ISBN 82-553-0478-9
Mathematics
NO. 3
February 3
1982

DEGENERATIONS OF COMPLETE TNISTED CUBICS
by

Ragni Piene
Inst. of Rath.。 University of Oslo

1. Introduction

Let $06 \mathbb{P}^{3}$ be a twisted cubic curve. Denote by $\Gamma \subset$ Crass $(1,3)$ its tangent curve (curve of tangent lines) and by $C^{*}<\operatorname{TP}^{3}$ its dual curve (curve of osculating planes). The curve Γ is rational normal: of degree 4 , while C^{*} is arain a twisted cubic. The triple ($C, \Gamma, C, *$) is called a (non degenerate) complete twisted cubic. By a degeneration of it we mean a triple ($\overline{\mathbb{C}}, \vec{\Gamma}, \vec{C}^{*}$), where $\overrightarrow{\mathbb{C}}$ (resp. $\bar{\Gamma}$, resp. \bar{C}^{*}) is a flat specialization of C (resp. Γ, resp。 C^{*}). Thus we work with llilbert schemes rather than Chow schenes: let H denote the irreducible component of $H i l b^{3 n+1}\left(\mathbb{R}^{3}\right)$ containinc, the twisted cubjes, $I \mathrm{I}$ the corresponding component of $\mathrm{Hflh}^{3 n+1}\left(\mathbb{T}^{3}\right)$, and G the component of Hilb ${ }^{4 n+1}(G r a s s(1,3))$ contafnine the tangent curves of twisted cubics. The space of complete twisted cubics is the closure $? 6 . H \times \sim \times \check{H}$ of the set of non degenerate complete twister cubics.

In this paper we show how to obtain Schubert's 11 first order decenerations ($[\mathrm{s}], \mathrm{pp} .164 \mathrm{~m} 166$) of complete twisted cubjes, viewed as elenents of $H \times G \times H_{\text {, }}$ "via projections", i.e., by constructing 1 -dinensional families of curves on various kinds of cones. In particular, we describe the ideals of the degenerated curves. A similar study was done by $A l$ guneid [A], who viewed the decenerations as cycles (rather than flat specializations), and who gave equations for the complexes of lines associated to the degenerated cycles by usins the thoory of complete collineations.

An ultimate coal in the study of degenerations of complete twisted cubics, is of course to verify Schubert's results in the enurerative theory of twisted cubics. As long as one, as schubert does, rostricts oneself to only jrmose conditions that jnvolve points, tanrents, and osculating planes (and not secants, chords, osculatinc linos, ...), the space $?$ is a compactification of the space on twisted cubics that contains enough information. In other words, one would like to describe the Chow rine of T in tems of cycles corresponding to ciegenerate complete
twisted cubics, and in terns of cycles representing the various Schubert conditions. One approach rould be to study the Chow ring of I and the blow-up map $m \rightarrow H$. In a joint work with ifichael Schlessinger we prove that the 12-dimensional shene H is in fact srooth, and, ropeover, that Il intersects the other (15 -dinensional) component H^{\prime} of Hilb ${ }^{3 n+1}\left(\mathbb{P}^{3}\right)$ transversally along an 11-dinensional locus (H^{\prime} contains plane cubic curves union a point in \mathbb{T}^{3}, and $H \cap H$ consists of plane cubics with on enbedded point) This result, together with further investigations of the nap $T \rightarrow H$, will be the subject of a forthconing paper.

Acknowledgnents. This work was begun while the author was a visitor of the Department of Ththenatics, Universidade Federal de Penambuco, th March/April 1981. Many thanks are due to Prof. I. Vainsencher for conversations that started the work, and to ONPq for its financial support.

2. Decenerations via projections

Since all twisted cubics are projectively equivalent, we shall fix one, $C \subset \mathbb{P}^{3}=\mathbb{P}_{k}^{3} \quad(k$ alrebraically closed field of characteristic 0), given by the ideal

$$
I=\left(X_{0} X_{2}-X_{1}^{2}, X_{1} X_{2}-X_{2}^{2}, X_{0} X_{3}-X_{1} X_{2}\right) .
$$

