FINELY HARMONIC FUNCTIONS WITH BOUNDED DIRICHLET INTEGRAL WITH RESPECT TO THE GREEN MEASURE

Bernt Øksendal

Abstract.

We consider finely harmonic functions \(h \) on a fine, Greenian domain \(V \subset \mathbb{R}^d \) with bounded Dirichlet integral wrt. \(G_m \), i.e.

\[
\int_V |\nabla h(y)|^2 G(x, y) \, dm(y) < \infty \quad \text{for} \quad x \in V,
\]

(*)

where \(m \) denotes the Lebesgue measure, \(G(x, y) \) the Green function. We use Brownian motion and stochastic calculus to prove that such functions \(h \) always have boundary values \(h^* \) along a.a. Brownian paths. This partially extends results by Doob, Brelot and Godefroid, who considered ordinary harmonic functions with bounded Dirichlet integral wrt. \(m \) and Green lines in stead of Brownian paths.

As a consequence of Theorem 1 we obtain several properties equivalent to (*), one of these being that \(h \) is the harmonic extension to \(V \) of a random "boundary" function \(h^* \) (of a certain type), i.e. \(h(x) = E^x[h^*] \) for all \(x \in V \). Another application is that the polar sets are removable singularity sets for finely harmonic functions satisfying (*). This is in contrast with the situation for finely harmonic functions with bounded Dirichlet integral wrt. \(m \).
§1. Introduction and statement of results

Properties of harmonic functions with bounded Dirichlet integral have been studied by several authors. In 1962 Doob [4], extending earlier works by Brelot and Godefroid, proved that a harmonic function \(h \) on a domain \(V \) in \(\mathbb{R}^d \) \((d \geq 2) \) admitting a Green function and with a bounded Dirichlet integral, i.e.

\[
(1.1) \quad \int_V |\nabla h|^2 dm < \infty
\]

(where \(m \) denotes Lebesgue measure in \(\mathbb{R}^d \)) always has a fine boundary function \(h^* \) and \(h \to h^* \) along the Green lines of \(V \). Doob (and Brelot and Godefroid) used a measure on the space of all Green lines.

In this article we use Brownian motion and stochastic calculus to prove a result of this type and establish a corresponding \(L^2 \)-isometry (Theorem 1) in the more general situation when \(h \) is a finely harmonic function on a fine domain \(V \) in \(\mathbb{R}^d \) with a Green function \(G \). The assumption that \(h \) has a finite Dirichlet integral is replaced by the assumption that

\[
(1.2) \quad \int_V |\nabla h(y)|^2 G(x,y) dm(y) < \infty \quad \text{for all } x \in V,
\]

i.e. that \(h \) has a finite Dirichlet integral wrt. the Green measure. (It is known (Debiard and Gaveau [2]) that \(\nabla h \) exists a.e. wrt. \(m \) on \(V \).)
In the case when h is harmonic in the ordinary sense on an ordinary Greenian domain V then (1.1) is a stronger assumption than (1.2), because $G(x,y) \to 0$ as $y \to \partial V$ (the boundary of V) and the singularity of $G(x,y)$ at $y = x$ is m-integrable. In the general fine situation it turns out that

(1.1) implies that (1.2) holds quasi-everywhere,

i.e. everywhere outside some polar set.

To see this let W be a bounded subset of V and assume that (1.1) holds. Then by the Fubini theorem

$$
\int \left(\int |\nabla h(y)|^2 G(x,y) dm(y) \right) dm(x) = \int |\nabla h(y)|^2 \left(\int G(x,y) dm(x) \right) dm(y)
$$

$$
< \infty, \text{ since } \sup_{W} \left(\int G(x,y) dm(x) \right) < \infty.
$$

So (1.2) holds for a.a. $x \in W$ wrt. m.

In particular, the function $H(x) = \int |\nabla h(y)|^2 G(x,y) dm(y)$ is not infinite everywhere in V. But then it follows from Theorem 2.4 in Fuglede [9] that $H(x)$ is a fine potential in V and therefore finite quasi-everywhere, as asserted.

