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DEFORMATIONS OF REFLEXIVE 

SREAVES OF RANK 2 ON JP~ 

In this paper we study deformations of reflexive sheaves of rank 2 

on JP = JP~ ·where k is an algebraically closed field of any cha-

racteristic" Let F be a reflexive sheaf with a section 

H0 (JP ,F) 1r1hose corresponding scheme of zeros is a curve C in JP • 

Moreover let M = M(c1 ,c2 ,c 3 ) be the (coarse) moduli space of stable 

reflexive sheaves with Chern classes c1 ,c2 and cy The study of 

how the deformations of C _:: JP correspond to the deformations of 

the reflexive sheaf F leadSto a nice relationship between the 

local ring OH C of the Hilbert scheme H = H(d,g) of curves of 
j 

degree d and arithmetic genus g at C c JP and the corresponding 

local ring OM F of M at Fo In this· paper we consider some 
'-

examples where 1;-re use this relation,ship 0 In particular live prove 

that the moduli Eipace,s M(0,13,74) and M(--1,1L!-,88) contain gene-

rically non~-reducE:d components. 

I would like to thank Olav Arnfinn Laudal and Stein Arild Str0mme 

for discussions and comments. 

J_o ____ Deformations of a reflexive sheaf with a sectiorL 

If DefF is the . local deformation functor of F defined on 

the category l of local artinian k---algebras with residue field k , 

then it is well known that Ext 1 (F F) 0 _,_ is the tangent space of 

DefF 

tion. 

and that Ext2 ( F ,F) 
0]? --

See [H 3] • To deform 

JP 
contains the obstructions of deforma-

the pair (F,s) we consider the functor 

DefF l -> Sets _,s 
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defined by 

where JPR = JP >'Spec (R) and 11\There 1k : k __, k is the identity o T•rJO 

deformations (FR ~ sR:~ and CFil,s:R) are equivalent if there exist 

isomorphisms OJP 
,....,.._ 

OJP ' FR ~.>"' ~ and a commutative diagram = ...... ,........-

R R 

OJP 
SR 

FR --> 
R 

~. t 0 I 
lrv 

S' 
it:-

OJP 
R, F' ~p 

-R R 

8UC}1_ that 

pair (F, s) 

.-. ;;9 /j 0 l r8- /j 

;:,R R 1]- ::: "'R R 11 0 

~- K 

1iJi t h any (E · , s ' ) 

In fact we also identify the 

where s 1 E H0 (JP ,F' ) if they 

given 

fit 

together into such a commutative diagramc 

Pro:Qosition 1 01 0 (i) 

Ext6 C!cCc1 ),F) 
JP 

The tangent space of DefF s is _, 
v\rhere r 0 = ker(OJP -> o0 ), and 

Ext3 (.±.c ( c1 ) 1 Jf) contains the obstructions of deformations 0 

JP 

(ii) The natural 

c:p : Def -> Def F s F _, -

is a smooth morphism !Jf functors on l provided 

By the correspondence [H 3, l+o 1l there is a curve C 

and an exact sequence 

(s) cJP 
o-



- 3 -

associated to The condition H1 (F) = 0 is therefore 

equivalent to 

Proof of (i)o Using [L2, §2J or [Kl,1o2] we knovv that there is 

converging to some group A ( 0

) 
h A1 

w ere is the tangent space 

of DefF .-, and A2 eontains the obstructions of deformationo 
_,}.:_',) 

Since Ep 2 q = 0 for p > 2, 1/!e have an exact sequenee 

M'Jreover 

and this gives 

ker a q_ and coker a q_ for q_ > 0 0 

Observe also that 

because Hom(O]?, OJP) s;:: Hom(!'_,F)o We therefore have an exact 

sequence 

0 -> cokeraq~1 -> Aq -> keraq-> 0 

for an,:x q > 0 o Combining with the long exact sequence 
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deduced from the short exact sequence 

