SUBTRANSVERSALITY
AND BLOWING UP

by

P. Holm and 8. Johannesen

The notion of subtransversality is due to A, AndreoQtti; it was
introduced in [1] and further studied in [2]. The definition is
algebraic rather than geometric and goes well with certain standard
operations in analytic geometry. In the present paper we show that
in the smooth case subtransversality, or rather subtransversality
after blowing up have a simple geometric meaning. (theorems 1.1,
1.2 and 3.1). In particular it generalizes and elucidates the
results of section 19 in [1].

This paper extends and includes the results of [2].






l. Preliminaries and statements. We recall a few concepts from

[1]. Let X and Y be smooth (i.e. C -) manifolds, dim X > O,

and let A and B be closed submanifolds of X and Y. We
denote by C (X,A;Y,B) the set of smooth maps g:X » ¥ such that
g(A) = B. This is a closed subset of c (X,Y) in the Whitney
topology (= the fine C ~-topology).

Furthermore, denote by C;(X) the local ring of germs of
smooth functions at x ¢ X. An ideal I E_CZ(X) is regular of
codimension k if I has kX generators hl’hZ""’hk such that
dhl/\.../\dhk # 0. This requires I to be a proper ideal of CZ(X).
In addition we consider I = dZ(x) to be a regular ideal of codi-~
mension k for any integer k. Then V(I) = {x € (X,a)|h(x) =0
vh € I} is the germ of a smooth submanifold of X at a of codi-
mension k (empty if I = dZ(X)). Clearly a mapping g:X » Y
is transverse to B at a € X if and only if d;(x)-g*I(B)g(a)
is a reqgular ideal of codimension k, where %k is the codimension

@

of B at g(a) and I(B)g(a) < C4(a

)(Y) is the ideal of smooth
germs at g(a) vanishing on B.
Next, let g € C (X,A;Y,B) and let a € A; then

C:(X)-g*I(B) c I(A)_ . Consider the conductor ideal

gla)
cg(I(A)a,I(B)g(a)) g_ca(x). By definition h ¢ cg(I(A)a,I(B)g(a))

if and only if h-I(A)a = C:(X)-Q*I(B)g(a). We say that g is

—

subtransverse to B at a if cg(I(A)a’I(B)g(a)) is regular of

codimension equal the codimension of B at g(a), and strongly

subtransverse to B at a if ¢ (I(A) ,I(B) ) + I(Ar) is
g a g(a) a
reqular of codimension equal the sum of the codimensions of A
and B at a and b.
Finally, let X be the blow-up of X along A and o:X » X

~

the collapse mapping. Then X is canonically a smooth manifold



with & = c—](A) a codimension one submanifold, [3], §3. A mapping

g € Cm(X,A; Y,B) is (strongly) o-subtransverse to B at a if

g o o 1is (strongly) subtransverse to B at any point of d-l{a}.
The geometric content of these definitions is given by the

following

Theorem 1.1. Let g € C (X,A; Y,B). Then the statements

(i) g is strongly o-subtransverse to B at all points of A

(ii) Ng is transverse to OB outside OA

are equivalent.

Here Ng: NA » NB is the normal bundle mapping, and OA and OB
are the zero-sections of NA and NB. The theorem follows from
Proposition 2.2 and Theorem 3.1 of section 2 and 3.

We will consider in more detail the case where g is a
product mapping fxf: NxN » PxP and A and B are the diagonals
AN and AP respectively. The normal bundles NA and NB can
then be identified with the tangent bundles TN and TP. In this

case we have the following sharper result.

Theorem 1.2. Let £f:N » P Dbe a smooth mapping. Then the statements

(i) fxf 1s o=-subtransverse to AP at all points of AN.

(ii) f£xf is strongly o-subtransverse to AP at all points of AN.

(iii) Tf is transverse to OP outside ON

are eguivalent.

Here T£:TN » TP 1is the tangent bundle mapping and ON and OP
are the zero-sections of TN and TP.

The theorem is a corollary of Lemma 2.4, Proposition 2.5 and
Theorem 3.1 of section 2 and 3. Theorem 3.1 gives yet another

characterization of o-subtransversality.
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2. Double points and residual singularities.

