ISBN 82-553--0479-7
Mathematics
No 4 - March 101982

DEFORMATIONS OF REPTEXIVE
SHEAVES OF RANK 2 ON \mathbb{P}^{3}
by

Jan Oddvar Kleppe
Inst. of Math。, University of Oslo

DEFORMATIONS OF REFLEXIVE SHEAVES OF RANK 2 ON $\mathbb{P}_{\mathrm{K}}^{3}$

In this paper we study deformations of reflexive sheaves of rank 2 on $\mathbb{P}=\mathbb{P}_{k}^{3}$ where k is an algebraically closed field of any characteristic. Let \mathbb{F} be a reflexive sheaf with a section $s \in H^{\circ}(\underset{\sim}{F})=$ $\mathrm{H}^{\circ}(\mathbb{P}, \underline{E})$ whose corresponding scheme of zeros is a curve C in \mathbb{P}. Moreover let $M=M\left(c_{1}, c_{2}, c_{3}\right)$ be the (coarse) moduli space of stable reflexive sheaves with Chern classes c_{1}, c_{2} and c_{3}. The study of how the deformations of $C \subseteq \mathbb{P}$ correspond to the deformations of the reflexive sheaf $\underset{F}{ }$ leadsto a nice relationship between the local ring $\mathrm{O}_{\mathrm{H}, \mathrm{C}}$ of the Hilbert scheme $\mathrm{H}=\mathrm{H}(\mathrm{d}, \mathrm{g})$ of curves of degree d and arithmetic genus g at $C \subseteq \mathbb{P}$ and the corresponding local ring $O_{M, E}$ of M at E. In this paper we consider some examples where we use this relationship. In particular we prove that the moduli spaces $M(0,13,74)$ and $M(-1,14,88)$ contain generically non-reduced components.

I would like to thank Olav Arnfinn Laudal and Stein Arild Strømme for discussions and comments.

1. Deformations of a reflexive sheaf with a section。

If Def_{F} is the local deformation functor of E defined on the category I of local artinian kwalgebras with residue field k, then it is well known that Ext ${ }_{O_{\mathbb{P}}}^{1}$ ($\mathbb{F}, \underline{F}$) is the tangent space of $\operatorname{Def}_{\underline{F}}$ and that $\operatorname{Ext}_{O_{\mathbb{P}}}^{2}(\mathbb{F}, \underline{F})$ contains the obstructions of deformation. See [H3]. To deform the pair (E,s) we consider the functor

$$
\operatorname{Def}_{\underline{E}, s}: 1 \rightarrow \text { Sets }
$$

defined by

$$
\operatorname{Def}_{\underline{E}, s}(R)=\left\{0_{\mathbb{P} \cdot R} \stackrel{s_{R}}{{ }_{\underline{E}}^{R}} \mid \underline{E}_{R} \in \operatorname{Def} f_{\mathbb{F}^{\prime}}(R) \text { and } s_{R} \otimes_{R} 1_{k}=s\right\} / \sim
$$

where $I_{R}=\mathbb{P} \times \operatorname{Spec}(R)$ and where $1_{k}: k \rightarrow k$ is the identity. $\mathbb{I}_{\text {wo }}$ deformations (\underline{F}_{R}, S_{R}) and ($\underline{F}_{\mathrm{R}}^{\prime}, S_{\mathrm{R}}$) are equivalent if there exist isomorphisms $O_{\mathbb{P}_{R}} \xlongequal{\Rightarrow} O_{\mathbb{P}_{R}}, \mathbb{F}_{R} \xlongequal{\Rightarrow} \mathbb{F}_{R}^{\prime}$ and a commutative diagram

$$
\begin{aligned}
& 0 \mathbb{P}_{R} \stackrel{S_{R}}{\longrightarrow} \mathbb{E}_{R} \\
& \simeq \downarrow \\
& 0 \mathbb{P}_{R} \xrightarrow{S_{\dot{R}}} \quad \mathbb{E}_{\dot{R}}^{\prime}
\end{aligned}
$$

 pair ($\mathrm{F}, \mathrm{s}^{\prime}$) with any ($\mathrm{F}^{\prime}, s^{\prime}$) where $\mathrm{s}^{\prime} \in H^{\bigcirc}\left(\mathbb{P}, \underline{F}^{\prime}\right)$ if they fit together into such a commutative diagram.

Proposition 1.1. (i) The tangent space of $\operatorname{Def}_{\underline{F}, \mathrm{~s}}$ is
$\operatorname{Ext}_{O_{\mathbb{P}}}^{1}\left(I_{C}\left(c_{1}\right), \mathbb{F}\right)$ where $I_{C}=\operatorname{ker}\left(O_{\mathbb{P}} \rightarrow O_{C}\right)$, and
$\operatorname{Ext}_{\mathrm{O}_{\mathbb{P}}}^{2}\left(I_{\mathrm{C}}\left(c_{1}\right), \mathbb{E}\right)$ contains the obstructions of deformations.
(ii) The natural

$$
\varphi: \operatorname{Def}_{\underline{E}, s} \rightarrow \operatorname{Def}_{\underline{F}}
$$

is a smooth morphism of functors on I provided

$$
H^{1}(\underline{F})=0
$$

By the correspondence $[\mathrm{H} 3,4.1]$ there is a curve $\mathrm{C}=(\mathrm{s})_{0} \subseteq \mathbb{P}$ and an exact sequence

$$
\xi: 0 \rightarrow 0_{\mathbb{P}} \xrightarrow{S} \underset{F}{ } \rightarrow I_{C}\left(c_{1}\right) \rightarrow 0
$$

associated to (\mathbb{H}, s). The condition $H^{1}(\mathbb{F})=0$ is therefore equivalent to

$$
H^{1}\left(I_{C}\left(c_{1}\right)\right)=0
$$

Proof of (i). Using [I2, §2] or [KI, 1.2] we know that there is a spectral sequence
converging to some group $A^{(0)}$ where A^{1} is the tangent space of $\operatorname{Def}_{\mathrm{F}_{\text {, }}}$ and A^{2} contains the obstructions of deformation. Since $E^{p}, q=0$ for $p \geq 2$, we have an exact sequence

$$
0 \rightarrow E^{1, q-1} \rightarrow A^{q} \rightarrow E_{2^{0}, q}^{q} \rightarrow 0
$$

Moreover

$$
\operatorname{Ext}^{q}\left(O_{\mathbb{P}}, O_{\mathbb{P}}\right)=0 \text { for } q>0 \text { and } \operatorname{Ext}^{q}\left(O_{\mathbb{P}}, \mathbb{F}\right)=\mathbb{H}^{q}(\mathbb{F}) \text { for any } q \text {, }
$$

and this gives

$$
E_{2}^{0, Q}=\operatorname{ker}^{Q} \text { and } E_{2^{1}, q}^{q}=\operatorname{coker} \alpha^{q} \text { for } q>0 .
$$