0 -> 0 ~ s · > F -> I ( c ) -> 0 " 
JP -- .=.c '1 ' 

we find isomorphisms 

(ii) Let S -> R be a morphism in l 1.vhose kernel G[ is a 

k~module via R ~::>> k, let s R : 0 .. JP -,::- H' :.;_R be a deformation 
R 

n . 0 -> F to R, and let !'.s be a deformation of F to i:) . JP -R 
To prove the smoothness of cp, we must find a morphism ss, 

r< ·O -...1i\ '"'S • JP -.---- !...8 s 

' · d · t 1 • ~ H0 ( F o ) ->· T1::r0 ( FR) o con~alne ln ;ne lmage oi -u -- ~ Since 

0 -> F@kGt-> FS -> FR -> 0 

is exact and since H 1 (p) = 0 by assumption 1 \ATe see that 

B?(£:.g) -> H0 (FR) is sur,jective and we are doneo 

of 

So 

Remar}t '1 0 2 0 In the ex<:wt sequence ( *) of this proof, cp '1 is the 

tangent map of cp: DefF s -> DefF and I.V2 maps 11 obstrl.~.c-
_? 

tions to obstructions"o In fact 

principal homogeneous spaces via 

cp 

1 
cp 0 

is a morphism of 

Using this it is in 

general rather easy to prove the smoothness of cp directly 

1 2 from the surjectivity of cp and the injectivity of cp o 

This gives another proof of ( 1 01 Q ii) 0 



·~ 5 -

2" The relationE:~hin between the deformations of a reflexive ~3heaf 
...,..;;,---~----~-... ----~~~ -.. . . --. . . . - . ·~-~--=--
with a section J3~Jld thE:)~deformations of the corresJ2ondin_g_C't,.lrve" 

Let be as in the pre-

ceding s-ection~ and let Def I : l --> Sets be the deformation functor 

of the OJP ~·l'1odule Io 11hen there i,s a natural map 

-> Def1 

defined by 

where MR = eoker sR. If Hilb 0 : l -> Sets is the local Hilbert 
v- ~ 

funetor at C c JP 5 we b_ilve also a natural map 

of funetors on lo Reeall that C is loeally Cohen Macaulay and 

equidimensional [H3, L[.o"llo 

Proposition 2 0 '1 0 (i) The natural morphism 

is an isomorphism of funetorso 

is a smooth morphism of functors on 1. 

Observe also that 

and moreover by duality that 
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Proof of (i) If lie = Hom0 (I,o0 ) is the normal bundle of C 
JP 

in JP ~ we proved in [Kl,2o2] that 

ac u a consequence of the fact that the projective dimension of 

the OJP -Module I l;:3 1 ' from which the conclusion of (i) is 

easy to understand. We will, however, give a direct proof" 

To construct the inverse of Hilb0 (R) -> Defi(R), let MR be a 

deformation of I to Po Observe that there is an exact se--

quence 

( *) 
r+1 

0 => E -> :£ OJP(--n.) .J_> I-> 0 
• /1 l 
l=l 

r 
where E is a vector bundle on JP of ran:l<:: ro 1\ E is therefore 

invertible, a.c-v:td we can identify it 1;n th OJP ( d1 ) where d1 = .. L:ni o 

If P = 2:l OJP(..-ni), then there is a complex 

E -> p 

and it is well 1movm that the maps 

deduced from ( ':<) and ( * '') respectively are equal up to a unit 

of ko We can assume equalityo Now since MR is a lifting of 

I to R, there is a map 

By Nakayama's lemma, fR is 

surjectiveo l'1oreover if ER = ker fR, we easily see that ER ®R k = E 
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and ER is It follows that E -R is a locally free 

