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A !lOts_c~~f~LLer 9.£dt;.!-· dual .:yariet~~~~, . ....!f~th aT_!, 

!!,1?]21 icat ion. to :·>crol1s .. 

"' Ragni Picne 

'1, Int~oduction .. 

v 
11he dual variety- Xv c JPn of a variety X c Y is tbe closure 

of the set of hyperplane;:> containing the tangent space to X at 
v 

some smooth point.. Wt;: define the m.::-..92dtl vag~t ... ;'L, X~ c: Y of X 

as the closure of the set of hyperplanes conte.ining an m-.th 

osculating space to X, in particular, XV V 
1 e.t X " !"lore genera.1ly, 

if G = Grassa+'1 (V) denote;.:-; the Grassmann variety of a-spaces 

in lP(V) == ~ , we can define m-th osculating spaces of a variety 

X c G, using the sheaves of priucipal parts, 811d hence its ID·-dnal 

variety v v X c Grass 1 (V ) m a+ 8S tho closure of the set of (n-a-'1)-

spaces containing an m-th o~culating space to X. This is of 

couroe closely related to Pol1l 's associat§;.£ ~rietiEL,~ ( [Pohl]) .. 

We show, in Prop& 1, a weak biduality resu~t for m-duals: 

one always has vv Xc (X ) , ana equality hold:~ tuider a dimen"'ion m m 

hypothesis, whinh i-3 alway.· ~;ati.c:;;fied in the <::la.· ;:>iGal ~a::;e. 

It iE> nat~:(ra.L to a<:>k fo . .c thu deg;ree of in term.:; o.f 

characters of X... Since we ,:J.re working with "modified" bundles 

of principal part:J, this can be done - at least in principle! - as 

in the c.lo.s.sica.l ca~3e (see e.g .. [P 2], [U])., 

Here we only deal expJ ici tly with the case of a s.:Toll 

(i .. e., a ruled, non":"developabJe surface) XcJP(V)i or, equi­

valently~ a curve CcGrass2 (v) .. In general, a scroll has 2nd 

osculating spaceu of dimension 4 .. v 
vie give a formula for deg x2 0 

Partially supported by the Norv~egian Research CounciL for Science 
and the Humanities .. 
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5 In the cm>e JP(V) = JP , we call x* ~ ~ the ~J:.£!. -~ of X. 

If dim x* - 2, then x* i~ also a scroll and ** X :=: X holds., 

Moreover, tl:1e dual variety XV (the normal bundle oi' X) is equal 

to the osculating developable of * X , and the dual plane of a 

tangent plane to X is the tangent plane to x* at the corre­

sponding point .. Hence we get, for scrolls in :1P5, a complete 
"Z 

parallell to the duality existing between a curve C c: JP.:.; ~ its stricl 
* v3 qual curve C c]?, and their developables (see e .. g .. [P1],f9 5; 

[ P 3] , Remark 1 on p. 111 ) .. 

Scrolls are examples of surfaces with "too small 11 osculating 

spaces of higher order, hence are "of ty-pe ~" in the terminology 

of Corrado Segre,. I am grateful to Gianni Sacchiero for bringing 

these - in particular the scrolls and their strict duals - to 

my attention. 

Fix the following notations: 

V is an (n+1)-dimensional vector space over an algebraically 

closed field k of characteristic 0, G is the Grassmann variety 

Grassa+'1(V) consisting of (a+1)-quotients of V, (identified with 

a-dimensional linear sub spaces of 1P(V)), and V G ~ Q iE3 the uni­

versal (a+1)-quotient on G~ 

For each integer m there is a natural homomoi~hism 

V\Yhere ~(Q.) denotes the bundle of principal pe.rts of order m 

of Q (see [P 1], § 6) .. 
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Let X c G be a subvariety, of dimension r, and set E - Q I X ... 

