SUBTRRASVERSALITY

A \mathbb{N}
BIOMING
U P
by
P. Holm and S. Johannesen

The notion of subtransversality is due to A. Andreotti; it was introduced in [1] and further studied in [2]. The definition is algebraic rather than geometric and goes well with certain standard operations in analytic geometry. In the present paper we show that in the smooth case subtransversality, or rather subtransversality after blowing up have a simple geometric meaning, (theorems 1.1. 1.2 and 3.1). In particular it generalizes and elucidates the results of section 19 in [1].

This paper extends and includes the results of [2].

1. Preliminaries and statements. We recall a few concepts from [1]. Let X and Y be smooth (i.e. $C^{\infty}-$) manifolds, dim $X>0$, and let A and B be closed submanifolds of X and Y. We denote by $C^{\infty}(X, A ; Y, B)$ the set of smooth maps $g: X \rightarrow Y$ such that $g(A) \equiv B$. This is a closed subset of $C^{\infty}(X, Y)$ in the Whitney topology ($=$ the fine C^{∞}-topology).

Furthermore, denote by $C_{X}^{\infty}(X)$ the local ring of germs of smooth functions at $x \in X$. An ideal $I \subseteq C_{a}^{\infty}(X)$ is regular of codimension k if I has k generators $h_{1}, h_{2} \ldots h_{k}$ such that $d h_{1} \wedge \ldots \wedge d h_{k} \neq 0$. This requires I to be a proper ideal of $C_{a}^{\infty}(X)$. In addition we consider $I=C_{a}^{\infty}(X)$ to be a regular ideal of codimension k for any integer k. Then $V(I)=\{x \in(X, a) \mid h(x)=0$ $\forall h \in I\}$ is the germ of a smooth submanifold of X at a of codimension k (empty if $I=C_{a}^{\infty}(X)$). Clearly a mapping $g: X \rightarrow Y$ is transverse to B at $a \in X$ if and only if $C_{a}^{\infty}(X) \cdot g^{\star} I(B) g(a)$ is a regular ideal of codimension k, where k is the codimension of B at $g(a)$ and $I(B) g(a) \subseteq C_{g(a)}^{\infty}(Y)$ is the ideal of smooth germs at $g(a)$ vanishing on B.

Next, let $g \in C^{\infty}(X, A ; Y, B)$ and let $a \in A_{i}$ then $C_{a}^{\infty}(X) \cdot g^{*} I(B)_{g(a)} \subseteq I(A)_{a}$. Consider the conductor ideal $c_{g}\left(I(A)_{a}, I(B)_{g(a)}\right) \subseteq C_{a}^{\infty}(X)$. By definition $h \in c_{g}\left(I(A)_{a}, I(B)_{g(a)}\right)$ if and only if $h \cdot I(A)_{a} \subseteq C_{a}^{\infty}(X) \cdot g^{\star} I(B)_{g(a)}$. We say that g is subtransverse to B at a if $C_{g}\left(I(A)_{a} I(B)_{g(a)}\right)$ is regular of codimension equal the codimension of B at $g(a)$, and strongly subtransverse to B at a if $C_{g}\left(I(A)_{a} I(B)_{g(a)}\right)+I(A)_{a}$ is regular of codimension equal the sum of the codimensions of A and B at a and b.

Finally, let \widetilde{X} be the blow-up of X along A and $\sigma: \widetilde{X} \rightarrow X$ the collapse mapping. Then \tilde{X} is canonically a smooth manifold
with $\tilde{A}=\sigma^{-1}(A)$ a codimension one submanifold, [3]. §3. A mapping $g \in C^{\infty}(X, A ; Y, B)$ is (strongly) σ-subtransverse to B at a if $g \circ \sigma$ is (strongly) subtransverse to B at any point of $\sigma^{-1}\{a\}$. The geometric content of these definitions is given by the following

Theorem 1.1. Let $g \in C^{\infty}(X, A ; Y, B)$. Then the statements
(i) 9 is strongly σ-subtransverse to B at all points of A
(ii) Ng is transverse to O_{B} outside O_{A} are equivalent.

Here Ng: NA $\rightarrow N B$ is the normal bundle mapping, and O_{A} and O_{B} are the zero-sections of NA and NB. The theorem follows from Proposition 2.2 and Theorem 3.1 of section 2 and 3.

We will consider in more detail the case where g is a product mapping $f \times f: N \times N \rightarrow P \times P$ and A and B are the diagonals $\Delta_{\text {N }}$ and Δ_{P} respectively. The normal bundles $N A$ and $N B$ can then be identified with the tangent bundles $T N$ and $T P$. In this case we have the following sharper result.

Theorem 1.2. Let $f: N \rightarrow P$ be a smooth mapping. Then the statements
(i) fxf is o-subtransverse to Δ_{P} at all points of Δ_{N}.
(ii) fxf is strongly o-subtransverse to Δ_{p} at all points of $\Delta_{N}{ }^{\circ}$ (iii) Tf is transverse to O_{P} outside O_{N} are equivalent.

Here $T f: T N \rightarrow T P$ is the tangent bundle mapping and O_{N} and O_{P} are the zero-sections of $T N$ and $T P$.

The theorem is a corollary of Lemma 2.4 . Proposition 2.5 and Theorem 3.1 of section 2 and 3. Theorem 3.1 gives yet another characterization of σ-subtransversality.

2. Double points and residual singularities.

Let $W=W(X, A)$ be the blow up of X along A. Thus W is obtained from W by suitably replacing A with PNA, the projectivized normal bundle of A see for instance [3]. §4. Set $N-A=W_{1}$ and $P N A=W_{2}$ so that $W=W_{1} \cup W_{2}{ }^{\circ}$ We construct a smooth manifold $E=E(X, A ; Y, B)$ over W depending functorially on (X, A) and (Y, B). First, set $E=E_{1} \cup E_{2}$ where

$$
\begin{aligned}
& E_{1}=\{(X, Y) \mid X \in X-A, Y \in Y\} \\
& E_{2}=\left\{(X, I, Y, \phi) \mid X \in A_{,}, Y \in B, \ell \in \mathbb{N}_{X} A_{\ell} \phi \in \operatorname{Hom}\left(\ell, N_{Y} B\right)\right\} .
\end{aligned}
$$

Then there is a natural projection π of E onto W defined by

$$
\begin{array}{ll}
\pi(x, Y)=x & \left(\text { on } E_{1}\right) \\
\pi(x, l, Y, \phi)=(x, l) & \left(\text { on } E_{2}\right)
\end{array}
$$

Secondly, for every $g \in C^{\infty}(X, A: Y, B)$ there is an induced mapping $\hat{g}: W \rightarrow E_{\text {, }}$ which is a section of π, defined by

$$
\begin{array}{ll}
\hat{g}(x)=(x, g(x)) & \text { (on } \left.W_{1}\right) \\
\hat{g}(x, l)=(x, l, g(x), N g \mid \ell) & \left(\text { on } W_{2}\right)
\end{array}
$$

When Y is a point and $B=Y$, then $E(X, A ; Y, B)=W(X, A)$ (as a set), and π is the identity mapping.

