a:

a = even part of a

a = odd part of a and

in general at stage n:

an+190 = even part of a
n,0
= ad ap )
an+1,1 odd part of anaO



- 18 -

A standard argument shows that V¥ a and a are mutually Cohen
n n,0 n,1
By Levy's result we have in Llal : ¥yn€w

generic.
a é; a
n,0 +3 n,l

As a result

1 p k
] a, -1 and a0,0 &%Eac

The sequence 0 iiiéuﬂ £ N and hence
9

B <« DCE),<>  is not well-founded".

i 3
Extending the 1-sc("E)

w\
(o]

a in the previous

Recall that the extension via a Cohen real

section satisfies
ST T
(el (K?E>“{a}

If we are willing to give up this constraint we can extend the 1—SC(%E)

Ly forcing over a well-known partially ordered set.
Let M be a countable, transitive model of ZF+V = L

Theorem 6.0
w be Col(m,f%)“generic/M, (Col(w,ﬁﬁ) is the Lévy poset

and let a «
ol ~ ) '
for collapsing /Ny to ). Then

(1-se ) & (1-sc (CpyMial,
%E by

Proof Define the complete set of integers relative to

| (e}C’EmN}, then

C = {<e,m>]
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cetl but C § 1=so(%E) in L.In M{a],Zi L is recursive in
B i
kA
3. LW
B2 and therefore
*E .1
(k" <, 2" in Mlal.
' —E

Thus if we denote by CM the interpretation of C in M, then using

SR LM
(k] )

C is recursive in %E92w in Mlal, i.e.

Me (1-seCrpiias |

as desired.

A reasonable question is whether we can extend the 1wsc(%E) as

above without violating K?E of the ground model. In the next section

we provide such an example.

§ 7 Jensen - Johnsbrdten Reals and 1“80(%E)

Here we consider a forcing extension preserving Kl‘; .but extending
the 1vsc(%E).
The relevant theorem is an improvement of Solovay's result [1967]

(that it is consistent with ZI +to assume that there is a non-constructable

Az subset of w by Jensen -~ Johnsbrdten [1974].

Theorem 7.0 (Jensen - Johnsbrdten) : There exists a ﬂ; formula ¢ such

that the following are provable in ZF
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(a) w{x) = x € w ;

(b) V= L »>71ixe(x)

() wf = w, » Shxex)

(d)  Con(ZF) - Con(ZF + GCH + w¥ = wy + zalo(a) AV = Llal)) ;

(e) If MF%ZFC-kw% =w, +9(a) and N 1is a cardinal preserving

extension of M, then NpFw(a).

If {a} & T, (i.e. a is implicitly w -definable), then a € 4.

It is this definability (a € A] clearly implies that a i%mg) and the

chain condition on the necessary itesrated forcing that gives the desired
result. For the proof of Theorem 7.0 consult Jensen-Johnsbrdten [1374]

or Devlin-Jdohnsbri&ten [1975].

Theorem 7.1 There is a countable chain condition (c.c.c.) iterated

forcing (set forcing) P such that if G is P -generic/L , then
A w w K3

2 r
(1> 1“SCL(ﬁE) - 1"SCLLG](%E); and

11 L L i - ed.
(1i) KlgELG] is E-closed

Proof  Jensen-Johnsbrdten show that the necessary trees are Zl(Lw L)
TTOOL 1

3 .
and are hence recursuve in TE in L. The real coding <bn]n E€p > the
sequence of branches through these w-many trees is A} and also recursive

in %E, which gives (i).

(ii) follows from theorem 3.0 and each stage in the iteration is

c.c.c.. The iteration is given by:
r, = T, (under the reverse ordering)
i = TJ‘: ove M T.1< o0 o0 >
n+1 T Ther OVEr Mg = LI<Bg,ecenb >0,



- 21 =

then
P = 1lim<P_|n € w>
w n
-3
Each :Pn is c.c.c. and hence the direct limit is also c.c.c.. The

n - L;'<13E

desired model is thus the direct limit of M {<b09°°°,bn>}

and is given by a true iteration.