Let W = W(X,A) be the blow-up of X along A. Thus W is
obtained from W by suitably replacing A with PNA, the projec-

tivized normal bundle of A, see for instance [3], §4. Set

N-A = W] and PNA = W2' so that W Wl U W2.
We construct a smooth manifold E = E(X,A; Y,B) over W
depending functorially on (X,A) and (Y¥,B). First, set

E=E, UE where

1 2
E]={(x,y)[xEX—A,yE v}
E, = {(x,1,v,0) | x € A, vy e B, & ¢€ PN A, ¢ € Hom (x,NyB)}.

Then there is a natural projection m of E onto W defined by

)

n(x,y) = x (on E,

t{x,2,v,¢) = (x,2) (on E,)

Secondly, for every g ¢ Cm(X,A; Y,B) there is an induced mapping

A . . .
g: W~ E, which is a section of =, defined by

§(x) = (x,g(x)) (on W,)
9(x,2) = (x,8,9(x), Ng|L) (on W,)

When Y is a point and B=Y, then E(X,A; Y,B) = W(X,A) (as a
set), and n is the identity mapping.
We need a smooth structure on E. Set dim X = m, dim A = r

and dim Y = g, dim B = s. First notice that El and E2 are

naturally smooth manifolds of dimensions m+q and (m-1)+g over

the smooth manifolds w] and W2. In fact El = (X-A) x Y. As for

E2 let LNA be the tautological line bundle over PNA, and

Hom(LNA, NB) the corresponding vector bundle over PNA x B; then
E, = Hom (LNA, NB).

Lemma 2.1. E = E(X,A; Y,B) has a canonical smoocth structure




, such that = € C (E,W) and

compatible with that of E. and E

<D
Y

A ) CH X
g € C (W,E) for any g€ Cc (X,A; Y,B).

In particular E(X,A; ¥,B) = W(X,A) (as_a manifold) when Y

is a point and B=Y.

gr x {0} = X and

!
W“{
. p=3
<
]
W
Q
>
i

Proof: Consider the case X =

B = gs x {0} = Y. Define A e E, | < k<mr, by A=A, UA.,

where

Mg = lny) € By | x 0% 0

Aoy = {((z,0,v,0) € E, | 2y % 0]
and (Q!,Q@u, mer} are homogeneocus coordinates for 2. Evidently
E=A U ...UBA _

Next @yt Ay > gm x gm—r«l x gq (1 < k¥ < m-r)

by
Jk(xyv‘ { % '”;y“py“fxr+k) (on Akl)
ak{xgz,yg@) = {xgxgyﬂ,¢(z%k,Ga.,xmar’k)) (on Akz)
where =x = (x',x") ¢ gf % merg y o= (y',y") € gs x gq—s and
Lo = Ki/ﬁk for 1 < i < m-x.

Clearly 0y ig injective for all k. We topologize Ak so
that oy is a homeomorphism onto its image. Then Ak N AR is an
open subset of Ak and AR for each k and 2, as 1is quickly
checked, and the topology induced by Ak on Ak N AQ coincides
with the topology induced by AK since the mappings %, o a;l are

continuous and therefore honeomorphisms. Consequently there is a
unique topology E such that each space on AP occurs as an open
S

subgspace of E. It is easy to s=e that E is a Hausdorff space.



We show that ak(Ak) is a (mtg) - dimensional smooth

submanifold of R™ x ™ F ' x gY . set U, =R gﬁ"r'l x RY
-r-1
where gi t is the affine open coordinate set
- _m=r=] . m-r-1
fLeep | L, # 0} in B - Then «, (A ) = U, for
k=1,...,m~r; in fact (£,L,n) 1is in ak(Ak) if and only if
Lk ¥+ 0 and gr+i Lk = gr+k Li for | < 1< m-r.
. m=r-1
Define Gk: Uk > R by ek(E,L,ﬂ) =
(Er+l_legk ""'gm—Lm—r,kgk) where the k-th component (=0) is
omitted. Then 8 is a submersion onto gm-r-I. Since

k
...] . . .
ak(Ak) = ek {0}, it follows that ak(Ak) is a smooth submanifold

m m-r-1 . .
of Uk' hence of R X r X gq, of codimension m-r-1.

o

k

to Ak' We now need to show that Ak and A,Q induce the same

smooth structure on the open set Ak N Al for any two k and 1.
-1
But this holds since the mappings %, 0 &y are smooth and there-

U e U A receives a smooth
1 n-r

By means of « we pull back the smooth structure on ak(Ak)

fore diffeomorphisms. Thus E = A

structure in which A,,...,A —r are open submanifolds.