OJP -Module of rank r .satisfying 
R 

Furthermore there is a complex 

which proves the existence of an OJPR_-linear map 

a. : MR -> OJP 
R 

which reduces to the natural inclusion I~ OJP via ( ~-) 0R k • It 

is easy to see that a ;_s injective, that coker a is R-flat 

and that coher a ,;:yR k = Oco We therefore have a deformation 

CR ~ JPR of C c JP 0 Finally to see that the inverse 

of Hilb0 (R) -> Defi(R) is well-defined, let 

be 0 --~linear maps such that 
JPR 

B : MR '""> l'1R i:'lnd 

~ ®R 1k is the a. I : M:R -> OJP 
R 

identity on I and a. 1 ® 1 is the natural inclusion R k 
(We do not assume a. v ~ = a.) 0 We claim that Im a' = Im a. • In fact 

since 

for i = 0,1, 

we have 

We deduce that the map 

induced by a, is surjectiveo Hence 

o'8 = ro. 
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for some r E H, and since a'~ 0 1k = a <6l 1k is the natural inclu~ 

sion I 5::: OJP , r is a unit and we are done 0 

(ii) Let S -> H, t.Y(,~ and sH: OJP -> FR be as in the proof of 
H 

('L 1 ii) 0 Moreover let MR = coker sR , and let !1s be a defor-

mation of M 
~R 

to S., To prove smoothness we must find a deforma-

tion 

<,\Tith cokernel t!g such that s 8 Q9S 1R = sRo By theory of exten

sions it is sufficient to prove that the map 

induced by (-) 08 R is surjective 0 Modulo isomorphisms we refind 

this map in the long exact sequence 

_. E--+- 1 (M 0 0 ""L~' -> Ext1 (M 0 ' Ext 1 (M 0 \ ... Ext2 (M 0 0 c:.r) ..[~ v ~ ' JP v -) !.!s ' lP ) -+ !.!s ' lP j '- -' ~ ' lP . v 0 

S S R S 

ass1..un.ption, we are done" 

Remark 2a2o The short exact sequence 

induces a long exact sequence 

1 
..... Ext6 (lc ( c1 ), OJP) _, Ext6 (lc ( c 1 ) ,F) _1\1_> Ext6 (lc ,lc) _, 

JP lP JP 

2 _, 2 .£ 2 Ext 0 CJ.c ( c 1 ) , OJP) Ext 0 C.±.c ( c 1 ) , F) > Ext 0 (lc , lc ) .... 
lP lP JP 
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,., 
where 1jr' is the tangent map of 1!f or more generally, 1jr is 

a map of principal homogeneous spaces via w1 and w2 maps 

11 obstructions to obstructions 11 " As remarked in ( 1 o 2), the 

smoothness of 1jr follows therefore from the surjectivity 

of w1 and the injectivity of ~!r 2 " 

Remark 2.3~ Let. Sb·~ the extension 

and let Def0 F : 1. -> ~ be the functo:v defined by 
' :> 

r 
I 
! 

~ (CnE JPR) E 
I 

Hilb('(R) 
v 

I 

j Ext 1 (I ( c /\) , OJ.P ) 
' =cR I R 

SR :&R k = S 

and S E R 

satisfies 

Tvw deformations (cR,sR) and (CR,sR) are equivalent if 

CR = CR~ FR and if there is a commutative diagram 

s' 0 -> OF -> FR -> J.c ( c1) -> 0 R R R 
0 l 0 ll 1 

'-l.( ,y 
to' I 0 ~> 0 -> F' -> J.c (c1) -> 0 :on JPR -R ' R 

both reducing to the extension s via (-) 'SR k In the 

same vmy \fJe identify the given c c, s) with any cc~,s;~) 

provided c c• and s' us for unit * Note = = some u E k o 

that we may in this definition of equivalence replace the 

identity 1 on lc (c1 ) by any OJP linear mapo See 
R R 

[r'Ta2, 6o1l and recall Hom(Ic,lc) = ko Now there is a for-

getful map 
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and using (2" 1 i) ~~re immediately have an inverse of a.o 

Hence a is an isomol~hismo Observe that we might construct 

the inverse of o:.(R) for R. E ob 1 by considering the in~-

vertible sheaf det FR 

In fact if (FR 5 SR.) 