We need a smooth structure on \mathbb{E}. Set $\operatorname{dim} X=m_{0} \operatorname{dim} A=r$ and $\operatorname{dim} Y=q_{0} \operatorname{dim} B=s$. First notice that E_{1} and E_{2} are naturally smooth manifolds of dimensions $m+q$ and ($m-1$) +q over the smooth manifolds W_{1} and W_{2}. In fact $E_{1}=(X-A) \times Y$. As for E2 let LNA be the tautological line bundle over PNA, and Hom(LNA, NB) the corresponding vector bundle over PNA $\times B$; then $\mathrm{E}_{2}=\operatorname{Hom}\left(\mathrm{LNA}_{8} \mathrm{NB}\right)$.
compatible with that of E_{1} and E_{2}, such that $\pi \in C^{\infty}(E, W)$ and $\hat{g} \in C^{\infty}(W, E)$ for any $g \in C^{\infty}(X, A ; Y, B)$.

In particular $E(X, A ; X, B)=W(X, A)$ (as a manifold) when Y is a point and $B=Y$.

Proof: Consider the case $X=\mathbb{R}^{m}, Y=\underline{R}^{q}, A=\underline{R}^{r} \times\{0\}=X$ and $B=\underline{R}^{S} \times\{0\} \subset Y$. Define $A_{k} \subset E_{0} 1 \leqslant K \leqslant m-r$ by $A_{k}=A_{k!} \cup A_{k} 2$ where

$$
\begin{aligned}
& A_{k 1}=\left\{(x, y) \in E_{1} \mid x_{I+k} \neq 0\right\} \\
& A_{k 2}=\left\{(x, l, y, \phi) \in E_{2} \mid l_{k} \neq 0\right\}
\end{aligned}
$$

and ($\ell, \ldots \ell_{m-r}$) are homogeneous coordinates for ℓ. Evidently $E=A_{1} U \ldots U A_{m-r}$.

$$
\text { Next, define mappings } \alpha_{K^{8}} A_{k} \rightarrow \underline{E}^{m} \times \underline{\underline{P}}^{m-r-1} \times \underline{\underline{R}}^{q}(1 \leqslant k \leqslant m-r)
$$

by

$$
\begin{array}{ll}
\alpha_{k}(x, y)=\left(x, R x^{n}, y^{1} \circ y^{n /} / x_{r+k}\right) & \left(\text { on } A_{k 1}\right) \\
\alpha_{k}\left(x, l \circ y_{0} \phi\right)=\left(x, l \circ y^{\prime}, \phi\left(l_{1 k} \cdots l_{m-r, k}\right)\right) & \left(\text { on } A_{k 2}\right)
\end{array}
$$

where $x=\left(x^{n}, x^{n}\right) \in \mathbb{E}^{R} \times \mathbb{R}^{m-x}, y=\left(y^{n}, y^{\prime \prime}\right) \in \mathbb{R}^{s} \times \mathbb{R}^{q-S}$ and $l_{i k}=l_{i} / l_{k}$ for $1 \leqslant i \leqslant m-r$.

Clearly α_{k} is injective for all k. We topologize A_{k} so that α_{k} is a homeomorphism onto its image. Then $A_{k} \cap A_{\ell}$ is an open subset of A_{k} and A_{ℓ} for each k and l, as is quickly checked and the topology induced by A_{k} on $A_{k} \cap A_{l}$ coincides with the topology induced by A_{ℓ} since the mappings $\alpha_{\ell} \circ \alpha_{k}^{-1}$ are continuous and therefore homeomorphisms. Consequently there is a unique topology E such that each space on A_{K} occurs as an open subspace of E. It is easy to see that E is a Hausdorff space.

We show that $\alpha_{k}\left(A_{k}\right)$ is a $(m+q)$ - dimensional smooth submanifold of $\underline{\underline{R}}^{m} \times \underline{\underline{P}}^{m-r-1} \times \underline{\underline{R}}^{q}$. Set $U_{k}=\underline{\underline{R}}^{m} \times \underline{\underline{p}}_{k}^{m-r-1} \times \underline{R}^{q}$ where $\stackrel{p}{=}_{k}^{m-r-1}$ is the affine open coordinate set $\left\{L \in \underline{\underline{p}}^{m-r-1} \mid L_{k} \neq 0\right\}$ in $\underline{\underline{p}}^{m-r-1}$. Then $\alpha_{k}\left(A_{k}\right) \subset U_{k}$ for $k=1 \ldots, \ldots-r$ in fact (ξ, L, η) is in $\alpha_{k}\left(A_{k}\right)$ if and only if $L_{k} \neq 0$ and $\xi_{r+i} L_{k}=\xi_{r+k} L_{i}$ for $1 \leqslant i \leqslant m-r$.

$$
\text { Define } \theta_{k}: U_{k} \rightarrow \underline{R}^{m-r-1} \text { by } \theta_{k}\left(\xi, L_{i}, \eta\right)=
$$

$\left(\xi_{r+1}-L_{1 k} \xi_{k} \cdots \xi_{m}^{-L} m-r_{0} k_{k}\right)$ where the k-th component $(=0)$ is omitted. Then θ_{k} is a submersion onto $\underline{\underline{R}}^{m-r-1}$. Since $\alpha_{k}\left(A_{k}\right)=\theta_{k}^{-1}\{0\}$. it follows that $\alpha_{k}\left(A_{k}\right)$ is a smooth submanifold of U_{k}, hence of $\underline{\underline{R}}^{m} \times \underline{\underline{p}}^{m-r-1} \times \underline{R}^{q}$, of codimension $m-r-1$.