17 m

For g =0, i.e. B =Y = {0}, we clearly get E = W.
(Alternatively define the smooth structure on W(gm,gr) as that of
E(gm,gr: 0,0).) Throughout the paper we shall use primed letters

Aﬁ,aﬁ,... in the particular case E =W, i.e. primed letters

refer to W. Then we have a commutative diagram

k
Ak gm gm—r—l « gq
T pr
N lm_ iy
Al s 5n < P r
showing that =n is smooth on A ,l < 1 < m-r. Thus =n is smooth

(on E).



Finally we need to check that %:W > E 1is smooth for smooth

g. Obviously it suffices to check this at a point (x,2) € W Let

5
k Dbe such that (x,2) € A'. We have %(Aﬁ) = A, and therefore a

map -ak(Ak) > (A ) defined by the commutative diagram

"x

Ay T o (ag)

Extend <, to a mapping T :U! » U in the following way: Write
S

k' Tk k
m-r
= 1 < i< g-s,
I ps(8) jil €r+jGij(§) . i< g-s
I d0g .
with the G,.(g8) = [ ST (e tem) at  for
1] 0 0X_ ., =+
r+]
r m=x ags+i
£ = (£',E") € R" x R , such that G,.(f) = (£) when
= = 1] 6x“+.
r+j
EY = 0., Now set
m-r
T(E,L)=(EL (E)I"'I (g): L, G (E)I"'I : (g))
k g g le jk le Jk a-s, J
Then Tk extends Tk as claimed. Since Tk is smooth, so is Tk.

Consequently 3 is smooth.

This concludes the proof in the affine case X = gm, Y = gq.
The extension to the flat case, where X and Y are diffeomorphic
to §m and gq, is by transport of structure; the result is easily
seen to be independent of the choice of diffeomorphisms. The
extension to the general case is then by natching over coordinate
neighbourhoods in X and Y, thereby constructing the germ of E
along Ezcompatible with E,, and joining the result to E,. The

1 1
procedure is straightforward. We omit further details.



Remark !. By construction E| and E, are built in as submani-

folds of E. Since El is an open submanifold, E2 is a closed

submanifold of E.

2. There is also a smooth projection =n,:E > Y defined by

2
mo(x,y) =y (on E)

WZ(XJ/QIYICb) =Yy (On E2)

More symmetrically we have the smooth projections
™ T2
X ¢«— E — Y

where m;, =0 o 7. Thus the extension % of g fits into the

commutative diagram

A
g
W— E
o m
[
X » Y

We next define a special submanifold 2Z of E, Let
z = Z| U Z2, where

zZ, = {(x,y) € E, | v € B}

N
]

, = {(x,2,y,0) € E, | ¢ =0}

Then Z < E; we claim that Z is a closed submanifold of E. First
notice that 2 n E] = Zl is certainly a closed submanifold of El'

If a € E, is in the closure of Z, then a ¢ E(U,U N A; V,V N B)
for suitable coordinate systems (U,4) and (V,¢) in X and Y
such that ¢(U n A) = R x {0} and ¢(vn B) = R® x {0}. Thus

a €z 1if z2 n E(U,UN A; V,V N B) is closed in E(U,UN A;V,V N B).

Moreover, Z 1is a submanifold of E locally around a if

Z N E(U,UN A; V,VN B) 1is a submanifold of E(U,UN A; V,V N B).



Consequently we are reduced to substanciating our claim in the
affine case X = gm, Y = gq, A = gr x {0} ch and

B = gs x {0} = Y. Again, in the affine case it suffices to show
that 2 n Ak is a closed submanifold of Ak for k=1,...,m-r.

