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1. Introduction,

V N
. \Y 1 . - - - T en
The dual veriety X cP" of a variety XL.Em' is the closure

of the set of hyperplanes containing the tangent space to X at

v
some swmooth point. We define the m-dual variety g;c:};l of X
as the closure of the set of hyperplanes containing an m~-th
osculating space to X, in particular, XX o Xv. More generally,
if G = Grassa+q(V) denotes the Grassmann variety of a-spaces
in IP(V) = Eﬁl, we can define m-th osculating spaces of a variety
X< G, using the sheaves of principal parts, and hence its m-dual
variety X;chrassa+q(Vv) as the closure of the set of (n-a-1)-
spaces containing an m~th o:sculating space to X. This is of

course closely related to Pohl's associated varietie:s ([Pohlj),

We show, in Prop. 1, a weak biduality result for m-duals:

&3]

. V.V . - : s .
one always ha Xcz(Xm)m, and eguality hold: wider a dimen=lon

hypothesis, which is alway saticfied in the cla.zical case.

It is natural to ask for the degree of X; in terms of
characters of X. 8Since we sre working with "mcdified" bundles
of principal parts, this can be done - at least in principlel - as
in the classical case (see c.g. [(P2], (U],

Here we only deal explicitly with the case of a scroll
(i.e., a ruled, non-~developuble surface) Xc®(V), or, equi-
valently, & curve GCZGrasse(V). In general, a scroll has 2nd

. e as . . v
osculating spaces of dimension 4, We give a formula for degjxgu

* Partially supported by the Norwegian Ressarch Council for Science
and the Humanities.



In the case W(V) = E;S, we call X© = Xg the strict dual of X.

If aimX” = 2, then X is also a scroll and X'% = X holds,
Moreover, the dual variety X' (the normal bundle of X) is equal
to the osculating developable of X*,.and the dual plane of a
tangent plane to X 1is the tangent plane to X  at the corre-
sponding point. Hence we get, for scrolls in 1?5, a complete
parallell to the duality existing between a curve G<:]Pz, its strict
dual curve G*C£é5, and their developables (see e.g. (P1], § 53
(P3], Remark 1 on p., 111).

Scrolls are examples of surfaces with “too sﬁall“ osculating
spaces of higher order, hence are “of.type ¥ in the terminology
of Corrado Begre., I am grateful to Gianni Sacchiero for bringing
these - in particular the scrolls and their strict duals - to

my attention.

2, Higher order dual varieties.

Fix the following notations:
V is an {(n+1)-dimensional vector space over an algebraically
closed field k of characteristic O, G is the Grassmann variety
Grassa+q(V) consisting of (a+1)-queotients of V., (identified with
a~dimensional linear subspaces of P(V)), and V,=Q 1is the uni-
versal (a+1)-quotient on G.

For each integer m there is a natural homomorphism

-1

Cf.m‘ VG = HO(.G’(“Q:)GqPLé(Q) $

where P%(Q) denotes the bundle of principal parts of order mnm

of § (see (P1], § 6).
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Let XcG be a subvariety, of dimension r, and set E = Qfy.
The restriction of am, composed with the natural mep

PE(Q){X~*P§(E), gives a homomorphism
m ”
a e VX°'P§QE),

. . . , . . 4 s 10
A point x€X 4{s called p-regular if =x is smooth and if a (x)
is surjective; if these points are dense in X, we say that X is

generically m-regular. At each ‘mmregular point x€X there is

8 well-defined m-th gsculating space, of dimension (a+4)(r;m)«-1,
defined by a™(x)., Hence a generically m-regular X has an m-th

associated variety X(m>C:Grass . (V), defined as the closure
(a1 (F3%)

of the set of the m-th osculating spaces (see [Pohl], § IV). We
(V)

to be the closure of the set of (n-a-1)-spaces containing an m-th

o : Vv v e
define the nm-dual variety Xﬁc:G = Grassa+1(v ) = Gr&oon~a

osculating space,
ven if X is nowhere m-regular, we can define m-th oscu-
lating spaces: let UcX be an open dense smooth subscheme such
that KU = Ker(am)\U is a sub-bundle of VU’ or, egquivelently,
£ n 3 9 m
such that Im(a™) is a bundle. If Im(a ) = s+ 1, then each
point x€U has an m~-th osculating space, of dimension g,.