§ 8 Almcst Disjoint Codes and 1=sc(k+%E)

We consider here the effect of adding reals which are almost

disjoint codes for subsets of §Q1 upon the 1"SC(%E) as a characte-

ristic case. First we give a brief outline of this notion of forcing.
Let @ = {Aa§u<<wl} be a family of almost disjoint subsets of
] o il 1

w and let X < w,. Define :P<ﬂ9X as follows

A condition is a function from a subset of ®w into {0,1} such

that
a (1) dom(p)!ﬁAa is finite for every o & X;
(ii) {njpn) = 1} is finite.
The set P 1. X is partially ordered by inverse indusion : P < g iff
3

p extends q. If p and g are incompatible, then

{n|p(n) = 1} # {n|q(n) = 1} and so P o1 satisfies the c.c.c. Thus
3

X
if jPCﬁ y € Lk;%E and f: w ~» {0,1} 1is E’Gixﬂgeneric/L, then
94 4 b

LK %Eif] is E-closed by Sacks (see Slaman [19811]).
1
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This example of a generic cannot extend 1-sc(k+;E), k > 1,

aore . ] € 1 i i —-ge i <5
Theorem 8.0 Suppose :P(ﬁ,X ka+%E and if is :P¢W9X gcnerlc/LK% %E 5
1
then
f & (1~—sc(k+21E))L[fj

. L S e
Proof We consider the case k = 1 and X ¢ gﬁi for simplicity.
As before we use the result of Lévy and Fact 4.h.

Suppose that @, then f € ODN by lemma . Since

f <
%E N

f 2w, f is an element of HOD . All that remains is to show that

:Pcﬁ 5 satisfies the hypothesis of Lévy's theoren.
2

Lemma 8.1 The poset E’07X for almost disjoint coding is semi-
bl

homogeneous.

Proof We can view two conditions as
P = ks(A13°°°9An)>a p' = <h>(B1>°°°9Bm)> 3
where k and h are finite subsets of ®w and the Ai and Bj
(i <n, 3 <m) are finite subsets of {Aa{a € X}
We find a permutation p: N -+ N as follows : let
A = J A, and B = U B. , then
. 1 o
1<n Jj<m
Xx € k»>p(x) € hvopix)d¢B

< -1 - “1
x €h=>p (x)£kvp (x)¢&A.



Let s _ < s, < s, be integers such that

(i) X € k U h =

e
A
n

(i1)  Tsy,5,)~B >

U

P S P

(1i1) Is;,8,)NA >

f

oy

define as follows

X > s,, let p(x) = x thus p will be a permutation

on {0C,s,)

x &€ kN hy let p(x) = x
X € k ~h, let [p(x) € [s,,5,)~B

_1 L pH
x € h~k, let p (x) € [5,,5,) A"

By taking = in (ii) and (iii) above p gives a permutation.
To define the automorphism w: P + P take 7(p) for p =<k,A>
to be

<p(k),p(A)> where

p (k) {p(n)|n € k} and

p(A) = {{p(n)in € b}|b € A}.
thus by Lemma 2

fF M which is absurd since f was taken :POW Y-generic/M,
9 ~

Corollary 8.2 If we take ]PCW»X to be the generalization of almost
disjoint codes to regular «k over L by taking the appropriate family
g7 where « = nain € w where

X < type(n) and

: - i 1+ 1
G 1is E>OLX generic/L with EJO%X € UK?+ then

.
L{G!

+")
G ¢ (n-sc(M"TE))



Proot  Using the fact that L 1is the ground model and every element
of L is HODMG}9 so if

L[G]

T
6 ¢ opPl€l  tnen @ ¢ mop“lG!,

The argument that this ]PCW'X satisfies semi-homogeneity is suitably
9

altered to handle the limit ordinals involved. The argument G preserves

E-closure uses Theorem 3.0 and selection over type(n=1),

Until now we have been primarily concerned with l=-sections. In
the next section we study n-sections for n > 1 for the Kleene func-
tionals k+%E for k > 2., The 2-scCE) is determinad completely by

the reals and thus cannot be extended without adding new reals.

9 Extending the 2msc(%E)

3]

We shall argue here that we can by forcing add an element of the
2-sc("E) = {X c 2% X is pecursive in 'E} over L without

I
violating « :Eo The techniques involved had to confront the obstacle

1
posed by Lévy's result concerning posets satisfying semi-homogeneity
which states that forcing with such a poset cannot add new elements of
HOD(x) for any ground model set x.