Observe also that

$$
\mathbb{E}_{2}^{1,0}=\lim _{<}^{(1)}\left\{\begin{array}{c}
\operatorname{Hom}(\underline{\mathbb{F}}, \underline{F}) \\
\alpha_{0}^{0} \operatorname{Hom}\left(O_{\mathbb{P}}, O_{\mathbb{P}}\right) \\
\operatorname{Hom}\left(O_{\mathbb{P}}, \underline{F}\right)
\end{array}\right]=\text { coker } \alpha^{\circ}
$$

because $\operatorname{Hom}\left(O_{\mathbb{P}}, O_{\mathbb{P}}\right) \subseteq \operatorname{Hom}(\underline{\mathbb{F}}, \underline{\mathbb{F}})$. We therefore have an exact sequence

$$
0 \rightarrow \operatorname{coker} \alpha^{q-1} \rightarrow A^{q} \rightarrow \operatorname{ker} \alpha^{q} \rightarrow 0
$$

for any $q>0$. Combining with the long exact sequence
（＊）

$$
\begin{aligned}
& \rightarrow \operatorname{Hom}(\mathbb{F}, \underline{F}) \xrightarrow{\alpha^{0}} H^{0}(\mathbb{F}) \rightarrow \operatorname{Ext}^{1}\left(I_{C}\left(c_{1}\right), \underline{F}\right) \varphi^{1} \operatorname{Ext}^{1}(\mathbb{F}, \underline{F}) \\
& \xrightarrow{\alpha^{1}} H^{1}(\underline{F}) \rightarrow \operatorname{Ext}^{2}\left(I_{C}\left(c_{1}\right), \underline{F}\right) \xrightarrow{\varphi^{2}} \operatorname{Ext}^{2}(\underline{E}, \underline{F}) \xrightarrow{\alpha^{2}} H^{2}(\underline{E}) \rightarrow
\end{aligned}
$$

deduced from the short exact sequence

$$
0 \rightarrow 0_{\mathbb{P}} \xrightarrow{s} \mathbb{P} \underline{I}_{C}\left(c_{1}\right) \rightarrow 0
$$

we find isomorphisms

$$
A^{q} \simeq \operatorname{Ext}^{q}\left(I_{C}\left(c_{1}\right), E\right) \text { for } q>0
$$

（ii）Let $S \rightarrow R$ be a morphism in I whose kernel of is a k－module via $R \rightarrow k$ ，let $S_{R}: O_{\mathbb{P}_{R}} \rightarrow \mathbb{F}_{R}$ be a deformation of $s: O_{\mathbb{P}} \rightarrow \mathbb{F}$ to R ，and let \mathbb{F}_{S} be a deformation of \mathbb{F}_{R} to S 。 $T o$ prove the smoothness of φ ，we must find a morphism S_{S} ，

$$
{ }^{s_{S}}: 0_{\mathbb{P}_{S}} \rightarrow \underline{F}_{S}
$$

such that $S_{S}{ }_{S}{ }^{1}{ }_{R}=s_{R}$ ，i．e．we must prove that $s_{R} \in H^{\circ}\left(\underline{F}_{R}\right)$ is contained in the image of $H^{\circ}\left(\underline{F}_{S}\right) \rightarrow H^{\circ}\left(\underline{F}_{R}\right)$ ．Since

$$
0 \rightarrow \mathbb{E}_{k} a \rightarrow F_{S} \rightarrow \mathbb{E}_{R} \rightarrow 0
$$

is exact and since $H^{1}(\underline{P})=0$ by assumption，we see that $H^{\circ}\left(\underline{E}_{S}\right) \rightarrow H^{\circ}\left(\underline{F}_{R}\right)$ is surjective and we are done。

Remark 1．2．In the exact sequence（＊）of this proof，φ^{1} is the tangent map of $\varphi: \operatorname{Def}_{\underline{E}, s} \rightarrow \operatorname{Def}_{\underline{E}}$ and φ^{2} maps＂obstruc－ tions to obstructions＂。 In fact φ is a morphism of principal homogeneous spaces via φ ．Using this it is in general rather easy to prove the smoothness of φ directly from the surjectivity of φ^{1} and the injectivity of φ^{2} ． This gives another proof of（1．1．ii）。
2. The relationship between the deformations of a reflexive sheaf With a section and the deformations of the corresponding curve.

Let $\underline{F}, s \in H^{\circ}(\underline{E})$ and $I=I_{C}=\operatorname{ker}\left(O_{\mathbb{P}} \rightarrow O_{C}\right)$ be as in the preceding section, and let $\operatorname{Def}_{I}: \underline{I} \rightarrow$ Sets be the deformation functor of the $O_{\mathbb{P}}$-Module $I_{\text {. Then }}$ there is a natural map

$$
\psi: \operatorname{Def}_{\mathrm{F}, \mathrm{~S}} \rightarrow \operatorname{Def}_{\mathrm{I}}
$$

defined by

$$
\psi\left(\mathbb{F}_{R}, s_{R}\right)=M_{\mathbb{R}} \otimes\left(O_{\mathbb{P}}\left(-c_{1}\right)\right.
$$

where $M_{R}=$ coker S_{R}. If $H_{i l b}^{C}: I \rightarrow$ Sets is the local Hilbert functor at $C \subseteq \mathbb{P}$, we have also a natural map

$$
\mathrm{HiIb}_{\mathrm{C}} \rightarrow \mathrm{Def}_{\mathrm{I}}
$$

of functors on I. Recall that C is locally Cohen Macaulay and equidimensional [H3,4.1].

Proposition 2.1. (i) The natural morphism

$$
\mathrm{Hilb}_{\mathrm{C}} \rightarrow \mathrm{Def}_{I}
$$

is an isomorphism of functors.
(ii) If $H^{1}(\underline{F}(-4))=0$, then

$$
\psi: \operatorname{Def}_{\underline{F}, S} \rightarrow \operatorname{Def}_{I}
$$

is a smooth morphism of functors on 1 。

Observe also that

$$
H^{1}(\underline{F}(-4)) \simeq H^{1}\left(\underline{I}_{C}\left(c_{1}-4\right)\right)
$$

and moreover by duality that

$$
\operatorname{Ext}_{O_{\mathbb{P}}}^{2}\left(I_{C}\left(c_{1}\right), O_{\mathbb{P}}\right)=H^{1}\left(I_{C}\left(c_{1}-4\right)\right)^{V}
$$

Proof of（i）If $\mathbb{N}_{C}=\xrightarrow{H o m}_{\mathbb{P}}\left(\underline{I}, O_{C}\right)$ is the normal bundle of C in \mathbb{P} ，we proved in $[K], 2.2]$ that

$$
H^{i}\left(\mathbb{N}_{C}\right) \approx \operatorname{Ext}_{O_{\mathbb{P}}}^{i+1}(\underline{I}, I) \quad \text { for } \quad i=0,1
$$

as a consequence of the fact that the projective dimension of the $O_{\mathbb{P}}-$ Module I is 1 ，from which the conclusion of（i）is easy to understand．We will，however，give a direct proof．