Hence C has a parameter fom

$$
x_{0}=u^{3}, X_{7}=u^{2} v, X_{2}=u v^{2}, X_{3}=v^{3}
$$

The tangent curve Γ of \quad, viewed as a curve in T^{5} via the Plimker embeddinf of (frass (1,3), has a parameter form $\left(t=\frac{v}{u}\right)$ given by the 2-minors of

$$
\left(\begin{array}{llll}
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2}
\end{array}\right)
$$

hence by

$$
\begin{aligned}
& Y_{0}=v^{4}, Y_{1}=2 u v^{3}, Y_{2}=u^{2} v^{2} \\
& Y_{3}=3 u^{2} v^{2}, Y_{4}=2 u^{3} v, Y_{5}=u^{4} .
\end{aligned}
$$

The ideal of Γ in \mathbb{P}^{5} is
$J=\left(X_{3}-3 Y_{2}, 4 Y_{0} Y_{2}-Y_{1}^{2}, X_{0} Y_{4}^{-Y_{1}} V_{2}, Y_{1} Y_{4}-4 Y_{2}^{2}, 4 Y_{0} Y_{5} \cdots Y_{1} Y_{4}\right.$,
$\left.Y_{7} Y_{5}-Y_{2} Y_{4}, 4 Y_{2} Y_{5}{ }^{-Y_{1}}\right)_{4}$.
The gual curvo $0^{*} c$ in 3 has a paraneter form given by the 3-minors of

$$
\left(\begin{array}{llll}
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2} \\
0 & 0 & 1 & 3 t
\end{array}\right)
$$

hence by

$$
\stackrel{y}{x}_{0}=v^{3}, \dot{x}_{1}=3 u v^{2}, \dot{x}_{2}=3 u^{2} v, \dot{x}_{3}=u^{3} .
$$

Since Γ is also equal to the tangent curve of C^{*} (under the canonical isomorphism (rass (lines in \mathbb{P}^{3}) \cong Grass(lines in $\left.\underline{p}^{3}\right)$) and C is the dual curve of C^{*} (see e.g. [P],85), any type of degeneration ($\bar{C}, \bar{\Gamma}, \bar{C}^{*}$) gives another type $=$ called the dual deseneration - by readins the triple backwards.

Let $A \subset \mathbb{P}^{3}$ be a linear space, and choose a
complement $B \subset \mathbb{P}^{3}$ of A. By projectine C onto B from the vertex A we obtain a deseneration of C : we construct a family $\left\{\mathrm{C}_{\mathrm{a}}\right\}$ of twisted cubics, contained in the cone of the above projection, over Spec $k[a]-\{0\}$. This family has a unique extension to a flat family over Spec k[a], and the "limit curve" C_{0} is thus a flat specialization of $C=C_{1}$ (see also [II], p.259, for the case $A=$ a point). Note that interchanging the roles of A and B gives a linit curve equal to the curve C_{∞} obtained in the similar way by letting $a \rightarrow \infty$, and C_{∞} has the dual degeneration type of C_{0}. The tyne of degeneration obtained depends of course on the dinension and position of A and B wor.t. C.

To find generators for the ideals of the defenerated curves, for chosen A and B, we start by writing down a paraneter form of $C_{a}, a \neq 0$. (It is often convenient to introduce new coordinates at this point.) Then we determine enough generators for the ideal I. of Ca, so that they specialize ($a=0$) to generators for the ideal I_{0} of C_{0}. (Whenever C_{0} accuires an embedded point; it turns out that a cubic generator is needed in addition to
the (three standard) quadratic ones.)
The parameter form of C_{a} a $\# 0$, sives a parmeter form of Γ_{a}, its tancent curve. As above we find generators for the ideal J_{a} of Γ_{a} that specialize to generators for J_{0}.

Sinilarly, one could work out the ideal of C_{0}^{*}. However, hy a duality arcunent it is clear that ${ }_{0} 0$ will have the degeneration type obtained (ron C) by interm changing the roles of A and B. That is, C_{0}^{*} will be of the sane type as C_{c} or, the degeneration type of C^{*} is equal to the dual deceneration type of C. For cxample, consider the degeneration type $\lambda: A$ is a (general) point, B a (general) plane. When C degenerates along the cone over it, with vertex A, onto the plane B, its osculatins planes derenerate towards the plane B 。 In \mathscr{P}^{3}, this means that C_{a}^{*} degenerates on the cone with vertex the plane $\bar{A}=\ddot{\mathbb{F}}^{3}$ towards the point $\bar{B} \in \ddot{W}^{3}$. This degenoration type we call λ^{\prime}; in general, we shall denote the dual degeneration by a "prime" in this way.