By means of α_{k} we pull back the smooth structure on $\alpha_{k}\left(A_{k}\right)$
to A_{k}. We now need to show that A_{k} and A_{l} induce the same smooth structure on the open set $A_{k} \cap A_{\ell}$ for any two k and ℓ. But this holds since the mappings $\alpha_{\ell}{ }^{\circ} \alpha_{k}^{-1}$ are smooth and therefore diffeomorphisms. Thus $E=A_{1} U \ldots U A_{m-r}$ receives a smooth structure in which $A_{1} \ldots . A_{m-r}$ are open submanifolds.

$$
\text { For } q=0, \text { i.e. } B=Y=\{0\} \text {, we clearly get } E=W
$$

(Alternatively define the smooth structure on $W\left(\underline{N}^{m}, R^{r}\right)$ as that of $\left.E\left(\underline{\underline{R}}^{m}, R^{r}: 0,0\right).\right)$ Throughout the paper we shall use primed letters $A_{k}^{\prime} \alpha_{k}^{\prime} \ldots$ in the particular case $E=W$, i.e. primed letters refer to W. Then we have a commutative diagram

$$
\begin{aligned}
& A_{k} \xrightarrow{\alpha} \stackrel{R^{m}}{ } \times \underline{\underline{P}}^{m-r-1} \times \underline{\underline{R}}^{q} \\
& \begin{array}{ccc}
\pi \\
\downarrow^{j} & \alpha_{k}^{\prime} \\
A_{k}^{:} & \underline{R}^{n} \times \stackrel{p r}{\underline{p}}^{m-r-1}
\end{array}
\end{aligned}
$$

showing that π is smooth on $A_{k^{\prime}} l \leqslant l \leqslant m-r$. Thus π is smooth (on E).

Finally we need to check that $\hat{g}: W \rightarrow E$ is smooth for smooth g. Obviously it suffices to check this at a point $(x, \ell) \in W_{2}$. Let k be such that $(x, l) \in A_{k}^{\prime}$. We have $\hat{g}\left(A_{k}^{\prime}\right)=A_{k}$ and therefore a $\operatorname{map} \tau_{k}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \alpha_{k}\left(A_{k}\right)$ defined by the commutative diagram

$$
\begin{aligned}
& A_{k} \xrightarrow{\alpha_{k}} \alpha_{k}\left(A_{k}\right) \\
& \hat{g} \uparrow \quad \uparrow{ }^{\tau} k \\
& A_{k}^{\prime} \xrightarrow{\alpha_{k}^{\prime}} \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right)
\end{aligned}
$$

Extend τ_{k} to a mapping $T_{k}: U_{k}^{\prime} \rightarrow U_{k}$ in the following way: Write

$$
g_{s+i}(\xi)=\sum_{j=1}^{m-r} \xi_{r+j} G_{i j}(\xi) \quad, \quad 1 \leqslant i \leqslant q-s
$$

with the $G_{i j}(\xi)=\int_{0}^{1} \frac{\partial g_{S+i}}{\partial X_{r+j}}\left(\xi^{\prime}, t \xi^{\prime \prime}\right) d t$ for
$\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in \underline{R}^{r} \times \underline{R}^{m-r}$, such that $G_{i j}(\xi)=\frac{\partial g_{S+i}}{\partial x_{r+j}}(\xi)$ when
$\xi^{\prime \prime}=0$. Now set
$T_{k}(\xi, L)=\left(\xi, L, g_{1}(\xi) \ldots g_{s}(\xi) \sum_{j=1}^{m-r} L_{j k} G_{l j}(\xi) \ldots \sum_{j=1}^{m-r} L_{j k} G q-s, j(\xi)\right)$
Then T_{k} extends τ_{k} as claimed. Since T_{k} is smooth, so is $\tau_{k}{ }^{\circ}$ Consequently \hat{g} is smooth.

This concludes the proof in the affine case $X=R^{m}, Y=R^{q}$. The extension to the flat case, where X and Y are diffeomorphic to \underline{R}^{m} and R^{q}, is by transport of structure; the result is easily seen to be independent of the choice of diffeomorphisms. The extension to the general case is then by patching over coordinate neighbourhoods in X and Y, thereby constructing the germ of E along E_{2} compatible with $E \rho$, and joining the result to E, The procedure is straightforward. We omit further details.

Remark 1. By construction E_{1} and E_{2} are built in as submanifolds of E. Since E_{1} is an open submanifold, E_{2} is a closed submanifold of E.
2. There is also a smooth projection $\pi_{2}: E \rightarrow Y$ defined by

$$
\begin{array}{ll}
\pi_{2}(x, y)=y & \left(\text { on } E_{1}\right) \\
\pi_{2}(x, l, y, \phi)=y & \left(\text { on } E_{2}\right)
\end{array}
$$

More symmetrically we have the smooth projections

$$
\begin{array}{cccc}
& \pi_{1} & & \pi_{2} \\
\mathrm{X} & \longleftarrow \mathrm{E} & \\
& & \mathrm{Y}
\end{array}
$$

where $\pi_{1}=\sigma \circ \pi_{\text {. Thus the extension }} \hat{g}$ of g fits into the commutative diagram

We next define a special submanifold Z of E. Let $Z=Z_{1} \cup Z_{2}$, where

$$
\begin{aligned}
& z_{1}=\left\{(x, y) \in E_{1} \mid y \in B\right\} \\
& z_{2}=\left\{(x, l, y, \phi) \in E_{2} \mid \phi=0\right\}
\end{aligned}
$$

Then $Z \subset E ;$ we claim that Z is a closed submanifold of E. First notice that $Z \cap E_{1}=Z_{1}$ is certainly a closed submanifold of E_{1}. If $a \in E_{2}$ is in the closure of Z, then $a \in E(U, U \cap A ; V, V \cap B)$ for suitable coordinate systems (U, ϕ) and (V, ψ) in X and Y such that $\phi(U \cap A)=\underline{R}^{r} \times\{0\}$ and $\phi(V \cap B)=R^{s} \times\{0\}$. Thus $a \in Z$ if $Z \cap E(U, U \cap A ; V, V \cap B)$ is closed in $E(U, U \cap A ; V, V \cap B)$. Moreover, Z is a submanifold of E locally around a if $Z \cap E(U, U \cap A ; V, V \cap B)$ is a submanifold of $E(U, U \cap A ; V, V \cap B)$.