To construct the inverse of $\operatorname{Hilb}_{C}(R) \rightarrow \operatorname{Def}_{\underline{I}}(R)$ ，let \mathbb{M}_{R} be a deformation of I to R ．Observe that there is an exact se－ quence
where E is a vector bundle on \mathbb{P} of rank $r_{0} \stackrel{r}{\wedge} \underline{E}$ is therefore invertible，and we can identify it with $O_{\mathbb{P}}\left(a_{1}\right)$ where $a_{1}=-\Sigma n_{i}$ 。 If $\underline{P}=\mathcal{O}_{\mathbb{P}}\left(\cdots n_{i}\right)$ ，then there is a complex
$\left({ }^{* *}\right) \quad \underline{E} \rightarrow \underline{P} \simeq(\stackrel{r}{\wedge})^{\vee}\left(d_{1}\right) \rightarrow(\stackrel{r}{\wedge})^{\vee}\left(d_{1}\right)=0_{\mathbb{P}}$
and it is well known that the maps $\underline{P} \xrightarrow{f} I \subseteq O_{\mathbb{P}}$ and $P \rightarrow O_{\mathbb{P}}$ deduced from（＊）and（＊＊）respectively are equal up to a unit of k 。 We can assume equality。 Now since M_{R} is a lifting of I to R ，there is a map

$$
f_{R}: \mathbb{P}_{R}=\bigoplus_{i=1}^{r+1} 0_{\mathbb{P}_{R}}\left(-n_{i}\right) \rightarrow \mathbb{M}_{R}
$$

such that $f_{R} \otimes_{R} 1_{k}=f: \underline{P} \rightarrow I$ 。 By Nakayama＇s lemma，f_{R} is surjective。 Moreover if $\mathrm{E}_{\mathrm{R}}=\operatorname{ker} \mathrm{f}_{\mathrm{R}}$ ，we easily see that $\mathrm{E}_{\mathrm{R}} \otimes_{\mathrm{R}} \mathrm{k}=\underline{E}$
and E_{R} is R－flat．It follows that E_{R} is a locally free $\mathrm{O}_{\mathbb{P}_{\mathrm{R}}}$－Module of rank r satisfying

$$
\stackrel{r}{\wedge} \underline{E}_{R}=O_{\mathbb{P}_{R}}\left(d_{1}\right)
$$

Furthermore there is a complex
which proves the existence of an ${ }^{O_{1}} \mathbb{P}_{R}$－linear map

$$
\alpha: \underline{M}_{R} \rightarrow O_{\mathbb{P}_{R}}
$$

which reduces to the natural inclusion $I \subseteq O_{\mathbb{P}}$ via $(-) \mathbb{Q}_{R} \mathbb{k}$ 。 It is easy to see that α is injective，that coker α is R－flat and that coker $\alpha{ }_{R} k=O_{C}$ 。 We therefore have a deformation $C_{R} \subseteq \mathbb{P}_{R} \quad$ of $C \subseteq \mathbb{P}$ 。Finally to see that the inverse of $\operatorname{Hilb}_{C}(R) \rightarrow \operatorname{Def}_{I}(R)$ is well－derined，let $\beta: M_{R} \xlongequal{M_{M}^{i}}$ and $\alpha^{\prime}: M_{R}^{\prime} \rightarrow O_{\mathbb{P}_{R}}$ be $O_{\mathbb{P}_{R}}$－linear maps such that $\beta \otimes_{R} \gamma_{k}$ is the identity on I and $\alpha^{\prime} \otimes_{R} 1_{k}$ is the natural inclusion $I \subseteq R$ 。 （We do not assume $\alpha^{\prime} \beta=\alpha$ ）。 We claim that $\operatorname{Im} \alpha^{\prime}=\operatorname{Im} \alpha$ 。 In fact since

$$
\operatorname{Ext}_{O_{\mathbb{P}}}^{i}\left(O_{C}, O_{\mathbb{P}}\right)=0 \quad \text { for } \quad i=0,1
$$

we have

$$
k=\operatorname{Hom}_{O_{\mathbb{P}}}\left(O_{\mathbb{P}}, O_{\mathbb{P}}\right) \simeq \operatorname{Hom}_{O_{\mathbb{P}}}\left(\underline{I}, O_{\mathbb{P}}\right)
$$

We deduce that the map

$$
\mathrm{R}=\operatorname{Hom}_{\mathrm{O}_{\mathbb{P}_{R}}}\left(\mathrm{O}_{\mathbb{P}_{R}}, \mathrm{O}_{\mathbb{P}_{R}}\right) \rightarrow \operatorname{Hom}_{\mathrm{O}_{\mathbb{P}_{R}}}\left(\mathbb{M}_{R}, O_{\mathbb{P}_{R}}\right)
$$

induced by a ，is surjective。 Hence

$$
\sigma^{\prime} B=r \alpha
$$

for some $r \in R$, and since $\alpha^{\prime} \beta \otimes 1_{k}=\alpha \otimes 1_{k}$ is the natural inclusion $I \subseteq O_{\mathbb{P}}, r$ is a unit and we are done。
(ii) Let $S \rightarrow R$, $O C$ and $S_{R}: O_{\mathbb{P}_{R}} \rightarrow \mathbb{F}_{R}$ be as in the proof of (1.1 ii). Moreover let $M_{R}=\operatorname{coker} S_{R}$, and let M_{S} be a deformation of M_{R} to S. To prove smoothness we must find a deformation

$$
{ }^{s_{S}}: O_{\mathbb{P}_{S}} \rightarrow \underline{F}_{S}
$$

with cokernel ${ }_{T}^{M}$ such that $S_{S}{ }_{S}{ }_{S} 1_{R}=S_{R}$. By theory of extensions it is sufficient to prove that the map

$$
\operatorname{Ext}_{\mathrm{O}_{\mathbb{P}_{S}}^{1}}\left(\mathbb{M}_{S}, C_{\mathbb{P}_{S}}\right) \rightarrow \operatorname{Ext}_{\mathrm{O}_{\mathbb{P}_{R}}^{1}}\left(\mathbb{M}_{\mathrm{R}}, \mathrm{O}_{\mathbb{P}_{R}}\right)
$$

induced by $(-) \otimes_{S} R$ is surjective。 Modulo isomorphisms we refind this map in the long exact sequence
$\rightarrow \operatorname{Ext}^{1}\left(\underline{M}_{S}, O_{\mathbb{P}_{S}} \otimes \sigma\right) \rightarrow \operatorname{Ext}^{1}\left(\underline{M}_{S}, O_{\mathbb{P}_{S}}\right) \rightarrow \operatorname{Ext}^{1}\left(\underline{M}_{S}, 0_{\mathbb{P}_{R}}\right) \rightarrow \operatorname{Ext}^{2}\left(\mathbb{M}_{S}, 0_{\mathbb{P}_{S}}^{\otimes o l}\right)$.

assumption, we are done.