3. Schubert's 11 derenerations

We now give a list of Schubert's 17 tynes of desenerations, in his order and usine his naries for then. $\lambda \quad A=$ general point (not on C, not on any tangent)
$B=$ general plane (not osculating, not containing any tangent)

Take $A=(0,1,0,1), B: X_{3}+x_{1}=0$, and now coordinates:

$$
x_{0}=x_{2}+x_{0}, x_{1}^{3}=x_{3}+x_{1}, x_{2}=x_{2}-x_{0}, x_{3}=x_{3}-x_{1} .
$$

Then

$$
\begin{aligned}
& C_{a} \text { a }{ }^{2} 0, \text { is civen by } \\
& X_{0}^{0}=u v^{2}+u^{3}, x_{1}^{9}=a v^{3}+a u^{2} v, X_{2}^{1}=u v^{2}-u^{3}, X_{3}^{9}=v^{3}-u^{2} v . \\
& I_{a}=\left(a^{2}\left(X_{0}-X_{2}\right)\left(X_{0}^{q}+X_{2}\right)-\left(X_{j}-a X_{j}\right)^{2},\right. \\
& X_{1}^{2}-a^{2} X_{3}^{2}-a^{2}\left(X_{0}^{i}+X_{2}^{0}\right)^{2},-X_{1}^{9} X_{2}^{1}+2 X_{0}^{9} X_{3}^{1}, \\
& \left(X_{0}-x_{2}\right)\left(X_{i}+X_{3}\right)^{\left.2-2^{2}\left(X_{0}+X_{2}\right)^{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
I_{0}= & \left(X_{1}^{2}, X_{1} X_{3}^{p}, X_{1}^{q} X_{2}, X_{3}^{2}\left(X_{0}^{1}-X_{2}\right)-X_{2}^{2}\left(X_{0}+X_{2}^{p}\right)\right) \\
= & \left(\left(X_{3}+X_{1}\right)^{2},\left(X_{3}+X_{1}\right)\left(X_{3}-X_{1}\right),\left(X_{3}+X_{1}\right)\left(X_{2}-X_{0}\right),\right. \\
& \left.X_{0}\left(X_{3}-X_{1}\right)^{2} \cdots X_{2}\left(X_{2}-X_{0}\right)^{2}\right)
\end{aligned}
$$

Hence: C_{0} is a plane nodal cubic with a nonplanar embedded point at the node.
$\lambda^{\prime} \quad A=$ Eeneral plane
$B=$ ceneral roint
Take $A: X_{3}+X_{1}=0, B=(0,7,0,7)$ and coordinates as for λ.

$$
\begin{aligned}
& I_{a}=\left(\left(X_{0}^{p}-X_{2}^{1}\right)\left(X_{0}^{p}+X_{2}^{q}\right)-\left(a_{1}^{q}-X_{3}^{q}\right)^{2}, a^{2} X_{1}^{p}-X_{3}^{1}{ }^{2}-\left(X_{0}^{p}+X_{2}^{q}\right)^{2},\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left(4 X_{0} X_{2}-\left(X_{3}-X_{1}\right)^{2}, X_{2}\left(X_{2}+X_{0}\right),\left(X_{3}-X_{1}\right)\left(X_{2}+X_{0}\right)\right)
\end{aligned}
$$

Hence: C_{0} is the unjon of three skew lines through the point $(0,7,0,7)$.

To find the degenerated tangent curve ro on λ (or of $\left.\lambda^{\prime}\right):$
 ponding to $X_{0}^{8} \cdots, X_{3}^{1}$ on D^{3}) on paraneter forn

$$
\begin{aligned}
& Y_{0}^{Q}=V^{4}-2 u^{2} V^{2}+u^{4}, Y_{1}^{Y}=4 a u v^{3}, Y_{2}^{p}=-a v^{4}+4 a u^{2} v^{2}+a u^{4}, \\
& V_{3}^{5}=v^{4}+4 u^{2} v^{2} \cdots u^{4}, Y_{4}=4 u^{3} v, v_{5}^{4}=a v^{4}+2 a u^{2} v^{2}+a u^{4} .
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left(5 Y_{0}^{1}+4 Y \frac{y}{3}\right)^{2}\left(\left(Y_{0}^{q}-\frac{Y}{3}\right)^{2}+3 Y_{4}^{2}\right)\right) .
\end{aligned}
$$

