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c is the field of complex q.um.'PerE!I 

k [! ] = k [ ~ 1 , • • • , x n ] 

kx the lil\lltiplioative sroup of k 

p 0 the projective n-spaoe ..,.. 

~ the category of local ti\l:'tin:i,an k-algeq:ras 
with residue field k 

J; A 
H 

the category of local. artinian H" ... al.gebras 
with residu~ field k 

the categoty of groups 

aJJt 5 (X@ks) .= { ~EA1 .. rt, 5 (X~ks) I w~5k~~~'l } , s in .& 

autR (XA0 AR) = { 4>El\\ltR CX:Aa AR,) l4>eRk:;;1 } , ~ in .& A 
H H H 
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§ l . INTRODUCTION 

The purpose of this paper is to contribute towards a cla~sifi-

cation of isolated hypersurface singularities, modulo the action of 

the contact group, see § 4. 

He have tried to understand the behaviour of the Tjurina number ~ 

in a ~-constant deformation, and to compute the maximal dimension 

of a nowhere constant family in the ~-constant region. 

Our main results in this direction may be summarized as follows, 

see (4.5) and (4.6). 

Let f be a quasihomogenous hypersurface with an isolated 

singularity at the origin, and let F(t 1 , ••• ,t ) 
mo 

be the 

miniversal ~-constant deformation of f. Then there exist a 

finite collection of analytic families 

X + H 
-~ -~ 

of hypersurface singularities with constant Tjurina number ~, 

containing as fibers all F(t1 , ••• ,t ) and such that, 
mo 

putting ~ . = min -r(F(_!:_)), 
m1n t 

(J) H is of finite type 
_;,.~ 

(2) dim H .;;; dim M = rna+~ . -~ 
-~ -· min m1n 

(3) M ::f: ¢ for all ~ with ~ . .;;; ~ " ~ -1: m1n 

(4) If D c: M is -· a subscheme such that 2f.,;l.£ is constant, 

then D is a closed point. 

Moreover we show how to compute the ~-modality of f, i.e. the 

number 

and thereby 

~m(f) = max{dim M } = rna+• · -~ 
~" m1n 

1: 

-. . , see ( 4 • 1 5 ) and ( 4 • 1 8 ) • m1.n 

The first 3 paragraphs of this paper are concerned with the general 

framework in which we have chosen to put our results on hypersur-

face singularities. 
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Given a field k and some algebraic object X such as, 

Example 1. X = ~~ a small category of k-schemes. Put 

i ;, 0, see [La]. 

Example 2. X= Spec(A), A any k~algebra with isolated singula-

rities. In particular, we shall be interested in the case 

where A= (k[x1 , ••• ,X ]/(f))(X X) is the local ring of 
n 1'···•n 

an isolated hypersurface singularity. In this case 

i > o is the Andre cohomology. 

Example 3. X = ~~ a small category of OY-Hodules where Y is 

some k-scheme. Here Ai =Ext~ (0 ,0 ), i ;, 0 are defined 
y ~ !:. 

as in [La] with Hom replacing Der. See the concluding 

remark, loc.cit. p. 150. 

Example 4. X = E, a coherent 0 -Hodule. Ai 
pn 

i 
= Ext (E,E) u 

0 n p 

i ) 0. 

Of particular interest is the case where E is a bundle. 

Assume now that dimkAi < oo for i = 1,2. Then, see [La],(4.2.4), 

there exist in all these cases a formal moduli HA (a prorepresent

ing hull for the deformation functor) of X, and a formal versal 

family 

Assume moreover, that there is an algebraization of ~A, denote it 

by 
~ 

~= X + Spec(H) = B· 

The first part of this paper is devoted to the study of ~ in this 

generality. 

In ~2 we prove that there is always a formal prorepresenting sub~ 

stratum of universal with respect to the property 



/\ 
Hor(H0 ,-) 

on the catego1~ of artinian local k-algebras with residue field k. 

In §3 we construct the Kodaira-Spencer map gx: eH + Al(H,X~OX). 

Using the properties of gX we prove, under rather strong assump

tions R1 .,R2.,R3. and R4., that there exists a finite collection 

of flat analytic families (k=f), 

such that 

(1) M . is connected, of finite type, locally isomorphic 
--;;,1. 

to the prorepresenting substratum of some g(x). 

(2) All deformations of X, close to X, occur among the 

( 3) 

fibers of 0 l d. Al . -] 11 • , ,; = , ..• , ,; = 1m.. , 1- , ••• , r"" • 
't"' l k " 

11 . 
1:,1. 

is nowhere constant 8 i.e. if D c M . 
---.. ,1 

is a sub-

scheme such that 11 ./D is constant, then D is a 
r;,J. -

closed point. 

This paper is a preliminary version. Some of the proofs are there-

fore cut down to the bare minimum. Details will occur in the final 

publication. 

Finally, both authors have profited on the hospitality of the 

others university. We are gratefull for the financial support given 

by the Humboldt-Universitat of Berlin, D.D.R., by the University of 

Oslo, Norway and by NAVF, Norway. 
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§ 2. THE PROREPRESENTING SUBSTRATUM OF THE FORMAL MODULI 

Let X be any algebraic object of the type discussed in the 

Introduction, and consider the deformation functor 

Defx: ~ + Sets, 

the corresponding cohomology Ai = Ai(k,X:OX)' i ~ 0 and the 

universal obstruction morphism 

i ( i* 1\ where T = Sy~ A ) • 

Denote by 

the formal moduli of X, i.e. the prorepresentable hull of the 

deformation functor Defx , and put 

In general there are lots of infinitesimal automorphisms of X, and 

obstructions for lifting these (see [sch]). Therefore HI\ does not 

nessecarily prorepresent DefX. 

However, as we shall see there is a universal prorepresenting 

substratum of 
1\ 

H , corresponding to a quotient 

of 
1\ 

H . 