Remark 2.2. The short exact sequence

$$
\xi: 0 \rightarrow 0_{\mathbb{P}} \xrightarrow{s} \underset{F}{ } I_{C}\left(c_{1}\right) \rightarrow 0
$$

induces a long exact sequence

$$
\begin{aligned}
\rightarrow & \operatorname{Ext}_{O_{\mathbb{P}}^{1}}^{1}\left(\underline{I}_{C}\left(c_{1}\right), O_{\mathbb{P}}\right) \rightarrow \operatorname{Ext}_{O_{\mathbb{P}}}^{1}\left(I_{C}\left(c_{1}\right), \mathbb{F}\right) \xrightarrow{\psi^{1}} \rightarrow \operatorname{Ext}_{O_{\mathbb{P}}^{1}}^{1}\left(I_{C}, I_{C}\right) \rightarrow \\
& \operatorname{Ext}_{O_{\mathbb{P}}}^{2}\left(I_{C}\left(c_{1}\right), O_{\mathbb{P}}\right) \rightarrow \operatorname{Ext}_{O_{\mathbb{P}}}^{2}\left(I_{C}\left(c_{1}\right), \mathbb{E}\right) \xrightarrow{\dot{H}^{2}} \operatorname{Ext}_{O_{\mathbb{P}}}^{2}\left(I_{C}, I_{C}\right) \rightarrow
\end{aligned}
$$

where ψ^{\wedge} is the tangent map of ψ or more generally，ψ is a map of principal homogeneous spaces via ψ^{1} and ψ^{2} maps ＂obstructions to obstructions＂。 As remarked in（1．2），the smoothness of ψ follows therefore from the surjectivity of ψ^{1} and the injectivity of ψ^{2} 。

Remark 2．3．Let G be the extension

$$
0 \rightarrow o_{\mathbb{P}} \xrightarrow{S} \underset{\mathbb{F}}{ } \rightarrow I_{C}\left(c_{1}\right) \rightarrow 0
$$

and let $\operatorname{Def}_{C, \xi}: \perp \rightarrow$ Sets be the functor defined by
$\operatorname{Def}_{C, \xi}(R)=\left\{\begin{array}{l}\left.\left(C_{R}, \xi_{R}\right) \left\lvert\, \begin{array}{l}\left(C_{R} \subseteq \mathbb{P}_{R}\right) \in \operatorname{Hilb}_{C}(R) \text { and } \xi_{R} \\ \operatorname{Ext}^{1}\left(\underline{I}_{C_{R}}\left(c_{1}\right), O_{\mathbb{P}_{R}}\right) \text { satisfies }\end{array}\right.\right\} / \sim\end{array}\right.$ ${ }_{5}{ }_{R} k=\xi$
Two deformations（ $\mathrm{C}_{\mathrm{R}}, \xi_{\mathrm{R}}$ ）and（ $\mathrm{C}_{\mathrm{R}}^{i}, \xi_{R}^{\prime}$ ）are equivalent if $C_{R}=C_{i} \subseteq \mathbb{P}_{R}$ and if there is a commutative diagram

$$
\begin{aligned}
& \xi_{R}^{\prime}: 0 \rightarrow 0_{\mathbb{P}_{R}} \rightarrow \mathrm{E}_{\mathrm{R}} \rightarrow \mathrm{I}_{\mathrm{C}_{\mathrm{R}}}\left(c_{1}\right) \rightarrow 0
\end{aligned}
$$

both reducing to the extension 5 via $(-) \otimes_{R} k$ 。 In the same way we identify the given（ C, ξ ）with any（ $\mathrm{C}^{\prime}, \xi^{\prime}$ ） provided $C=C^{\prime}$ and $\xi^{\prime}=u \xi$ for some unit $u \in k^{*}$ 。Note that we may in this definition of equivalence replace the identity 1 on $I_{C_{R}}\left(c_{1}\right)$ by any $O_{\mathbb{P}_{R}}$ linear map．See ［Ma 2，6．1］and recall $\operatorname{Hom}\left(I_{C}, I_{C}\right)=k$ ．Now there is a for－ getful map

$$
\alpha: \operatorname{Def}_{C, \xi} \rightarrow \operatorname{Def}_{\mathrm{E}_{\mathrm{m}}, \mathrm{~s}},
$$

and using（2．1i）we immediately have an inverse of α 。 Hence α is an isomorphism．Observe that we might construct the inverse of $\alpha(R)$ for $R \in o b l$ by considering the in－ vertible sheaf det \mathbb{F}_{R} on $\mathbb{P}_{R^{\circ}}$ See［Ma 1，4．2］or $[G, 4.1]$ ． In fact if $\left({\underset{F}{R}}_{R}, S_{R}\right)$ is given，there is an \mathbb{P}_{R} a morphism

$$
\dot{i}: \wedge \mathbb{E}_{R} \rightarrow \operatorname{det}{\underset{E}{R}}^{2} \simeq O_{\mathbb{P}_{R}}\left(c_{1}\right)
$$

and a complex

$$
0 \rightarrow 0_{\mathbb{P}_{R}} \xrightarrow{s_{R}} \mathbb{F}_{R} \xrightarrow{i\left[(-) \wedge s_{R}\right]} O_{\mathbb{P}_{R}}\left(c_{1}\right)
$$

which after the tensorization $(-) \otimes_{R} k$ is exact．Hence

$$
0 \rightarrow O_{\mathbb{P}_{R}} \xrightarrow{s_{R}} \mathbb{E}_{R} \rightarrow \operatorname{coker}_{S_{R}} \rightarrow 0
$$

is exact，coker s_{R} is $R-f l a t$ and coker $s_{R} \Leftrightarrow O_{\mathbb{I}_{R}}\left(c_{1}\right)$ ， and putting this together，we can find an inverse of $\alpha(R)$ 。 One should compare the isomorphism of α with［H3，4．1］ which implies that there is a bijection between the set of pairs（ \underline{F}, s ）and the set of（ C, ξ ）moduls equivalence under certain conditions on the pairs．Thinking of these families of pairs as moduli spaces，［H3，4．1］establishes a bijectin on the k－points of these spaces while the isomorphism of α takes care of the scheme structure as well．

To be more precise we claim that there is a quasiprojective scheme D parametrizing equivalent pairs（ C, ξ ）where

1）C is an equidimensional Cohen Macaulay curve and where
2）the extension $5: 0 \rightarrow O_{\mathbb{P}} \rightarrow \mathbb{F} \rightarrow I_{C}\left(c_{1}\right) \rightarrow 0$ is such that E is a stable reflexive sheaf。