IIence: Γ_{0} is a blane triouspidal quartic, with embedded points at the cusps.
$k \quad A=$ point on a tangent, not on C
$B=p l a n e$ containing a tangent, not osculating.
Take $A=(0,1,0,0), B: X_{\eta}=0$. Then C a, a 0 , is given by

$$
x_{0}=u^{3}, x_{1}=a u^{2} v, x_{2}=u v^{2}, x_{3}=v^{3},
$$

$$
\begin{aligned}
& I_{a}=\left(a^{2} X_{0} X_{2}-X_{1}^{2}, X_{1} X_{3},-X_{2}^{2}, a X_{0} X_{3}-X_{1} X_{2}, X_{0} X_{3}^{2}-X_{2}^{3}\right), \\
& I_{0}=\left(X_{1}^{2}, X_{1} X_{2}, X_{1} X_{3}, X_{0} X_{3}^{2}-X_{2}^{3}\right) .
\end{aligned}
$$

Hence: C_{0} is a cuspidal cubic, ir the plane $X_{1}=0$, with a nonplanar embedded point at the cusp.
$\kappa^{\prime} \quad A=p l a n e$ containing a tangent, not osculating.
$I_{3}=$ point on targent, not on C.
$I_{a}=\left(X_{0} X^{\left.-a^{2} X_{1}^{2}, a X_{1} X_{3}-X_{2}^{2}, X_{0} X_{3}-a X_{1} X_{2}\right) .}\right.$
$I_{0}=\left(X_{0} X_{2}, X_{2}^{2}, X_{0} X_{3}\right)$.
Hence: C_{0} is the union of the line $x_{2}=x_{3}=0$ with the double line $X_{0}=X_{2}=0$ (doubled on a quadratic cone with vertex $(0,1,0,0))$.

The tangent curve $\Gamma_{\text {a }}{ }^{2} k\left(o r k^{\gamma}\right)$ is given by

$$
\begin{aligned}
& Y_{0}=v^{4}, Y_{1}=2 a u v^{3}, Y_{2}=a u^{2} v^{2}, \\
& Y_{3}=3 u^{2} v^{2}, Y_{4}=2 u^{3} v_{3} Y_{5}=a v^{4} . \\
& J_{0}=\left(Y_{2}, Y_{1}^{2}, Y_{1} Y_{3}, Y_{1} Y_{4}, Y_{7} Y_{5}, Y_{0} Y_{5}, Y_{2} Y_{5}, 27 Y_{0} Y_{4}^{2}-4 Y_{3}^{3}\right) .
\end{aligned}
$$

Hence: Γ_{C} is a cuspidal cubic, in the plane $Y_{1}=Y_{2}=Y_{5}=0$, with a nomplanar enbedded point at the cusp ($7,0,0,0,0,0$) (this point corresponds to the flex tangent of C_{0}), union the line $Y_{0}=Y_{1}=Y_{2}=Y_{3}=0$, intersecting the cubic in its flex $(0,0,0,0,1,0)$ (corresponding to the cusp tangent of C_{0}).
w $\quad A=$ point on C
$\mathrm{B}=$ osculating plane

$$
\begin{aligned}
& \text { Take } A=(0,0,0,1), \quad B: \quad X_{3}=0 \text {. } \\
& c_{a} \text { a }: 0 \text { is given by } \\
& X_{0}=u^{3}, x_{1}=u^{2} v, y_{2}=u v^{2}, x_{3}=a v^{3}, \\
& I_{a}=\left(X_{0} x_{2}-x_{1}^{2}, X_{1} x_{3}-2 x_{2}^{2}, X_{0} X_{3}-a x_{1} x_{2}\right) . \\
& I_{0}=\left(X_{0} X_{2}-X_{1}^{2}, X_{0} X_{3}, X_{1} X_{3}\right) .
\end{aligned}
$$

Hence: C_{0} is the union of a conic, in the plane $X_{3}=0$, with the line $x_{0}=x_{1}=0$.

$$
\begin{array}{ll}
\omega^{\prime} \quad & A=\text { osculating plane } \\
B & =\text { point on } C \\
I_{a}=\left(X_{0} X_{2}-X_{1}^{2}, a X_{1} X_{3}-X_{2}^{2}, a X_{0} X_{3}-X_{1} X_{2}\right) . \\
I_{0} & =\left(X_{0} X_{2}-X_{1}^{2}, X_{1} X_{2}, X_{2}\right) .
\end{array}
$$

Hence: ${ }_{C}{ }_{0}$ is the triple line $Y_{Y_{1}}=X_{2}=0$ (tripled on a quadratic cone with verter $(0,0,0,1))$.