1\ 1\ 
H0 = H /ot 

In fact, let us consider the category 

1\ 
H -algebras with residue field k. 

of all artinian local 

Let XI\ 

identity 

be the formal versal family on HI\ defined by the 

1\ 1\ 
1 1\ E Mor(H ,H ) and consider the functor 

H 

defined by: 

aut ( S) 
-- 1\ 

X 

aut ~ .Q. + ar 
--XI\ -H ..;;z.;:. 
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Theorem ( 2. 1 ) • Assume dil~A i is countable i = 0, 1 • Then there 

exists a morphism of complete local 
(\ 

H -algebras 

such that 

= (H~T 0 ) 0 HI\ 
k H~T 1 

k 

is a prorepresenting hull for the functor aut - (\ 
X 

Proof. This follows from the proof of [La], (4.2.4) with 

replacing and i-1 
A replacing 

Recall that there is the usual automorphism functor of X, 

defined by: 

aut 
-- 1\ X 

Q.E.D. 

Assume Aut --X is represented by the k-scheme Aut(X) and let 

E Aut(X) be the identity element. Then the completion o" 
Aut(X),l 

of the local ring of Aut(X) at 1, represents the fiber-functor of 

Autx at 1 E Autk(X), i.e. the functor 

autx: ..:8:_ -+ .SE 

defined by 

au~(s) = {~EAut8 (X0kS) l~08k=l }:= aut8 (x~s) 

Let ax be the prorepresentable hull of autx , such that with the 

assumption above 

(\ 

~ "" 0 Aut(X),1" 

Assume from now on that Aut(X) is smooth, implying that 

0* (\ ] ~ ~ Sy~(A ) (see [La Ch. 4). 
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Definition ( 2. 2). Let the ideal 0(~ HI\ be generated by the 

coefficiants of the elements of 

maximal ideal of H ~ Tl. 

( ) 1\ 0) o m c!i ®kT , ~ a- being the 

Then the prorepresenting substratum 

is the formal sub- scheme defined by ot . 

Put . Then and we shall, mildly abusing 

the notations, also speek about the prorepresenting substratum 

By construction of it is clear that 

quotient of 
1\ 

H for which 

is 
1\ 

H0 -smooth. 

a 0A HI\ 
1\ 0 

X H 

is the maximal 

1\ 
Ho· 

Proposition ( 2. 3 J . H; is the maximal quotient of HI\ for which 

the canonical morphism of functors on ~~ 

is injective. 

Proof. 
{\ 1\ 1\ 

Let H1 be a quotient of H , and assume ~ 1 ,~2 E Mor(B1 ,R) 

- -are mapped onto the same element ~ 1 = ~2 in Defx(R). This, of 

course, means that there exists an 1\ ~ 
R-isomorphism X 0 R/ ~ 

HI\ ~1 
1\ 1\ 

X 0 R/ where at the left side R is considered as H -module 
HI\ ~2 

via and at the right hand side 

via ~2 . 

R is considered as 
.1\ 

H-module 

We may assume, by induction, ~ 1 = ~2 (mod ~) where n is some 

ideal of R killed by the maximal ideal m . 
-R 

Then is an automorphism of 

a morphism 

X ~ /n, corresponding to 
1\ -

H 

is formally 
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H1-smooth, then obviously this morphism may be lifted to a rnor-

ph ism a 
XI\ 

0 HA 
1 "* R, proving that q, ®R R/_!:! is liftable as an 

XI\® R I <V2 
1\ automorphism to some <P, ~ "' X l1ll R I <V2. But then 

l HI\ HI\ 

is an isomorphism extending the 

identity of q;1 = q;2 • From this follows that 

Conversally assume H~ is a quotient of HI\ such that 

1\ 1\ 
p1 : ~1or(H1 ,-) + Defx is injective. If R is any quotient of H1 , 

then any automorphism of XI\ 0 R/n 
1\ -

H 

always be lifted to an automorphism of 

a 0 H1/\ has to be formally smooth, which proves the proposition. 
XI\ HI\ 

Q.E.D. 

Remark ( 2.4). 1 1 h ... H 1m2 Reca_._ t.ta'- 1 _:: represents the restriction of the 

deformation functor Defx to the subcategory ~2 = {RE!I~~=O} of 

~· Notice that, never the less, H/!!!2 is rarely a quotient of 

Consider for any n ;;. 0 the subfunctors of defined 

by: 

Def~(R) = {XREDefX(R) jAn(R,XR;OXR) is a deformation of 

An ( k, X; OX) } 

Then one may prove that Def~ has a prorepresentable hull H~ 

which is a quotient of HI\, defining the n-th equicohomological 

substratum HI\ of the formal moduli B/\, see [st]. -n 

Proposition (2.5). Suppose k algebraically closed and suppose 

moreover that for every 

is algebraic and 1<:-smooth. 

Then the prorepresenting substratum coincides with the 0-th 

equicohomological substratum. 



Proof, Let R ~~ S be a morphism in R , and consider the 
HI\ 

induced maps 

( i) 
1\ 1\ 

AutR(X 0/\R) ~ Aut8 (X 0/\S) 
H H 

(ii) A 0 (R,X\l>/\R;O 1\ ) ~ A 0 (s,X\5l S;O ) 
H X ®R HI\ X/\®S 

Since for every R in R , Lie (AutR(XA® R)) = 
-HI\ -- HI\ 

0 1\ ' A (R,X ® 1\R!O 1\ ), we are through by ([D.-G.], II, §5 (5.3). 
H X 0R 

Q.E.D. 

Remark { 2. 6 ) • If X is a linear map m n cp:k ~ k , then as one 

easily checks, ·the formal moduli is algebraic and is given by 

m•n ( m n) . g = ~ = Ho~ k ,k • The prorepresent1ng substratum g0 c H 

is then called the bifurcation diagram (see f.eks. Arnold: [A]) 

of ¢ E H, and consists of the points of g, in the neighbour-

hood of o, for which the corresponding matrix has the same 

Jordan blocks as ¢. 