2 
i 1\ FR -> 

and a complex 

on JPRo See [I'1a1, LJ-o2] or [G,4a1]o 

is given~ there is an JPR a morphism 

which after the tensorization (-) 0R k is exact o Hence 

s 
0 -> 0 ~:li.> F -> coker s -> 0 

JPR -R R 

is exact? eoker sR is R-flat and coker sR. C..> OJP ( c1 ) , 
R 

and putting this together, we can find an inverse of a(R)o 

One should compare the isomorphism of a with [H 3 ~ LJ .. o 1 J 
which implies that there is a bijection bet~reen the set of 

pairs (F,s) and the set of (C,s) moduls equivalence under 

certain conditions on the pairso Thiru~ing of these families 

of pairs as moduli spaces, [H 3, L~ 01 J establishes a bij ecti ·,n 

on the k-points of these spaces while the isomorphism of a 

takes care of the scheme structure as wello 

To be more precise we claim that there is a quasiprojective 

scheme D parametrizing equivalent pairs (C,s) where 

1) C is an equidimensional Cohen Macaulay curve and where 

2) the extension s : 0 -> OJP -> F -> .fc(c1 ) -> 0 is 

such that F is a stable reflexive sheafo 
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Moreover there are projection morphisms 

defined by p(FK, sK) = FK and q(CK' sK) = CK for a geometric 

K-point (CK,sK) corresponding to (FK,sK), such that the fibers 

of p and q are smooth connected schemes 0 Furthermore, p is 

smoo-th at (JfK,sK) 

(CK,sK) provided 

'1) 
To indieate why 

q is smooth at 

let Seh/k be the eategory of loeally 

noetherian k-schemes and let Q : Seh/k -> Sets be the functor 

defined by 

Cs E ~g)(S), l:!g is invertible on S 

'1 

£(S) 
ss E Ext (Ic ( c1 ), OJPxS ® 1:;s) such that 

= [Ccs,1f.s,ss) s 
1 Cs xs Spec (K) satisfies ( 1) and ss Q9 K I 0 

! for any geometric. K-point of S 

Tvro deformations (Cs,f!s,'ts) and (C~,~,s~) are equivalent if 

c8 = C~ and if there is an isomorphism 
l 

r : Ls -> ~ whose in-

dueed morphism maps onto Now if 

U~H(d,g) is the open set of equidimensional Cohen Maeaulay 

eurves and if C cJP u2...>u u- x is the restrieting of the uni-

versal eurve to U, one may prove that 

is a coherent OJPxU --Module, flat over 

there is a unique eoherent Ou-l'1odule Q such that 

'1) For good ideas of this construetion, see the appendix [E,SJ, 
some of which appears in [S,M,S]o 
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Hom--o (Q,R) :::. n* (E CSJ R) 
u 

for any quasicoherent Ou-Module R~ If JP(Q) = Proj (Sym(Q)) 

is the projective fiber over U defined by Q, we can use 

[EGA II ,Ll-~ 2. 3 J to prove that 

Now let D ~ :IP(~) be the open set whose k-points 

are ( C, s), s : 0 ~> O:rp -> F -> 1.c ( c1 ) -> 0 , where F is a 

stable reflexive sheaf o Ther1 we have a diagram ( *) where the 

existence of the morphism p follows from the definition [Ma1, 5.5] 

of the moduli space M = M(c1 ,c2 ,c 3). Moreover since JP(~) re

presents the functor £ , the fiber of q : D -> H( d, g) at a 

1 v 
K-point CK~:IPK of H(d,g) i.s just Dn :IP(Ext (!c (c1 ),0JP ) ) 

K K 
where (-) v = HomK(--,K). Moreover if we think of the fiber of p 

at a geometric K-point FK of M as those sections s E H0 (FK) 

vv-here (s) 0 is a curve, we understand that the fiber is an open 

subscheme of the linear space JP(H0 (FK)v). In particular the 

geometric fibers of p and q are smooth and connected. 

Finally the smoothness of p and q at (C,s) follows from 

(1o1ii) and (2.1ii) provided we know that the morphism 

p*: OM,F -> OD,(¥,s) induced by p: D-> M makes a commutative 

diagram 

D f I'J 11/T (/::, ' 

e Jt, s - uor OD, (F, s) , -) 

o t I"'or(p*,-) 

:::. l'1or(6I'1 F,-) ,_ 

of horisontal isomorphisms on l. In fact the commutativity from 
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the definition of a moduli space [r1a 1, 50 5l ~<Vhile the construction 

of M implies the lower horizontal isomorphism. See [Ma 2, 6.L!- J 
1\ 

from which we immediately have that the morphism DefF -> Mor(OM F,-) 
- ' 

is smooth~ and since the morphism induces an isomorphism of tangent 

spaces, both isomorphic to Ext1 (F,F), it must be an isomorphism. 