Moreover there are projection morphisms

$$
\text { (*) } \begin{aligned}
& D \xrightarrow[q]{p} \quad H(d, g) \\
& M\left(c_{1}, c_{2}, c_{3}\right)
\end{aligned}
$$

defined by $p\left({\underset{F}{K}}, s_{K}\right)=E_{K}$ and $q\left(C_{K}, s_{K}\right)=C_{K}$ for a geometric K－point（ C_{K}, ξ_{K} ）corresponding to（ F_{K}, S_{K} ），such that the fibers of p and q are smooth connected schemes．Furthermore，p is smooth at $\left(\mathrm{F}_{\mathrm{K}}, S_{K}\right)$ provided $\mathrm{H}^{1}\left(\underline{E}_{K}\right)=0$ ，and q is smooth at $\left(C_{K}, \xi_{K}\right)$ provided $H^{1}\left(I_{C_{K}}\left(c_{1}-4\right)\right)=0$ 。

1）
To indicate why let Sch k be the category of locally noetherian k－schemes and let $\underset{\sim}{D}: S c h / k \rightarrow$ Sets be the functor defined by
$\underset{\sim}{D}(S)=\left\{\left(C_{S}, I_{S}, \xi_{S}\right) \left\lvert\, \begin{array}{l}C_{S} \in H(d, g)(S), \\ I_{S} \text { is invertible on } S \text { and } \\ \bar{S}_{S} \in \operatorname{Ext}^{1}\left(I_{C_{S}}\left(C_{1}\right),\right. \\ \left.0_{\mathbb{P} \times S} \otimes I_{S}\right) \text { such that } \\ C_{S} \times_{S} \operatorname{Spec}(K) \text { satisfies（1）and } \xi_{S} \otimes K \neq 0 \\ \text { for any geometric } \quad \text { K－point of } S\end{array}\right.\right\} / \sim$

Two deformations $\left(C_{S}, I_{S}, \bar{S}_{S}\right)$ and $\left(C_{S}^{\prime}, \underline{I}_{S}^{\prime}, \xi_{S}^{\prime}\right)$ are equivalent if $C_{S}=C_{S}^{\prime}$ and if there is an isomorphism $\tau: I_{S} \rightarrow I_{S}^{\prime}$ whose in－ duced morphism Ext ${ }^{1}\left(\underline{I}_{C_{S}}\left(c_{1}\right), \tau\right)$ maps ξ_{S} onto ξ_{S}^{\prime} ．Now if $U \subseteq H(d, g)$ is the open set of equidimensional Cohen Macaulay curves and if $C_{U} \subseteq \mathbb{P} \times U \xrightarrow{\Pi} U$ is the restricting of the uni－ versal curve to U ，one may prove that $E=E^{E}{ }^{1}\left(I_{C_{U}}\left(c_{1}\right), O_{\mathbb{P} \times U}\right)$ is a coherent $O_{\mathbb{P} \times U} \cdots$ Module，flat over U 。 By［EGA，III，7．7．6］ there is a unique coherent $O_{U}-$ Module \underline{Q} such that

1）For good ideas of this construction，see the appendix［E，S］， some of which appears in $[S, M, S]$ 。

$$
\underline{\operatorname{Hom}}_{O}(\underline{Q}, \underline{R}) \simeq \pi_{*}(\underline{E} \otimes \underline{R})
$$

for any quasicoherent $O_{U}-M o d u l e ~ R 。 I f \quad \mathbb{P}(\underline{Q})=\operatorname{Proj}(\operatorname{Sym}(Q))$ is the projective fiber over U defined by Q ，we can use ［EGA II，4．2．3］to prove that

$$
\underset{\sim}{D}(-) \simeq \operatorname{Mor}_{k}(-, \mathbb{P}(\underline{Q}))
$$

Now let $D \subseteq \mathbb{P}(\underline{Q})$ be the open set whose k－points are $(C, \xi), \xi: 0 \rightarrow O_{\mathbb{P}} \rightarrow \mathbb{F} \rightarrow I_{C}\left(c_{1}\right) \rightarrow 0$ ，where E is a stable reflexive sheaf．Therı we have a diagram（＊）where the existence of the morphism p follows from the definition［Ma 1，5．5］ of the moduli space $\mathbb{M}=\mathbb{M}\left(c_{1}, c_{2}, c_{3}\right)$ 。 Moreover since $\mathbb{P}(\underline{q})$ re－ presents the functor $\underset{\sim}{D}$ ，the fiber of $q: D \rightarrow H(d, g)$ at a K－point $\quad C_{K} \subseteq \mathbb{P}_{K}$ of $H(d, g)$ is just $D \cap \mathbb{P}\left(E x t^{1}\left(I_{C_{K}}\left(c_{1}\right), O_{\mathbb{P}_{K}}\right)^{V}\right)$ where $(-)^{V}=\operatorname{Hom}_{\mathrm{K}}(-, K)$ ．Moreover if we think of the fiber of p at a geometric K－point \underline{F}_{K} of M as those sections $s \in H^{\circ}\left(\underline{F}_{K}\right)$ where（ $s)_{0}$ is a curve，we understand that the fiber is an open subscheme of the linear space $\mathbb{P}\left(\mathrm{H}^{\mathrm{O}}\left(\underline{\underline{F}}_{\mathrm{K}}\right)^{V}\right)$ 。 In particular the geometric fibers of p and q are smooth and connected．

Finally the smoothness of p and q at（ C, ξ ）follows from （1．1ii）and（2．1ii）provided we know that the morphism
 diagram

$$
\begin{aligned}
\operatorname{Def}_{\mathrm{E}, \mathrm{~s}} & \simeq \operatorname{Mor}\left(\hat{O}_{\mathrm{D},(\mathrm{E}, \mathrm{~s})},--\right) \\
\varphi \downarrow & \circ \quad \operatorname{Mor}\left(\mathrm{p}^{*},-\cdots\right) \\
\operatorname{Der}_{\mathrm{E}} & \simeq \operatorname{Mor}\left(\hat{O}_{\mathrm{M}, \underline{F}},--\right)
\end{aligned}
$$

of horisontal isomorphisms on 1 ．In fact the commutativity from
the definition of a moduli space [Ma 1, 5.5] while the construction of M implies the lower horizontal isomorphism。 See [Ma 2, 6.4] from which we immediately have that the morphism $\operatorname{Def}_{\mathrm{F}} \rightarrow \operatorname{Mor}\left(\hat{\mathrm{O}}_{\mathrm{M}, \mathrm{E}},-\right)$ is smooth, and since the morphism induces an isomorphism of tangent spaces, both isomorphic to Ext ${ }^{1}(\underline{F}, \underline{F})$, it must be an isomorphism. Remark 2.4. In particular the smoothness of $\operatorname{Def}_{\mathbb{F}} \rightarrow \operatorname{ITor}\left(\hat{O}_{M, F},-\right)$ which is a consequence of the smoothness of the morphism treated in [Ma2, 6.4], implies that $\mathrm{O}_{\mathrm{M}, \mathrm{F}}$ is a regular local ring if and only if $\operatorname{Def}_{\mathrm{F}}$ is a smooth functor on I_{0}
3. Non-reduced components of the moduli scheme $M\left(c_{12} c_{2} c_{3}\right)$. One knows that the Hilbert scheme $H(d, g)$ is not always reduced. In fact if g is the largest number satisfying $g \leq \frac{a^{2}-4}{8}$, we proved in [Kl, 3.2.10] that $H(d, g)$ is non-reduced for every $d \geq 14$, and we explicitely described a non-reduced component in terms of the Picard group of a smooth general cubic surface。