As a consequence of Theorem 1 we obtain several properties equivalent to (1.2), one of these being that h is the harmonic extension to V of a random function h^* (of a certain type), i.e. $h(x) = E^x[h^*]$ for all $x \in V$ (Theorem 2). Another application is that the polar sets are removable singularity sets for a finely harmonic function h satisfying (1.2) (Theorem 3). This result is in contrast with the situation for finely harmonic functions h satisfying (1.1). In this case it is known that polar sets need not be removable singularity sets (see Fuglede [8], Théorème 12 and p. 153). Thus the condition (1.1) does not imply (1.2) in general.
§2. Boundary behaviour and removable singularity sets

In the following \(B_t(\omega) \), \(\omega \in \Omega \), \(t \geq 0 \) will denote Brownian motion in \(\mathbb{R}^d \) \((d \geq 2) \). The probability law of \(B_t \) starting at \(x \in \mathbb{R}^d \) is denoted by \(P^x \) and \(E^x \) is the expectation operator wrt. \(P^x \).

For a finely open set \(V \subseteq \mathbb{R}^d \) we will let \(\tau_V = \inf\{t > 0 : B_t \not\in V\} \) be the first exit time from \(V \) \((\tau_V = \infty \text{ if } B_t \in V \text{ for all } t > 0) \). If \(\tau_V < \infty \text{ a.s. the harmonic measure } \lambda_x^V \text{ at } x \text{ wrt. } V \text{ is defined by} \)

\[
\lambda_x^V = \frac{\int f \, d\lambda_x^V}{\int f \, d\lambda_x^V},
\]

if \(f \) is a bounded, continuous real function on \(\partial V \), the boundary of \(V \).

The Green function \(G(x,y) \) of a fine domain \(V \subseteq \mathbb{R}^d \) is defined by

\[
G(x,y) \, dm(y) = \int_0^\infty p^x[B_s \in dy, s < \tau_V] \, ds,
\]

provided the integral converges.

Intuitively, \(G(x,y) \, dm(y) \) is the expected length of time Brownian motion starting at \(x \) stays in \(dm(y) \) before it exits from \(V \).

See Chung [1] for more information.

Lemma 1. Let \(h \) be a finely harmonic function in a finely open set \(V \subseteq \mathbb{R}^d \) with a Green function \(G \). Let \(\tau_V \) be the first exit time from \(V \). Then

\[
E^x[\int_0^{\tau_V} |\nabla h(B_s)|^2 \, ds] = \int_V |\nabla h(y)|^2 G(x,y) \, dm(y)
\]

for all \(x \in V \).
Proof. By the Fubini theorem we have (χ denotes the indicator function)

$$E^x[\int_0^{\tau_V} |\varphi h(B_s)|^2 ds] = E^x[\int_0^{\infty} |\varphi h(B_s)|^2 \chi[0,\tau_V](s)ds]$$

$$= \int (\int |\varphi h(y)|^2 \mathbb{P}[B_s \in dy, s < \tau_V])ds$$

$$= \int |\varphi h(y)|^2 (\int \mathbb{P}[B_s \in dy, s < \tau_V]ds) = \int |\varphi h(y)|^2 G(x,y)dm(y),$$

which proves Lemma 1.

Lemma 2. Let f be a real, finely continuous function on \mathbb{R}^d. Then

$$t \rightarrow f(B_t(\omega))$$

is continuous on $[0,\infty)$, for a.a. $\omega \in \Omega$.

Proof. By Theorem 3.5.1 in Chung [1] the function $t \rightarrow f(B_t(\omega))$ is right continuous on $[0,\infty)$, a.s. Left continuity follows by the same argument as in the proof of Theorem 4.5.9 in the same book: Choose $c > 0$ and define the reverse process

$$\tilde{B}_t = \begin{cases} B_{c-t} & \text{for } 0 \leq t \leq c \\ B_0 + B_t - B_c & \text{for } c < t \end{cases}$$

Then \tilde{B}_t is again a Brownian motion, so $t \rightarrow f(\tilde{B}_t)$ is right continuous, a.s. Since this holds for all $c > 0$ the function $t \rightarrow f(B_t)$ is left continuous, a.s.