The restriction of m 
~ 1 composed with the natural map 

P~( Q) I X-~ ~(E), gives a homomorphism 

A point x E X :is called m.::£.~13~!la.r:. ll x is smooth end if am(x) 

is su_l:'jective; if these points are dt~nse in X, we .say that X is 

generically m-regu.lar., At each m-,.regular point x EX there is 

8. Well-defined ~,h £§.9..~ Sl;?S.f;:,_~' of dimension (a+1) cr;m) ·- 1, 

defined by am(x)., Hence a generically m~regular X has an !11-th 

fl.?.~£~1?-.!~-9. varte~z xCm) c Grass (a+
1

) (r+m) (V), defined as the closure 
m 

of the set of the m-th osculating spaces (see [Pohl], § IV). We 

define the ~.Y£3-r.i.€2.11. X~cGv = Grass
8 1 (Vv) = Grass._a(V) 

IU .+ . n 
to be the closure of the set of (n-a-1)-spaces containing an m-tih 

osculating space~ 

Even if X is nowhere m-regular, we can define m-th oscu-· 

lating spaces: let U c X be an open dense smooth sub scheme such 

that Ku = Ker(am)lu is a sub.-bundle of Vu, or) equivalently, 

such that Im(am) is a bundle. If Im(am) ~=t s + 1, then each 

point x E U has a.11. m-th osculating space, of dimension s,. 

defined by a.m(x)... '.Phe m-dual yar~ ~ c G v of X is the 

closure of the set of (n--a-1 )-spaces containing the m-th oscu-

"' v lating spaces. Let; X c G x G be the closure of 

Grass a+'!(¥~) c Grass a+"\ (V~) ~ U x G v ~ then X~ = pr2 (X).. Let 

(XV) ....... c:: G x G v denote the corresponding variety constructed m 

for ~ ~ so that (~)~ "" pr 1 ( (~ )'"")., 

The following proposition gives a weak bid.uality for m-duaJ 

varieties, generalizing the classical biduality for projectiiTe· 

varieties (see [K])~ 
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:particular, if 

..... v "' 
!n the claiJsical ca,.;e (a.,. 0, m = '1), dim X n dim(X ) = n-1 Remark: 

·~ 

always,. An example where the equality does not hold: X c JP
6 a 

generically 2-regu.lar surface contained in e, hyper-plane Ho 

Then X~ = [H} E ]?
6 and (~)~ ~ H .. 

~: It suffices to show the inclusion ic (~) v on an open 
,.... 

dense of X~ Let "" v ' p ; X ... :X: and q t X_,~ denote the projections .. 

Consider a point (x,y) EXcGxGv such that xEU,. y is in the 

corresponding Vc~, and q is SlUooth at (x,y).. Let F denote 

the restriction of the univ8rsal (a+1)-quotient of Vvv to 
G 

d · f c p-1u) 1 an · cons~der the ollowing diagram restricted to ~ 

To show that (:x:, y) E (~) v aro,ou11ts to showing that the composi­

tion q*:pll\CJn _, p*E is zero (locally at (x,y)) .. The map 
xm 

q*Fv 4 p*P!(E), and hence also q*F'!-.¥,3(p*E), is zero; since the 
A X 

composition * v * q F ... Vrv _, p E is zero, "liN obtain, by 11 differentiating 11 

X 

(i., e .. applying the differential operators of order :;. m,. corre-

sponding to ~, to this composition)} that plll(q*]')v .... p*E is 
X . ~ 

zero., Since q*pll\(F) _, t,::(q*F) is locally split at (x.,y) ,, w,e 
xm x 
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obto.in that q *pffi v(F) .... p *E i:3 zero at (x,y).. (This is the sa.me 

as the argwnent Xm u:Jed for curve~3 in JPn, au in (P 1], § 5.,) 