Remark ( 2, 7) • 
1\ 

Let ~i be the i-th equicohomological substratum 

of 
1\ 

and formal family 
1\ 1\ 

is H I assume that the x. -+ H. the 
1 -]. 

completion of an algebraic family X. -+ H .. Let H be the 
1 -1 -co 

intersection H. 's. 
i ~ 

) is of the Then A (H ,X ~OX H -flat. 
-]. 00 00 00 

00 

Suppose that is of finite type over H • Then, 
00 

in particular, 

i n ~ n 
A (H /m ;X ®H H/m ;OX/\® 

oo -x oo -x H 
is reflexive as an 

00 

-module, for all i # 0 and all x E H . 
-co 

Now assuming we have a flat family X -+ Spec(S) such that 
i ~ 

A (S,X;Ov) is reflexive as an s-module for i = 1,2, there 
L'-

exist a morphism of complete s-algebras 
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such that the S-algebra 

~ 

is the formal moduli of x8 for all s E Spec(S). Under the 

assumptions above, there exists a morphism 

H 

for which (TJ H ) 
"' "' 

00 

@ 

H 
"' 

~(X) "' H(x} for every X E H • 
-oo 

(The proof of this parallels the proof of [La;(4.4.2)].) 
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§ 3. THE KODAIEA- SPENCER MAP AND THE FUNDAMENTAL DISTRIBUTION 

Let S be any k-algebra and consider a flat family 

n: X + Spec ( S) . 

Corresponding to the simplicial k-algebra 

v l + 
+ +-

id01' 1 ®id s +- s 0kS + s ®kS 0 €1 G 0 0 vl = v2 = + +-
v2 + 

"' one may define a series of obstructions for descent of X to k. 

The first descent obstruction is gotten in the following way. 

Put I= ker{s~ks ~ s}, where m is the multiplication, and 

consider the diagram 

Since 

difference 

Vl 

o +- s f S®ks/r 2 +- r/r 2 +- o , r/r 2 ~ Qs/k. 
v2 

and are two liftings of X to S®kS/I2, the 

sits in A 1(S,X; ox ®SQS/k). Suppose s is k-smooth, then 

g(X) E A 1(s,X;Ox) ®SQS/k defines a morphism 

Proposition (3.1 ). Suppose S is smooth, and let s E Spec(S) be 

a k-point. Then the induced map 

where X(s} = n-l(s), is the tangent map of the canonical 

morphism 
;\ ;\ 

Ss + H (X(s)) defined by the formal deformation 

~ ®8 s; of X(s) to S~. (Here HA(X(s)) is the formal 

moduli of X(s).) 
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considered as left S-algebra cia v1 and respectively, and 

as right s-algebra via v2 • Then, as left s-algebra we have the 

following isomorphisms 

By definition, we have 

"' s/m2 
-s 

v~(:X) = 
1. 

i:::; 1,2 

therefore, 

= 

f X(s) @ k(s) [m jm2J 
.t( s)- -s -s 

l X ~ s/~~ 
Consider the exact sequence of right s~modules 

0 

i = 2 

i = 

0 

tensorise with ~(s) over . S, and obtain the 3-dimensional commu-

tative diagram 

Therefore g®~(s) coincides with the map 

Q.E.D. 
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Definition (3.2). The morphism of s~modules 

is called the Kodaira-Spencer map. 

The kernel of the Kodaira-Spencer map is a distribution on Spec{S). 

Denote it by v -n 
or by v -s when there is no risk of confusion. 

De.L~;nl'+l'on (~.--t\,. " c A • l' d t1 K d · ~ d' t · .,.. ..... ~ ~ ~ v v ls ca .1.e - 1e o a1ra-~pencer 1s r1-
-rc S 

bution. 

Suppose from now on, that, 

Rl. A 2 (k,X;OX) = 0 

then HI\ is non-singular. Suppose moreover that 

R2. there exists an algebraization 

~ 

n: X + H = Spec(H) 

of the formal versal family 
/\ /\ /\ 

n : X + H . And suppose finally 

that 

R3. 
i ~ 

A (H,X;OX) is an H-module of finite type, i ~ 0. 

Lemma (3.4). Let Y + Spec(S) be any flat family, such that S 

is regular, and let m be a maximal ideal of S such that 

S/~ = k. Assume 
i ~ 

A (S,Y:O.y) is an s-module of finite type 

for i ~ 0, then there exists a spectral sequence with 

converging to 

Moreover, 
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Proof. Suppose first that Y = Spec(A). Recall the definition of 

Aq, i.e. 

(see [La]). 

Let L~ be an s~free resolution of S/~n. We may assume L~ is 

finite. Consider the double complex 

~ 

Since A is S-flat, the first part of the lemma follows from the 

usual pair of spectral sequences. The second part follows by taking 

limits of the spectral sequence, noticing that lim(i) = 0 for 
n 

i ) 1 since the projective systsems involved are composed of 

finite dimensional k~vector spaces. Finally, the globalization 

presents no problem, (see [La] Chapter 3). 
Q.E.D. 

Notice that (3.4) together with Rl ., R2. and R3. implies that for 

all x E H in a neighbourhood of 0 we will have 

A2(k,X(x);OX{x)) ~ 0 where X(x) = ~~l(x). This in turn implies 

that 

Now, consider the Kodaira-Spencer map 

What we have done above implies that gX is locally surjective. 

Restricting H we may assume gX sujective and that 

is versal. 

The corresponding Kodaira-Spencer distribution 

refered to as the fundamental distribution. 

v = v 
-H 

will be 



Proposition (3.5). Let be the subscheme of H defined by 

V = 0. Then for every point x E ~ , the formalization 

of at X is the prorepresenting substratum of the 

formal moduli g; = H1'(x(x)) of X(x). 

Proof. Since is surjective it follows that V = 0 defines 

the 0-th equicohomological substratum of ~. therefore of each 

Therefore ( 3. 5) follows from ( 2. 5). 
Q.E.D. 

R4. Assume from now on Jchat for every X E H X(x) _, satisfies Rl • , 

R2., R3., and the conclusion of (2.5). 

Consider the H-module {s }, '= o, ..• ,,l = 
't 

be the flattening stratification of Al(H,X;OX), 

k 
(see [M], Lecture 8), and let = 't s u1. =l s . 