defined by am(x)0 The mwm-dual variety X;CZGV of X dis the

closure of the set of (n-a-1)-spaces containing the m-th oscu-
lating spaces, Let ﬁC:G><Gv be the closure of
+ . . V\ ~ \/ wr V ':V - ¥
Grassa+q(KU,C:Graosa+4(VU) UXG s then im = prE(X)¢ Tet
(X;)NC:G;<GV denote the corresponding variety constructed

oV ViV AP
for X, so that (gh)m o prq((Xﬁ) Yo

The following proposition gives & weak'biduality for m-dual
varieties, generalizing the classical biduality for projective

varieties (see [K]).
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Proposition 1: If X;/l;éﬁ, then EC(X;;)N and XcC (XI\;);:, In

. : LA ¢ o~ R . ax_ B . AN

particular, if X = '&XZ) (icee, if dim ¥ = dlm(Xm) ), then

‘ V.V .
X = (}{m)m holdb.
¥ . . [ ~ s/ Vo~
Remark: In the classical case (a=0, m=1), dimX = din(X') = n-1
always. An example where the equality does not hold: X<« ]Pb a
generically 2-regular surface contained in & hyperplene Ha

v
Then X = (1} € ®° ana €)Y = He

m: ‘It suffices to show the inclusion %c{x}‘;)\” on an open
dense o;{“ . Let D3 E—QI. and qz¢ i*x; denote the projections.
Consider a point (x,¥y) €¥caxG’ such that xeU, ¥ is in the
cofresponding VCX;I, and q is smooth at (x,y). Let F denote
the restriction of the universal (a+1)-quotient of VVV to X;,
and consider the following diagram (restricted to p“qg):

0 == p*Ky —» Vo —> p FR(E)
X

Ny
e " . L p E
R V. > PR(p*E) -7
X X

1
P FE)Y > T,
vV b4

“m

To show that (x,y)€ (X))’ emounts to showing that the composi-

tion q*PmV(F)**p*E is gzero (locally at (x,y)). The map
Xm _
) . # . L
Q*Fvﬂp*PX{E), and hence also q*F\-"’P‘[fj(p E), is zeroy since the
X :

Lo * Y ) . . . .
compositicn q*FV-'VN-*p E is zero, we obtain, by "differentiating"
: 4

(i.e. applying the differential operators of order < m, corre-

sponding to PE‘,, to this composition), that P{é(q*ﬁ‘)v“p*E is
: % .

rero, Since q*PmV(F)'*P‘i(q_*F) is locally split at (x,y), we
Z X ,
o
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obtain that q*PmV(F)**p*E is zero at (x,y). (This is the same
X

_ “m X . . -
as the argument used for curves in ZEH, as in [(P1], § 5.)

Suppose X is generically mnm-regular, Then

(ol d

;= n+1--(a+ﬁ)(r$m). If rkX, >a+1, then X is defined and

rk K y

t

‘has dimension Inf(a+1)(n~aw(a+1)(r;m)), Set r’ = dhnxg . If

x; is also generically m-regular, then biduality helds if and

v
only if r-(a+1)2(rgm) = rv~.(a+1)2(r ;m).

This is possible only if a4 = 0 and m = 1 (the classical case),
or if r =1'. In fact, when rkKy>a+t, Xg is ruled, and hence
shguld not be generically m-regular. Note that the surjections

Pi(E)-*P§fﬂ(E) give a sequence of inclusions

Y v Vo %
X =X’}3X2”)°°°Dlm Diaoy
and that one could, instead
of X, construct an iq ” in the product of all tne Grass-

,Lgnuq

mannians.

As in the case of classical duality, there is an invarience
of m-duals under sections and projections: Buppose WcCV is a
subspace, dimW > a+1, For XcG = Grassa+1(V), consider the
projection

X —-—-> Grass, ,(W) corresponding to W, ~E.