Consequently we are reduced to substanciating our claim in the
affine case $X=\underline{\underline{R}}^{\mathrm{m}}, Y=\underline{\underline{R}}^{q}, A=\underline{\underline{R}}^{r} \times\{0\} \subset X$ and
$B=\underline{\underline{R}}^{s} \times\{0\} \subset Y$. Again, in the affine case it suffices to show
that $Z \cap A_{k}$ is a closed submanifold of A_{k} for $k=1, \ldots, m-r$.
 cordinates. It is quickly checked that $\rho \mid \alpha_{k}\left(A_{k}\right)$ has constant rank $q-s, i . e$. that $\rho \circ \alpha_{k}$ has constant rank $q-s$. But $Z \cap A_{k}=\left(\begin{array}{lll}\rho & \circ & \alpha_{k}\end{array}\right)^{-1}\{0\}$, and so $Z \cap A_{k}$ is indeed a closed submanifold of A_{k}.

Notice that Z_{2} is a closed submanifold of Z. This follows by the same arguments as above if we use the projection $\lambda_{k}: \underline{\underline{R}}^{\underline{m}} \times \underline{\underline{P}}^{m-r-1} \times \underline{\underline{R}}^{q} \rightarrow \underline{\underline{R}}^{q-s+1}$ defined by

$$
\lambda_{k}(\xi, \ell, \mu)=\left(\xi_{r+k} ; \mu_{q-s+1} \ldots, \mu_{q}\right)
$$

instead of ρ.
We have the following characterization of the maps $g \in C^{\infty}(X, A: Y, B)$ with \hat{g} transverse to Z_{2} :

Proposition 2.2. Let $g \in C^{\infty}(X, A ; Y, B)$ and $w=(a, \ell) \in W_{2}$. Then $\hat{g} \pitchfork z_{2}$ at w if and only if $N g \pitchfork O_{B}$ at $\ell-\{0\}$. Moreover $\hat{g} \pitchfork Z_{2}$ (on W) if and only if $\mathrm{Ng} \pitchfork \mathrm{O}_{\mathrm{B}}$ outside O_{A}.

The first statement means that $N g: N A \rightarrow N B$ is transverse to the zero-section $O_{B} \subset N B$ at $v \in N A$ for some (hence any) non-zero vector v in $\ell \subset N_{a} A$.

Proof: Since $\hat{g}\left(W_{1}\right)$ 成 $z_{2}=\phi$, we obviously have $\hat{g} \pitchfork Z_{2}$ on W_{1}. The second statement in the proposition therefore follows from the first.

$$
\text { Assume } w=(a, \ell) \in W_{2} \text { and set } t=\operatorname{rank}(N g)_{a} \text {. By restricting }
$$

to suitable coordinate patches around a and $g(a)$, it suffices to consider the case $X=\underline{\underline{R}}^{m}, Y=\underline{\underline{R}}^{q}, A=\underline{\underline{R}}^{r} \times\{0\} \subset X$, $B=\underline{\underline{R}}^{S} \times\{0\} \subset Y, a=0, g(a)=0$. In fact we may assume the coordinatisation at a and $g(a)$ performed such that $g=\left(g_{1}, g_{2}\right): \underline{\underline{R}}^{m} \rightarrow \underline{\underline{R}}^{s} \times \underline{\underline{R}}^{q-s}$ with $\quad g_{1}(0)=0$ and

$$
g_{2}(x)=\left(x_{r+1} \ldots \ldots x_{r+t^{\prime}} \psi(x)\right)
$$

where $\psi: \underline{\underline{R}}^{m} \rightarrow \underline{\underline{R}}^{q-s-t}$ is a smooth mapping such that $\psi(A)=\{0\}$ and $D \psi(0)=0$.

Now, let $v=\left(v^{\prime}, v^{\prime \prime}\right) \in \underline{\underline{R}}^{t} \times \underline{\underline{R}}^{m-r-t}$ be a non-zero vector and $\ell \in \underline{\underline{P}}^{m-r-1}=P N_{0} \underline{\underline{R}}^{m-r}$ the line spanned by v. We have $\hat{g}(0, \ell)=(0, \ell, 0, \mathrm{Ng}(0) \mid \ell)$ with

$$
N g(0)=\left[\begin{array}{c|c}
I_{t} & 0 \\
\hline 0 & 0
\end{array}\right]
$$

Thus $\mathrm{Ng}(0) \mathrm{v}=\mathrm{v}^{\prime}$ and so
(i) $\quad \hat{g}(0, \ell) \notin z_{2}$ if and only if $v^{\prime} \neq 0$.

Suppose $\mathrm{v}^{\prime}=0$. With notations as before choose k such that $(0, l) \in A_{k}^{\prime}$; then $\hat{g}(0, l) \in A_{k}$. Recall that $\lambda_{k} \circ \alpha_{k}: A_{k} \rightarrow \underline{R}^{q-s+1}$ is a submersion and that $Z_{2} \cap A_{k}=\left(\lambda_{k} \circ \alpha_{k}\right)^{-1}\{0\}$. Thus

$$
\begin{aligned}
& \hat{g} \nmid z_{2} \text { at }(0, \ell) \\
& \Leftrightarrow \lambda_{k} \circ \alpha_{k} \circ \hat{g}: A_{k}^{\prime} \rightarrow \underline{\underline{R}}^{q-s+1} \quad \text { is subversive at }(0, \ell) \\
& \Leftrightarrow \lambda_{k} \circ \tau_{k}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \underline{\underline{R}}^{q-s+1} \quad \text { is subversive at } \alpha_{k}^{\prime}(0, \ell) \\
& \Leftrightarrow \lambda_{k} \circ T_{k} \circ i_{k}^{\prime}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow \underline{\underline{R}}^{q-s+1} \text { is subversive at } \alpha_{k}^{\prime}(0, \ell)
\end{aligned}
$$