't 't,l 

of S in its connected components. 
' 

be the decomposition 

Notice that S . are locally closed subschemes of H and that 
1:,1 

Put for every x E ~. with X E S . 
1:,1 

-
Tx = S . c,l 

Consider also, for any k-point x E g, the formal family 

I\ ~A 

TI ~ X 
X X 

1\ 
~ H 

-X 

where HI\= Spf(H/\ ), m being the maximal ideal of H corres-
-x m -x -x 

pending to x. 

As above we denote by X(x) the fiber n-l(x). Obviously the 

closed fiber of 
1\ 

nx is precisely X(x). 

Denote by H/\(x) the formal moduli of X(x), i.e. g/\(x) = 
1\ 

Spf(H (x)), and let 

·rc(x); X(x) 

with g(x) = Spec(H(x)) be an algebraization of the formal versal 



family 

Then, by formal versality, there is a smooth morphism 

such that 

1\ 1\ 1\ 
p : H + !! (x} x -x 

1\ 1\ 
n is the pullback of n (x) 

X 
by 1\ 

p • 
X 

H. Artins approximation theorem, (see [Ar]), implies the existence 

of an etale neighbourhood 

T](X): E!(X) + H 

of x E !!• and a dominant morphism 

p(x): ~(x) + £!(x) 

Notice that, in particular, this implies that 

vvhere !!o ( x) is the prorepresenting stratum of H ( x) • 

= T](x)-l(T ), and let V(x) be the restriction of 
-x Put T ( x) 

* Y)(X) (y) to T(x). _y(x) is a distribution on T(x). The fibers of 

the restriction of p(x) to !(x) are maximal integral submani

folds of y(x). Since p(x) is smooth, it follows that these inte~ 

gral submanifolds are all smooth. 

Put !?_(x) = p(x)-l(o). 

Proposition (3.6). Through every point x E H there passes a 

smooth maximal integral submanifold D -x 
D c T and 
-x- -x 

Proof. Let D = T) ( X ) ( Q ( X ) ) -x --

dim T -dim D • -x -x 

and glue. 

The next result is the main result of this §. 

for v. Moreover 

Q.E.D. 
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Proposition (3.7). Assume k = £, and let 

there is a unique way of glueing together the families 

X E s . 
1:,1 

in the category of analytic spaces, to form an analytic family 

such that, 

f • \ M is a quotient of \ lJ -,;, i s . 
1:,1 

( ii) all fibers X ( x) of n with x E S . occur as fibers 
1t 1 1 

of 11: 
1:1 i • 

Proof. Since, locally, ~(x) is a quotient of ~(x), it is clear 

that ~(x) is a quotient of T(x) by y(x). The rest is obvious. 

Q.E.D. 

Definition (3.8). The strict modality of X is the integer 

sm(X) =dim !fo· 

By the ,;-modality of X we shall mean the integer 

nn(X) = max{dim M . li=1, •.• ,t } 
-,;,1 1: 

Finally, the modality of X is defined to be the integer 

Notice that by construction, 

sm(X(x)) = dim T - dim D -x -x 

,;m(X) = max { sm (X ( x) ) I x E S } • 
1: 
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§ 4 APPLICATIONS TO ISOLATED SINGULARITIES OF HYPERSURFACES 

From now on X is going to be a hypersurface f, i.e. X= spec(A), 

A= k[x] , ... ,xn]/(f) where f = f(x1 , ••• ,xn) E k[x1 , ••• ,xn]. 

Being a very special complete intersection X satisfies all condi-

tions R1 ., R2., R3. and R4. of§ 3 except possibly the conclusion 

of (2.5). Moreover 

Pick a base for A l ( k, X; OX) represented by 

where as above, 

Put, H = k[t0 , ••• ,t 171 _ 1 ]. F = f+l:)l.iti E H[~] and A= H[~]/(F). Then 

X = Spec(A) + g = Spec(H) is the versal family with which we shall 

have to work. 

Proposition (4.1 ). The Kodaira-Spencer map 

g: 8H+ A 1(H,A;A) 

is given by 

o oF 
g(ot.) =class of at. 

1 1 

H [ x1 ' · · · 'xn ]/ oF oF 
in (F,ox' ... 'ox ). 

1 n 

Proof. By definition of g, it is the obstruction for lifting 

]A E AutH(A) to an isomorphism ¢:i;(A) + i;{A) where ik:H + 

HoH/r 2, k = 1,2 

§ 3. 

and I = ker{HoH + H} are defined as the v 's in 
k 

Now HoH/I 2 = k[t,u]/(ti~ui) 2 , i;(.A) = k[_!:,.!:!J[~JjFt' i;(A) = 

k[_!;,~][~JjF where Ft = f+l:;\.t., F = f+l:;\.u .. Obviously this 
u' . 1 1 u 1 1 

obstruction is simply given by the difference (Ft-F ) = l:;\. (t.-u.) u 1 1 1. 

in A1(H,A;Aoi/I2) = H[~J;(F,~~, ooe,~~) o I/I 2 . But then 
1 n H 

g = l:(class of ;\. ) • dt .. 
1. l 

Q.E.D 



}_ 

of X a the 

t.he CCHldi 

:t. 

'~ k [ t, 

-a.nd 

l 
i 

_, 

H, c:: H 

ll be 

not to 

R4, the con~ 

en ted 

'{.-;re contend that 

In. fact, 

t:o t.c'he local 

3 
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A H". x. ~ 

is the formal versal family of A(~) admitting a section. 

Recall the definition of the Milnor number of an isolated hypersur-

face singularity, ~(f) = . k[ [ x1 ~ • • • ' xn] ] o f o f 
dl.~ ( I (o xl , ••• , o xn)) • 

Let H c H. be the closed substratum of H. where ~ is kept 
~~t 

constant and equal to ~ =~(f). 

H c H • 
~o - -fl 

';' 'j ~ 
0 S' 

'irlhere F 0 

SU.LJ let F.,'"' 
.!:'\. 

() 
I 

' 
+ 

+0 

1 
·~· H ·~0 

! 