The tancent curve Γ_{a} of ω (or ω^{\prime}) is civen by

$$
\begin{aligned}
& Y_{0}=a v^{4}, Y_{7}=2 a u v^{3}, Y_{2}=u^{2} v^{2}, Y_{3}=3 a u^{2} v^{2}, \\
& Y_{4}=2 u^{3} v, Y_{5}=u^{4} . \\
& J_{0}=\left(Y_{3}, Y_{1}^{2}, Y_{1} Y_{4}, Y_{7} Y_{5}, Y_{0} Y_{5}, Y_{0} Y_{4}-Y_{1} Y_{2}, 4 Y_{2} Y_{5}-Y_{4}\right) .
\end{aligned}
$$

Hence: Γ_{0} is the union of a conic, in the plare $Y_{0}=Y_{1}=Y_{3}=0$, with the dounle line $y_{1}=Y_{3}=Y_{4}=Y_{5}=0$ 。
θ To obtain this deceneration, we choose Λ to be a "linemplane" (L, U) , sotofor some $\mathrm{x} \in \mathrm{C}, \mathrm{x} \in \mathrm{I}, \mathrm{C} \mathrm{U}$, $\operatorname{tg}_{\mathrm{x}} \subset \mathrm{U}, \mathrm{L} \neq \mathrm{tr}_{\mathrm{x}}$, U not osculating -m and B a "point-line" (P, L^{\prime}), s.t. for sone $x \in C, L^{\prime}<\operatorname{osc}_{x}$, $\{P\}=L^{*}: t_{G_{x}}, x \neq P, P \neq C$, Then we form a 2odinensional family $\left\{C_{a, b}\right\}$, where the parameter a corresponds to projecting C from U to P, and b to projecting from I to $I^{\text {s }}$. Taking $a=b$ we obtain a 1 -dinensionsl pamily $\{\mathrm{C}, \mathrm{a}\}$.
Fake $L: X_{1} N_{3}=X_{2}=0, U: X_{2}=0$ and $L^{\prime}: X_{0}=X_{1}+X_{3}=0$,
$P=(0,0,1,0)$. In new coorainates $X_{0}, X_{1}^{p}=X_{1}{ }^{-X_{3}} 3^{,}$
$x_{2}, x_{3}=X_{1}+x_{3}, C_{a, b}$ is riven by $X_{0}=a b u^{3}$,
$x_{1}^{4}=a u^{2} v-a v^{3}, x_{2}=u v^{2}, x_{3}^{4}=a b u^{2} v+a b v^{3}$

$$
\begin{aligned}
& I_{a, b}=\left(4 a b X_{0} X_{2}-\left(X_{3}^{j}+b X_{j}^{3}\right)^{2},\left(X_{3}^{1}+b X_{j}\right)\left(X_{3}^{1}-b X_{j}\right)-4 a^{2} b^{2} X_{2}^{2},\right.
\end{aligned}
$$

By letting $a=h$, rewritinf the cencrators, and letting $a=0$, we obtain $I_{0}=\left(X_{0}\left(X_{1}+X_{3}\right),\left(X_{1}-X_{3}\right)\left(X_{1}+X_{3}\right),\left(X_{1}+X_{3}\right)^{2}, X_{0}\left(\left(X_{1}-X_{3}\right)^{2}-X_{0} X_{2}\right)\right)$.

Hence: C_{0} is the union of a conic, in the plane $X_{1}+X_{3}=0$, with its tangent line at $(0,0,1,0)$, and with that point as a nonplanar enbedded point.
$\theta^{\prime} \quad A=$ "point-ine"
$B=$ line-plane".
$I_{a, b}=\left(4 b x_{0} x_{2}-a\left(b x_{3}+x_{j}^{j}\right)^{2}, a^{2}\left(b x_{3}+x_{p}\right)\left(b x_{3}-x_{j}\right)\right.$ $\left.-4 X_{2}^{2}, a b X_{0}\left(b X_{3}-x_{p}\right)-\left(b X_{3}+X_{j}\right) X_{2}\right)$.

