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FINEL~ HARMONIC fUNCTIONS WITH BOUNDED DIRICHL~T 

INTEGRAL WITH RESPECT TO THE GREEN MEASURE 

Bernt 0ksendal 

Abstract. 

We consider finely harmonic functions n on a ~ina, 

Greenian domain v c ~d with bounded Dirich~et integr~~ 

wrt. Gm, i.e. 

JIV.h(y) i2G(x,y)dm(y) < (13 for x E v, 
v 

where m denotes the Lebesgue measure, G(x,y) the Green 

function. We use Brownian motion and stochastiG ca!culus to 

prove that such functions h always have po~ndary va1ues h* 

along a.a. Brownian paths. This partially ext~nd$ results by 

Doob, Brelot and Godefroid, who consi~ereq ordinary harmonic 

functions with QOUnded Dirichlet integral wrt. ro ana Green 

lines in stead of Brownian paths. 

As a consequence og Theorem 1 we obta~n several properties 

equivalent to (*),one of these being that h is the harmonic 

extension to v of a random "boundary" function h* (of a 

certain type), i.e. h(x) = Ex[h*] for all x E v. Another 

application is that the polar sets are removab:J..e singul-arity sets 

for finely harmonic functions satisfying (*). This is in 

contrast with the situation for finely harmonic functions with 

bounded Dirichlet integral wrt. m. 
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§1. Introduction and statement of results 

Properties of harmonic functions with bounded Dirichlet 

integral have been studied by several aut;.hors. ln 1962 Doob ~ 4], 

extending earlier works by Brelot and Godefro;!.d, proved that a 

harmonic function h on a domain v in !Rd (d > 2) aO.mitting -
a Green function and with a bounded Dirichlet integral, i.e. 

( 1.1) 

(where rn 

f !Vhi 2dm < oo 

v 

denotes Lebesgue measure in IRd) 

always has a fine boundary function h* and h -> h* along the 

Green lines of V . Doob (and Brelot and Godefroid) used a 

measure on the space of all Green lines. 

In this article we use Brownian motion and stochastic 

calculus to prove a result of this type and establish a 

corresponding L2-isometry (Theorem 1) in the more general 

situation when h is a finel~ harmonic function on a ~ domain 

V in ~d with a Green function G . The assumption that h 

has a finite Dirichlet integral is replaced by the assumption that 

( l. 2) 
2 J !Vh(y) I G(x,y)dm(y) < oo for all x E V , 

v 

i.e. that h has a finite Dirichlet integral wrt. the Green 

measure. (It is known (Debiard and Gaveau '[2)) that Vh e~ists 

a.e. wrt. m on V .) 
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In the case when h is harmonic in the ordinary sense on an 

ordinary Greenian domain V then (1.1) is a stronger assumption 

than ( l. 2) I' because G ( X, y) -> 0 as y -> av (the boundary 

of V) and the singularity of G(x,y) at y = x is m-integrable. 

In the general fine situation it turns out that 

(1.1) implies that (1.2) holds quasi-everywhere, 

i.e. everywhere outside some polar set@ 

To see this let W be a bounded subset of V and assume that 

(1.1) holds. Then by the Fubini theorem 

fUIVh(y) ! 2G(x,y)dm(y))dm(x) = f !Vh(y) 1 2 <J G(x,y)dm(x))dm(y) 
w v v w 

< co since sup(J G(x,y)dm(x)) < c:o. 
y w 

So (1.2) holds for a.a. x E W wrt. m . 

In particular, the function H(x) = f !Vh(y) j 2G(x,y)dm(y) is not 
v 

infinite everywhere in V . But then it follows from Theorem 2.4 

in Fuglede [9] that H(x) is a fine potential in V and there-

fo~e finite quasi-everywhere, as asserted. 

As a consequence of Theorem 1 we obtain several properties 

equivalent to (1.2), one of these being that h is the harmonic 

extension to V of a random function h* (of a certain type), 

i.e. h(x) = Ex[h*] for all x E V (Theorem 2). Another 

application is that the polar sets are removable singularity sets 

for a finely harmonic function h satisfying (1.2) (Theorem 3). 