I 
-~ 

R 

at 



where R[ [ 

and R[ [ l l 
j J 

a regular s~~uence ~ 

are exact for N -

8 llpp{JSe t:J:lCtt- f7 

are constan.t 

quence for N - ~. 

By i 

of rank fact 

H~-flat of rarik ~'", thE,refore 

of 

of r<'lnk 

diagra1n above for 

""" 2 

:::;;; N < co 

Since 
oF 

{ox:}i=l, ... ,n is 

L. sequences in the diagram above 

(FR)N, whenever 

the left vertical sequence 

t:.o ·the terms of the same se-

is rje~tive for all N > N 0 • 

is R-flat. Having 

follm¥s that 

clear that 

r r l 1 
L L !,.J J 

all 

lS s~flat 

is 

is 

is also H0=flat 

and consider the 

sequences are 

exact, and since we knc;~<~ that the extreme left and the 

extreme vert.ica.l E~equences are exact 1 \fife find by diagram 

chas that~ f raa:r;s onto it;;;elf. But f E <.;~~:) so by 

Q.E.D. 

Now, ( 3. 7) k = c. 

Theorem Let f be an isolated b larity with ~ =~(f), 

collection of analytic 

faraili.e.s 

i -

con.t. tiS fi isolated singularities of the 

versal faxni .e ~~ f+' I 
i=;1 l 

is connected, 
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and IT . is not constant along any nontrivial subscheme of 
1:, ::L 

F lly$ the fl.-constant deformations of f correspond t.o a 

sub collection 

i=l, ..• ,m }. ,. 

't'his ju5t. ( 3. '1) together with ( -'L2) • Q.E.D. 

to the of deformations of iso-

t:.h weights 

are not 

. f, our first 
:1_) 

local 

l Put 
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g. to H = Spec(H ) . Then 
-f,i f1 

where 
H [x] 

A= ( f!-/(F )) 
f1 f1 S' F 

f1 
= f+ t xi! a- , is the versal f!-Con-I 

aEI 
f1 

stant family of isolated singularities defined by f. And 

is defined by 

oF 
= otf! = ~!!::., 

a 
aE I • 

f1 

Consider the Euler relation E of F , 
f1 

E = I ( deg a-1 ) t xi!.. 
- a-

aEI 
f1 

E defines a map 

H [ [ x] ~ oF oF H [ [ x] ~ oF oF f1 - f1 ____!! (1 - ...,.....1± ____!! 
E: (5X····'ox) + <ox , ••• eox) 

1 n 1 n 

by multiplication. 

Notice that, by assumption 

H [[x]];, oF oF 
ll - ___!!: (1 ( "' , ... , -"'-) as 

ux1 uXn 

Pick .2:Eie then 

on f!-constancy, 

H -free-module. 
(1 

{_~!!::.} aEI 

a \ A 
Ex- = L h rv A.! ..I:., h IYR EH • 

lEI ~ 
(1 

~ (1 

is a basis of 

Lemma ( 4 . 4 ) . V = ker g is generated by the vector fields 
-(1 1.1. 

0 a 
= aEI. 
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Proof. Obviously E is zero in therefore 6 EV . 
~ -~ 

Conversaly, suppose I g _£ EV , Then 

.fEI f ot.f ~ 
[l 

n oF 
I9 xf = I P . ____t: + p • F = 

n X. oF 

Jr i=l 1 oxi fl 
I (p .+ 

~ -1 l 
.L-j 

l •p)----1! -p•E. 
a. ox. 

l l 

Now 

oF oF 
p •E = Ih •ExE. for some h EH 

fL' 
modulo (~, ... ,~). a - a xl xn aEI -

r __ a 1 H [[xl]} OF OF 
Since is H -free basis for [l - --l: fl, 

l.~- I aEI an (ox·····~' [l l n 
follows that 

in 

in 

I h I h xf a aA-
aEI - _@EI ..:::::..t: 

[l 

therefore 

I h o 
aEI ~ ~ 

Denote by K = K(!) the matrix (ha, A)a;AEI, then by (3.5) for 

every point 

_ _t::_.t: ~ 

-r ( F ( !) ) = 11- rank K (!) 

sm( F {_!:)) = dim{~ J, rank K(1) = rank KUJ } 
-rank K(!). 

!lm(f) =max sm(F(t)). 
tEH -
- -!l 

it 

Notice that [lm(f) is the usual modality of f with respect to' 

the [l-constant stratum, under the action of the contact group. Put 

't" = min -r(F(!_)) min. tEH 
- -fl, 

r.b(f) = dim H , 
-!l 

the inner modality of f, 

then the main results of this paper are, 
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Theorem (4. 5). [kiD( f) = 

Theorem (4.6). (i) ~ ~ sm(F(~)) is upper semicontinous. 

(ii) "(F(!)), !Egf1 takes every possible value 

between ~ . and "(f) = f1· m1n 

Theorem (4.5) is a consequence of (4.6) (i). To prove (4.6) we 

shall have to study the matrix K(!) more carefully. Notice first 

that (4.4) together with (3.5) implies 

Proposition (4. 7). H0 = H/ot, where ot is the ideal generated 

by 

Proof. 

~·1 iff 

t , deg a> l . 
a 

He know that 

E is zero 

Ho = H /(h ~), 
f1 ~~ 

and E = I (deg 
aEI 

f1 

but h 
~~..@ 

i~ zero for all 

a-1 ) t a is iff t x- zero - a- a 
is 

zero for all a with deg a>]. Q.E.D. 