Taking $a=b$ and $a=0$ gives

$$
I_{0}=\left(4 x_{0} x_{2}-\left(X_{1}-X_{3}\right)^{2},\left(X_{1}-x_{3}\right) X_{2}, X_{2}^{2}\right)
$$

Hence: C_{0} is the line $X_{1} \cdots X_{3}=X_{2}=0$ tripled on a quadratic cone with vertex $(1,0,1,0)$.
The tangent curve Γ_{a} of $\theta\left(o r \theta^{\prime}\right)(f o r a=b$) is given by

$$
\begin{aligned}
& Y_{0}^{\prime}=a v^{4}-a u^{2} v^{2}, Y_{1}^{\prime}=4 a^{2} u v^{3}, Y_{2}^{1}=v^{4}+u^{2} v^{2}, \\
& Y_{3}^{4}=3 a^{3} u^{2} v^{2}+a^{3} u^{4}, Y_{4}=2 a u^{3} v, Y_{5}^{9}=-3 a^{2} u^{2} v^{2}+a^{2} u^{4} .
\end{aligned}
$$

Hence: Γ_{0} is the union of a conic; in the plane $Y_{0}^{i}=Y_{j}=Y_{3}^{1}=0$, with the two lines $Y_{i}=Y_{3}^{1}=Y_{5}=$ $=Y_{0}^{2}+y_{4}^{2}=0$, with the comon point of interscetion, $(0,0,1,0,0,0)$, as an embedded point (this point corresponds to the line - tengent to the conic - of C_{0}).
$\delta \quad A=$ a line, not contained in any osculatins plane, and intersectine C in exactly one point.

```
\Gamma= a line, not intersecting 0, contained in
```

 exactly one osculating plane.
 Take $A: X_{0}-X_{2}=X_{1}=0, \operatorname{D}: X_{0}+X_{2}=X_{3}=0$ and chance coordinates: $X_{0}=X_{0}{ }^{-X_{2}}, X_{1}, X_{2}=X_{0}+X_{2}, X_{3}$, Then C_{a} is given by

$$
\begin{aligned}
X_{0}^{\prime}= & u^{3}-u v^{2}, X_{1}=u^{2} v, X_{2}^{1}=a u^{3}+a u v^{2}, X_{3}=a v^{3} \\
I_{a}= & \left(X_{2}^{2}-a a^{2} X_{0}^{2}-4 a^{2} X_{1}^{2}, 4 a X_{1}, X_{3}-\left(X_{2}^{\prime}-a X_{0}^{q}\right)^{2},\right. \\
& \left.\left(X_{2}^{1}+a X_{0}^{\prime}\right) X_{3}-a X_{1}\left(X_{2}^{\prime}-a X_{0}^{\prime}\right)\right) .
\end{aligned}
$$

By changing the generators, we see

$$
I_{0}=\left(\left(X_{0}+X_{2}\right)^{2},\left(X_{0}+X_{2}\right) X_{3}, X_{0}^{2}-X_{2}^{2}-2 X_{1} X_{3}\right)
$$

Honce: C_{0} is the union of the line $X_{0}+X_{2}={ }_{X_{2}}^{Y}=0$ with the double line $X_{0}+X_{2}=X_{3}=0$, and is contained in a smooth quadric.

$$
\begin{aligned}
\delta^{2} \quad I_{a}= & \left(a^{2} X_{2}^{1}-X_{0}^{r}-4 X_{1}^{2}, 4 a X_{1} X_{3}-\left(a X_{2}^{p}-X_{0}^{p}\right)^{2},\right. \\
& \left.a\left(a X_{2}+X_{0}^{r}\right) X_{3}-X_{1}\left(a X_{2}-X_{0}^{p}\right)\right) \\
I_{0}= & \left(\left(X_{0}-X_{2}\right)^{2},\left(X_{0}-X_{2}\right) X_{1}, X_{1}^{2}\right)=\left(X_{0}-X_{2}, X_{1}\right)^{2}
\end{aligned}
$$

Hence: C_{0} is the triple line $X_{0}-Y_{2}=X_{1}=0$ (tripled by talinfs j ts and order neighoourhood in \mathbb{P}^{3})。