Lemma 3. Let $U \subset \mathbb{R}^d$ be finely open and let τ be a stopping time. Then for a.a. ω we have:

If $B_t(\omega) \in U$ then there exists $\varepsilon > 0$ such that $B_t(\omega) \in U$ for all $t \in (\tau(\omega) - \varepsilon, \tau(\omega))$.

Proof. Since the fine topology is completely regular we can for each \(x \in U \) find a finely continuous function \(y \mapsto f_x(y) \) on \(\mathbb{R}^d \) such that \(0 \leq f_x \leq 1 \), \(f_x \equiv 1 \) on \(\mathbb{R}^d \setminus U \) and \(f_x(x) = 0 \).

Let \(D_x \subset U \) be a fine neighbourhood of \(x \) such that \(f_x < \frac{1}{2} \) on \(D_x \). The family \(\{D_x\}_{x \in U} \) covers \(U \), so by Doob's quasi-Lindelöf principle ([3]) we can find a countable subfamily \(\{D_{x_k}\}_{k=1}^{\infty} \) such that

\[
K = U \setminus \bigcup_{k=1}^{\infty} D_{x_k}
\]

is polar. Put

\[
f = \sum_{k=1}^{\infty} 2^{-k} f_{x_k}.
\]

Then \(f \) is finely continuous, \(f \equiv 1 \) on \(\mathbb{R}^d \setminus U \) and \(f < 1 \) on \(U \setminus K \). Assume \(B_t \in U \). Since \(K \) is polar \(B_t \notin K \) and therefore \(f(B_t) < 1 \), a.s. By Lemma 2 \(t \mapsto f(B_t) \) is continuous a.s. So for a.a. \(\omega \) there exists \(\varepsilon > 0 \) such that \(f(B_t) < 1 \) for \(\tau - \varepsilon < t < \tau \). This implies that \(B_t \in U \) for \(\tau - \varepsilon < t < \tau \) and Lemma 3 is proved.

Lemma 4. Let \(h \) be a finely harmonic function in a fine domain \(V \subset \mathbb{R}^d \). Then there exists an increasing sequence of fine bounded domains \(V_n \subset V \) such that with

\[
\tau_n = \tau_{V_n}
\]

we have

\[
(2.3) \quad \tau_n + \tau_V \quad \text{a.s. as } n \to \infty
\]

and

\[
(2.4) \quad E^x[\int_{\tau_n}^{\tau} h^2(B_s) \, ds] < \infty
\]

for all \(n \) and all \(x \in V \).
Proof. Choose $x \in V$. Then there exists a fine bounded neighbourhood $U_x \ni x$ with compact closure $\overline{U}_x \subset V$ and a sequence of functions h_n harmonic (in the ordinary sense) in a neighbourhood of \overline{U}_x such that $h_n \to h$ uniformly on \overline{U}_x.

(Fuglede [7], Theorem 4.1.)

Put $\tau = \tau_{U_x}$. Then by Ito's formula

$$h_n(B_\tau) - h_n(x) = \int_0^\tau \nabla h_n(B_s) dB_s$$

for all n.

So by the basic isometry for Ito integrals

$$E^X[(h_n(B_\tau) - h_n(x))^2] = E^X[\int_0^\tau |\nabla h_n(B_s)|^2 ds]$$

i.e.

$$E^X[h_n^2(B_\tau)] = h_n^2(x) + E^X[\int_0^\tau |\nabla h_n(B_s)|^2 ds]$$

since $E^X[h_n(B_\tau)] = h_n(x)$, for all n.