Example 3.1. (Mumford [M1]). For $d=14$, we have $g=\frac{a^{2}-4}{8}=24$, and there is an open irreducible subscheme $U \subseteq H(14,24)$ of smooth connected curves whose closure $\bar{U}=W$ makes a non-reduced component, such that for any $(C \subseteq \mathbb{P}) \in U$,

$$
\begin{aligned}
& h^{0}\left(I_{C}(\nu)\right)=\left\{\begin{array}{lll}
0 & \text { for } & v \leq 2 \\
1 & \text { for } & v=3
\end{array}\right. \\
& h^{1}\left(I_{C}(\nu)\right)=0 \\
& \text { for } v \notin\{3,4,5\} \\
& h^{1}\left(O_{C}(\nu)\right)= \begin{cases}0 & \text { for } v \geq 4 \\
1 & \text { for } v=3\end{cases}
\end{aligned}
$$

See $[K 1,(3.2 .4)$ and $(3.1 .3)]$ ．In fact with $C \subseteq \mathbb{P}$ in U ， there is a global complete intersection of two surfaces of degree 3 and 6 whose corresponding linked curve is a dis－ joint union of two coniques．

Now let $C \subseteq \mathbb{P}$ be a smooth connected curve satisfying
（＊）$\quad H^{1}\left(I_{C}\left(c_{1}\right)\right)=0, \quad H^{1}\left(I_{C}\left(c_{1}-4\right)\right)=0$ and $H^{1}\left(O_{C}\left(c_{1}-4\right)\right) \neq 0$ for some integer c_{1} ，let $\xi \in H^{0}\left(\omega_{C}\left(4-c_{1}\right)\right)=\operatorname{Ext}^{1}\left(\underline{I}_{C}\left(c_{1}\right), o_{\mathbb{P}}\right)$ be non－trivial，and let（ F, s ）， $\mathrm{s} \in \mathrm{H}^{\mathrm{O}}(\mathrm{F})$ ，correspond to（ $\left.\mathrm{C}, \xi\right)$ via the usual correspondence．Then E is reflexive，and it is stable （resp．semistable）if and only if $c_{1}>0$（resp。 $c_{1} \geq 0$ ）and C is not contained in any surface of degree $\leq \frac{1}{2} c_{1}$（resp。 $<\frac{1}{2} c_{1}$ ）。 See $[H 3,4.2]$ ．Combining（1．1）and（2．1）with（2．4）in case F is stable，we find that $O_{M, F}$ is non－reduced iff $O_{H, C}$ is non－ reduced。

Example 3．2．Let $(C \subseteq \mathbb{P}) \in H(14,24)$ belong to the set U of （3．1）and let c_{1} be an integer satisfying（＊），i。e。 $c_{1} \leq 2$ or $c_{1}=6$ 。
（i）Let $c_{1}=6$ ．By virtue of（1．1）and（2．1）the hull of Def_{F} is non－reduced．Moreover E is semistable with Chern classes $\left(c_{1}, c_{2}, c_{3}\right)=(6,14,18)$ ，and the normalized sheaf $E(-3)$ has Chern classes $\left(c_{1}^{1}, c_{2}^{1}, c_{3}^{1}\right)=(0,5,18)$ 。
（ii）Let $c_{1}=2$ ．The corresponding reflexive sheaf is stable and must belong to at least one non－reduced component of $M(2,14,74)$ ，i．e．of $M(0,13,74)$ 。
（iii）With $c_{1}=1$ we find at least one non－reduced component of $M(1,14,88) \simeq M(-1,14,88)$ 。

Combining the discussion after（2．3）and in particular the irreducibility of the morphism q with the irreducibility of the set U of（3．1），we see that we obtain precisely one non－reduced component of $M(0,13,74)$ and $M(-1,14,88)$ in this way．

We will give one more example of a non－reduced component and in－ clude a discussion to better understand（1．1）and（2．1）．In fact recall［Kl，2．3．6］that if an equidimensional Cohen Macaulay curve $(C \subseteq \mathbb{P}) \in H(d, g)$ is contained in a complete intersection $V\left(\mathbb{F}_{1}, \mathbb{F}_{2}\right)$ of two surfaces of degree $f_{1}=\operatorname{deg} F_{1}$ and $f_{2}=\operatorname{deg} F_{2}$ with

$$
H^{1}\left(I_{C}\left(f_{i}\right)\right)=0 \text { and } H^{1}\left(I_{C}\left(f_{i}-4\right)\right)=0
$$

for $i=1,2$ ，and if $\left(C^{\prime} \subseteq \mathbb{P}\right) \in H^{\prime}=H\left(d^{\prime}, g^{\prime}\right)$ is the linked curve， then $O_{H, C}$ is reduced iff $O_{H^{\prime}}, C^{\prime}$ is reduced。 Since any curve $(C \subseteq \mathbb{P}) \in U$ of (3.1) is contained in a complete intersection $V\left(\underline{F}_{1}, \underline{F}_{2}\right)$ of two surfaces of degree $f_{1}=f_{2}=6$ ，the linked curves $C^{\prime} \subseteq \mathbb{P}$ must belong to at least one（and one may prove to exactly one）non－reduced component ${ }^{1}{ }^{1} W \subseteq H(22,56)$ of dimension 88 ．See ［Kl，2．3．9］．One may see that W contains smooth connected curves． Moreover using the fact that $\omega_{C}\left(4-f_{1}-f_{2}\right)$ and $\omega_{C^{\prime}}\left(4-f_{1}-f_{2}\right)$ are the sheaves of ideals which define the closed subschemes $C^{\prime} \subseteq V\left(\underline{E}_{1}, F_{2}\right)$ and $C \subseteq V\left(\underline{F}_{1}, \underline{F}_{2}\right)$ respectively，one proves easily that
$H^{0}\left(I_{C},(4)\right)=0, H^{1}\left(I_{C^{\prime}}(\nu)\right)=0$ for $\nu \notin\{3,4,5\}$ and $H^{1}\left(O_{C},(5)\right) \neq 0$ 。 See $[S, P]$ and $[K], 2.3 .3]$ 。

1）The condition $H^{1}\left(\underline{I}_{C}\left(f_{i}-4\right)\right)=0$ implies also that the linked curves $C^{\prime} \subseteq \mathbb{P}$ form an open subset of H^{\prime} 。