The natural solution here is to resort to a poset P which has
the identity as its only automorphism. We force over the rigid
Souslin tree constructed by Jénsen {1968] in L and using his methods

for showing that the resulting w;=tree 1is Souslin we show that the

only w;-path in the extension is the generic path. This yields the



- 95 -

definability required for arguing that this path (viewed as a subset

- WL . . . .
of {27) via <L) is recursive in %E.
If we work over L, then if we force with a semi-homogeneous
poset P Lévy's result and lemma show that there i1s no hope of

extending the 2-sc('E) without adding new reals (and hence having done
so trivially). To see this suppose N 1is such a generic extension of
L and

X € (2-scC*ENDY,

. I\ . . .
Then X € 0D and if no new reals were .added in forcing over L, we

would have that X € HODN. By Lévy and semi-homogeneity X € L and

definable in the same ordinal parameters., hence
x € (2-seC'ENY.

Fact: If P 1is a notion of forcing such that the only automorphism

is the identity, then P does not satisfy semi-homogeneity (just take’
p and g 1in P incompatiblej.,
The following theorem of Jensen (see Devlin-Johnsbraten [1975]

gives us the required notion of forcing for extending the 2=sc(%E).

Definition A partially ordered set X = <X,<> is rigid, if idFX 1is

the only automorphism on X.

Theorem 9.0 (Jensen) Assume <>e Then there exists a rigid Souslin tree.

For our purposes work in L, then <$> holds and there exists arigid
Souslin tree T, which is in fact z,(L ) and hence recursive in
1
L A2W . . . .
E, 2 in L. Viewing T as 1its coding
T e (2-se("ENY,

so let us consider the vresult of forcing with the poset corresponding



to 7 over L (we also use T to refer to the Souslin algebra derived
from T). T satisfies the c.c.c., so if G 1is T=generic/L, then
LI Gl is a cardinal and cofinality preserving extension of L. By the

following lemma we have a bit more.

Lemma 8.1 ~ If G 1is T-generic/L, then
(Qw)L{G} = (2“’)L

~

Proof Suppose not and let f: w >+ w be a term for a real

. LIcC . . .
£ e 29 EG]*\(2“))14@ In L{G] consider the following map defined by

induction on w:

n =+ p given by

n
p. = least p &€ G such that ZIm £ w with
Pl flo) = m

given Py,°°° 5P let

P+l least y « G such that g < P, and um

al= £)n+1) = m

Clain F: w » w,; defined by

F(n)

i

i;dom(pn) is unbounded in w,

Eroof Otherwise 16<<»1 such that

¥ F(n) < 6.
n<w

But then f: w + w 1is definable from GMN +1 € L contradicting the

choice of f.

Clean F wup by taking F': w — w, and let F'(n) = a . Each

o is countable via some = £ WO and letting a code the family
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{aq}mww in a standard way we get in LIG] g: w<+ w,; contradicting
L Ll

the fact that L{G] was a cardinal preserving extension of L.

Remapkw Thus no new reals are added and if we can show that UG

is definable from T in L[G], then the following theorem, giving the

uniqueness of UG as a path, will yield the desired non=trivial exten-

sion of 2-scC'E) in L[G].

Theaorem 9.2 Let G be T-generic/L, then UG 1is the only branch

1

through T in L[E].

L{G] be a branch through T such that

)

Proof Suppose not and let b

b # ¢G. Then there exists an o < w, such that b(a) # UG(a), take the

least such a,. Let 7 be a term in LST such that for o a finite vector
of ordinals*®
r 5 - .

TLLGQQSG) = b (take the least such in the sense of <;).
By the same argument showing that no new reals are added we have that
(Vo <w )(bra€ L) and <B<w, such that b la,+1 EL%,

The term 1 € Lw, so proceeds now as in the proof of rigidity

including 1t and o, +1 in the chain of elementary substructures used

in Devlin-Johnsbrdten [19751].

Corollary 9.3 If we denote by {aYIy-<w1} the well-ordering of

(Qw)L and
c* = {a £G
{a lyeal
and G 1s T~generic/L, then

GH e 2-sc( E)
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Proot The predicate

m

p(T,x) = x is a path through T

is pecursive in E (using w, < @) and hence, so is the set
{x{e(T,x)} = {G}

by the above theorem. Again using the well-ordering of (2%)*

rocursive in %E we compute G* from G.

§ 10 Extending the k-sc(k+%E)

In this section we generalize the methods used to extend the
ZaSC(%E) to all finite types. We modify the proof of Jensen [1972]
that there exists a rigid Souslin tree in L to prove the existence
of a rigid k=-tree which is k-Souslin in L. We then force over that
tree preserving K1k+ for the appropriate k. Using the definability
of the resulting k-branch (actually its uniqueness in the extension) we
conclude that it is recursive in k+2E,Q and hence clearly extends the
k“sc(k+%E)‘ Throughout we consider the case of the 3~sc(§E). The
generalization to all finite types is straightforward. We show that

the extension of the section is non-trivial by showing that we add no

new sets of lower type.

w,~Trees which are w,-Souslin.