Letting $n \to \infty$ we obtain, using Lemma 1,

$$E^X[h^2(B_\tau)] = h^2(x) + E^X[\int_0^\tau |\nabla h(B_s)|^2 ds] < \infty.$$

The family $\{U_x\}_{x \in V}$ covers V, so by Doob's quasi-Lindelöf principle [3] we can find a countable subfamily denoted by $\{W_n\}$ such that

$$\bigcup_{n=1}^\infty W_n = V \setminus K,$$

where K is a polar set. Now define

$$V_n = \bigcup_{k=1}^n W_k ; \quad n = 1, 2, \ldots .$$

Since K is polar (2.3) holds.

We prove (2.4) by induction: The argument above proves that (2.4) holds for $n = 1$. To prove the induction step assume that it holds for $n = k$. Put $S_0 = \tau_k$, $T = \tau_{k+1} (= \tau_{V_k \cup W_{k+1}})$. Define
\[S_1 = \inf \{ t > S_0 ; B_t \notin W_{k+1} \} \]
\[S_2 = \inf \{ t > S_1 ; B_t \notin V_k \} \]

and inductively
\[S_{2j+1} = \inf \{ t > S_{2j} ; B_t \notin W_{k+1} \} \]
\[S_{2j+2} = \inf \{ t > S_{2j+1} ; B_t \notin V_k \} ; \quad j = 0, 1, 2, \ldots \]

Then \{S_j\} is an increasing sequence of stopping times. Since \(S_j \leq T < \infty \) a.s. the limit
\[S = \lim_{j \to \infty} S_j \]
exists a.s. and \(S \leq T \).

Since \(B_{S_{2j+1}} \in \partial_f W_{k+1} \) for all \(j \) (\(\partial_f \) denotes fine boundary) we must have \(B_S \notin W_{k+1} \) a.s., by Lemma 3.
Similarly \(B_S \notin V_k \) a.s. Thus \(S > T \) and therefore \(S = T \).

Therefore it suffices to prove that
\[(2.5) \quad E^X[h^2(B_{S_j})] = h^2(x) + E^X[\int_0^{S_j} |\nabla h(B_s)|^2 ds] \quad \text{for all } j. \]

For if (2.5) is established then the induction step of (2.4) follows by bounded convergence if we let \(j \to \infty \). (Recall that \(h \) is bounded on \(V_{k+1} \).)

We establish (2.5) by induction on \(j \). The strong Markov property states that if \(\tau \) is a stopping time and \(\eta \) is measurable wrt. \(\{B_s ; s \geq 0\} \), then
\[(2.6) \quad E^X[\theta_{\tau} \eta | B_{\tau}] = E^\tau[\eta], \]
where \(\theta_t \) is the shift operator:
\[\theta_t(g_1(B_{t_1}) \ldots g_i(B_{t_i})) = g_1(B_{t_1+t}) \ldots g_i(B_{t_i+t}). \]

(See Dynkin [5], Theorem 3.11, p. 100 or Øksendal [10], (7.15).)
Assume (2.5) holds for a given \(j \). For simplicity put
\(a = S_j \), \(b = S_{j+1} \). Then, using (7.16) in [8]

\[
E^x[h^2(B_b)] = E^x[E^x[h^2(B_b)|B_a]] = E^x[B_a[h^2(B_b)]]
\]

\[
= E^x[h^2(B_a)] + E^x[B_a[\int_0^b |\nabla h(B_s)|^2 ds]]
\]

\[
= h^2(x) + E^x[a^{\int_0^b |\nabla h(B_s)|^2 ds} + E^x[B_a[\psi]],
\]

(2.7)

where \(\psi = \int_0^b |\nabla h(B_s)|^2 ds = \int_0^\infty |\nabla h(B_s)|^2 \chi_{[s,\infty)}(b) ds \).

Since \(E^x[E^x[\psi]] = E^x[E^x[\theta_a|\psi|B_a]] = E^x[\theta_a|\psi] \)
and

\[
\theta_a|\psi = \int_0^\infty |\nabla h(B_{a+s})|^2 \cdot \chi_{[a+s,\infty)}(b) ds
\]

\[
= \int_a^b |\nabla h(B_u)|^2 \chi_{[u,\infty)}(b) du = \int_a^b |\nabla h(B_s)|^2 ds \]

we obtain from (2.7) that

\[
E^x[h^2(B_b)] = h^2(x) + E^x[B_a[\int_0^b |\nabla h(B_s)|^2 ds]]
\]

which establishes the induction step of (2.5) and thus completes the proof of Lemma 4.