1\ 
DefF => aor(OM F,-) 

- '~ 
In particular the smoothness of 

which is a consequence of the smoothness of the morphism 

treated in [Ma 2, 6.L+-l, implies that OM F is a regular ,_ 
local ring if and only if DefF is a smooth functor on l. 

3. Non-reduced. corn.,-o.o~ents of the moduli scheme 1'1( c.1 t2 2 0 3). 

One knovJS that the Hilbert scheme H(d,g) is not always reduced. 
2 d __ L~ 

In fact if g is the largest number satisfying g < ~~ we 
- 8 ' 

proved in IK1,3.2.10l that H(d,g) is non~reduced for every d~14, 

and we explicitely described a non-reduced component in terms of 

the Picard group of a smooth general cubic surface. 

Example 3._10 (1'1tunford [!11]) o For d = V~, we have 

d2-4 g = ~ = 24, and there is an open irreducible ,sub scheme 

U s;:H( 14,24) of cJmooth connected curves whose closure U W 

makes a non-·reduced component, such that for any (C ~)P) E u, 

ro for v<2 
h 0 (J..c ( \)) ) = I \..'1 for \!=3 

h'1 (lc ( \)) ) = 0 for \)f. {3,4,5} 

/] (0 for v_2:4 
h 1 (00 (v)) = 

l'1 for \) = 3 0 



"- 14 -

See [Kl,(3"2J~) and (3.1.3)l~ In fact with CcJP in U, 

there is a global complete intersection of two surface.s of 

degree 3 and 6 whose corresponding linked curve is a dis·-

joint union of tvvo coniques. 

Now let C c JP be a smooth connected curve satisfying 

for some integer c1 , let SEH0 (wc(LJ---c1 )) = Ext1 (lc(c1 ),0JP) be 

non-trivial, and let (F,s), sEH0 (F), correspond to (C,g) via 

the usual correspondence. Then F is reflexive, and it is stable 

(resp. semistable) if and only if C,l > 0 (resp. c1 > 0) and c 

is not contained in any- surface of degree .:_ f c1 (resp • < 1 ) 2 c1 . 

See [H3,4.2j. Combining (1.'1) and (2.1) with (2.4) in case F 

is stable, we find that OM F is non-reduced iff OH C is non-
'- ' 

reduced. 

;§xample 3.2. Let (C_::JP) E H(14,2L~) belong to the set U of 

(3.1) and let c'1 be an integer satisfying(*), i.e. c1 .::_2 

or c 1 = 6. 

(i) Let c1 = 6. By virtue of (1.1) and (2.1) the hull of 

is non-reduced. Moreover F is semistable with Chern 

classes (c1 ,c2 ,c3 ) = (6,'14,18), and the normalized sheaf 

F(-3) has Chern classes (c_,;,c2,c3) = (0,5,18). 

(ii) Let c1 = 2. The corresponding reflexive sheaf is stable 

and must belong to at least one non-reduced component of 

M(2,14,74), i.e. of M(0,13,74). 

(iii) With c 1 = 1 we find at least one non-reduced 

component of M(1,14-,88) ~M(-1,14,88). 
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Combining the discussion after (2o3) and in particular the 

irreducibility of the morphism q with the irreducibility 

of the set U of (3o1), we see that we obtain precisely one 

non-reduced component of M( 0,13, 7LI-) and M( -1, 1L~, 88) in 

this way .. 