Example 3．3．Let $\left(C^{\prime} \subseteq \mathbb{P}\right) \in W \subseteq H(22,56)$ be as above with C^{\prime} smooth and connected．If c_{1} is chosen among $1 \leq c_{1} \leq 9$ ， then $C^{\prime} \subseteq \mathbb{P}$ defines a stable reflexive sheaf \mathbb{F}^{\prime} and in fact a vector bundle if $c_{1}=9$ by the usual correspondence． Using（1．1）and（2．1）we find that F^{\prime} belongs to a non－ reduced component of $M\left(c_{1}, c_{2}, c_{3}\right)$ for the choices $1 \leq c_{1} \leq 2$ or $c_{1}=6$ ．In particular there exists a non－reduced com－ ponent of $M(6,22,66) \simeq M(0,13,66)$ ．Moreover we obtain pre－ cisely one non－reduced component in this way if we make use of the discussion after（2．3）。 If $c_{1}=9$ ，we find a re－ flexive sheaf $\mathbb{F}^{\prime} \in M(9,22,0)$ ，and the normalized one is $F^{\prime}(-5) \in M(-1,2,0)$ ，but we can not conclude that $M(-1,2,0)$ is non－reduced，even though $H(22,56)$ is，because the con－ dition $H^{1}\left(I_{C}\left(c_{1}-4\right)\right)=0$ of（2．1。ii）is not satisfied．In fact one knows that $M(-1,2,0)$ is a smooth scheme。 See $[H, S]$ or $[S, M, S]$ ．

As a starting point of these final considerations，we will suppose as known that there is an open smooth connected subscheme $U_{M} \subseteq M(-1,2,0)$ of stable reflexive sheaves F for which there exists a global section $s \in H^{\circ}(F(2))$ whose corresponding scheme of zero＇s $C^{\prime}=(s)_{0}$ is a disjoint union of two coniques．More－ over dim $U_{M}=11$ ．In fact $[H, S]$ proves even more。 We then have an exact sequence

$$
0 \rightarrow 0_{\mathbb{P}} \rightarrow \mathbb{F}(2) \rightarrow \underline{I}_{C^{\prime}}(3) \rightarrow 0
$$

for $\mathbb{F} \in U_{M}$ ，and since the dimension of the cohomology groups $H^{i}\left(I_{C^{\prime}}(\nu)\right)$ is easily found in case C^{\prime} consists of two disjoint
coniques，we get

$$
h^{\circ}(\underline{\mathbb{F}}(1))=h^{0}\left(\underline{I}_{C^{\prime}}(2)\right)=1
$$

and

$$
h^{1}(\underline{F}(\nu))=h^{1}\left(\underline{I}_{C^{\prime}}(\nu+1)\right)= \begin{cases}1 & \text { for } v=-1,1 \\ 2 & \text { for } v=0 \\ 0 & \text { for } v \notin\{-1,0,1\} .\end{cases}
$$

By $\operatorname{dim} U_{\mathbb{M}}=11, \operatorname{Ext}_{O_{\mathbb{P}}}^{2}(\mathbb{F}, \underline{F})=0$ ．（The reader who is more familier with the Hilbert scheme may prove our assumptions on U_{M} by first proving that there is an open smooth connected subscheme $U \subseteq H(4,-1)$ of disjoint coniques C^{\prime} and that $\operatorname{dim} U=16$ 。 This is in fact a very special case of $[K 1,(3.1 .10 i)$ ．See also $[K],(3.1 .4)$ and $(2.3 .18)]$ ．With $c_{1}=3$ ，we have $H^{1}\left(I_{C},\left(c_{1}\right)\right)=H^{1}\left(I_{C},\left(c_{1}-4\right)\right)=0$ ， and by the discussion after（2．3），there exists an open smooth connected subscheme of $M(3,4,0) \underset{i}{\underset{i}{\longrightarrow}} M(-1,2,0)$ defined by $U_{M}=i\left(p\left(q^{-1}(U)\right)\right)$ ．Moreover $\operatorname{dim} U_{M}=11$ because $\operatorname{dim} U_{M}+h^{\circ}(\mathbb{F}(2))=$ $\operatorname{dim} U+h^{0}\left(w_{C}\left(4-c_{1}\right)\right) \quad$ 。

Fix an integer $\nu \geq 1$ ，and let $U(\nu)$ be the subset of $H(a, g)$ obtained by varying $\mathbb{E} \in \mathbb{U}_{\mathbb{M}} \subseteq \mathbb{M}(-1,2,0)$ and by varying the sections $s \in H^{\circ}(\underset{F}{(\nu)})$ so that $C=(s)_{0}$ is a curve，i。e。 let $U(\nu)=$ $q\left(p^{-1}\left(U_{M}\right)\right.$ ）and regard U_{M} as a subscheme of $M\left(c_{1}, c_{2}, 0\right)$ with

$$
c_{1}=2 \nu-1, \quad c_{2}=2-\nu+\nu^{2}, \quad d=c_{2} \quad \text { and } \quad g=1+\frac{1}{2} c_{2}\left(c_{1}-4\right)
$$

Recall that p and q are projection morphisms

$$
\begin{aligned}
& D \xrightarrow{d} H(a, g) \\
& \|^{p} \\
& M\left(c_{1}, c_{2}, 0\right)
\end{aligned}
$$

For $(C \subseteq \mathbb{P}) \in U(\nu)$ ，there is an exact sequence

$$
0 \rightarrow 0_{\mathbb{P}} \rightarrow \underline{F}(\nu) \rightarrow I_{C}(2 v-1) \rightarrow 0
$$

some $E(\nu) \in U_{M^{\circ}}$ Now（1．1。ii）and（2．1ii）apply for $\nu=2$ and all $\nu \geq 6$ ，and it follows that $H(d, g)$ is smooth at any（ $C \subseteq \mathbb{P}$ ） in the open subset $U(\nu) \subseteq H(d, g)$ 。 Moreover by the irreducibility of $p, U(\nu)$ is an open smooth connected subscheme of $H(d, g)$ ． Furthermore

$$
\operatorname{dim} U(\nu)=4 \alpha+\frac{1}{6} \nu(\nu-5)(2 v-5) \quad \text { for } v \geq 6
$$

（resp $=4 \mathrm{~d}$ for $v=2$ ）which asymptotically is $\sim 4 \mathrm{~d}+\frac{1}{3} \mathrm{a}^{3 / 2}$ for $\nu \gg 0$ ．To find the dimension of $U(\nu)$ ，we use the fact that p and q are smooth morphisms of relative dimension $h^{0}(\mathbb{E}(\nu))-1$ and $h^{\circ}\left(w_{C}\left(4-c_{1}\right)\right)-1$ respectively。 This gives

$$
\operatorname{dim} U_{M}+h^{0}(\mathbb{F}(\nu))=\operatorname{dim} U(\nu)+h^{0}\left(w_{C}\left(4-c_{1}\right)\right)
$$

for $\nu=2$ and $v \geq 6$ ，and since $h^{0}\left(\omega_{C}\left(4-c_{1}\right)\right)=h^{1}\left(O_{C}\left(c_{1}-4\right)\right)=1$ for $\nu \geq 6$（resp．$=2$ for $\nu=2$ ），we get

$$
\operatorname{dim} U(\nu)=10+h^{0}(\underline{F}(\nu)) \quad \text { for } \nu \geq 6
$$