Let \(V_n, \tau_n \) be as in Lemma 4. Then we let \(B_n \) denote the \(\sigma \)-algebra of subsets of \(\Omega \) generated by the random variables

\(\{B_k, \tau_n \} \) and we define

\[
B = \cap_{n=1}^\infty B_n,
\]

i.e., \(B \) is the tail field of the sequence \(\{B_{\tau_n} \} \).
THEOREM 1. Let \(h \) be a finely harmonic function in a fine domain \(V \subset \mathbb{R}^d \) with a Green function \(G \), and assume that

\[
\int_V |\nabla h(y)|^2 G(x,y) \, dm(y) < \infty \quad \text{for all } x \in V.
\]

Then there exists a function \(h^* \in L^2(\Omega, P^x) \) for all \(x \) such that

\[
\lim_{t \uparrow \tau_V} h(B_t) = h^* \quad \text{a.s. \(\tau^x \)}
\]

and

\[
E^x[(h(B_t^{\uparrow \tau_V}) - h^*)^2] \to 0 \quad \text{as } t \to \infty, \quad \text{for all } x \in V.
\]

We may regard \(h^* \) as a generalized (random) boundary value function of \(h \), in the sense that \(h^* \) is measurable wrt. the tail field \(\mathbb{B} \) and \(h \) is the "harmonic extension" of \(h^* \) to \(V \), i.e.

\[
h(x) = E^x[h^*] \quad \text{for all } x \in V.
\]

Moreover, we have the isometry

\[
E^x[(h^*)^2] = h^2(x) + \int_V |\nabla h(y)|^2 G(x,y) \, dm(y) \quad \text{for all } x \in V.
\]

Proof. Let \(V_n, \tau_n \) be as in Lemma 4. Choose \(n > m \) and \(x \in V \). Then

\[
E^x[h(B_{\tau_n} h(B_{\tau_m})] = E^x[E^x[h(B_{\tau_n})h(B_{\tau_m})|B_{\tau_m}] = E^x[h^2(B_{\tau_m})] \]

Therefore

\[
E^x[(h(B_{\tau_n}) - h(B_{\tau_m}))^2] = E^x[h^2(B_{\tau_n})] - 2E^x[h(B_{\tau_n})h(B_{\tau_m})] + E^x[h^2(B_{\tau_m})] \]

\[
= E^x[h^2(B_{\tau_n})] - E^x[h^2(B_{\tau_m})] = E^x[\int_{\tau_n}^{\tau_m} |\nabla h(B_s)|^2 ds] \]

\[
\leq \int_{V_n \setminus V_m} |\nabla h(y)|^2 G(x,y) \, dm(y) \to 0 \quad \text{as } m, n \to \infty.
\]
So the sequence of functions

\[h_n = h(B_{\tau_n}) \]

converges in \(L^2(\Omega, P^X) \) to a function \(h^* \in L^2(\Omega, P^X) \).

In particular,

\[h(x) = \lim_{n \to \infty} E^X[h(B_{\tau_n})] = E^X[h^*] \]

and

\[E^X[(h^*)^2] = \lim_{n \to \infty} E^X[h^2(B_{\tau_n})] = h^2(x) + \int_V |\nabla h(y)|^2 G(x, y) \, dm(y) \]

by Lemma 1 and Lemma 4.

Moreover,

\[(2.12) \quad h_n \to h^* \text{ a.s. wrt. } P^X. \]

Choose \(y \in V \). Then by the Harnack inequalities \(P^Y|B_n^\tau \) is boundedly (uniformly in \(n \)) absolutely continuous wrt. \(P^X|B_n^\tau \), if \(n \) is large enough.