It follows from (4.7) that we may write 

H = k [ t ], a EI, deg a = 1 • 
0 a -

Now let A <A < ••• <A be the monomial basis 
0 ] f1 

degree and lexicographic order, i.e. such that 

iff either deg ~ < deg f or 

b = (~', ~ ) with a' < ~' . 
n 

deg ~ = deg ~ 

{ x~} ordered by 
- aEI 

and a= (a',a ), 
- n 

Remark ( 4 . 8) . ( i) E • A . is contained in the submodule of 
--------~--~ 1 0 oF oF 

H [[x, ... ,x ]] (~, .•. ,~) 
f1 I n uX] uX . n 

generated by 

{Ak ideg Ak>l } 
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a 1 ~2 an -2 
(ii) A.0= 1, A.ll = x 1 ••• xn 

(iii) duality: A.. •A. . = A . We shall write 
l. [1-l. [l 

(iv) EAi = 0 if deg Ai>deg All-min{deg AkJdeg 

From this it follows that the matrix K looks like 

r 

0 

Let Ml be the sub H -module of 
[l 

H [ [X] I ••• , X ] ]} 0 F 0 F 
fl n (~ ~) 

OX I 0 0 0 I OX 
1 n 

generated by the A.'s with deg ;, . <deg A -min { deg A.kldeg Ak) l } 1 
l. l. [l 

i.e. by the r first Ai's, and 

A.. 's with generated by the deg 
1 

sitting strictely above the face 

Notice that iff 

let M2 be the 

i.e. by A. > 1 , 
l. 

of f. 

Put 

sub H 

those 

and 

-module 
[l 

a: 
x-'s 

t. = t . if 
J (X ' I 

-J 
a:j r 

[lj = X- • Then { A.i } i=l is a basis for M1 , and {11 }r is a 
'""j j=l 

basis for M2 

With these notations we observe that K0 is the matrix associated 

to the H -linear map 
[l 

defined by multiplication. Before we proceede with the general 

theory, let us consider an example. 

Example (4.9). Let f = x 5+yl 1, n = 2. Then 

F (t) = f+t xy 9+t x2y7+t x3y5+t x2y8+t x3y6 
[l- 1 2 3 4 5 

+t x2y9+t x3y7+t x3y8+t x3y9 
6 7 8 9 

E = ~ 5 (t 1 xy 9+2t 2 x 2y 7+3t 3x 3y 5+7t4x 2y 8+8t 5 x 3y 6+12t6x2y 9 

+13t x 3y 7+18t x 3y 8+23t x3y 9) 
7 8 9 
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This is easily seen by inspecting the Newton diagram of f. 

al = 5 a2 

!l(f) = ·df) 

m0 (f) = 9 

sm( f) = 0 

r = 9, H = 
!l 

Now, put 

looks like: 

0 

0 

0 

0 

0 

0 

0 

0 

= 11 

= 27 

- r , 
kLt 1 , • •. 0 t 9 J 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

A 

0 

0 

0 

0 

0 

0 

0 

the flattening stratification 

B 

0 

0 

0 

0 

0 

0 

0 

11 

Ml~ 

* * 
A B 

0 0 

0 0 

0 0 

0 0 

0 0 

® (i 

® 

® 

@ 

~ ® 
@ ® • 
I 

@----@-@ 

* 

* 

* 

A 

\ 
5 

* 
* 
* 

-M 
2 

> 
SS•K -0 

s-i1t 1A * 
A 

0 

0 

0 

9 
B-Tft 1A 

A 

1 ~ "" of A (H ,A ;A), see§ 3, 
!l !l !l 

coincides with the rank-filtration of K0 , and it is easily seen 

that A = {21,22,23,24 0 25,26,27} is the set of possible Tjurina 
!l 

numbers with constant !l(= 27) in the neighbourhood of f. 

Moreover one calculates, and get 
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8 21 
= {.!:. E!!fliRk K0 (!_) = 6} = L!: = (tl I ••• ,tq) It] B-2t2A:J:0} 

8 22 = L!: E!:! [l I Rk K 0 '-:!:) = 5 } = b:.lt 1 B-2t2 A = 0, A:J:O or B:J:O} 

8 23 
= {!. E!! [l I Rk K 0 (_~) = 4} = L!:.l t 1 =t2 =t3 =o, t 4 =1=0 or t 5 :J:o} 

8 24 = {.!:_ E!! fll Rk K0 (!:_) = 3 } = {!.lt 1=t2=t3=t4=t5=o, t7=!=0} 

8 25 
= {!_ E!:! fll Rk K0 (!_) = 2} = {.!:.lt1=t2=t3=t4=ts=t7=o, t 6 :J:O or t 8 :J:o} 

8 26 = {.!:_ E!! [l I Rk K 0 (!:) = ] } = {!. It 1 = ••• =t s =o , t 9 :J:O} 

8 27 = {Q} 

and one gets the table 

't 21 22 23 24 25 26 27 

"t111 ( f) 3 3 2 0 0 

Thus 

[.tm(f) = 3. 

The nice properties of the matrix K0 becomes apparent if one 

restrict attention to the linear terms of K0 (!_). The correspond

ing matrix will be denoted L(!_). In fact 55•L(!_) looks like: 

I 
t1 2t2 3t3 7t4 8t5 12t6 J3t7 18t~ /,23t9 \ 
------ ----

I 
I 0 0 0 I 2t2 3t3 7t4 8t5 } 3t7 1 8t8 
! l _____ 

yt; / at5 13t7 \ 
I 

0 0 0 0 0 2t2 
I / 
I / 

0 0 0 0 0 I / tl 2t2 7t4 12t6 
j- - - - - - - - - I 

0 0 0 0 0/ 0 0 I 3t3 8t5 
/ 

/ 

0 0 0 0/ 0 0 0 
' 2t2 7t4 / 

/ ,_- -- --
0/ I 

0 0 0 0 0 0 0 I 3t3 

j 
/ 

/ 

/ 

0 0 0 0 0 0 0 0 2t2 
/ 

/ 

0 
/ 

0 0 0 0 0 0 0 t] 

Notice that L (!:J is symmetric on the antidiagonal. 