Suppose X i::l generically m-regular, Then 
,.., 

If rk Ku ~ a+1, then X is defined and 

has d.imen::lion r+ (a+1)(n-a-(a+1)(r:m))., Set rv = dimX~ .. If 

X~ is also generically m-regular, then biduality holds if and 

only if 

This is possibie only if a = 0 and m = 1 (the classical case), 

~ is ru.led ~ and hence or i.f In fact, when .,.,k TT -.....a' A .L .l\.u ..- T I , 

shquld not be generically m-regular.. Note that the surjections 

Pi:(E) .... P~-1 (E) give a sequence of inclusions 

XV = XV :::1 y~ ::J :::> v V '1 - -2 " " ., ...,m ::> •• .. .. ' 

and that one could, instead 

of X, construct an X,1 0 in the product of all trie Grass-
., .c.. ' Q ,. \Ill 

mannians .. 

As in the ca.se of clas.->ic:al dnal ity, there is an invaric:mce 

of m-duals under sections and projections: Suppose W c V is e 

subspaee, dim W > a+1 .. For X c G = Grass 1 (V), c:onsider the a+ 

projection 

X --·--> Gre.s£-3 (W) a+'1 
corresponding to WG·~E .. 

If the center of projection JP(V /W) i;::; reasonable (i.. e .. , if most 

of the a-spaces corresponding to points of X are projected to 

a-spaces in JJ?(W)), this map is .ratione.l, and we den,ote by X the 

closure of its image.. From the functorial properties of the 

sheaves of principal parts, we get: 
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:P .. FO"Qo:;:;itio~: The m-dual of a projection is the corresponding 

section of the m-dual. i.e., 

(The proof is similar to the one in the classical (a= 0) 

casE;l: See [P2], p.,269, and observe that the genericity assump­

tion made there is um1ecessary .. ) 

'Th a f vc G · · t a · "1D(Aa+1 V) e --~re~. o A 1s 1 s egree 1n ~ " via the Plucke 

embedding.. Thus we have deg X =t c
1 

(E)r li (X], 
v 

v 
and deg xm = 

c1 (F)r n [X~]... Whenever we can express F * (or q F) in terms 

of kno~~ bundles, we get an expression for v deg ~.. When X is 

generically m-reg,ular, F is determined by ~(E) and the 

singularities of am; hence we get, at least in principle, an 

expression for deg Xv in terms of the degree of X and its Chern m 
classes (or rather, the Chern classes of a desingularization of X) 

and the various singularities of X and am.. The very simplest 

case occurs when X is smooth and m-regular, n-a = (a+1)(r+m) m 

and rv = r. Then degX~ = c 1 (q"'F)r = c1 (Kv)r ~ c 1 (~(E))r. 
(For formulas in the classical case, see [P 2], [U]; see also (Pohl J 
for associated varieties). 

In the case of' curves, formulas exist: Let X c JP(V) be a 

curve spanning F(V)a Then X is generically m-regular, for 

m.::;.n, and we have associated curves xCm.) c Grassm+1 (V) and 

corresponding ~ SJ~~v~lop_~bJ~EL Ym c JP(V) .. We also have 

m-dual varieties XV c JP(Vv) - these are nothing but the osculating 
m 

developables y* of the ~gj.c~ ~ CJ:l. ry_~. x* = xCn-'1) c JP(Vv) '} n-m-1 
and they are also.equal to the dual of the 9sculating develo.pa.bles 

of X,. I"Iore precisely, for each m we have 

v * )v X ~ y ~ (Ym_.1 • m n-·m-1 .,... 
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The fi~·::3t equality follow~) from the duality of eertain exact 

sequenqes on X and x* (~3ee [P 1 J, ) .. 2), the ;:;econd holds 

because the tu.ugent space:_; to Ym-'1 are the m-th osculating 

spaces to X.. Thus we have formulas 

m-1 
degXmv == (m+1)(d+m(g-1))- E (m-i)k., . ~ 

~=0 

where d = deg X, g = (geometric) genus of and k. 
~ 

is the 

i-th stationary index of X ([P1L 3 .. 2). 

3 .. Dual varieties of a scroll. 