So

\[h_n \to h^* \text{ in } L^2(\Omega, P^Y) \text{ as well,} \]

and we have proved (2.10) and (2.11).

It remains to establish (2.8) and (2.9):

For all \(t \geq 0 \) and \(n \in \mathbb{N} \) we get, as before

\[(2.13) \quad E^X[h^2(B_{t\tau_n}^\tau)] = h^2(x) + E^X[\int_0^{t\tau_n} |\nabla h(B_s)|^2 \, ds]. \]

The same procedure as above gives, for \(n > m \),

\[E^X[h(B_{t\tau_n}^\tau) - h(B_{t\tau_m}^\tau)] = E^X[\int_{t\tau_m}^{t\tau_n} |\nabla h(B_s)|^2 \, ds] \to 0. \]

So letting \(n \to \infty \) in (2.13) we obtain, using (2.12)

\[E^X[h^2(B_{t\tau}^\tau)] = h^2(x) + E^X[\int_0^{t\tau} |\nabla h(B_s)|^2 \, ds], \]

where \(h(B_{t\tau}^\tau) \) is interpreted as \(h^* \) if \(t = \tau \).
Again the same procedure as above gives that, for $t > s$,

$$
E^x[(h(B_{t\tau \Delta t}) - h(B_{s\tau \Delta t}))^2] = E^x[\int_{s\tau \Delta t}^{t\tau \Delta t} |\nabla h(B_s)|^2 ds] \to 0 \text{ as } s, t \to \tau.
$$

So $(h(B_{t\tau \Delta t}))_t$ converges in $L^2(\Omega, \mathcal{P}^x)$ as $t \to \tau$.

The limit is necessarily equal to h^* and (2.8) and (2.9) follow.

Remark. Theorem 1 raises the following question: When is h^* a genuine boundary function? In other words, when is h^* $B_{\tau V}$-measurable, i.e. of the form $g(B_{\tau V})$ for some function $g \in L^2(\partial V, \lambda^x)$?

Any function of the form $g(B_{\tau V})$ is \mathcal{B}-measurable (since $B_{\tau V} = \lim_{n \to \infty} B_{\tau V_n}$ a.s.), but in general the family of \mathcal{B}-measurable functions may also contain functions which are not of this type.

For example, if

$$
V = \{(x_1, x_2); x_1^2 + x_2^2 < 1\} \setminus \{(x_1,0); x_1 \leq 0\} \subset \mathbb{R}^2
$$

and

$$
h(x_1, x_2) = \text{Arg}(x_1 + ix_2) = \text{Im} (\log(x_1 + ix_2)) ; \quad (x_1, x_2) \in V
$$

then h has different boundary values as $B_{\tau V}$ approach a point (x_1, x_2) on the negative real axis from above or below. So h^* is not $B_{\tau V}$-measurable in this case.
Theorem 2. Let h be a finely harmonic function on a fine domain $V \subset \mathbb{R}^d$ with a Green function G.

Then the following are equivalent:

(i) \[\int_V |\nabla h(y)|^2 G(x,y) \, dm(y) < \infty \quad \text{for all } x \in V \]

(ii) There exists a \mathcal{B}-measurable function $h^* \in L^2(\Omega,\mathcal{P})$ for all x such that

\[h(x) = E^X[h^*] \quad \text{for all } x \in V \]

(iii) There exists a number $M < \infty$ such that

\[E^X[h^2(B_\tau)] < M \]

for all stopping times $\tau < \tau_V$.

Proof.