We will give ono more example of a non-reduced component and in~-

elude a discussion to better understand (1.1) and (2.1). In fact 

recall [Kl,2.3.6] that if an equidimensional Cohen Macaulay curve 

(CSJP) E H(d,g) is contained in a complete intersection V(F1 ,F2 ) 

of two surfaces of degree f 1 = degF1 and f 2 = degF2 with 

f . /1 2 d . f' ( c ' = JP ) E H ' -- H ( d I Q g ' ) . th l . k d or l = 1, -·, an l:.. , lS e ln. e curve, 

then OH C 
' 

(CSJP)EU 

is reduced iff OH' c' is reduced. Since any curve 
' 

of (3o1) is contained in a complete intersection 

V(F1 ,F2 ) of two surfaces of degree f 1 = f 2 = 6, the linked curves 

c' ~JP must belong to at least one (and one may prove to exactly 

one) non~reduced comJ2onent_1 )W~H(22,56) of dimension 88. See 

[Kl,2o3.9]o One may see that W contains smooth connected curves. 

Moreover using the fact that w0 (4-f.1--f2 ) and we' (4~f1 ~f2 ) are 

the sheaves of ideals which define the closed subschemes 

c' _:;:V(F1 ,F2 ) and C_:::V(F1 ,F2 ) respectively, one proves easi.ly 

that 

H0 (1.c 1 (4)) = 0, H1 0;.c, (v)) = 0 for v f! [3,l.j-,5} 

See [S,P] and [Kl,2D3o3]o 

and 

1) The condition H1 (fc(fi-4)) = 0 implies also that the linked 

curves C' c JP form an o:Qen subset of H' o 
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Examnle 3o3o Let (C 1 :::_JP) E W:::;H(22,56) be as above with c' 

smooth and connectedo If is chosen among 

then c· cJP defines a stable reflexive sheaf F 1 and in 

fact a vector bundle if c1 = 9 by the usual correspondence. 

Using ( 1.1) and (2. 1) we fi:1d that F 1 belongs to a non-~ 

reduced component of M( c 1 , c2 ~ c 3 ) for the choices 1.::, c 1 _: 2 

or c 1 = 6. In particular there exists a non-reduced com

ponent of M(6,22,66) ~ M(0,13,66). Moreover we obtain pre-

cisely one non~-reduced component in this -vray if we make use 

of the discussion after (2a3). If c1 = 9, we find a re

flexive sheaf F 1 EM(9,22,0), and the normalized one is 

F'(-5) EM(-1,2,0), but we can not conclude that M(-'1,2,0) 

is non-reduced, even though H(22,56) is, because the con

dition H1 (.f.c(c1.A)) = 0 of (2o1. ii) is not satisfied. In 

fact one knows that M(-1,2,0) is a smooth scheme" See 

[H,SJ or [S,M,S]a 

As a starting point of these final considerations, we will suppose 

as known that there is an open smooth connected subscheme 

UM :=; I1( ~1, 2, 0) of stable reflexive sheaves F for which there 

exists a global section s E H0 (!:.(2)) vv-hose corresponding scheme 

of zero's c' (s) is a disjoint union of two coniques" More~ 
0 

over dim UN = 11. In fact [H,Sl proves even moreo We then have 

an exact sequence 

for FE UM' and since the dimension of the cohomology groups 

Hi C.fc 1 ( v)) is easily found in case C 1 consists of two dis,joint 
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coniques, we get 

and 
r-· 1 for \) -1,1 

1 1 
I 
I 

h (F(\!)) h Cic,(v+1)) 
I 2 for 0 = = ..-:· \) = 
i 
I 

IO for ·- \) ~ [-1,0,1}. 

(The reader who is more familier 

with the Hilbert scheme may prove our assumptions on UM by first 

proving that there is an opeP smooth connected sub scheme U.:;: H( 4,-1) 

of disjoint coniques C' and that dim U = 16a This is in fact 

a very special case of [Kl,(3a1o10i)-:o See also [Kl,(3a1a4) and 

(2.3a18)la With c1 = 3, we have H1 (lc,(c1 )) = H1 (1c,(c1-4)) = 0, 

and by the discussion after (2a3), there exists an open smooth 

connected subscheme of 1'1(3,4,0) ~M(-1,2,0) defined by 
l 

UM == i(p(q~-'\u)))o Moreover dimUM = 11 because dimUM+h0 (F(2)) 

dimU+ h 0 (w 0 ,(ll-c1 )) )o 

Fix an integer \! 2: 1, and let U( \!) be the subset of H( d, g) 

obtained by varying FEUMs:;:M(-1,2,0) and by varying the sections 

s E H0 ( F ( v ) ) 

q(p-1(uM)) 

so that 

and regard 

C = (s) is a curve, iaea let U(v) = 
0 

as a subscheme of with 

Recall that p and q are projection morphisms 

D _g,_> H(d,g) 