Here $i_{k}^{\prime}: \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \rightarrow U_{k}^{\prime}$ is the inclusion mapping,

$$
\begin{aligned}
& \alpha_{k}^{\prime}\left(A_{k}^{\prime}\right) \xrightarrow{i_{k}^{\prime}} U_{k}^{\prime} \xrightarrow{T_{k}} \quad U_{k} \xrightarrow{\lambda_{k}} \underline{R}^{q-s+1} \\
& \downarrow^{\theta_{k}^{\prime}} \\
& \\
& \underline{\underline{R}}^{m-r-1}
\end{aligned}
$$

Consequently we want to determine the range of
$D\left(\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, \ell)\right)$. Since $i_{k}^{\prime}\left(\alpha_{k}^{\prime}\left(A_{k}^{\prime}\right)\right)=\theta_{k}^{\prime-1}\{0\}$, we have range $\operatorname{Di}_{k}^{\prime}\left(\alpha_{k}^{\prime}(0, \ell)\right)=$ ker $D \theta_{k}^{\prime}\left(\alpha_{k}^{\prime}(0, \ell)\right)$, with $\alpha_{k}^{\prime}(0, l)=\left(0,\left(v_{1} \ldots v_{\text {m-r }}\right)\right)$. Now $D \theta_{k}^{\prime}\left(\alpha_{k}^{\prime}(0, \ell)\right)$ has the matrix block form

$$
\left[\begin{array}{lllll}
0 & I & -V_{k}^{\prime} & 0 & 0 \\
0 & 0 & -V_{k}^{\prime \prime} & I & 0
\end{array}\right]
$$

where as usual I means an identity matrix and 0 a zero matrix. V_{k}^{\prime} and $V_{k}^{\prime \prime}$ are the column matrices

$$
\left[\begin{array}{c}
v_{1}: k \\
\vdots \\
v_{k-1}, k
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
v_{k+1}: k \\
\vdots \\
v_{m-r}, k
\end{array}\right]
$$

where $v_{i k}=v_{i} / v_{k}$ (Recall that $v_{k} \neq 0$ since $(0, l)=$ $\left.\left(0,\left(v_{1} \ldots v_{m-r}\right)\right) \in A_{k}^{\prime} \cdot\right)$ In particular $v_{1, k}=\ldots=v_{t, k}=0$ since $v^{\prime}=0$.

It now follows by straight forward computation that range $D\left(\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, \ell)\right)$ is spanned by the t standard basis vectors $e_{2} \ldots e_{t+1}$ in $\underline{\underline{R}}^{q-s+1}$ together with the r vectors $(1 \leqslant i \leqslant r)$

$$
\left(0,0, \ldots, 0, \sum_{j=t+1}^{m-r} v_{j k} \frac{\partial^{2} \psi_{1}}{\partial x_{i} \partial x_{r+j}}(0) \ldots \sum_{j=t+1}^{m-r} v_{j k} \frac{\partial^{2} \psi q-s-t}{\partial x_{i} \partial x_{r+j}}(0)\right)
$$

and the vector

$$
\begin{aligned}
& \left(2,0, \ldots, 0, \sum_{i=t+1}^{m-r} \sum_{j=t+1}^{m-r} v_{i k} v_{j k} \frac{\partial^{2} \psi_{1}}{\partial x_{r+i} x_{r+j}}(0) \ldots .\right. \\
& \sum_{i=t+1}^{m-r} \sum_{j=t+1}^{m-r} v_{i k} v_{j k} \frac{\partial^{2} \psi}{\partial x_{r}+s^{2-t}}
\end{aligned}
$$

We therefore have
(ii) $\hat{g}(0, l) \in Z_{2}$ and $\hat{g} \nmid Z_{2}$ at $(0, l)$ if and only if the vectors $\left(0,0, \ldots 0, \sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{1}}{\partial x_{i} \partial x_{r+j}}(0) \ldots \sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{q-s-t}}{\partial x_{i} \partial x_{r+j}}\right)$
for $1 \leqslant i \leqslant r$ form a set of rank $q-s-t$ in \underline{R}^{q-s+1}.
To complete the proof of proposition 2.2 we now appeal to the following elementary

Lemma 2.3. Let $g \in C^{\infty}\left(\underline{R}^{m} \cdot \underline{R}^{r} \times\{0\}: \underline{R}^{q} \cdot \mathbb{R}^{s} \times\{0\}\right)$ be a mapping of the form $g(x)=\left(g_{1}(x) ; x_{r+1} \ldots . x_{r+t} \psi(x)\right)$ with $g_{1}: \underline{R}^{m} \rightarrow \underline{R}^{s}$. $\psi: \quad \underline{\underline{R}}^{m} \rightarrow \underline{R}^{q-s-t}$ such that $g_{1}(0)=0$ and $\psi\left(\underline{\underline{R}}^{r} \times\{0\}\right)=\{0\}$. $D \psi(0)=0$. Let $v=\left(v^{\prime}, v^{\prime \prime}\right)$ be a non-zero vector in the normal space $N_{0}\left(\underline{\underline{R}}^{r} \times\{0\}\right)=\underline{R}^{t} \times \underline{R}^{m-r-t}$.

Then $N g \| O_{R^{s} \times\{0\}}$ at $(0, v) \in N\left(\underline{R}^{r} \times\{0\}\right)$ if and only if
either
(i) $\quad v^{i} \neq 0$ (then $\left.\operatorname{Ng}(0, v) \notin \underline{\underline{R}}^{5} \times\{0\}\right)$
or
(ii) $v^{\prime}=0$ (then $\operatorname{Ng}(0, v) \in 0_{R^{s} \times\{0\}}$ and the matrix

$$
\left[\begin{array}{ccc}
\sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{1}}{\partial x_{1} \partial x_{r+j}}(0) \ldots \sum_{j=t+1}^{m-r} v_{j} \frac{\partial^{2} \psi_{1}}{\partial x_{r} \partial x_{r+j}}(0) \\
\sum_{j=t+1}^{m-r} & v_{j} \frac{\partial^{2} \psi q-s-t}{\partial x_{1} \partial x_{r+j}}(0) \ldots \sum_{j=t+1}^{m-r} & v_{j} \frac{\partial^{2} \psi_{q-s-t}}{\partial x_{r} \partial x_{r+j}}(0)
\end{array}\right]
$$

has rank $q-s-t$.

The proof of lemma 2.3 is left to the discretion of the reader.