In Jensen [1972] one constructs w,-trees which are w,Souslin, but
the resulting tree is not obviously rigid. We modify that construction
here using the main idea of the proof as presented in Devlin-Johnsbrdten

[1874] to produce an w,-Souslin tree which is rigid and later use the



strut2gy for showing that the tree is rigid to argue that forcing over
that tree yields a model in which there is only one branch. We include
a proof for those uninterested in Souslin trees, but curious about the

coding.

Theorem 10.0 (V=L) There exists an w,-tree which is w,-Souslin and

Proof Let <Sa!a-<w2> be the sequence given by <> in L. We
wish to construct a Souslin tree T. The points of T will be ordinals

less than w,. We shall construct T in stages T (1 <a<w,) where

Ta is to be the restriction of T +to points of rank <a. Hence Ta

will be a normal tree of length o and T will be an end extension of

B

Ta for B>a . We define T by induction on a as follows.

Case 1. o =1, T, = {0}.

Case 2. Ta+1 is defined. Define T 40 by appointing to immediate
successors for each maximal point of Ta+1'
Case 3. 1lim(a) and Tv is defined for v <a. Set
T = 4T
a ooy v
Case 4. 1lim(a) and T, is defined. We must define Ta+1'

If cf(a) = w then define T by appointing a sucessor for

a+1

each maximal point of Tu' OQur work is to be done at o such that

cf(a) = w By induction on o<w, let §(a) be the least ordinal

1°

§ > o such that,



._30 -

(i) Ls <, sz and

(ii) <8(v) v < a> € Lg and

set: Ma = LG(OL)° Then Ma'has size f;iiq for a<w,. If oa<w, and

lim(a) and cfla) = w,, assume that T € M
o o

To define T we force over M with P = <E’5P> €M given by:
o+l o, o

P = {p|da<w,(la] <w; A p: a+T)}

with  p $pq ¢>dom(p) > dom(g) A Va € dom{q)
[p, 2 q,!

Notice that M M ﬁu = 5% and also M_[='"P is countably closed'.

let G =P be the <L—least IPﬂgeneric/Ma set. Since

ma+1'4 sz and, Mu e M

a+l
and af € Ma+1 f: w, - Ma and since P 1s countably closed generics
exlists 1n sz and by elementarity also 1in Ma+1° Hence TB € MB for

1im{(B) will be trivial.
For vy < wy , 1let

b, = ip € G
{stp }

Claim (i) each bY is an oa-branch of Tu 3

(ii) each b is T _=generic/M_ ;
Y I o

(1idi) bY # b6 for v # § less than w;;

(iv) if a1,°°°,0  are distinct, then

. n . .
balx >(ban is (Ta) generlc/Ma ;

(v) Tu = U Da
a<wi



Piroo

and let

as desired.

then D' 1is

Then

Now set T
o

and so T =

(i), (ii) and (iii) follow easily from (iv)

let ag,ccr o be distinct ordinals

)"  be dense and closed under

D = {P G:P1<Pals°°°aDu > € D} b4

£

n

dense in P so let p € G N D%, By

<p

°o 0 o0 > & oo o
Poy? 5P € b x X ba no

o o1 0
To see (v), let o € Ta and define
D' = {p € P|2y € dom(p)(pY > o)},
dense in P so let p € G n D',

Y £ dom(p) such that

cc pY 3 bY and

+1 {Ubala <wy} , then by (v)

T is a normal tree of length w,.

o<wa

Claim

Proof

T 1is w,=Souslin.

less than w31,

extensions. Let

the choice of p

T|(a+1) is still normal

It suffices to show that T has no wo-antichains so let

— >
X < T be a maximal antichain. We show X i'2\1.

limit o < w,

in Wo .

Let A be the set of

such that XNo 1s a maximal antichain in Tu' A 1is club
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Now Tet
KY = OR N MY, for v < w,
E o= {ayly<:w2} is also club in w,;, hence there exists o € AN E
such that
Su = XN o by
By ihe construction of T , then we have

at+l

Every X of level o 1lies above an element of X N a. Hence X N «

is a maximal antichain in T and X = X N o has cardinality < 222
The proof that T is rigid proceeds as in Jensen's proof for the

rigid w;-Souslin tree.

