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FINELY HARMONIC FUNCTIONS WITH BOUNDED DIRICHLET

INTEGRAL WITH RESPECT TO THE GREEN MEASURE

Bernt @ksendal

Abstract.

We consider finely harmonic functions h on a fine,
Greenian domain V < Eld with bounded Dirichlet integral
wrt. Gm, i.e.

£|VhiY)lzG(x,y)dm(y) <o for x € V,
where m denotes the Lebesgue measure, G(x,y) the Green
function. We use Brownian motioh and stochastic calculus to
prove that such functions h always have boundary values h¥*
along a.a. Brownian paths. This partially extends results by
Doob, Brelot and Godefropid, who considered ordinary harmonic
functions with bounded Dirichlet integral wrt. m and Green
lines in stead of Brownian paths.

As a consequence og Theorem 1 we obtain several properties
equivalent to (*), one of these being that h is the harmonic
extension to V of a random "boundary" function h* (of a
certain type), i.e. h(x) = E¥[h*] for all x € V. Another
application is that the polar sets are removable singularity sets
for finely harmonic functions satisfying (*). This is in
contrast with the situation for finely harmonic functions with

bounded Dirichlet integral wrt. m,
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§1.‘ Introduction and statement of results

Properties of harmonic functions with bounded Dirichlet
integral have been studied by several authors. In 1962 Doob [4],
extending earlier works by Brelot and Godefroid, proved that a
harmonic function h on a domain V in Rd (@ > 2) admitting

a Green function and with a bounded Dirichlet integral, i.e.

(1.1) { |vh|%dm < =
\Y

(where m denotes Lebesgue measure in md)

always has a fine boundary function h* and h —> h* along the
Green lines of V . Doob (and Brelot and Godefroid) used a
measure on the space of all Green lines.

In this article we use Brownian motion and stochastic
calculus to prove a result of this type and establish a
corresponding L2—isometry (Theorem 1) in the more general
situation when h is a finely harmonic function on a fine domain
V in Rd with a Green function G . The assumption that h

has a finite Dirichlet integral is replaced by the assumption that
(1.2) [ |vh(y)|%G(x,y)dn(y) < ® for all x € V ,
\

i.c. that h has a finite Dirichlet integral wrt, the Green
measure. (It is known (Debiard and Gaveau '[2]) that Vh exists

a,e. wrt. m on V .)




In the case when h is harmonic in the ordinary sense on an
ordinary Greenian domain V then (l1.l1l) is a stronger assumption
than (1.2), because G( x,y) — 0 as y —> 0V (the boundary

of V) and the singularity of G(x,y) at y = x 1is m-integrable.
In the general fine situation it turns out that

(1.1) implies that (1.2) holds quasi-everywhere,

i.e. everywhere outside some polar set.
To see this let W be a bounded subset of V and assume that

(1.1) holds. Then by the Fubini theorem

I

f(f[Vh(y)|2G(X,y)dm(y))dm(X) f |Vh(y)|2(f G(x,y)dm(x))dm(y)
W Vv \4 W

< o , since sup(f G(x,y)dm(x)) < = .
y W
So (1.2) holds for a.a. x € W wrt. m .
In particular, the function H(x) = [ |Vh(y)[2G(x,y)dm(y) is not
infinite everywhere in V . But theX it follows from Theorem 2.4

in Fuglede [9] that H(x) 1is a fine potential in V and there-

fore finite quasi-everywhere, as asserted.

As a consequence of Theorem 1 we obtain several properties
equivalent to (1.2), one of these being that h is the harmonic
extension to V of a random function h* (of a certain type),
i.e. h(x) = EX[h*] for all x € V (Theorem 2). Another
application is that the polar sets are removable singularity sets
for a finely harmonic function h satisfying (1.2) (Theorem 3).
This result is in contrast with the situation for finely harmonic
functions h satisfying (1.1). 1In this case it is known that
polar sets need not be removable singularity sets (see Fuglede
[8], Théoréme 12 and p. 153). Thus the condition (l1.1) does not

imply (1.2) in general.



§2. Boundary behaviour and removable singularity sets

In the following Bt(w), w € Q, t >0 will denote Brownian

d

motion in R (d > 2) . The probability law of B starting

d

t
at x € R is denoted by P* and E is the expectation

operator wrt. Px .

For a finely open set V c rRY  we will let

Ty = inf{t > 0 ; Bt ¢ V} be the first exit time from V
(TV = o if B, € Vv for all t > 0). If Ty < ® a.s. the
harmonic measure XZ at x wrt. V is defined by
V _ X
(2.1) { far, = ETLE(B_ )],
oV \Y

if £ is a bounded, continuous real function on 3V , the

boundary of V .