If the center of projection IP(V/W) 1is reasonable (i.e., if most
of the. a-spaces corresponding to peints of X are projected to
a~spaces in P(W)), this map is rationsl, and we denote by ¥ the
closure of its image. From the functorial properties of the

sheaves of principal parts, we get:



-6 -

Proposition 2: The m-~dual of a projection is the corresponding

section of the m-dual, i.e.,
v Vo e e v -
Xm = Xm N (J‘I‘aboa_“,! (W ) holdse.

(The proof is similar to the one in the classical (a=0)
case: See [P2)], p.269, and observe that the genericity assump~

tion made there is unnecessary. )

a+1'v) via the Plucke

The degree of XcG is its degree in P(A
embedding. Thus we have degX = c,(E)"N[X], and deg X,;i =
cq(F)rvfiﬂXg]; Whenever we can express F (or q F) in terms
of known bundles, we get an expression fof degyzg, When X is
generically m~regular, F is determined by P%(E) and the
singularities of am; hence we get, at least in principle, an
expression for degi%; in terms of the degree of X and its Chern
classes (or rather, the Chern classes of a desingularization of X)
and the various singularities of X and a®. The very simplest
case occurs when X 1is smooth and m-regular, n-a = (a+1)(r;m)
and r' = r. Then degﬁ&l = c,](q*F)r = cq(Kv)r - cq(Pﬁ(E))r.

(For formulas in the classical case, see [P2], [U]; see also [Pohl]
for associated varieties). |

In the case of curves, formulas exist: Let XcP(V) be a
curve spanning (V). Then X is generically mn-regular, for

r<n, and we have associated curves X(m)C:Grassm+q(V) and

corresponding osculating developables YmCZETV) » We also have

n-dual varieties I%;CﬁE(VV)‘~ these are nothing but the osculating
' x

developables Y. of the strict dual curve X = 0= ¢ peyYy,

Nn-m-—1
and they are also.equal to the dual of the osculating developables |

of X, More precisely, for each m we have

A

N,
i1 n-n-1 = (Yﬁuﬂ) .
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The first equality follows from the duality of certain exact
sequences on X and X (see (P1], 9.2), the second holds
because the taugent spaces to Ym-’l are the m-th osculating
spaces to X, Thus we have formulas

| m-"1

deg X.]; = (n+1)(d +m(g-1)) - (m-—i)ki R
1=0 '

where d = degX, g = (geometric) genus of X, and k; 1is the

i~-th stationary index of X ({P1], 3.2).

59 Dual varieties of & scroll.

Let XcG be as in the preceding section. If m 1is such
that X~-X is birational, i.e., if there is a uniquely determined
n-th osculating (n-a-1)-space to X at x for most points x€X,

we shall call X = g\; the strict dual variety of X,

For example, if ccP® is a curve Spanning P , Lhen

¢" =0V .. It Xc®P
_ S

then X' = X\éc}P

iz a surface which is generically 2-regular,
is the strict dual,

An exsmple of surface: that are nowhere 2-regular (C. Segre
called them "of type ¢"), are the ruled surfaces: scrolls,
developables, and cones., The theory of duals of developables and
cones reduces to that of curves in projective spacej; let us now
look at the scrolls, By definition, a scroll XcP(V) is a ruled
surface such that the tangent planes to X along a (genersl)
generator are non-constant. Suppose lcX 'is a generator,
x€l. The 2nd osculating space to X at x, defined by
agxivx—’Pi(ﬂ),‘is the space Spanned by the tangent planes to X

along 1 (this gives a IPB) and the 2nd osculating épace to
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a curve on X at x. If X is not contained in a ]Pa, one

expect this space to be of dimension 43 if X is not contained

in a 194, one expects these 4-spaces to vary along 1, so that

X* has dimension 2., We shall now generalize to scrolls in ]P5

the duality results for curves in IPE([P’I], (P3)): Let CC]PBr» ]P(\‘
be a (non planar) curve, and let G*c:ég; denote its strict dual.
The dual CVC;P5 is the normal bundle tb C and the tangent
developable of C", and similarly for (¢*)Y. Moreover, the dusl
line of a tangent line to C is the tangent line to ¢*  at the
corresponding point - in other words, the associsated curves