Remark (1) Obvious modifications show that with <hfh we construct a
rigid 2§q—~80uslin tree.

(i1) T has the 2@2 -cc. by the above. By the construction at
cf(a) = w stages and the fact that P at cf(a) = w; stages was
countably closed, T itself is countably closed. For «k as in (1)
equal toC§a1 for n > 2 T will have the k-c.c. and be geh_z -closed.,
This fact will prove indispensable.

(iii) It is an interesting question whether <>- is enough to

produce a k=-Souslin tree for all « not Mahlo. Jensen does so using o.

§ 11 Forcing with Rigid w;Souslin Trees

We will work over LK1§E and force with the w,;-Souslin tree con-
structed in the previous section to extend non-trivially the 3-sc(53E)°
The tree T is recursive in %E,@ since T € Zl(sz). Let G be
T-generic, then the theorem guarantees that UG preserves the E-closure.

of Lrl%E and more.



.

We shall argue that G < %BG on LK §E[G} by showing that G 1is
- 1

the only path through T in L %E{G].
K

Theorem 11.0 If 6 4is T-generic/L, then UG 1is the only branch

through T in LIG].
Proof Suppose not and let b € [T] din L[G] such that b # uG.
Then as before there exists a term 71 € Lw such that

3

TL[G] = b, where 1t depends on G and finitely many

-

ordinal parameters. There also exists a p € G such that

p|F'Tisa branch through T different from G'.
Now argue as 1in Jensen's proof of rigidity that, at some stage o < w;
in the construction, 1T gives a branch through Tu different from

Gba and that
TeMIIer 1]
but as branches we extended through the ath stage

TGN is (Ta)zageneric/Ma and hence by the product
lemma

T ¢ MQ[G?Q] , a contradiction.

la) i3 >
Corollary 11.1 UG i§E® in LL1§E[G]

Proof ¥G 1is the unique branch through T T i%EO and we test

all such candidates.
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. L 5_.1G]
Corollary 11.2 (3=-sc CeE <1 E ¢ L, Sp and hence the
Ki
extension of 3-sc(§E) is achieved.
Proof Interpret UG as a subset of
W
(22 b

In order to argue that the extension of 3-sc(?E) is non-trivial,

the following lemmae suffices,

Lemma 11.3 In LKlﬁE[G]

(1 ;f#’ is preserved
(ii) aii'is preserved

Proof (1) follows from the construction of T at 1lim(a) with

cf(a) = w where we extended all branches and the fact that P at
lim(a) with cf(a) = w, was countably closed. Hence 23% is preserved.

2
(ii) follows from ka_mc.c, which T satisfies.

Countable closure of T insures that, in addition, no new reals

5

are added. Thus a new subset of the reals would be a new subset of 2\1
The following argument shows that no new subsets of the reals are added

and hence that we have extended 3ﬂsc(%E) non-trivially.

7 7 .
Lemma 11.4 ( Q?*)L = (Z&W)Lib}

Proof Suppose not and let X < 224 satisfy

7 7
N (24:\4)]—'[@]\(2‘«\1)]—'

N

We will show that ZKZL is collapsed in LIG], giving a contradiction.

By recursion on 5@ define f:231+ 252 from G in LIG]:
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£{y) = upy € G such that
pole X e X4 and peloc X
f(t+1) =

MP. 41 < P. such that

App Tl € X

Pryg € 6 Nor
Pl T+l § X

If 1t 1s limit ordered and f(y) has been defined Vy<rT let

f(t) = wp_ < U D .
T Y<T Y

(Since 1t 1is countable and T 1is countable closed U Py € T) such
Y<T
that P_ € G and

) 7
Now define F: Ny > N, by taking
F(y) = udom(py)

yF?! <A<\, then X € L were done. Otherwise define

=1

e 23, - 23 by recursion from F. Placing together the collapses

2
. % . .
of ordinals less than 2\2_‘U3 554 in the range of F' yields a
collapse ofa:ZP in L{G], a contradiction.

As remarked above a straightforward generalization gives a way of

1
non-trivially extending the k=sc(K+%E) and as a result the n-—sc(k+2£)9
for 1 < n < k. This is best possible since the k+1-sc(“*2E) cannot be

altered without changing the set of objects of type (k).