This result is in contrast with the situation for finely harmonic 

functions h satisfying (1.1). In this case it is known that 

polar sets need not be removable singularity sets (see Fuglede 

[8], Theoreme 12 and p. 153). Thus the condition (1.1) does not 

imply (1.2) in general. 
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§2. Boundary behaviour and removable singularity sets 

In the following Bt(w), wE ~, t > 0 will denote Brownian 

motion in ~d (d ~ 2) The probability law of Bt starting 

at X E IRd is denoted by Px and Ex is the expectation 

operator wrt. Px . 
For a finely open set v c IRd we will let 

Tv = inf{t > 0 , Bt ¢ V} be the first exit time from v 

(Tv = co if Bt E v for all t > 0) • If Tv < co a.s. the 

harmonic measure >Y at X wrt. v is defined by 
X 

( 2. 1) 

if f is a bounded, continuous real function on av , the 

boundary of V • 

The Green function G(x,y) of a fine domain V c IRd is 

defined by 

00 

G(x,y)drn(y)= f Px[B 8 E dy, s < TV]ds, 
0 

provided the integral converges. 

Intuitively, G(x,y)drn(y) is the expected length of time Brownian 

motion starting at x stays in drn(y) before it exits from V • 

See Chung [l] for more information. 

LEMMA l. Let h be a finely harmonic function in a finely open 

set V c ~d with a Green function G . Let TV be the first 

exit time from V • Then 

Tv 
Ex[f JVh(B )J 2ds] = 

0 s 
( 2. 2} 

for all x E v . 

f JVh(y) i 2G(x,y)dm(y) 
v 
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Proof. By the Fubini theorem we have (X denotes the indicator 

function) 

co 

= f U IVh(y) 12 ·Px[B E dy , s < Tv] )ds 
0 v s 

co 

= fj'Vh(y) i 2 (JPX[Bs E dy , s < TV]ds) = 
v 0 

J IVh(y) !2G(x,y)dm(y), 
v 

which proves Lemma 1. 

LEMMA 2. Let f be a real, finely continuous function on ~d. 

Then 

t -> f ( B t ( w) ) 

is continuous on [O,oo) for a.a. w E ~ • 

Proof. By Theorem 3.5.1 in Chung [1] the function t ~> f(Bt(w}) 

is right continuous on [O,oo) , a.s. Left continuity follows 

by the same argument as in the proof of Theorem 4.5.9 in the same 

book: Choose c > 0 and define the reverse process 

~re-t for 0 < t < c -
'Bt 

Bo + B - B for c < t t c 

,.... 
Then Bt is again a Brownian motion, so t -> f(Bt) is right 

continuous, a.s. Since this holds for all c > 0 the function 

t -> f(Bt) is left continuous, a.s. 

LEMMA 3. L t U C !Rd .e be finely open and let T 

time. Then for a.a. w we have: 

If B (w) E U 
T 

then there exists 

for all t E (T(w)-E, T{w}). 

E > 0 such that 

be a stopping 
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Proof. Since the fine topology is completely regular we can for 

each x E U find a finely continuous function y -> f (y) 
X 

on 

Let 

such that 

D c: U 
X 

0 < f < 1 , f = 1 on 
- X- X 

be a fine neighbourhood of 

IRd ' U and 

x such that 

f (x) = 0 • 
X 

f < 1-. 
X 2 

on D 
X 

The family {Dx}xEU covers U , so by Doob's quasi-

Lindelof principle ([3]) we can find a countable subfamily 

{Dx };=l such that 
k 

00 

K = U ' U D 
k=l xk 

is polar. Put 

= 
f = L 2 -kf 

k=l xk 

Then f is finely continuous, 

on u ' K . Assume B E u . 
T 

f - 1 on lRd ' u and f 

Since K is polar B ¢ K 
T 

< 1 

and 

therefore f(B 1 ) < 1 f a.s" By Lemma 2 t -> f(Bt) is 

continuous a.s. So for a.a. w there exists E > 0 such that 

f(Bt) < 1 for T - E < t < T , This implies that Bt E U for 

1 ~ E < t < T and Lemma 3 is proved. 