O(q)c:Grassg(V) and C*(q)c:Grassg(Vv) = Grassz(V) are equal,

Proposition 3: Tet XCP(V) = P° be a scroll which admits a

strict dual X = X;, and assume dimX = 2, Then X is a
scroll., The dual ch:]P(VV), the normal bundle of X, is equal
to the tangent developable of X*, and vice versa, Moreover,
the dual plane of a tangent plane to X is the tangent plane

to X* at the corresponding point - in other words, the associ-
ated varieties ch)C:GraSSB(V) and X*(q)c:Grassa(Vv) are

equal,

be a modification of X and of X" such that

1

Proof: Let X
Im(aq) and Im(aZ) aduit quotient bundles P, and Pz of

rank 3%, Then K = ker(VXr**Pq) and K = ker(Vg:"Pﬁ) are

bundles of rank %, and the sequences O'*K‘*VX"'Pq“*O and

v
p:4

Prop. 1, one shows that (generically on X') +the composition

of (az Vi P;*(ﬂ)v~¢vx* with aq; VX"*P;(ﬂ) is gero: since a:

O*‘Pﬁ*-v v~ K ~0 are dual to each other:; as in the proof of

and a’ both have rank 3, the result follows. In particular

-



-9 -

the existence of the exact sequence

O => (Pf})v ., VX' —> Pq - ()

shows that the tangent planes to X" -are the dual planes of the
¥
tangent planes to Xj; hence if X is a scroll, so is X . The

other stetements also follow directly from that exact sequence.

There is still another parallell to the curve case, namely
v
to the fact that the strict dual curve "B’ is a cuspidal
VZ
edge of the dual variety CVCJP’ of a curve CCZJL‘?3 .

%

o
Proposition 4: If Xc®’ is a scroll, then its strict dual X
Vv
. . . Y
is a "cuspidal edge" of the dual variety X C]P5 °
Proof: Assume X is smooth, and X< IP3 a generic projection.

Scrolls with ordinary singularities in 1??3 are numerically self-
V
=2V e P Cog
dual, so X c P’ has a finite number of pinch points, correspond-

ing to the pinch points of X, If LCIP5 is the centre of pro-
jection, a pinch point of X occurs when L  interzects a tangent,
i.e., when I intersects the IP5 spanned by the t:gent planes

z

& P7 which

5

along a generator. But then T and this P5 Sp

<

v v
. - - * - - .
18 necessarily a point in X  and also in IE’5 = L CJPB. Since

N K V

/- xnp , it follows that the "ramified singularities" of xV
. At

are precisely the points of X . If X is not assumed smooth,
there might be other "cuspidal edges", as in the case of curves,

where inflectionary tangents are cuspidal edges on the developable.
J T 123 J¢



In order te compute the degree of ¥ , it is convenient to
- - /} K /1'
consider ¥ as a curve CCG = Grass?(V)a Consider =a zvp'*PC(E>,
- . 4 v B

where E 1is the restriction of the universal 2-quotient of V
on G. The subspaces of V defined by a! can be interpreted
by choosing, lecally, a trivialigzatiocn of E, corresponding to
two curve sections of X, Hence a1 defines, at a geneprator
1e€C of X, the space spamned by 1 and the tangent to the
curves abt the points of inbtersection with 13 hence it is equal
to the space spenned by the tangent planes to X along 1.
Since ¥ is a scroll, this space has dimension %, so C  1is
generically -~regular. It follows that ¢* = QXCZGrass4(V) =
Grassg(vv) is the strict dual of € (and C*=u0(4>, the 1st
associated curve of C), If X* is a scroll, then G is
generically “-regular, and C** = ¢ (by Prop.1). Moreover,
the 2nd osculabing spaces to X along a generator 1 are just
the 4-spaces combaining the 3-space spanned by ths tangent

&

- e -y v + * 2 =
nplanes, In other words, C is equal to X considered as a

urve in Grass.{V ). Thus we have proved:

Proposition §: If XCﬁP(V)zaZ@s is a scroll such that X is

& scroll, then X = X holds.