.8 12 TForcing and Feduction Procedures in E-Recursion

Since the question of Post's Problem was first posed for recursion
in higher types some progress has been made, both positive and negative.
In the presence of well-orderings Sacks has given a positive solution
without a priority argument. Later Griffor gave a positive solution
using a natural combinatorial principle which is consistent with the
absence of well-orderings. On the negative side Normann [1973] showed
that AD implies a negative answer and later Griffor [1981] strengthened

Normann's result to show that under AD any regular RE set is REC.

Sacks asked whether it was possible to show that it is consistent
with ZF that Post‘’s Problem for %E has a negative answer. In particular
he asked whether it was possible to use forcing to produce a model of ZF
where Post's Problem fails for %E, In this section we offer some evi-

dence to the effect that new techniques will be required.

Definition Let TP be a notion of forcing such that P € LKl%E, then

P 1is an effective notion of forcing iff the relation,

pl © =R(p,9)

for p €P and ¢ a formula is recursive in %EJP,Y when restricted to

é@Y = {¢| rank(p) < v}

Effectiveness is often used to prove that the generic over the
poset preserves the closure one had in the ground model. An example is
the Cohen poset for adding a real to LKl%E we saw in section 4,

as are most set forcings.



Our main result is,

Theorem 12.0 Let P & LK %E be an effective notion of forcing and
K1

AyB < (1%E such that A and B are both regular and hyperregular.
If 6 <P is P-generic/L, then
r

. L 3.1G]
if (<, By O E

3 (with parameter),
I

(A <. B)-

Remark In this case regularity corresponds to Jensen's [1972]
amenability and hyperregularity to LK1§E[A] and LKI%E[B] being
E-closed. Note that if B 1is RE and hyperregular, then B 1is also

regular.

(]

- - y 11 s f B e . RE . ) R
Proof Wz shall show that if 3« LKl%E is EC in IKI%E[G]

where G 1is P=generic/L, then B 1is REC on LK ;EO The theorem
1
will then follow from this fact by realativizing the argument to B

and using the fact that B 1is regular and hyperregular.

Suppose that B LK1§E and de € w ip € Lklgﬁ[G] such

that in LKlgE[G]

(i) {e}(p,’E, ) is total; and
(i1 vz €1 3.lel ,

{6}(p3%Eaz) = B(z)

Now p is given by some term in the forcing language T(al,°°°,an@§),

where a,,°c°,a  can be taken to be reals in L and & is an unary

1

predicate symbol denoting the set to be added via .



Remark Here we assume that the language for recursion on
LK1%E3 §5, has been expanded to &' by introducing the new predicate
symbol B (using regularity and hyperregularity of B) denoting B.
By the genericity of G, 3q ¢ G such that,
\ > N 3 4 N\

al—(v2) [{e}(t(G,y),E,2)+ 2 (e} (1(Z,y),°E,2) = B(2)]

Using P,q,e as parameters we can now compute B on L %E ¢ if
- then
L LK13_'[E
Y o}

rank({e}(t(a,y),"E,y) ~n) = o

depending on the parameters a occurring in t. Since P is an

effective notion of forcing, the relation

Q' <qaq'l{e}(r@,y),%E,y) = n = R( q7)

is a relation recursive in q.,P,0, where we imagine ¢ as encoding in

. .. -
addition the finite sequence a.

We know 3q' <5 q such that for some n € {0,173,
q“ﬁ~{e}(1(§,y),%an) = n
Furthermore any q qu which forces convergence, must force the correct
value (i.e. B(y)). Since we consider only extensions of g, which forces
that B 1is given by e,p. Thus to compute B on L : Y&ELK1%E then
B(v) =i<»2q’ €Plq’ <paaa'f-1er(t @,y E,y) = i
The matrix on the right hand side is recursive in %E;Paq,o since TP 1is
an effective notion of forcing and so by the bounding principle is

closed under the quantifier idq' £ P.



The proof here is formulated in terms of L, but the only
necessary condition was that T be an effective notion of forcing.
We made no use of the strong selection present in the setting of L
and its definable well=-ordering. Thus a forcing argument designed to
establish the relative consistency of a failure of Postis Problem for
%E to ZF will be forced to resort to non-effective posets and,
hence, have difficulty in preserving KlgEv The proof can be altered
in such a way that the result also holds for a class notion of forcing
which can be 'localized', i.2. such that we require only a set of con-
ditions to decide a given set of sentences. The Steel-collapse of a

countable admissible ordinal is such a notion of forcing.
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