The tangent curve Γ_{a} ror δ (or $\delta^{\prime \prime}$) is given by

$$
\begin{aligned}
Y_{0}^{i}= & a^{2} v^{4}+3 a^{2} u^{2} v^{2}, Y_{i}^{\prime}=2 a u v^{3}, Y_{2}^{\prime}=a u^{2} v^{2}-a u^{4}, \\
Y_{3}^{i}= & -a v^{4}+3 a u^{2} v^{2}, Y_{4}=4 a u^{3} v, Y_{5}^{\prime}=u^{2} v^{2}+u^{4}, \\
J_{0}= & \left(Y_{0}^{1}, Y_{i}\left(2 Y_{j}^{i}+Y_{4}^{i}\right), Y_{2}^{\prime}\left(2 Y_{i}+Y_{4}^{\prime}\right), Y_{4}\left(2 Y_{1}^{i}+Y_{4}^{i}\right),\right. \\
& \left.Y_{2}^{\prime}+Y_{1}^{2}, Y_{4}^{\prime}\left(Y_{3}^{i}-2 Y_{2}^{\prime}\right), Y_{2}^{\prime}\left(Y_{3}^{i}-2 Y_{2}^{i}\right)\right)
\end{aligned}
$$

Hence: I_{0} is the union of the two lines

$$
\begin{aligned}
& Y_{0}^{1}=2 Y_{1}^{1}+Y_{4}^{1}=Y_{3}^{1}-2 Y_{2}^{1}=Y_{1}^{2}+Y_{2}^{\prime} \frac{2}{2}=0 \text {, with the double } \\
& \text { line } Y_{0}^{\prime}=Y_{1}^{\prime}=Y_{2}^{i}=Y_{4}=0 .
\end{aligned}
$$

$\eta \quad A=$ general line, f.e. $A \cap C=\varnothing$, A not contained in an osculating plane $B=$ general line (same conditions as for A, since these are self-mual!)

Take $A: X_{0}-X_{3}=X_{1}+x_{2}=0, B: \quad X_{0}+X_{3}=X_{1}-Y_{2}=0$, and change coordinates:
$x_{0}=x_{0}-x_{3}, x_{1}=x_{1}-x_{2}, x_{2}=x_{1}+x_{2}, x_{3}=x_{0}+x_{3}$. Then
C_{a} is given by
$x_{0}^{r}=u^{3}-v^{3}, x_{p}^{2}=a u^{2} v \cdots a v^{2}, x_{2}=u^{2} v+u v^{2}$,
$X_{3}=a u^{3}+a v^{3}$.

$$
\begin{aligned}
& \left.-\left(a X_{2}^{q}-X_{1}^{p}\right)^{2}, X_{3}^{q}-a^{2} X_{0}^{2}-a^{2} X_{2}^{q}+X_{1}^{2}\right) \\
& I_{0}=\left(X_{1}^{2}, X_{1} X_{3}^{1}, X_{3}^{2}\right)=\left(X_{1}-X_{2}, Y_{0}^{+X_{3}}\right)^{2}
\end{aligned}
$$

Hence: O_{0} is the tripled line $X_{1} X_{2}=X_{0}+X_{3}=0$ (tripled as in δ^{\prime}).
η^{\prime} is of the same type as η, since the conditions on A, B are self dual.

The tangent curve Γ_{a} of η is riven by

$$
\begin{aligned}
& Y_{0}^{1}=a v^{4}+2 a u v^{3}-2 a u^{3} v-a u^{4} \\
& Y_{i}^{p}=-a^{2} v^{4}+2 a^{2} u v^{3}+2 a^{2} u^{3} v-a^{2} u^{4} \\
& V_{2}=2 a u^{2} v^{2} \\
& Y_{3}=6 a u^{2} v^{2} \\
& V_{4}=v^{4}+2 u v^{3}+2 u^{3} v+u^{4} \\
& Y_{5}^{8}=-a v^{4}+2 \operatorname{auv}^{3}-2 a u^{3} v+a u^{4} .
\end{aligned}
$$

$$
\begin{aligned}
& \left.4 Y Y_{1}^{9}-6 Y_{0}^{8} Y_{5}^{9}+3 Y_{0}^{2}-Y_{5}^{2}\right)
\end{aligned}
$$

Hence: Γ_{0} is the union of four lines in the three.space $Y_{3}-3 Y_{2}=Y_{1}=0$, with an embedded point (stickins out of that space) at their comon point of intersection.

Benark: By choosinf other A 's and $E ' s$ we can obtain further types of defenerations. For example, consider the degeneration obtained by taking $A=a$ chord of $C, B=a n$ axis of C (i.e, the intersection of two osculating planes). When G_{0} is the union of three skew lines, neeting in 2 points, wereas its dual is a triple line (and order nohd. of a line in \mathbb{F}^{3}). The tancent curve Γ_{0} is the union of two double lines.

On the next pare, we rive a figure showing Schubert's 11 degenerate complete twisterl cubics. Each trinle should also be read backwards!