（resp．$=9+h^{0}(F(\nu))$ for $\left.\nu=2\right)$ ．The reader may verify that $h^{0}(\mathbb{F}(\nu))=\chi(\underline{F}(\nu))=\frac{1}{6}(\nu-1)(2 \nu+3)(\nu+4)=4 \alpha+\frac{1}{6}(\nu-5)(2 \nu-5) \nu-10$ for any $\nu \geq 2$ ，and the conclusion follows．

We will now discuss the cases $3 \leq \nu \leq 5$ where we can not guarantee the smoothness of q since（2．1。ii）does not apply。 If $v=5$ ， then the closure of $U(5)$ in $H(22,56)$ makes a non－reduced com－ ponent by（ 3.3 ）。For $\nu=3$ or 4，we claim that $H(d, g)$ is smooth along $U(\nu)$ and the codimension

$$
\operatorname{aim} W-\operatorname{aim} U(\nu)=h^{1}\left(\underline{I}_{C}\left(c_{1}-4\right)\right)=h^{1}(\underline{E}(-4))
$$

where W is the irreducible component of $H(d, g)$ which contains $U(\nu)$ ．To see this it suffices to prove $H^{1}\left(\mathbb{N}_{C}\right)=0$ and $\operatorname{Ext}^{2}\left(I_{C}\left(c_{1}\right), \mathbb{P}(\nu)\right)=0$ for any $(C \subseteq \mathbb{P}) \in U(\nu)$ because these con－ ditions imply that the scheme D and $H(d, g)$ are non－singular at any (C, ξ) with $\xi \in H^{\circ}\left(w_{C}\left(4-c_{\mathcal{1}}\right)\right)$ and $(C \subseteq \mathbb{P}) \in H(d, g)$ respec－ tively。 See（1．1i）．Moreover if these＂obstruction groups＂ vanish，we finơ
$\operatorname{dim} W-\operatorname{dim} U(\nu)=\operatorname{dim} W-\operatorname{dim} q^{-1}(U(\nu))=h^{0}\left(\mathbb{N}_{C}\right)-\operatorname{dim} \operatorname{Ext}^{1}\left(I_{C}\left(c_{1}\right), E(\nu)\right)$ $=h^{1}\left(I_{C}\left(c_{1}-4\right)\right)$
where $\operatorname{dim} U(\nu)=\operatorname{dim} q^{-1}(U(\nu))$ because of $h^{0}\left(w_{C}\left(4-c_{1}\right)\right)=1$ ， and where the equality to the right follows from the long exact sequence of（2．2）．Now to prove $\operatorname{Ext}^{2}\left(\underline{I}_{C}\left(c_{1}\right), \underline{F}(\nu)\right)=0$ we use the long exact sequence（＊）in the proof of（1．1。i）combined with $H^{1}(\underline{F}(\nu))=0$ and $\operatorname{Ext}^{2}(\underline{F}, \underline{F})=0$ ，and to prove $H^{1}\left(\mathbb{N}_{C}\right)=0$ we use the long exact sequence of（2．2）combined with $\operatorname{Ext}^{2}\left(\underline{I}_{C}\left(c_{1}\right), E(\nu)\right)=0$ and $\operatorname{Ext}^{3}\left(\underline{I}_{C}\left(c_{1}\right), O_{\mathbb{P}}\right) \simeq H^{\circ}\left(I_{C}\left(c_{1}-4\right)\right)^{V}=H^{O}(\underline{F}(V-4))^{V}=0$ for $\nu=3$ or $\nu=4$ ，and we are done。

Computing numbers，we find for $v=3$ that $U(3)$ is a locally closed subset of $H(8,5)$ of codimension 1，and any smooth con－ nected curve $(C \subseteq \mathbb{P}) \in U(3)$ is a canonical curve，i。e。 $\omega_{C} \simeq O_{C}(1)$ 。 For $v=4, U(4)$ is of codimension 2 in $H(14,22)$ and $w_{C} \simeq O_{C}(2)$ for any $(C \subseteq \mathbb{P}) \in U(4)$ ．

Bibliography．
［EGA］Grothendieck，A．and Dieudonné，Jo：Eléments de Géometrie Algébriques．Publ。Math。IHES 4（1960）， 8 （1961）， 11 （1961）， 17 （1963）， 20 （1964）， 24 （1965）， 28 （1966）and 32 （1967）．
［E，S］Ellingsrud，Go and Strømme，S．A．：On the moduli space for stable ranl－－2．vector bundles on \mathbb{P}^{2} ． Preprint，Univ。 of Oslo，No 6 （1979）．
［G］Gieseker，D_{0} ：On the moduli of vector bundles on an algebraic surface。Ann．Math．106，45－60（1977）。
［H1］Hartshorne，R。：Algebraic Geometry。 Graduate Texts in Math．，Vol。 52，Springer－－Verlag，New York（1977）。
［H2］Hartshorne，R。：Stable vector bundles of rank 2 on \mathbb{P}^{3} ． Math．Ann．238，229－280（1978）。
［H3］Hartshorne，Ro：Stable Reflexive Sheaves． Math。Ann。254，121－176（1980）。
［H，S］Hartshorne，R and Sols，I。：Stable rank 2 vector bundles on \mathbb{P}^{3} with $c_{1}=-1, c_{2}=2$ 。 Preprint（1980）。
［Kl］Kleppe，J．O．：The Hilbert－flag scheme，its properties and its connection with the Hilbert scheme．Applications to curves in 3－wspace。 Preprint，Univ。 of Oslo，No 5 （1981）。
［I 1］Laudal，O．A。：Formal Moduli of Algebraic Structures． Springer Lecture Notes nr。 754 （1979）。
［L 2］Laudal，O．A．：A generalized tri－secant lemma。 Proco of t 。 Tromsø 2.1 g 。 geom。Conference 1977。 Springer Lecture Notes nr。687，112－149（1978）。
［M1］Mumford，D．：Further pathologies in algebraic geometry。 Amer。J。Math。84，642－647（1962）。
［M2］Mumford，$D_{0}:$ Geometric Invariant Theory，Springer Verlag Berlin－Heidelberg－New York（1965）。
［Ma 1］Maruyama，Mo：Moduli of stable sheaves I， J．Math。，Kyoto Univ。17，91－166（1977）。
［Ma2］Maruyama，Mo：Moduli of stable sheaves II， J。Math。，Kyoto Univ。18，557－614（1978）。
［S，P］Szpiro，L．and Peskine，Co：Liaison des variétés algébriques．Invent．math．26，271－302（1974）．
［S，M，S］Strømme，SoA。，Mesequer，Jo and Sols，I。：Compactification of a Family of Vector Bundies on \mathbb{P}^{3} ．
Proc．of t ．18th Scandinavian Congress of Math。（1980）。