Let X c G be as in tne preceding section.. If m is such 

that X ... X is birational, i,. e.,, 'if there is a uniq,uely determined 

m-th osculating (n-a-1 )-~:.:pace to X at x for most points x EX) 

l X* ~ XV d f X we shal call .. m the ~~tri~~t ~ ~~~ty, o .. 

For example, if C c Y is a curve spanning Y , then 

c"' v If XcJP6 i:..:; = en_..,. a .. mrfact: whir:h L5 ger1erically 2-regular, 

then x* = XV c~6 
2 is the :..~ trict dual. 

An exarnpl e of surface:j that are nowhere 2-regular (C .. Segre 

called them 11 of type ip"), are the ruled surfaces: scrolls, 

developables, and cones. The theory of duals ·of developables and 

cones reduces to that of curves in projective space; let us now 

look at the scrolls,. By definition, a scroll Xc .JP(V) is a ruled 

surface such that the tangent planes to X along a (genero.l) 

generator are non-constant. Suppose leX ·is a generator, 

X E l. The 2nd osculating 0pace to X at x, defined by 
2 . 2 . 

a : VX..., Px( 1), is the space spanned by the tangent planes to X 

along 1 (this gives a JP3) and the 2nd osculating space to 
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a curve on X at x .. If X 3 is not contained in a JP , one 

expect this space to be of dimension 4; if X is not contained 
L.j-

in a ]? , one expects these L.f-.-spaces to vary along l, so that 

x• has dimension 2a We shall now generalize to scrolls in F 5 

the duality results for curves in JP3([P 1], (P 3]) : I1et C c JP3..., JPCY 
v 

c* c ]?3 denote its strict dual .. be a (non planar) curve, and let 

The dual 0 v c: ~3 is the normal bundle to c and the tangent 

developable of c*, and similarly for (C"')v .. Moreover, the dual 

line of a tangent line to c is the tangent line to c* at the 

corresponding point - in other words, the associated curves 
(1) *(1) v C c Grass2 (V) and C c: Grc:-ss 2 (V ) == Grass 2 (V) are equal .. 

!:_roposJ.t?;:..C?.!!, 3: Let X c JP(V) :.: JP5 be a scroll which admits a 

strict dual x* = X~, and assume dim x* = 2., IJ!hen x* is a 
v v sci'oll. The dual X c: JP(V ) , the normal bundle of X~ is equal 

* to the tangent developable of X , and vice versa.. Moreover, 

the dual plane of a tangent plane to X is the tangent plane 

to x* at the corresponding point - in other words, the associ­

ated varieties X( 1 ) c: Grass (V) and x* ( 1 ) c: Grass (Vv) are 
3 3 

equal .. 

Er92!: Let X' be a modification of X and of x* such that 

Im(a1 ) and Im(a2) admit quotient bundles P1 and P~ of 

rank 3., Then K = ker(VX' .... P 1 ) a,nd K"' = ker(V~, ... P1) are 

bundles of rank 3, and the sequences 0 ...., K""' V X' ..... P 1 .... 0 and 

* v * 0 r- P 1 ,_ VX' ..... K ... 0 are dual to each other; as in the proof of 

Prop. 1, one shows that (generically on X') the composition 

( 1 v 1 v 
of a*) : Px* ( 1) ..., VX* 

1 "l with a : V X .... Px ( 1 ) is zero; since 

and a 1 both hmre rw..k 3, the result follo\'rs.. In particular 
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the existence of the exu.ct ~·;equ.ence 

0 -> ( p; ) V ·-·> vx 1 -> P 1 -> 0 

;>how:..> that the tangent pl ane:3 to x* are the dual p1anes of the 

X X* .. tangent planeG to ; hence if X L:; a scroll, so is The 

other statements aloo follow directly from that exact sequence .. 

There i.s still another parallell to the curve case) namely 

* v3 to the fact that; the strict dual curve C c JP is a ~uspi<!~l 

v VA A 
~ of the dual variety C c JP.; of a curve C c JP.,~ .. 