X

Let p: m m-r-1 a ., 5q—s

1=
o
=

be the projection to the last g-s
cordinates. It is quickly checked that p | ak(Ak) has constant

rank g-s, i.e. that p o e has constant rank g-s. But

ZNA = (po a) {0}, and so Z n A, is indeed a closed submani-

fold of Ak'

Notice that 2 is a closed submanifold of Z. This follows

2
by the same arguments as above if we use the projection

m - om-r-l « RS » Bq-—s+l

Kk:

]
b}

defined by

M8 ) = (8 )

:r+kl. uq_s+]’oo-,uq
instead of p.
We have the following characterization of the maps

g € C (X,A: Y,B) with % transverse to Z,:

Proposition 2.2. Let g ¢ ¢ (X,A; Y,B) and w = (a,r) € W2‘ Then
at

g M Z, at w Aif and only if Ng M Op at 2-{0}. Moreover g Z,

(on W) if and only if Ng O, outside O,.
The first statement means that Ng: NA - NB is transverse to the
zero-section OB < NB at v € NA for some (hence any) non-zero
vector v in A < NaA.

Proof: Since %(W]) N Z,= ¢, we obviously have ) Z, on W, . The
second statement in the proposition therefore follows from the
first.

Assume w = (a,l) € W, and set t = rank(Ng)a. By restricting



to suitable coordinate patches around a and g(a), it suffices to

m

consider the case X =R, Y =RY, A = Y x {0} < x,

=~

B = R® «x {0} = ¥, a =0, gla) = 0. In fact we may assume the coor-

dinatisation at a and g(a) performed such that

g = (91'92): R™ - gs x gq—s with g](O) = 0 and

92(X) = (xr+],.--.x ¢ (x)),

r+t’
where ¢:§m > gq—s—t is a smooth mapping such that ¢ (A) = {0}

and D¢ (0) = O.

Now, let v = (v',v") € gt x gm—r-t be a non-zero vector and
m-r-1 -r .
L€ B =P NO gm the line spanned by v. We have
3(0,2) = (0,2,0,Ng(0)| 2) with
(1 0
Ng(0) = | &

Thus Ng(0O)v = v' and so

(i) §(0,2) ¢ Z, if and only if v' # O.

Suppose V' = 0. With notations as before choose k such that
! - TR Ay \ B . . N . q—s+l
(0,2) ¢ Ak' then g(0,2) ¢ Ak' Recall that Mc © @yt > R
. . B -1
is a submersion and that Z, N A = (A, o «.) {o}. Thus
A
g h z, at (0,2)
- AL A g-s+l . .
<=> A\ o0 og: A >R is submersive at (0,2)
= ° U 1 q-S+] . . f
<= Ao Ty o ak(Ak) > R is submersive at ak(O,l)
<=> A, 0o T, o i! : a!(A') ~» Rq—S+I is submersive at a.(0,%)
k k k° "kk = kT
Here 0t ak(Ak) > Uk is the inclusion mapping,
lk Tk Kk S~
e (By) = Uy — Up— R
| o
m-r-1

R



Consequently we want to determine the range of

sy ' : 2y ' ' - |-‘
D(r, o Ty o© 1k)(ak(0,1)). Since 1k(ak(Ak)) 0L {0}, we have

range le(ak(O,J?,)) = ker Dek(ak(O,Jl)). with

ak(O,R) = (0’(V]""'Vm—r))° Now Dek(ak(o,k)) has the matrix
block form
o I - Vk 0O O
o o0 - Vk I O
where as usual I means an identity matrix and O a zero matrix. Vﬁ
and Vi are the column matrices
1,x Vr+1, %
. and .
Vk—l,gJ t@rr,k
where v, = Vi/vk' (Recall that vy * 0 since (0,82) =
(O’(Vl""'vm—r)) € Ay.) In particular Vik T ot T Vex T 0
since v' = 0.

It now follows by straight forward computation that range

D(xk 0 Tk ) iﬁ)(ai(@,l)) is spanned by the t standard basis

\ -s+ .
vectors e2,...,et+l in gq s+l together with the r vectors

(1 < i< r)

(0,0 o, T v ——&—(o) Ny 6—2—(4)—‘31?’5—"‘(0))
et 'j=t+l jk 6xiaxr+j '...’j=t+l jk axiaxr+j
and the vector
m-r m-r 62¢|
m-r m-r 62¢

V. V.
i=t+l j=t+] ik Jjk axr 0x



We therefore have

(ii) %(0,2) ¢ 72, and g M Z, at (0,%2) if and only if the vectors
2 g 2
mgr @2¢] mgr d2¢ et

(0,0,...,0, V. - (0), ..., V. ST )
J=t+] 3 axia“r+j J=t+1 ] axiaxr+j

for | < i < r form a set of rank g-s-t in 5q-s+!.