LEMMA 4. Le·t h be a finely harmonic function in a fine domain 

v c ~d . Then there exists an increasing sequence of fine 

bounded domains 

1 = 1 we have 
n V 

n 

(/.. 3) 

and 

v c v 
n 

such that with 

a.s" as n -> co 

( 2. 4) Ex [ h 2 ( B ) ] = h 2 ( x ) 
Tn 

for all n and all x E V . 
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Proof. Choose x E v . Then there e~ists a fine bounced 

neighbourhood u 3 X with corrpact closure 
X 

u c;:; v 
X 

and a sequence 

of functions h n harmonic (in the ordinary sense) in a 

neighbourhood of u such that h -> h uniformly on 
X n 

(Fuglede [7], Theorem 4.1.) 

Put T = TU 
X 

Then by Ito's formula 

h (B ) - h (x) 
n T n 

T 

= f Y'h (B )dB 
0 n s s 

So bY the basic isometry for Ito integrals 

i.e. 

for all 

since EX [ h ( B ) ] = h (X) , for all n • 
n T n 

Letting n -> oo we obtain, using Lemma 1, 

T 
Ex[ n2 (B ) ] = h 2 (x) + Ex[J I V'h (B ) 12ds] < co • 

T Q S 

n • 

ux 

The tamily {Ux}xEV covers v , so by Doob's quasi~Lindelof 

principle [ 3) we can find a countable subfamily denoted QY {Wn} 

such that 
00 

U W = V ' K , 
n=l n 

where K is a polar set. Now define 

n 
u wk 

k=l 
n = 1, 

Since K is polar (2.3) holds. 

We prove (2.4) by induction: The argument above proves that (2.4) 

holds for n = 1 To prove the induction step assume that it 

holds for n = k Put so = T1P , T = Tk+l (= Tv uw ) . 
"' ~ k+l . 

Define 
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sl = inf{t > so Bt ¢ wk+l} 

82 = inf{t > sl Bt ¢ vk} 

and inductively 

s2j+l = inf{t > s2j ; Bt ¢ wk+l} 

8 2j+2 = inf{t > s2j+l ; Bt ({ Vk} j ;:::: 0, 1, 

Then {S.} 
J 

is an increasing sequence of stopping ti~es. 

s. < T < oo a.s. the limit 
J 

S =lim S. 
j-+ao J 

exists a.s. and S < T . 

2, •• 0 

Since 

Since B E a W s2j+l f k+l 

must have B5 ¢ wk+l 

for all j (of denotes fine boundary) we 

a.s., by Lemma 3. 

Similarly Bs ~ vk a.s. Thus s > T and therefore S = T . 

Therefore it suffices to prove that 

( 2. 5) 

s. 
+ Ex[JJ I'Vh(B ) 1 2ds] 

0 s 
for all j . 

For if (2.5) is established then the induction step of (2.4) 

follows by bounded convergence if we let j ~> ~ • (Recall that 

h is bounded on Vk+l) . 

We establish (2.5) by induction on j . The strong Markov 

property states that if T is a stopping time and n is 

measurable wrt. 

( 2. 6) 

{B 
s s > 0} 

where et is the shift operator: 

then 

(See Dynkin [5], Theorem 3.11, p. 100 or !i)ksendal [10], (7.15) .) 
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Assume (2.5) holds for a given j . for ~implicity put 

a:;:: s. 
J 

Then, using (7.16) in [8] 

B 
= Ex [ Ex [ h 2 ( Bb) I B a] ] = Ex [ E a [ h 2 ( Bb) ] ) 

B b 
= Ex[h2 (B ) + E a[f jVh(B ) j 2ds]] 

a 0 s 

a B 
(2. 7) ;:: h 2 (x) + Ex[J jVh(Bs) j2ds] + Ex[e a[l/1)], 

0 
b 00 

where l/1 = ~ jVh(B5 ) !2ds = ~ jVh(Bs) !2x(s,oo) (b)ds • 

B 
Since Ex[E a[ljl]] = Ex[Ex[8al/JlBa]] = Ex[8aljl] 

and 
00 

8aljl ;:: f 
0 

jVh(Ba+s) 1
2 • X[a+s,oo) (b)d$ 

b 
~ f 1Vh(B5 ) i 2ds , 

a 

00 

I Vh (B ) I 2x [ . ) (b) du u u,oo a 
= f 

we obtain from (2.7) that 

which establishes the induction step of (2.5) anq thus completes 

the proof of Lemma 4. 