We now consider the case where g is a product mapping f×f: $N \times N \rightarrow P \times P$ and A and B are the diagonals Δ_{N} and Δ_{P}. For brevity we denote the mapping $\hat{g}: W \rightarrow \mathbb{E}$ by f^{Δ}. We then have the following

Lemma 2.4. Let $f: N \rightarrow P$ be a smooth mapping. Then $f^{A} \notin Z$ on W_{2} if and only if $f \pitchfork Z_{2}$ on W_{2}. Moreover $f^{\Delta} \pitchfork Z_{2}$ on W_{2} if and only if $f^{\Delta} \pitchfork Z_{2}$ (on W).

Proof: The last claim is obvious since $f^{\Delta}\left(W_{1}\right) \cap z_{2}=\phi$.
Let $(a, l) \in W_{2}$ and assume that $f^{\wedge}(a, l) \in Z_{2}$. By suitable coordinatisations we may assume $\mathbb{N}=\underline{\underline{R}}^{n}, a=0, P=\underline{\underline{R}}^{p}, f(a)=0$. Using the diffeomorphism $\mu_{n}: \underline{R}^{n} \times \underline{E}^{n} \rightarrow \underline{\underline{R}}^{n} \times R^{n}$ defined by $\mu_{n}(x, y)=(x, y-x)$, we may further identify the diagonal $\Delta_{\underline{R}^{n}}$ with $\mu_{n}\left(\Delta_{\underline{R}^{n}}\right)=\underline{R}^{n} \times\{0\}$ and similarly $\Delta_{R^{p}} p$ with $\mu_{p}\left(\Delta_{\underline{R}} p^{p}\right)=\underline{\underline{R}}^{p} \times\{0\}$. The
 $g=\mu_{p} \circ(f \times f) \circ \mu_{n}^{-1}$, which is given by $g(x, y)=(f(x), f(x+y)-$ $f(x)$) 。

We know that $f^{\triangle} \mathrm{m}$ at $(0, \ell)$ if and only if
$\rho \circ T_{k} \circ i_{k}: \alpha i_{k}\left(A_{k}\right) \rightarrow \mathbb{R}^{p}$ is a submersion at $\alpha_{k}^{j}(0, l)$. Since
 equivalent to $\lambda_{k} \circ T_{K} \circ i_{k}^{\prime}$ being transverse to $K=\operatorname{Ren}_{x}\{0\}={\underline{\underline{R}} \times R^{p}}^{p}$ at $\alpha_{k}(0, l)$.

We show that $T_{0} K \subset$ range $D\left(\lambda_{K} \circ T_{K} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, l)\right)$. Thus if $f^{\Delta} \pitchfork Z$ at ($0, l$), then $\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}$ is a submersion at $\alpha_{k}^{\prime}(0, l)$ and so $f^{\Delta} \pitchfork z_{2}$ at ($0, \Omega$).

As usual let ($\ell, \ldots . \ell_{n}$) be homogeneous coordinates for ℓ and set $l_{j k}=l_{j} / l_{k}$ when $l_{k} \neq 0, j=1 \ldots . . . n$. Define the smooth curve $c:\langle-\varepsilon, \varepsilon\rangle \Rightarrow \alpha_{j}^{\prime}\left\langle A_{k}^{\prime}\right)$ by $c(t)=\left(-\imath_{l} \|_{k} \ldots \ldots-\right.$ $\left.t l_{n k}{ }^{2 t l} l_{k} \cdots \cdot 2 t l_{n k}, l\right)$ then $c(0)=\alpha_{k}^{\prime}(0, l)$. Since

$$
\lambda_{k} \circ T_{k}(\xi, L)=\left(\xi_{k} \sum_{j=1}^{n} L_{j k} \int_{0}^{1} \frac{\partial f}{\partial x_{j}}\left(\xi^{\prime}+s \xi^{n}\right) d s\right)
$$

for $\xi=\left(\xi^{n} \cdot \xi^{n}\right) \in \mathbb{R}^{n} \times \mathbb{E}^{n} \cdot L_{k} \neq 0$ e we find
$\lambda_{k} \circ T_{k} \circ i_{k}^{\prime} \circ c(t)=\left(2 t, \sum_{j=1}^{n} \ell_{j k} \int_{0}^{1} \frac{\partial E}{\partial x_{j}}\left(t(2 s-1)\left(l_{1 k} \ldots \ell_{n k}\right)\right) d s\right)$

From this we get

$$
\frac{d}{d t}\left(\lambda_{k} \circ \mathbb{I}_{k} \circ 1_{k} \circ c\right)(0)=(2,0, \ldots, 0) \in \mathbb{T}_{0} K
$$

which confirms that $T_{0} k$ sits in the range of $D\left(\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}\right)\left(\alpha_{k}^{\prime}(0, l)\right)$. Thus $f^{\Delta} \pitchfork Z_{2}$ on W_{2} if $f^{\Delta} \pitchfork$ on W_{2}. The converse is of course trivial.

Using lemma 2.4 we can now give the following characterisation of the smooth maps $f: N \rightarrow P$ such that \mathbb{E}^{Δ} is transverse to Z 。

Proposition 2.5. Let $f: N \rightarrow P$ be a smooth mapping and w a point of W. Then $f^{\Delta} \|$ at W if and only if
(i) ExE $\mathbb{I} \Delta_{p}$ at W_{0} incase $W=\left(a, a^{2}\right) \in W_{1}$ 。 (ii) TE $\quad O_{p}$ at $l-\{0\}$, in case $W=(a, l) \in W_{2}$.

The second statement means that Tf: TR \rightarrow TP is transverse to the zero-section $O_{p}=T P$ at $\forall T N$ for some (hence any) non-zero vector v in $l \in T_{a}^{N}$.

Proof: The case $w \in W_{1}$ is trivial, and the case $w \in W_{2}$ follows from proposition 2.2 and lemma 2.4 when we identify the normal bundles NA and NB with the tangent bundles $T N$ and $T P$.
3. Subtransversality. The purpose of this section is to prove the following result.

Theorem 3.1. Let $g \in C^{\infty}(X, A ; Y, B)$. Then g is σ-subtransverse to B at all points of A if and only if $\hat{g} \pitchfork \quad Z$ on W_{2} and strongly σ-subtransverse if and only if $\hat{g} \nmid Z_{2}$ on W_{2}.