To complete the proof of proposition 2.2 we now appeal to the

following elementary

9,R® x {0}) be a mapping of

Lemma 2.3. Let g ¢ Cm(gm,gr x {0} R,

1]

- . . . oM s
the form g(x) = (g](x), Xr+l""'xr+t’¢(x)) with g,: R > R7,
v: B > BT°7% such that g,(0) =0 and (" x {0}) = {0},
D¢(0) = 0. Let v = (v',v") Dbe a non-zero vector in the normal
space No(ng{O}) = @txgm—r_t,
Then Ngh O at (0,v) ¢ N(QIX{O}) if and only if
R™x{0}
either
(1) v' £ 0 (then Ng(0,v) ¢ O )
—_— s
R™x{ 0}
or
(ii) v' = 0 (then Ng(0,v) € O ) and the matrix
R%x{0}
m-r 62¢I m-r 62¢{
, Vj (0)... ) vj (0)
1= o =+ .
j=t+l1 ax]éxr+j j=t+l axrbxr+J
m-r 324 m-r d2¢
v a-s-t (0).. y v a-s-t (0)

‘ R e Tista i e
j=t+l 0% axr j=t+l bxrbxr+j

1 +5

has rank g-s-t.

The proof of lemma 2.3 is left to the discretion of the reader.



We now consider the case where g is a product mapping
Exf: NxN » PxP and A and B are the diagonals Ay and Ap-
. . A
For brevity we dencte the mapping g: W-> E by on We then have

the following

Lemma 2.4, Let £: N > P Dbe a smooth mapping. Then fA h z on i,

on W,. Moreover fA M Z, on W if and

if and only if fA 0 Z2 on 5 reover 9 2

only if £ f 2, (o

©
]
=

Proof: The last claim is obvious since fA(W]) N 22 = ¢,

Let (a,t) € W, and assume that fA{a,X) € Z,. By suitable

n

coordinatisations we may assume N =R, a = 0, P = p, f(a) = 0.

I

li

Using the diffeomocrphism Bos R xgl > gnxgn defined by

un(x,y} (x,y=x%x), we may further identify the diagonal A n with

]

el e s ; - pP
A = R 'x{0 and similarls A with o (A = R*x10}!. The
bl ) = B%{0) arly & o RORES D

il

n_.n o)

X >

product mapping £x£f: P is then identified with

i
e

1

xR

i

g =p_o (fxf) o , which is given by g(x,y) = (£f(x), flx+y)-

p i
f(x)).

©

fA M z at (0,2) if and only if
P

We know that

3 8 o ] ¥ > 3 = T " 8 o 2
p o Tk 0 dys ‘“k(Ak) R is a submersion at ak(O,i) Since
A

p = pry o Ay where pro: gxgp > gp is the projection, this is

.
§

equivalent to A, o T, o i; being transverse to K = Rx{0} = gxgp

k "k
at ak(O,i).

We show that T.Kc< range D(A,_ o T, o ii)(aé(o,k)). Thus if

] k k
A L ] 5 : B
f2h 2z at (0,2), then M o T, 0o ip is a submersion at ak(O,R)
A
and so £ N Z at (0,2

2



As usual let {R]gq“gfﬁ ) be homogenecus coordinates for 1 and
set ljk = Rj/lk when Q} + 0, y=1,...,n. Define the smooth

curve c: <=cg,e> > aéiﬁg} by elt) = (=L, ,...,=

Jki i
2 1Y: +then <(0) = «f{0,2). Sin
tlnk,Ztlik,aﬁmgétﬂﬁk§ug, ~hen <(0} ak\bg,} Since
i i P
. { LY o= (¢ ¥ 1 reL {z 1 o
)\k O Tkk(?;; 7 ((jk!_;:,g 3}{ é 5}{% ';F; +S§ )dS)
. J—t 4
for & = (£',2") € BxR", L, *+ 0, we find
n b
c g . T r O0x =
kk ) 'I‘k o iy o c(t) {2t;ji§ ij é P {(t(2s 1)(£!k,,,.,2nk))ds)
From this we get
4 (A, 0T, o ilo 2)(0) = (2,0 0) € ToK
ar My o ko &ko o) = (2,0,..., 0
which confirms that TQK sits in range of
L
D()xk 0 Tk o ié}(aé 0,2)). Thus £ 0 Zg on W2 if fA f 2 on W2.