Now it turns out that this symmetry is, in a certain sense, a gene-

ral fact. So let us return to the case of a quasihomogeneous 

isolated singularity f with weights 

Put K0 ( t) = (h .. ) and let L (j:.) = ( R . . ) be the corresponding 
- l.J - 1.] 

matrix of the linear forms R. . of h. . . Recall that 
l.J l.J 

r 
E = Id. t. f.L., d. = deg f.L. -1 , and that EA.= J:h .. f.L •• 

l j~] l.J J 
Put 

l 1. l l l 

d.= deg A.-1, i = 1, ••• ,r. Recall also that the purpose of the 
1. l 

study of K0 (!::_) is to find the flattening filtration {s } 
1: TEA • 

[.L 

With this purpose in mind it is easy to see that we may assume f 

n a. 
has the very special form I x.l.. 

i=l l 
In fact any quasihomo-

genous -, o 0 e ,-, f v.ri th weights 1 will after a suitable coordi-
a1 an 

nate change, have the form 

n a. 
I X~ 1. + I k X~. 

~ a-i=l deg ~=1 -

Now change coordinates in the prorepresenting substratum 

H = Spec(k [t Jdeg a= l]) to obtain the required form. -o a 

Proposition (4. 10). With the notations above, 

(i) R .. = R . . 
l.J r-J,r-1. 

(ii) iij = dk(i,j)tk(i,j) 

(iii) k(ij)<k(i,j+l) and 

whenever j;;. j . = min { j, h .. :f:O } 
l l.J 

(iv) ji <ji+l · 

Proof. ( i) Since EA. = 
l. 

EA. A o = 
1 r-)(. 

k(i+1 'j)<k(i, j) 

and since 

Lh··fl·~o+h.of.L j<i l.J J )(. lA. r. 

A r-R 
v 

= llJt we find 



Since EA.. A. o 
1 r-A 

I h .. [L ~.9. is 
j < .9. lJ J 
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= EA. 0 11.. and since the lineqr part of r-)(. 1. 

of the form I *~ it follows that 
s<r s 

..II. •• = ..II. • • • ( • ) 
1 J r- J, r-1., 1.. e. 1 • 

(ii) and the first part of (iii) is clear. To prove the rest we 

need the following lemma. 

Lemma ( 4. 1 l ) • There is a collection of dis joint subsets J -~ of 

{11.1 , • • ., "-rL J. =1, ••• ,k. such that 

k 
( 1 ) A = { A. 1 , ••• , A. r } = U J and , 

J.=D J. 

( 2) J 0 = { 11. 0 }, J k = { 11. i 11 < deg for all j=l, ••• ,n} 

(3) Jt<Jt+l' i.e. for A. 1EJt' A.jEJt+l' will 

( 4 ) J t •J k-t 5:: J k 

( 5 ) I f AE A and 

A.. <A.. 
l J 

{11.•11.' }>J 
k 

(6) Let A.EA and suppose A.•Jt ~ Jk and {A.•A.' }>Jk for all 

A.'EA with {A.' }>It' then A.EJk-t+s for some s)O. 

Using this lemma 1 it is not difficult to see that 

k 
j.=:tf(U 

1. 

v=k- ..R.+l 

J) if A.i EJ Jl.. 

This implies (iv) and k(i+l, j)<k(i, j), thus (4.10). 

Proof of lemma. Suppose by induction that we have already construe-

ted J 
t-] 

and 

minimal among those with 

those with {~}<Jk-t+l . 

Let J = {A.' EA I A.' • ~EJ 
t k' 

with the required properties. Let AEA be 

{A}>Jt-1' and let 
~ 

A.EA be maximal among 

Because of (5) and (6) we find A.•~EJk. 

A.< A.' } . Choose AEA minimal among those 

with {i}>Jt and put Jk-t = {A.'EAjA.·<~, A.•A.'EJk' A.' •i>Jk}. It is 

easy to check that Jt•Jk-t c Jk and that (5) and (6) also ho!d. 

Q.E.D. 
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Example (4.12). If f = x 5+yll we find, 

A = { A] ' • • • ' A9 } = { ' y' y 2 ' X ' y 3 , xy , y 4 ' xy 2 ' X 2 } 

Jo = {1 L Ji = {y}, J2 = {y2,x}. J3 = {y3,xy}, 

J 4 = {y \ xy 2' x 2 } • 

Notice that K0 in this case looks·like, 

*Jo 

.i:t J 1 

J:fJ 2 

l:tJ 3 J k = 4 

i=tJ 4 

--
# J 4 #J 3 #'J2 

Remark (4.13). If we knew that #J . .:; #Jk . for all O<i~k-1, then 
]. -]. 

the maximal rank of L {_-!;;) would be 2 . Jk#J i + #J k/2 where 
]. 2 

Jk/2 = ¢ if k/2t~· In general this is, however, not true. 

Proof of (4.6). We first prove the second part, and as a beginning 

we shall concentrate on the computation of the rank of the linear 

part L (_:!:) of K0 {_!;). 

So let's compute the determinant of the minors of L(!)· 

We shall use ( 4. 1 0) • In particular, it follows that any minor of 

L(_:!:) has the form, 

H (_!J = ( d ( . . ) t ( . . ) } a l.,J a l.,J 

where a ( i, j) E { 0, l , ... , r}, i, j = 1 , •.. , m, d ( . . ) = deg A ( . . ) -1 :f0, 
a l.,J a l.uJ 
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if a(i,j):fO, d 0 = 0, and where 

(1) a(i,j-1):f0 implies a(i,j)<a(i,j+1) 

(2) a(i-1,j):f0 implies a(i,j)<a(i-1,j). 

Lemma (4.14). Hith the notations above, 

det M(!):fO if and only if 

a(i,i):fO for all i = l, ••• ,m. 

Proof. Suppose a(i,i) = 0 for some i, then M(!) has the form 

i 

~i 
i - 0 •••• 0 * •• ~ •* 

• 0~ 

\~ .... 6 ~/ 
therefore det M(!) = 0. 

Assume a ( i, i) :fO for all i = 1 , ••• , m. Use induction on the 

number of a(i,j)=tO. Let s = min{a(i,j) la(i,j);t:O}, and aesume 

det r>i(!)t =O = Q. 
s 

By induction M (.!:) t =O has a diagonal element a ( i, i) = 0. This 
s 

implies that M(!) has the form 

i 

i -

(~): 
0 oeeo 0 d •t *••••* 

: ::::: ·/~) 
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where A and B are minors of L(!), and therefore has the same 

form as M(t), By induction det A*O, det B*O, therefore 

det M{j":) = Q.E.D 

Now, it is clear that (4.10), (ii) together with (4.14) shows that 

the rank of K0 (~) is the same as the rank of L(~). 