5 y_* Proposi tion_i! If X c JP L:; a scroll, then its strict dueJ. -
v 

is a "cuspidal edge" of the dual variety Xv c ]1?5 o 

Proof: Assi..Ulle X is ::;mootll, and X c JP3 a generic projection .. 

Scrolls with ordinary singularitieD in JP3 are numerically seJ.f­

"Wv c JPv 3 lla!~., dual, so .a. ~ a finite number of pinch points, correspond-

ing to the pinch point:::J of X'. If L c JP5 is the centre of pro-

jection, a pinch point of X occurs when L inter.':ect.::: a tangent, 

when intersects the :n/3 spanned by t.r1e t: ··gent planes 

along a generator. But then 3 4· L and this 1P span L: JP which 
v3 v5 

and also in 1P = L v c JP .. Since * is necessarily a point in X 
v X V v3 

= X () JP , it follows that the "ramified singularities 11 of 

* are precisely the points of X If X is not assumed smooth, 

there might be other "cuspidal edges 11

1 as in the case of curves, 

where inflectionary tane;ents are cuspidal edges on the developable., 
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In order to cmnpute the degree of * -..r 
h. ? it is convenient to 

where E is the restriction of the tmi versal 2-q_uotient of V 

on G .. The subspaces of V defined by a1 can be interpreted 

by choosing 1 loci.illy, a tri vialization of E, correspondin§'; to 

two curve sections of Hence defines, at a ge.nerator 

1 E C of X, the space spar.u."'led by 1 and the tangent to the 

curves at the poi.nts of intersectton with l; hence it is eq·u.al 

to the space spanned by the tangent plane;;J to X along L. 

Since X is a sc.:roll, this space has di.liH:.:n;·.ion 3 '~ so C is 

generically 

Grass")(Vv) 
c:.. 

i.s the strict 

It follov.rs that 

dua1 of C (a.nd 

* • associated curve of C).. If X J.:~.; a t>cro11, then C j_s 

generica.ll;yr 1-regula:r~ and c** ""C (by Prop .. /1). Moreover, 

tlte 2nd o~Jculati.ng ~3paces to X along a generator 1 are just 

the L}·-spaces containing the .?-space span."1ed by the tangent 

planes,. In other lAfords ~ c* i::3 equal to eonsidered aE> a 

eurve in Thu<.> we have proved~ 

Pronosition S: ------ If Xc:JP(V)...:: JP5 is a scroll such tht3t x* 

a scroll~ then ** X: :t: X hold::> o. 

'J!he next propcsi tio:n gi ve.s a formula for the degree of v* 
.c. " 
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r.-
!1J?.J:9~2J.tion 6: Let Xc:rr?(V) '=' JP 7 be a scroll of detjree d and 

genu::; g, <md .~;trppo~e x* c JP(V") L> a i5crollo 'rhcm 

* deg X = 2(d+2g-2) .... k, 

Remark: _JOOI_,........__ Let 
I 

v : C ... 0 denote the normali zatl.on, then, by de.fini-

tian, k 1 (c k V P 'l ( *E') = g a er 0 ' .... C i v ) ,. By trivializing E one sees 

that ru1 ordinary cusp of C eounts t\vice in k ( which checks 

with [Edge] ~ 3Lt-9)~ Or, k L> the numbei· (counted properly) of 

~.2£. genel'ator::; of X ([PohJ ], p.208),. 

Qora .. \)a.E.;V 'rhe ::;;tatio:n:J.1'Y ind<c!X k"' of c* is given by 

k* = :)(d + 2(2g-2))- 2k .. 

Pr.£21.: On C 
1 

, P6(E) aclmi t:3 a 

:P 1 = Im(V 
0

, _, P6, ( v*E))., !kn,>::: 

C (p1 ( *E) ) 1.• ,..., / ] '} ,., ' I .1 ·c' V - .!( ::: c:I._C+c.g-c: ,i- ,.;.. 

d -~ - x* * ---- x. .ua.lty - of Prop. ·~·, 

4-quotient, n':llllely 

degX"' = degc"' = c'1(P1 ) = 

.. ·1 . X ? ( .1.. ·) -~ ''> .> h"' (; = ( t;(S = L. (.; +c..t~-c... - r,_ .. 