The converse 1is of course trivial.

Using lemma 2.4 we can now give the following characteri-
sation of the smooth maps £: N » P such that is transverse

to Z.

Proposition 2.5. Let £: N » P be 3 smooth mapping and w a_point

of W. Then & f Z at w 1if and only if

(1) ExE N Ap at w, in case w = (a,a") € W,.

(ii) T£ O, at 2-{0}, in case w = (a,1) € W

The second statement means that 7Tf: TN » TP is transverse to the
zero—-gection OP = TP at v ¢ TN for some (hence any) non-zero

vector v in £ < T N.



Proof: The case w ¢ W] is trivial, and the case w ¢ W2 follows
from proposition 2.2 and lemma 2.4 when we identify the normal

bundles NA and NB with the tangent bundles TN and TP.

3. Subtransversality. The purpose of this section is to prove the

following result.

Theorem 3.1. Let g € C (X,A; Y,B). Then g is oc-subtransverse

to B at all points of A if and only if % N 2 on Wo and

strongly o-subtransverse if and only if % h z

2 —_—

Proof: Let (a,f) € W and b = g(a). Again, by suitable coordi-

2
. : m a r _
natisations we may assume that X =R, Y = R%, A = R x{0} = X,
B = R°%{0} = Y and that g is of the form g(x) =
. . . s . ol g-s-t
(gy(x)e x_yveerx o, 0(x)) with g;: R* > R,¢: R > R

smooth mappings such that g,(0) = 0, ¢(A) = {O} and D¢ (0) = 0.
1

Let (ll,...,km_r) be homogeneous coordinates for £ and
P i m-r-1 . . .
assume Rk ¥ 0, i.e. & € gk . Define the projection

s, :R X xgq > R by sk(E,L,u) =&k and let

Sq xB > R be equal s, when q = 0.

Then s.' o i' o ai: . > R is a submersion, and W, N A/ =

k 2 k
(s! o i! o a‘)—l{O}. Therefore I(Wz)(0 2) is the principal ideal

generated by the germ of si o) iﬁ o) ai at (0,2).

- —_—r—] -
Now let ¢: BT » R?T™® ana p: R™p™ © xRT s g97°

g

be projec-
tions to the last g-s coordinates. Recall the commutative

diagram

A
g
—_—

— o
a



The ideal I(B)O is generated by the germs of ¢l""'¢q—s at 0.

The pullback by the mapping g o ¢ 1is therefore generated by the
A

germs of ¢j °o T, 0 g at (0,2), 3 =1,...,9-s.

Let I gmxgmrr—lxgq - gq be the mapping
r. (£,%,p) = (p',&_,.p") for = (p',p") € RRY®, 1 < x < m-r
k e A W W l=r+kl W | o B = = 7 N N e

Since n2| A, =71, 0 i o a , we have

A [ . A= 20 ] O} ]
d o m, 09 | Ak—(skp) o o a o g (sk o iy o ak)(p 0 Tko ig o ak)

with Tk as before. The conductor Cg(I(Wz)(O,R)' I(B)O) is

therefore the ideal generated by the germs of pj o) Tk o ié o) aé

at (0,2), j=1,...,9-s.

-r— -5+ . .
Finally, let A, gmxgm r l><Rq > RIS ! be the projection

k
- " - " s ,nd-s
Mg 2, u) = (8 ,p") for p o= (p',p") € R'XR™ ~. Then
is the ideal generated by the

cg(I(W + I(Wz)

2)(0,1)’1(}3)0) (0,2)

(| ] 3 = -
germs of xkj 0 Tk o iy o ay at (0,2), j 1, e0e,q9=-s+l.

For the first part of the theorem: Suppose 2, * 0 for some

k

k < t. On Uk we have

m-r 1 g
+k

P (T (8,L)) =] L. [ ===
k' "k j=1 jk 0 6xr+j

(g',tg")dt = 1

Thus cg(I(Wz) I(B)O) contains the unit element in

(0,2)°

C?O JL)(W), and so by our convention is regular of codimension g-s
7

at (0,%). But we have also %(0,2) ¢ E, -7, =E, - % (p.9

statement (i)).