Moreover, if we agree to call "a diagonal" any string of elements 

of a matrix paralell to the diagonal, we may prove the following. 

Lemma ( 4. 1 5) . The rank of L C!:) is the length ~ of the maximal 

diagonal containing no zeros. 

Proof. From (4.14) we deduce 1<rank L(t). To prove the inverse 

inequality, let M(t) be any mxm minor of L(!) gotten by pick-

ing the i 1 'th,i2 'nd,.,,,im'th rows and the j 1 'th,j 2 'nd, ..• ,jm'th. 

Column of L(!). Using (4.10) and (4.14) we find that det M(t)*O 

implies that 

for 1 <i <L . 
l 

~. *0 for 1 < i < i , 1. 1 *0 for l < i < i 1 , ... , 1. *0 1r m 1,r- m- 1,r-m 
Therefore there exists a diagonal of L(!) of length 

m containing no zeros. Q.E.D. 

The second part of (4.6) now follows. In fact let's consider the 

maximal diagonal of K0 (!) containing no zeros. Among the k(i,j) 

for which occur on the corresponding diagonal of L(!), 

let k(i 1,j 1 ) ~ = 1 , ... ,p be the smallest. On the subset 

T1 = {xE~~~~1,hij(x) = 0 for l <i1 <i, 1<j<j1 } the rank of K0 (!) 

has decreased by 1. The linear part of K0 (!) restricted to T1 

turns out to be L(!) restricted to t 1= ••• =ts=O where 

k(i 1,j 1) = s, 1 = 1, ... ,p. We may therefore continue the proce

dure, thus proving {4 .6) (ii). 

To prove (4.6) (i), we need the following lemma. 
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Lemma (4.16). Let O~p~max{rk K0 (!)} = p 0 , then 
t 

It follows from (4.10) that (4.16) is a consequence of the corre

sponding statement for the linear part L(!). Therefore (4.16) is 

proved if we prove 

Lemma (4.17). Let a(i,j)E{O, .. .,r}, i,j = l, .•• ,m satisfy 

(1) a(i,j+1):J:O implies a(i,j)<a(i,j+l) 

(2) a(i-1,j)=!=O implies a(i,j)<a(i=1,j) 

and let d = 0 d = deg " -1 0 ' s t-"s 
as above. Consider 

H(t) = (d ( .. )t ( .. )), and assume det M{:~)=t=O. Let I be - a l,J a l,J p 

the ideal genera ted by the ( p+ 1 ) -minors of M (!J . Then 

ht I ?;m-p. 
p 

Proof. Use induction on m and on the number of different 

( t ( . . ) 's involved in the matrix. 
a l.,J 

Let s = min{a(i,j) la(i,j)=t=O} and let U be a component of 

V(I) ={tEHj'rfnEI 1 ,E(t) = 0}. p -- b:. p -

1. case. U c V(t) = {tit = o}. Consider the sub-matrix - s - s 

(d ( .. )t ( .. ) )1 . 1 2 . obtained from M(!:) by deleting the a l,J a l,J ~l~m- , ~J~m 
th m row and the 1st column. The conditions (1) and (2) together 

with the assumption det ( d ( . . ) , t ( . . ) ) :J:O 
a l,J a l.,J 

imply that s=t=a(i,i+l) 

i = l, ... ,m-1. Therefore det(da(i,j)ta(i,j))J~i~m-l, 2 ._j._m*O, and 

we may apply the induction hypotheses. 

2. case. u ,i V(t 5 ). It follows from (1) and (2) that rk ~H.!:}>.R. 

for all t with ts=l=O, where R is the number of times t 8 
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occurs in M(!), see fig. In particular this implies ~~p. Con

sider the (m-Y.) x(m-R) sub-matrix M0 C:!=) of M(_!) obtained by 

deleting the rows and columns in which 

* -~l t * s 
0 * * * 0 0 0 t * s 

0 0 * 0 * * 
H(!) 0 = 0 t * s 

0 * 0 * 0 * * * * 0 
0 0 0 0 0 

() ..., 

* 0 

t 
s 

* 
t 

0 
0 
0 
0 

s 

occurs. 

* 
* 
* 
* * 0 t -J<.-

s 

For tstO it is easy to see that rk M(!) ~ R+rk M0 (!), therefore 

Note that since det M (j:) =1=0, all t 
s 

occuring in ~1 ( t) sit under 

the diagonal, thus det H0 (t)=1=0. Horeover M0 (!) does not contain 

t . 
s 

We may therefore apply the induction hypotheses, and the lemma 

is proved. Q.E.D. 

This ends the proof of theorem (4.6). 

In general it seems to be difficult to obtain good formulas for 

~(f) depending only on the weights of f. However, in the case 

of curves we have some partial results. 



- 36 -

Proeosition (4.18). Let f a+ b = X y then f!( f) = (a-1) (b-l). 

Moreover, we have 

(i) For b = ra the maximal rank of K(!) is 

] 
-(a-2)(b-4) a even 4 
] 

odd - ( a-1 ) ( b- r-4) a 4 

l(a-3)2 
4 

a odd 

{ ~ ~ ) \ ......... For b = ra+1 or b = ra=1 the maximal 

l( a-2 )( b-3) 
4 

1 
4 ( a-l ) (b-r-3) 

(iii) For b = ra+2 the maximal rank is 

l( a-3) (b+r-2 )+r-1 
4 

] 
4(a-2)(b+2r-2)+2r-1 

(iv) For b = ra-2 the maximal rank is 

t ( a-2 ) ( b-2 ) - l 

1 
4(a-1) (b-r-2) 

Proof. Will not be given here. 

a even 

a odd 

a odd 

a even 

a even 

a odd 

and 

and 

rank 

r;..2 

r=l 

is 
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