The Green function G(x,y) of a fine domain V c Rd is

defined by

G(x,y)dm(y)= | P*[B_ € dy, s < TV]dS,
0 S
provided the integral converges.

Intuitively, G(x,y)dm(y) is the expected length of time Brownian

motion starting at x stays in dm(y) before it exits from V .

See Chung [1] for more information.

LEMMA 1. Let h be a finely harmonic function in a finely open
set VcR® with a Green function G . Let 1, be the first

exit time from V . Then
T

(2.2) E*LS |vh(By)|%ds] = | |vh(y)|%G(x,y)am(y)
0 \%

for all x € V .



Proof. By the Fubini theorem we have (x denotes the indicator

function)

Ty

x 2 I 2
E [g |[vh(B,) [“ds] = E [£|Vh(Bs)( X[O,Tv)(s)ds]

]
o—/ 8

(f1h(y) [2-P¥[B_ € ay , s < 7 ])ds
! :

fth(y)Iz(fo[B € dy , s < 1.,1ds) = IIVh(y)IZG(x,y)dm(y),
¥ 3 s \ i

which proves Lemma 1.
LEMMA 2. Let f be a real, finely continuous function on Rd.
Then

t —> f(Bt(w))

is continuous on [0,«) , for a.a. w € Q

Proof. By Theorem 3.5.1 in Chung [1l] the function t —> f(Bt(m))
is right continuous on [0,~) , a.s. Left continuity follows
by the same argument as in the proof of Theorem 4.5.9 in the same

book: Choose ¢ > 0 and define the reverse process

B for 0 <tx<c

B0 + Bt - Bc for c < t

Then gt is again a Brownian motion, so t —> f(Bt) is right
continuous, a.s. Since this holds for all ¢ > 0 the function

t — f(Bt) is left continuous, a.s.
LEMMA 3. Let U c Rd be finely open and let 1 be a stopping
time. Then for a.a. ®w we have:

If BT(w) € U then there exists € > 0 such that Bt(w) €U

for all t € (t(w) -¢ , T(w)) .



Proof. Since the fine topology is completely regular we can for
each x € U find a finely continuous function y —> fx(y) on

Rd such that 0 < £ <1, £ =1 on Rd ~ U and fx(x) =0 .

X X
Let Dx c U be a fine neighbourhood of x such that fX < %
on D_ . The family {Dx}xEU covers U , so by Doob's quasi-

Lindeldf principle ([3]) we can find a countable subfamily

{Dx }k=l such that
k
K=U-~ UD,
k=1 “k
is polar. Put
£ = v 2 k¢ |
k=1 *x

Then f is finely continuous, £ = 1 on Rd ~NU and £ < 1
on U~ K . Assume BT € U . Since K 1is polar BT ¢ K and
therefore f(BT) <1, a.s. By Lemma 2 t —> f(Bt) is
continuous a.s. So for a.a. w there exists € > 0 such that
f(Bt) <1 for T -e€ <t<tT. This implies that B_ € U for

T -¢€¢ < t < 1t and Lemma 3 is proved.

LEMMA 4. Let h be a finely harmonic function in a fine domain
V < Rd . Then there exists an increasing sequence of fine

bounded domains Vn c V such that with

Tn = TV we have
n
(2.3) T bty a.s. as n —> o
and .
) 2 %, & 2
(2.4) E"[h"(B_ )]1=h"(x) +E [é |vh(B,)|“ds] < =
n

for all n and all x € V .



Proof. Choose x € V . Then there exists a fine bounded
neighbourhood UX 3 x with campact closure Ex < V and a sequence
of functions hn harmonic (in the ordinary sense) in a

neighbourhood of U_ such that h_—> h uniformly on U_ .
X n X

(Fuglede [7], Theorem 4.1.)

Put 1t =1 Then by Ito's formula

U .
X

T
hh(BT) - hn(x) = £ Yh (B )dBS for all n .

So by the basic isometry for Ito integrals

X 2, _ X T 2
E"[(hyB )-h (x))7] = E [g |vh _(B.)|"ds] ,
l.e.
2 2 P 2
E¥[h “(B)] = h_%(x) + Ex[g|th(Bs)! as] ,
since Ex[hn(BT)] = hn(x) , for all n .

Letting n —> « we obtain, using Lemma 1,

T
Ex[hz(BT)] = h%(x) + EXL S |Vh(BS)[2ds] < o,
0

The family {Ux}XEV covers V , S0 by Doob's quasi-Lindeldf

principle [ 3] we can find a countable subfamily denoted by {Wn}

such that

c©
UW_=V~K,
-1 N

where K 1is a polar set. Now define
n
V. = UW ;7 n=1, 2, ... .

n k=1 k

Since K 1is polar (2.3) holds.