The next propesition gives a formula for the dsgree of X
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, 5
Proposition 6: Let X<P(V) % P’ be a scroll of degree d and

] * Y .
genus g, and suppose X <cP(V') is a scroll. Then
* > 3 )
deg X = 2(d42g-2) «k,

where Kk 13 the stationary index of GC:GraSS2(V>o

Remark: Let v ¢' = ¢ denote the normalization, then, by defini-
tion, k = lg(CokarVCcﬂ Pgi(V*E>)@ By trivializing E one sees
that an ordinary cusp of C counts twice in k ( which checks
with [(Edge] § %49). Or, k is the number (counted properly) of

singular generators of X ([Pon!], p.208).

Corollary: The stationary index k* of ¢* is given by
k* = 3(d + 2(2g-2)) - 2k.

Proof: On C', PS(E) admits a 4-quotient, namely
Py = Im(VCu~'Pés(V*E))ﬁ Hence: deg X5 = degCﬁ = C4(P4) =
Cq(ng(v*E))-K = 2{d+2y-2) ~ k., Tne corollary foilow. from the

o s ) N . . . , o .
duality X" = X of Prop. =, < = degXs= 204" +22-2) ~ k*.

Note that if X has no vingular generators (k=0), then
~ * :
k* = 3(d+2(2g-2)), and hence X  has no singular generators
if and only if d = a* = 4, » = 0. (Such scrolls are linearly
i

normal in IP7.)

We shall now look at some other approaches to the degree

L3
of X .

Because of the following (classical) proposition, the degree

£
of X is equal to deg(X*){ hence to the degree of the tangeut

develeopable of X (Prop.3).
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Proposition 7: Let XcP(V)% P" be a scroll, X

dual. Thens:
ceg x¥ = deg¥ »

Proof: The classical proof goes like this: project X. to a
scroll XcP(W) = P° with d = deg¥X = deg X. Then TV =x'n PN,
50 deg?i'v = deg X’ holds. If LCIP(W)' is a general line,
aeg,?;'v = #{HDL,Htg, to ¥} = #{H>L U1|1 generator of X} =#LNX
= deg X, Note that ¥ and %Y are in fact equal considered as
curves in Grassg(w) = Grass;z(wv),

For a "modern" proof, one reduces to the case tnat X< (V)

is sm.o_oth, say X = P(E)-C, Then
deg XV = ¢y (PR(1)) = (1)) + e (g1 (0g(M),
2 X 2N KN 1K 1™ X
which, by standard exact sequences, reduces to
deg X" = 2, (B)e, (04(1)) - 0,(0g(1)7 = 2a-4d = d,
From the exact sequence given in the proof of Prop. %

we obtain (using [P2], § 2):

*
.

. *
deg X" = deg(X)Y = o (B)) = 0q (87 - e ()

2 v 2
= c (P ~degX = ¢ (Py)7 ~d.

Suppose X = P(E)~ C 1is smooth. Then ¥« ¥ and P, = ch(’!},

S0 we getn
deg X = c,l(P}'{(’l))z—d = 34 4+ 2(2g-2) ~ 3 = 2(é+2g-2).

In the general case, X 'is the image of a smooth Y = P(E)- C,
end X' is a blow-up of Y, Then c (Py) = c,‘(P;C'("l))-' (R,

' -
where R 1is the ramification divisor of X -~ X, and we gbtain
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the earlier formula, bul with k expressed "in terms of" R.

Two other approaches have been communicated to me by

I. Vainsencher and ¥, Ronga, respectively.

1. (Vainsencher)

Let XcP(V)T P° be a gmooth scroll,
Y = P(N(-1)) = {(x,H)|Htg, to X at x}cPV) xP(V"),

and set Z = {(x,H) €Y|HNX = 1,UD with D singular at x} .

Then ¥ = pry(4). One shows that % is the zeros of a
section of a certain rank 2 bundle on Y3 since the class
of Y in XX}P(VV) is the %rd Chern class of a rank 3
bundle, this gives the class of 2 in XxIP(VV) as a 5th
Chern class, and allows us to compute degX = 2(d+2g-2),

provided dim X' = 2,

2., (Ronga)

Assume XcP(V) as above, Now one interprets 2 &as a modi-

fied 5252 (again by "forgetting" the generators of X)
of the projection map XxIP(VV) . I‘E’(Vv)g By computing all
the normal bundles in sight, one gets an expression for the

class of 2 in X‘x]?(vv), which allows one to compube

&

degX* = 2(d+2g-2).
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