Let V , T be as in Lemma 4. Then we let ~n denote the n n 

a-algebra of subsets of n generated by the random va~i~bles 

{BT ~ k ~ n} and we define 
k 

00 

.$= n13, 
n=l n 

i.e. $ is the tail field of the sequence {BT } 
n 
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THEOREM 1. Let h be a finely harmonic function ~n a fine domain 

v c ~d with a Green function G , and apsume that 

f !Vh(y) !2G(x,y)dm(y) < oo for all x e v . 
v 

Thenthere exists a function h* E L 2 (~,Px) for all x such that 

(2.8) lim h(Bt) = h* 
t+Tv 

and 

( 2. 9) 

We may regard h* as a 

function of h in the 

generalizeq (random) boundary 

sense that h* is measu:rable 

tail field $ and h is the "harmonic extension'' of 

i.e. 

(2.10) h(x) = EX[h*] for all X € V • 

Moreover, we have the isometry 

value 

wrt. the 

h* to v , 

(2.11) Ex[ (h*) 2J = h2 (x) + f !Vh(y) !2G(x,y)dm(y) for al:J. x E V • 
v 

Proof. Let V , T be as in Lemma 4. Choose n > m and x € V . n n 
Then 

Therefore 

< f !Vh(y) ! 2G(x,y)dm(y) -> 0 
v -...,v 

n m 
as m, n -> oo • 
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So the sequence of functions 

h = h(B ) 
n -rn 

In particular, 

h(x) 

and 

Ex[(h*)2 h=lim Ex[h2 {B ) ] 
n-+oo l n 

= h2 (x) + f !Vh(y) !2G(x,y)dm(y) 
v 

by Lemma 1 and Lemma 4. 

Moreover, 

(2.12) h -> h* a.s. wrt. px . 
n 

Choose y E V . Then by the Harnack inequalities pYI~n is 

boundedly (uniformly in n) absolutely continuous wrt. Pxl~n , 

if n is large enough. 

So 

and we have proved (2.10) and (2.11). 

It remains to establish (2.8) and (2.9): 

For all t > 0 and n E N we get, as before 

tAT n 
Ex[h2 (B h2 (x) + Ex[ IVh(Bs) ! 2ds] (2.13) ) ] = f tAT n 0 

The same procedure as above gives, for n > m , 

tAT 

Ex[h(Bt ) - h(Bt ) ) 2 1 =Ex[ f n!Vh(Bs) J
2ds) ..,.> 0 • 

A1n A1m tATm 

So letting n ~> oo in (2.13) we obtain, using (2~12) 

tA1 
Ex[h2 (B )] = h 2 (x) +Ex[ f !V'h(B) 1 2ds] , 

tAT O S 

where h(BtAT) is interpreted as h* if t = t • 
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,Again the same procedure as above gives that, :Eo!;' t > s , 

tAT 
Ex[(h(BtAT)-h(:SS/\T)) 2 J;::;Ex[ f !Vh(B5 )! 20.s]-~ 0 ass, t->T. 

SAT 

So {h(Bt/\T)}t conver<fes in :r/W,l?x) as t ,...> 1 . 

~he ltmit is necessarily eq~al to h* and (~.8) ~nd 

( 2 ' 9 ) ! 0 11 ow . 

Remark. Theorem 1 raises the following question: When i~ h* a 

genuine bo~ndary function? An other words, when is h* 

A'fl.Y function of the fo:r;m g (B ) is J3 -meafl!uJ:able ( fiiince 
Tv 

B ;::; lim B 
Tv n~ Tn 

a. s.) , but in general th~ fa.m;i,l,y of .J"3 ... Il\ea:;u~a:Q:te 

functions may also contain fqnctions whic~ are n~~ o~ t~~fi3 typ,. 