I p 
v 
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For ( C,::: JP) E U( v), there is an exact sequence 

0 -> 0 -> F(v) ->I (2v~1) -> 0 JP - .:!;{: 

some F(v) E Urr Now (1.1. ii) and (2.1 ii) apply for v = 2 and 

all v;:6, and it follows that H(d,g) is smooth at any (C;,:JP) 

in the .92~ subset U(v) :;;,H(d,g)o Moreover by the irreducibility 

of p, U(v) is an open smooth connected subscheme of H(d,g). 

Furthermore 

dimU(v) = L+d+~v (v~5)(2v--5) for v >6 

(resp = 4d for v = 2) which asymptotically is 

v > > 0 . To find tbe dimension of U( v), we use the fact that p 

and q are smooth morphisms of relative dimension h 0 (F(v)) ~ 1 

and h 0 (;;.: 0 (LI--c1 )) - 1 respectively. This gives 

for v = 2 and v.:::6, and since h 0 (w 0 (4-c1 )) = h 1 (o0 Ccr.L!-)) = 1 

for v > 6 (resp. = 2 for v = 2), we get 

dim U( v) for v > 6 

(resp o = 9 + h 0 (¥( v)) for v = 2) 0 The reader may verify that 

h 0 (F(v)) = x(F(v)) = ~(v-1)(2v+3)(v+L~) = Lj-o. + ~(v-5)(2v-5)v -10 

for any v > 2, and the conclusion follows 0 

V.le will now discuss the cases 3 2 v < 5 wb;:_ere we can not guare-ntee 

the smoothness of q since (2o1. ii) does not apply. If v = 5, 

then the closure of U(5) in H(22,56) makes a non-reduced com

ponent by ( 3 0 3). For v = 3 or I+, we claim that H( d, g) is .smooth 

along U( v) and tll_e co dimension 
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where W is the irreducible component of H(d~g) which contains 

U( v). To see this it suffices to prove 1 
H (~) = 0 and 

Ext2 (lc ( c 1 ) ~F( v)) = 0 for any ( C ~ JP) E U( v) because these con

ditions imply that the scheme D and H(d,g) are non-singular 

at any (C,S) with sEH0 (w 0 (4-c1 )) and (C;:_JP) E H(d,g) respec

tively. See (1.1i). Moreover if these "obstruction groups 11 

vanish, we find 

where dim U( \!) = dim q·-1 (U( v)) because of h 0 (w 0 (L+-c1 )) = 1, 

and where the equality to the right follovvs from the long exact 

sequence of (2.2). Now to prove Ext2 (1c(c1 ),F(\J)) = 0 \ATe use 

the long exact sequenee ( *) in the proof of ( 1.1. i) combined with 

1 2 1, . 
H (F(\J)) = 0 and Ext (F,F) = 0, and to prove H ~£c) = 0 we use 

2 the long exact sequence of (2.2) combined with Ext; CJ.cCc1 ),F('1J))=0 

and Ext 3(J.c(c1 ),0JP):::::. H0 (Ic(c1-4))v H0 (F(\J~l+))v = 0 for 

v = 3 or \! = 4, and i"JG are done. 

Computing n~~bers, we find for \! = 3 that U(3) lS a locally 

closed subset of H(8,5) of codimension 1, and any smooth con~ 

nected curve (C_sJP) EU(3) is a canonical eurve, i.e. w0 ~ o0 (1). 

For \! 4~ U(L!-) is of codimension 2 in H(14,22) and 
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