Note that if X hwJ no ::i,,:._;ul£.i.r gen8ra~ors Crc = 0), then 

k* = 3(d ·t· 2(c:g-2)) ~ and ben<:~e X * 

if and only if d = d * = 4, t-.'.: = Ofl (Sue h scroll..:: are linearly 
t.: 

normaJ. in JP/ .. ) 

vJe shall nov.J 1ooK at Home other approaches to tl'1e degree 

* of X " 

Because of the following (classical) propositionl the degree 

of x* is equal to deg(X*) \ hence to the degree of the tangent 

developable of X (Prop .. 3)o 



~ 12 -

?._roposit:ion 2.: Let X c JP(V) ';; 1Pn be a ucroll, XV c JP(Vv) its 

dual.. 'J:hen; 

<~eg Xv == degX .. 

f£.~: The classical proof goe:.:> like this: projeet X to a 

scroll I c JP(W) ~ JP3 with d = deg X = deg X.. 1.rhen Xv::: Xv n JP(V /W), 

so deg !v = deg Xv holds.. If L c.: JP(W) is a general line, 

deg'Xv = -tf{H::lL~Htg,. to X}= #(H:)LUl\1 generator of X} :dtLnX 

a deg X.. Note that Y and XV are in i'act ~1 considered as 

curves in Grass2 (W) = Graaf>2 (Wv) .. 

For a "moder·n" proof, one reduces to the case tnat X c: JP(V) 

is sm.ooth, say X"" JP(E) ..... c .. Then 

which, by standard exact sequen . ..:es, reduces to 

From the exact sequenc:e t;.i.ven in ti1e pr'oof of Prop .. 3 

we obtain (using [P2], § 2): 

Suppose X ::;: JP(E) .... C is smooth .. 

so we get 

Then 
I 

X =X and P-1(_,\ p1 = X • .. , 

:1< ( I ( 2 deg X = c 1 Px 1)) - d - 3d+2(2g-2)-d = 2(d+2g-2) .. 

~n the general case? X · i::> the image of a smooth Y. ""' :n?(E) -t C, 

and x' is a blow-up of Y, Then e 1 (P 1 ) m c 1 (p_i, (1))- (Rl, 

' vJ'here R is the rpmificat:ion divisor of X ... X, and we obtain 
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the earlier formu.l.a, but w.i th k eJO_tH.'CU~1ed rr in terms ofn H,. 

Two ot.her approache::.> have been communicated to me by 

I .. Vainsencher and F .. Ronga, respectively. 

1 .. (Vainsencher) 

r.: 
Let X c JP(V) ';; JP7 be a smooth scroll, -
Y = JP(N(-1)) = ((x,H)IHtg,. to X at x) c:JP(V) xJP(Vv), 

and set Z = ((x,H)EY\HnX l!l: lxUD with D singular at x} ~ 

* Then X = pr2 (Z)o One shows that Z is the zeros of a 

section of a certain rank 2 bundle on Y; since the class 

of Y in X x JP(Vv) i::-1 the 3rd Chern class of a rank 3 

bundle, this gives the class of Z in X x JP(Vv) as a 5th 

Chern class, and allows us to compute deg x* :::: 2(d+2g-2), 

provided dim x* = 2 Q 

2" (Ronga) 

Assume X c JP(V) as above.. Nov-1 one interprets Z as a modi~ 

f . d E2,2 .J.e (again by 11 forgetting" the generator~.> of X) 

of the projection map 
y v 

X X JP(V ) ""' :n?(V ) ., By computing all 

the normal bundles in sight, one gets an expression for the 

class of Z in X x Jf?(Vv), \r.Jhich allows one to compute 

deg x* = 2(d+2g-2). 
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