;For example, if 

and 

then h has different boundary values as Bt apprQach a point 

(x1,x2) on the negative real axis from above or belowr So h* 

is pot BT -measurable in this case. 
v 



THEOREM 2. Let h be a finely harmonic function on a fine domain 

v ~ Rd with a Green function G . 

Then the following are equivalent: 

(i) f /Vh(y) / 2G(x,y)dm(y) < ~ for all x ~ v 
v 

(ii) There exists a ~-measuraQ~e function h* € L 2 (~,~x) 

for all x such that 

(iii) There exists a number M < ~ sucb that 

Ex[h2 (B )] < M 
T 

for all stopping times T < TV • 

Proof. 

(i) :::;:> (ii) by Theorem 1 

(ii) :::;:> (iii): Suppose (ii) holqs. tet ~<TV be a stqpping 

time. First assume that 

is ~~measurable 

T < "( n 

= Ex [ (Ex [ e h * I B ] ) 2 J 
T "( 

= Ex [ ( Ex [ h * / B ] ) 2 ] 
T 

for some :n • 

In the general case we apply t}le above argument to 1' A Tn iilnd 

obtain Ex[h2 (B )] < M. Letting n ~> ~ we ne~ (iii). , TAT l(l , 

n 
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(iii) => (i): If we choose T = 'n as in L~mma 2 we get; by 

Lemma l 

and (i) follows. 

This completes the proof of Theorem 2. 

THEOREM 3. Let u c IRd be a fine domain with a G~e~n function 

G and let h be a finely harmonic function on v w Q ~ r I 

where F is a polar set. Suppose 

(2.14} f l7h(y) 1 2G(x,y)dm(y) < ~ 
u 

for a:Ll x € V . 

Then h extends to a finely harmonic function in U . 

Proof. Choose finely open sets 

00 

U V = U ' F ' K , 
n=l n 

v 
n 

as in Lemma 2 such that 

where K is a polar set. Then by Th1orem ~ there exi•ts ~ 

JB-measurable function h* E L 2 (~,P~) for all X such that 

h(x) = Ex[h*] for all x € V . 

Define 

X E U • 

We claim that h is finely harmonic in U • 

To see this choose x E u and a fine neighbourhood D of x 

such that D c U . Let T be the first exit t~me fro~ D. 

Since K U F is polar we must have T < ~n for some n. Hence 



since h* is ~-measurable we get by the strong Markov property 

h(x) Ex[h*] = Ex[Ex[h*!BT]] 

B 
= Ex[E T[h*]] - f ~(z)d~ 0 (x) 

3D X 

so that h satisfies the required mean value property. 

As pointed out to me by B. Fuglede it is possible to give a 

stronger, pointwise version of Theorem 3 by combining Theorem 3 

with Theorem 2.4 in [9], mentioned in the introduction: 

THEOREivt 4 o Let U be as in Theorem 3 and let h be a finely 

harmonic function on U ' F where F is a polar set. 

Suppose 

(2.15) I !Vh(y) ! 2G(x 0 ,y)ilia(y) < oo 

u . 

for some point X F F' 0 - - 0 

Then h extends to a fine harmonic function in U ' {F' {x 0 }) • 

COROLLARY. Let U be as in Theorem 3 and let h be a finely 

harmonic function in u' {x } 
0 

where is some point in 

Suppose (2.15) holds. Then h extends to a finely harmonic 

function in U 

Remarks. 1) Note that Theorem 3 contains Theorem 9.15 in 

u . 

Fuglede [6], because if h is bounded in V then (2.14) holds, 

by Lemma l and Lermua 4 . 

2) Consider the special case of an ordinary harmonic 

function h on a domain (in the ordinary topology) V in IRd 

Then the conclusions of Theorems l, 2 and 3 hold in particular 
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if we replace the condition (1.2) by (1.1), since ~ as noted in 

the introduction - (1.1) implies (1.2) in that case. 

In Theorem 3 we must add the assumption that f is relatively 

closed (a polar set is always finely closed). 

Acknowledgements. I am very grateful to B, F~glede for many 

valuable comments. 
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