Proof: Let $(a, l) \in W_{2}$ and $b=g(a)$. Again, by suitable coordinatisations we may assume that $X=\underline{R}^{m}, Y=R^{q}, A=R^{r} \times\{0\}=X$. $B=\underline{R}^{S} \times\{0\} \subset Y$ and that g is of the form $g(x)=$
 smooth mappings such that $g_{1}(0)=0, \psi(A)=\{0\}$ and $D \psi(0)=0$.

Let $\left(\ell, \ldots . l_{m-r}\right)$ be homogeneous coordinates for l and assume $l_{k} \neq 0$, i.e. $\ell \in \underline{\underline{P}}_{k}^{m-r-1}$. Define the projection
 $s_{k}^{\prime}: \underline{\underline{R}}^{m} \times \underline{\underline{p}}^{m-r-1} \rightarrow \underline{\underline{R}}$ be equal s_{k} when $q=0$.

Then $s_{k}^{\prime} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}: A_{k}^{\prime} \rightarrow R$ is a submersion, and $W_{2} \cap A_{k}^{\prime}=$ $\left(s_{k}^{\prime} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)^{-1}\{0\}$. Therefore $I\left(W_{2}\right)(0, \ell)$ is the principal ideal generated by the germ of $s_{k}^{1} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at $(0, l)$.

Now let $\phi: \underline{\underline{R}}^{q} \rightarrow \underline{\underline{R}}^{q-s}$ and $\rho: \underline{\underline{R}}^{m} \times \underline{\underline{P}}^{m-r-1} \times \underline{\underline{R}}^{q} \rightarrow \underline{\underline{R}}^{q-s}$ be projections to the last $q-s$ coordinates. Recall the commutative diagram

$$
\begin{aligned}
& W \xrightarrow{\stackrel{\wedge}{g}} \mathrm{E} \\
& \sigma \downarrow \pi_{2} \\
& X \xrightarrow{g} Y
\end{aligned}
$$

The ideal $I(B)_{0}$ is generated by the germs of $\phi_{1} \ldots \phi_{q-s}$ at 0 . The pullback by the mapping $g \circ \sigma$ is therefore generated by the germs of $\phi_{j} \circ \pi_{2} \circ \hat{g}$ at $(0, \ell), j=1, \ldots, q-s$.

Let $r_{k}: \underline{\underline{R}}^{m} \times \underline{\underline{P}}^{m-r-1} \times \underline{\underline{R}}^{q} \rightarrow \underline{\underline{R}}^{q}$ be the mapping $r_{k}(\xi, \ell, \mu)=\left(\mu^{\prime}, \xi_{r+k^{\prime \prime}}\right)$ for $\mu=\left(\mu^{\prime}, \mu^{\prime \prime}\right) \in \underline{\underline{R}}^{s} \times \underline{\underline{R}}^{q-s}, 1 \leqslant k \leqslant m-r$. Since $\pi_{2} \mid A_{k}=r_{k} \circ i_{k} \circ \alpha_{k^{\prime}}$ we have $\phi \circ \pi_{2} \circ \hat{g} \mid A_{k}^{\prime}=\left(s_{k} \rho\right) \circ i_{k} \circ \alpha_{k} \circ \hat{g}=\left(s_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)\left(\rho \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}\right)$ with T_{k} as before. The conductor $C_{g}\left(I\left(W_{2}\right)(0, \ell)^{\prime} I(B)_{0}\right)$ is therefore the ideal generated by the germs of $\rho_{j} \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at $(0, \ell), j=1, \ldots, q-s$.

Finally, let $\lambda_{k}: \underline{\underline{R}}^{m \times \underline{p}^{m-r-1} \times R^{q} \rightarrow R^{q-s+1} \text { be the projection }}$ $\lambda_{k}(\xi, \ell, \mu)=\left(\xi_{r+k^{\prime}} \mu^{\prime \prime}\right)$ for $\mu=\left(\mu^{\prime}, \mu^{\prime \prime}\right) \in \underline{\underline{R}}^{s} \times \underline{\underline{R}}^{q-S}$. Then
 germs of $\lambda_{k j} \circ T_{k} \circ i_{k}^{\prime} \circ \alpha_{k}^{\prime}$ at $(0, \ell), j=1, \ldots, q-s+1$.

For the first part of the theorem: Suppose $l_{k} \neq 0$ for some $k \leqslant t$. On U_{k} we have

$$
\rho_{k}\left(T_{k}(\xi, L)\right)=\sum_{j=1}^{m-r} L_{j k} \int_{0}^{1} \frac{\partial g_{s+k}}{\partial x_{r+j}}\left(\xi^{\prime}, t \xi^{\prime \prime}\right) d t=1
$$

Thus $c_{g}\left(I\left(W_{2}\right)(0, \ell), I(B)_{0}\right)$ contains the unit element in $C^{\infty}(0, \ell)(W)$, and so by our convention is regular of codimension $q-s$ at $(0, \ell)$. But we have also $\hat{g}(0, \ell) \in E_{2}-Z_{2}=E_{2}-z \quad(p .9$ statement (i)).

Suppose on the other hand $l_{1}=\ldots=l_{t}=0$. Then $C_{g}\left(I\left(W_{2}\right)(0, \ell)^{\prime} I(B)_{0}\right)$ is regular of codimension q-s if and only if $\rho \circ T_{k} \circ i_{k}^{\prime}$ is a submersion at $\alpha_{k}^{\prime}(0, \ell)$. But the last condition is equivalent to $\hat{g} \pitchfork \mathrm{Z}$ at $(0, \ell)$; this follows by an argument analogous to that for the case $\hat{g} \nmid z_{2}$ on page 9 .

For the second part of the theorem: Suppose again $l_{k} \neq 0$ for
some $k \leqslant t$. Then $C_{g}\left(I\left(W_{2}\right)(0, \ell) \cdot I(B)_{0}\right)+I\left(W_{2}\right)(0, \ell)=C_{(0, \ell)}^{\infty}(W)$ and so is regular of codimension $q-s+1$, and $\hat{g} \dagger z_{2}$ at $(0, l)$ since $\hat{g}(0, \ell) \notin Z_{2}$.

Suppose on the other hand $l_{1}=\ldots=l_{t}=0$. Then $C_{g}\left(I\left(W_{2}\right)(0, \ell) \cdot I(B)_{0}\right)+I\left(W_{2}\right)(0, \ell)$ is regular of codimension $q-s+1$ if and only if $\lambda_{k} \circ T_{k} \circ i_{k}^{\prime}$ is a submersion at $\alpha_{k}^{\prime}(0, l)$. But this is equivalent to $\hat{g} \pitchfork z_{2}$ at ($0, \ell$) (p.9).