$\lambda \bigcirc$
Q

δ^{\prime}

Let $T_{\lambda}, T_{K}, \ldots$ denote the closure of the set of points in T corresponding to degenerations of type λ, k, \ldots, and let $I_{\lambda}, H_{k}, \ldots$ denote the similarly defined sets in H, That the degenerations λ, k, \ldots are of first order, neans that $\mathbb{T}_{\lambda}, \mathbb{T}_{k}, \ldots$ are of codinension 1 in T : this is easily seen to be true by counting the paraneters of each of the corresponding fircures. Only H_{λ} and H_{w} are of codjrension 1 in H, so the (birational) projection map $\pi: \square \rightarrow H$ blows up the other sets ${ }^{H}{ }_{k}, H_{\lambda}, \ldots$. For example, H_{k} has codimension 2 (there are ∞^{10} plane cuspidal cubics in P^{3}), and for a fiven C $\quad H_{K}, \pi^{-1}(\mathbb{C})=$

Since "a line through the flex" corrosponds to "a plane containing, the cusp tangent of $\bar{C} \%$, we see that din $\pi^{-1}(\mathbb{C})=1$ 。

The set $H_{n}\left(=H_{\delta}\right.$) has the largest codinension, namely 8 ; all defenerations without an embedded point specialize to these. In this case, $\pi^{-1}(\mathrm{C})$ has dimension 7: the tangent curve is detemined by choosing 4 pointplanes throush the line ${ }^{\text {C }}$ red, which satisfy one relation between the crossmatios (of the points and planes) (see e.E. [A], p.206, or recall that the four concurrent lines $\ddot{F}_{\text {red }}$ span only a p^{3}).

Let il denote the normal sheaf of $\mathbb{C} \in H_{\eta}$ in p^{3}. One can prove e.g. by taking a presentation of the ideal of \bar{C}, that $\operatorname{din} H^{0}(N, \bar{C})=12$. It follows that H is snooth at \bar{C}, since dirn $\mathrm{I}=12$, and hence all points of H-f ${ }_{\lambda}$ (i.e., those corrosponding to Cohen-macaulay curvos, i.e., curves without an embedied point) are smooth on H .

How consider it λ. Any point in it can be specialized to one correspondins to a plane triple line with a nonplanar erbedded point, e.g. Given by the ideal $\left(X_{1} X_{3}, X_{2} x_{3}, x_{3}^{2}, x_{3}^{3}\right)$. In the work with 1 . Schlessinger, cited in the introduction, we nrove that such a point is smooth on II, and hence that I is smooth.

Remark: The results din $H^{0}(\mathrm{H}, \mathrm{C})=12$ if $\mathbb{C} \in H_{n}$, and din $H^{0}(N, C)=16$ if \bar{C} is a plane triple line with enbedded point, have also been obtained by Joe Harris; he also gives a list of possible degeneration types of a curve $C \in H$ (private commication).

As a final coment, let us mention an advantage of working with Hilbert schenes rather than Chow schenes: the eristence of universal families of curves, which allows the following way of expressing Schubert's various conditions as cycles on m. Nanely, let

denote the universal fanilies (pulled back to from H, (f, II respectively). The condition, denoted v by Schubert, for a curve C to intersect a given line 1, is then represented by the cycle ${ }_{v}=p_{*}(C \cap I \times T)$; the condition, Schubert's ρ, that the curve touches a given plane U, by $T_{\rho}=a_{*}\left(v^{\prime} n_{1,1} \times T\right)$, where $\sigma_{1,1}$ is the 2-plane in Grass $(7,3)$ of lines in U, and so ono We plan to return to the question of determining the relations between these cycles and the cycles $T_{\lambda}, T, \cdots=$ and to a study of the Choy ring of P .

Bibliogranhy

[A] A.R. Alcuneid, "Analytical ddegeneration of complete tristed cubics", Proc. Cambridge Phil.soc. 52(1956), 202-208.
[H] R. Hartshorne, Alrebraic Ceonetry. New Zork-lleidelberg - Eerlin, Sprinser-Verlag T977.
[P] R. Piene, Wherical characters of a curve in projective n-space". In Real and complex Singularities, Oslo 1976. Ed. P. Iolmo Groningen: Stjthoff and loordhoff 1978 ; pp. 475-495.
[s] H. Schubert, Falkul der abzählenden Ceometrie. B.r. Toubner, Leipzig 7879. (New edition: Springerm Verlag, 197\%.)