(i) \implies (ii) by Theorem 1

(ii) \implies (iii): Suppose (ii) holds. Let $\tau < \tau_V$ be a stopping time. First assume that $\tau < \tau_n$ for some n. Then since h^* is \mathcal{B}-measurable,

\[
E^X[h^2(B_\tau)] = E^X[(E^X[h^*])^2] \\
= E^X[(E^X[h^*|B_\tau])^2] \\
= E^X[(E^X[h^*|B_\tau])^2] \\
\leq E^X[(h^*)^2] = M
\]

In the general case we apply the above argument to $\tau \wedge \tau_n$ and obtain $E^X[h^2(B_{\tau \wedge \tau_n})] \leq M$. Letting $n \to \infty$ we get (iii).
(iii) => (i): If we choose $\tau = \tau_n$ as in Lemma 2 we get by Lemma 1

$$M \geq E^X[h^2(B_{\tau_n})] = h^2(x) + \int_{V_n} |\nabla h(y)|^2 G(x,y) \, dm(y),$$

and (i) follows.

This completes the proof of Theorem 2.

Theorem 3. Let $U \subset \mathbb{R}^d$ be a fine domain with a Green function G and let h be a finely harmonic function on $V = U \setminus F$, where F is a polar set. Suppose

$$\int_U |\nabla h(y)|^2 G(x,y) \, dm(y) < \infty \quad \text{for all} \quad x \in V.$$

Then h extends to a finely harmonic function in U.

Proof. Choose finely open sets V_n as in Lemma 2 such that

$$\bigcup_{n=1}^{\infty} V_n = U \setminus F \setminus K,$$

where K is a polar set. Then by Theorem 1 there exists a \mathcal{B}-measurable function $h^* \in L^2(\Omega, \mathcal{F}^X)$ for all x such that

$$h(x) = E^X[h^*] \quad \text{for all} \quad x \in V.$$

Define

$$\tilde{h}(x) = E^X[h^*] ; x \in U.$$

We claim that \tilde{h} is finely harmonic in U.

To see this choose $x \in U$ and a fine neighbourhood D of x such that $\overline{D} \subset U$. Let T be the first exit time from D. Since $K \cup F$ is polar we must have $T < \tau_n$ for some n. Hence
since h^* is \mathcal{B}-measurable we get by the strong Markov property
\[
\tilde{h}(x) = E^x[h^*] = E^x[E^x[h^*|B_T]]
\]
\[
= E^x[E^T[h^*]] = \int_{\partial D} \tilde{h}(z) d\lambda^D(x) ,
\]
so that \tilde{h} satisfies the required mean value property.

As pointed out to me by B. Fuglede it is possible to give a stronger, pointwise version of Theorem 3 by combining Theorem 3 with Theorem 2.4 in [9], mentioned in the introduction:

THEOREM 4. Let U be as in Theorem 3 and let h be a finely harmonic function on $U \setminus F$, where F is a polar set. Suppose

\[
(2.15) \quad \int_U |\nabla h(y)|^2 G(x_0, y) dm(y) < \infty
\]

for some point $x_0 \in F$.

Then h extends to a finely harmonic function in $U \setminus (F \setminus \{x_0\})$.

COROLLARY. Let U be as in Theorem 3 and let h be a finely harmonic function in $U \setminus \{x_0\}$, where x_0 is some point in U.

Suppose (2.15) holds. Then h extends to a finely harmonic function in U.

Remarks. 1) Note that Theorem 3 contains Theorem 9.15 in Fuglede [6], because if h is bounded in V then (2.14) holds, by Lemma 1 and Lemma 4.

2) Consider the special case of an ordinary harmonic function h on a domain (in the ordinary topology) V in \mathbb{R}^d. Then the conclusions of Theorems 1, 2 and 3 hold in particular
if we replace the condition (1.2) by (1.1), since - as noted in
the introduction - (1.1) implies (1.2) in that case.
In Theorem 3 we must add the assumption that \(F \) is relatively
closed (a polar set is always finely closed).

Acknowledgements. I am very grateful to B. Fuglede for many
valuable comments.

REFERENCES

Motion. Springer-Verlag 1982.

finement harmoniques. Invent. Math. 29 (1975), 111 - 123.

definition of smallness of a set.

Dirichlet integrals.

Springer-Verlag 1965.

Bernt Øksendal
Agder College
Box 607
N-4601 Kristiansand
NORWAY

Current address:

Mathematical institute
University of Oslo
Blindern, Oslo 3
NORWAY