It follows that g is strongly σ-subtransverse to B at all points of A if and only if $\hat{g} \pitchfork Z_{2}$ on W_{2}. This completes the proof of theorem 3.1.
4. Complements. Let us again consider the case where g is a product mapping $f \times f: N \times N \rightarrow P \times P$ and A and B the diagonals Δ_{N} and Δ_{P}. The following is an easy consequence of theorems 2.4 and 2.5 .

Proposition 4.1. The smooth mappings $f: N \rightarrow P$ such that f^{Δ} 自 Z_{2} form a dense open subset of $C^{\infty}(N, P)$.

For the condition $f^{\Delta} \pitchfork Z_{2}$ is equivalent to $T f \| O_{p}$ outside O_{N} 。 and the latter condition is satisfied for an open dense set of mappings f by a standard transversality argument.

The construction E is tailored to the study of the generic double points of f, as indicated by proposition 2.5. Let $D_{f} \subset N$ be the locus of genuine double points of f and $S_{f} \subset N$ the singular locus of f. Thus $x \in D_{f}$ if $f(x)=f\left(x^{\prime}\right)$ for some point $x^{\prime} \neq x$, and $x \in S_{f}$ if ker $\operatorname{Tf}_{x} \neq\{0\}$.

Proposition 4.2. If $f: N \rightarrow P$ is a proper smooth mapping such that $f^{\Delta} \pitchfork Z_{2}$, then $\bar{D}_{f}=D_{f} \cup S_{f}$.

Proof. Let $\sigma_{1}: W \rightarrow N$ be the smooth mapping pr, o σ, where pr $1: N \times N \rightarrow \mathbb{N}$ is the projection to the first factor. Then $\sigma_{1}(x, \xi)=x$ for arbitrary $(x, \xi) \in W_{1} \cup W_{2}$ and so $D_{f}=\sigma_{1}\left(\left(f^{\Delta}\right)^{-1}\left(Z_{1}\right)\right), \quad S_{f}=\sigma_{1}\left(\left(f^{\Delta}\right)^{-1}\left(Z_{2}\right)\right)$. Consequently

$$
D_{E} \cup S_{f}=\sigma_{1}\left(\left(f^{\Delta}\right)^{-1}(Z)\right)
$$

Since f is proper, $\sigma_{l} \mid\left(f^{\Delta}\right)^{-1}(Z)$ is also proper. Hence $D_{f} U S_{f}$ is a closed subset of N i in particular $\bar{D}_{f} \subseteq D_{f} U S_{f}{ }^{\circ}$

It remains to show that $S_{f} \subseteq \bar{D}_{f^{\prime}}$ Let $a \in S_{f^{\prime}}$ so that $(a, 1) \in\left(f^{\Delta}\right)^{-1}\left(Z_{2}\right)$ for a suitable $I \subseteq T_{a} N$. Again, by means of coordinate systems at a and $f(a)$ we are reduced to the affine case $a=0 \in \underline{\underline{R}}^{n} \cdot f(a)=0 \in \underline{R}^{p}$. Choose $k \leqslant n$ such that $(0,1) \in A_{k}^{\prime}$. Since $f^{\triangle} \dagger Z_{2} \cdot v_{k} \circ \alpha \alpha_{k}^{\circ} f^{\wedge}: A_{k}^{\prime} \rightarrow{R^{p}}^{p+1}$ is a submersion at (0,1), and we may choose a local coordinate system around (0,1) in W in which $v_{k}{ }^{0 \alpha}{ }_{k}$ of f^{Δ} is presented as the standard projection $v_{k} \circ \alpha_{k} \circ f^{\Delta}\left(w_{1} \ldots . w_{2 n}\right)=\left(w_{1} \ldots \ldots w_{p+1}\right)$. In this coordinate system, which flattens W into $\underline{R}^{2 n}$ around $(0,1)$. we have
$\left(f^{\Delta}\right)^{-1}\left(z_{2}\right)=\left\{w \in \underline{E}^{2 n} \mid w_{1}=\ldots=w_{p+1}=0\right\}$ and $\left(f^{\Delta}\right)^{-1}\left(Z_{1}\right)=\left\{w \in \underline{R}^{2 n} \mid w_{2}=\ldots=w_{p+1}=0\right.$ and $\left.w_{1} \neq 0\right\}$. Obviously then the origin $o \in\left(f^{\wedge}\right)^{-1}\left(z_{2}\right)$ belongs to the closure of $\left(f^{\Delta}\right)^{-1}\left(Z_{1}\right)$. Backtracking this means that $\left(a_{0} 1\right)$ belongs to the closure of $\left(f^{\Delta}\right)^{-1}\left(Z_{1}\right)$. By continuity this implies that $a=\sigma_{1}(a, 1)$ belongs to the closure of $\sigma_{1}\left(\left(f^{\wedge}\right)^{-1}(z),\right)$, i.e. to \bar{D}_{f}. Thus $S_{f} \subseteq \bar{D}_{E^{\circ}}$

This gives at neat proof that $\bar{D}_{f}=D_{f} U S_{f}$ is a generic
property for proper mappings, satisfied by those mappings $f \in C_{p r}^{\infty}(N, P)$ such that $T f h O_{P}$ outside O_{N}. One can also prove a general transversality result.

Proposition 4.3. Let M be a smooth submanifold of E. The smooth mappings $f: N \rightarrow P$ such that $f^{\triangle} \pitchfork M$ form a dense subset of $C^{\infty}(N, P)$. If M or N is compact, this subset is open. In general the openess property fails unless there is a compactness condition. E.g. proposition 4.1 holds because of the special character of the submanifold z_{2}.

We omit the proof of proposition 4.3.

References

[1] A. Andreotti, P. Holm: Quasianalaytic and parametric spaces. Real and complex singularities, Oslo 1976. Sijthoof \& Nordhoff Intern. Publ. (1977)
[2] P. Holm, S. Johannesen: On subtransversality. Preprint Series, Institute of Mathematics, University of Oslo, 1983, no 7.
[3] I. Mather: Notes on topological stability. Harvard University 1970.