Suppose on the other hand &, = ... =2 0. Then

1 t
Cg(I(WZ)(O,R)' I(B)O) is regular of codimension g-s if and only if
p o Tk ) iﬁ is a submersion at aﬁ(O,x). But the last condition
is equivalent to % f z at (0,2):; this follows by an argument
analogous to that for the case % ) 22 on page 9.

For the second part of the theorem: Suppose again Kk ¥+ 0 for



(oo}

some k < t. Then cg(I(W I(B)O) + I(w2) = c(

2)(0,1)’ (0,2) o,x)(W)
and so is regular of codimension gq - s + 1, and % ﬁ Z, at (0,2)
since g(0,%) ¢ Zo e

Suppose on the other hand Xl = .. = Rt = 0. Then
cg(I(W2)(O,1)' I(B)O) + I(Wz)(o,z) is regqular of codimension

q-s + 1 if and only if xk 0 Tk ) iﬁ is a submersion at

aﬁ(O,z). But this is equivalent to % th z, at (0,2) (p.9).

It follows that g is strongly o-subtransverse to B at all
points of A if and only if % ¢ Z, on W,. This completes the

proof of theorem 3.1.

4. Complements. Let us again consider the case where g 1is a

product mapping £xf: NxN » PxP and A and B the diagonals AN

and AP. The following is an easy consequence of theorems 2.4 and

2.5.

Proposition 4.1. The smooth mappings f: N » P such that £ n z

2

@© ra .
form a dense open subset of C (N,P).

For the condition £ M Z, is equivalent to Tf N O outside Oy s
P

and the latter condition is satisfied for an open dense set of
mappings f by a standard transversality argument.
The construction E 1is tailored to the study of the generic

double points of £, as indicated by proposition 2.5. Let D.c N

£
be the locus of genuine double points of £ and szz N the
singular locus of £f. Thus x € D if f(x) = £(x') for some

£
point x' # x, and x ¢ S if ker Tf_ % {o}.

Proposition 4.2. If f: N » P is a proper smooth mapping such that

£ 4 Z, then D.=D_U S

£ £ £°



Proof. Let o]:w + N Dbe the smooth mapping pr oo, where
prlzNXN + N is the projection to the first factor. Then

cl(x,g) = x for arbitrary (x,8) ¢ W, U W,, and so

AL =1 -1
D = o, ((£)7 (2,)), s, = 0]((fA) (2,)). Consequently

D, u s, = o, ((£)7(2)).

Since f is proper, dzl(fA)_i(Z) is also proper. Hence Df U Sf

is a closed subset of N;: in particular Df<5 DflJ Sf.

It remains to show that Sftg Bf. Let a ¢ Sf,
-1

(a,1) € (£) (z,) for a suitable 1c T_N. BAgain, by means of

so that

coordinate systems at a and f£f(a) we are reduced to the affine
case a = o ¢ gn, £(a) = o € RP. Choose %k < n such that

o . L p+l .
(o,1) ¢ . Since £ M Zo s vkoakofA.Ak > R is a submersion at
(0,1), and we may choose a local coordinate system around (o,1)

in W in which vkoakofA is presented as the standard projection

A . . .
v, 0a, of (wl,...,wzn) = (w},...,wp+}}, In this coordinate system,
which flattens W into §2n around (o0,1), we have
A=l 2n
(£7) (2,) ={weR lw, = = Wy = 0} and
(£ z,) = {we B*Mw, = = = 0 and 0} . Obviousl
1) = iw e B |w, = ... 0= Wogl T and w; #* . viously

then the origin o ¢ (fA)-I(Z
-1

2) belongs to the closure of

(fA) (Zl)’ Backtracking this means that (a,l) Dbelongs to the
closure of (fA)—l(Z]). By continuity this implies that

a =o0,(a,l) belongs to the closure of ol((fA)_l(Z])), i.e. to

]

Df. Thus S

£ E.Df'
This gives at neat proof that 5f = DfLJ Sf is a generic

property for proper mappings, satisfied by those mappings

£ ¢ Cpr(N,P) such that Tf h OP outside ON.

One can also prove a general transversality result.



Proposition 4.3. et M be a smooth submanifold of E. The

smooth mappings £:N » P such that fA M M form a dense subset of

Cm(N,P). If M or N is compact, this subset is open.

In general the openess property fails unless there is a compactness
condition. E.g. proposition 4.! holds because of the special

character of the submanifold Z2.
We omit the proof of proposition 4.3.
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