We prove (2.4) by induction: The argument above proves that (2.4)
holds for n =1 . To prove the induction step assume that it
). Define

k . Put S T =

1l

holds for n =1 T (= 7
0 k ' k+1 VkUWk+1



n
I

; B, ¢ w }

0 t k+1

inf{t > 5, i By ¢ vk}

inf{t > s

w0n
I

and inductively

il

inf{t > S,. ; By ¢ W, ..}

23 k+1
= inf{t > S2j+1 i By ¢ Vk} i J=0,1, 2, ...

S24+1

S25+2
Then {Sj} is an increasing sequence of stopping times. Since
S. < T <o a.s. the limit

S = 1im S,

joeo I

exists a.s. and S < T .
Since B €3 _W for all j (Bf denotes fine boundary) we

S2j+l f k+1

must have BS ¢ W a.s., by Lemma 3.

k+1
Similarly Bg ¢ Vi @.s. Thus S > T and therefore S

I
=]

Therefore it suffices to prove that
S.

J
(2.5)  E*[n®(Bg )] = h®(x) + E¥[J |vh(B,)|%ds] for all j .
0

S.
J

For if (2.5) is established then the induction step of (2.4)
follows by bounded convergence if we let j —> = . (Recall that

h is bounde@ on Vk+l) .

We establish (2.5) by induction on 3j . The strong Markov
property states that if T 1is a stopping time and n is
measurable wrt. {B_ ; s > 0} , then

B
o) X _ T
(2.6) E [STn|BT] =E "[n] ,

where et is the shift operator:

,(g,(B,_ )...9,(B, )) =g, (B )...9.(B ) .
t' 71 tl i ti 1l tl+t i ti+t

(See Dynkin [5], Theorem 3.11, p. 100 or @ksendal [10], (7.15).)



Assume (2,5) holds for a given Jj . For simplicity put

a=85., b= Sj+l . Then, using (7.16) in [8]

1

B
X, 2 X _Xp, 2 _ =X ar, 2
E"[h“(B,)] = ET[E"(h"(By)[B,]] = E"[E “[h (B,) 11

B_. b
Ex[hz(Ba) + E 2[f |Vh(Bs)l2ds]]
0

(2.7)

1

2 x. 3 2 X Ba
h®(x) +E7[J |vh(B,)|“ds] +E"[E "[y]],
0

(=]

where ¢ = |Vh(Bs)Izds = é ]Vh(BS)IZX[S,w)(b)ds .

W o—o

since E[E 2ly]] = EX[E"[6_y[B,1] = EX[6,v]
and

-7 2,
o ¥ = é |vh(B_, )| x[a+s’m)(b)§s

-7 2
= i |vh(B,) |

2 2
X{u,e) (P1AU = £ |[vh(B,) [“ds ,

we obtain from (2.7) that
Xp, 2 2 X b 2 |
E"[h"(B )] = h"(x) + E[J |Vh(B)[|“as] ,
0 s
which establishes the induction step of (2.5) and thus completes

the proof of Lemma 4.

Let Vn, L% be as in Lemma 4. Then we let JBn denote the
o-algebra of subsets of (Q generated by the random variables

{B, + k> n} and we define
k

i.e. B is the tail field of the sequence {BT } .
n



THEOREM 1, Let h be a finely harmonic function in a fine domain

V c md with a Green function G , and assume that

S |Vh(y)12G(x,y)dm(y) <o for all x € V ,

Vv
Then there exists a function h* € LZ(Q,PX) for all x such that
(2.8) lim h(B,) = n* a.s. p¥
t+TV
and
(2.9) EX[(h(BtAT ) - h*)%] = 0 as t+w , for all x € V .

We may regard h* as a generalized (random) boundary value
function of h , in the sense that h* is measurable wrt. the
tail field # and h is the "harmonic extension" of h* to V ,

i.e.

(2.10) h(x) = EX[h*] for all x € V .

Moreover, we have the isometry

(2.11)  EX[(h®)?] = n®(x) + [|Yh(y) | %G (x,y)dm(y) for all x € V .
\Y%

Proof. Let Vn’ Tn be as in Lemma 4. Choose n >m and x € V

Then
X X X
E7[h(B_ )h(B_ )] = E7[E"[h(B_ )h(B_ )[B_ 1]
Tn TII\ Tn Tm I Tm
_ X X
= E [h(BTm)E [h(BTn)IBTm]]
= E*[h%(_ )] .
Tm
Therefore

X _ 2, _ X, 2 _ opX X, 2
E [(h(BTn) h(BTm)) 1=E"[h (BTn)] 2E [h(BTn)h(BTm)]*-E [h (BTm)]
T

n
B¥(h’(8_ )] - E[h®(B_ )] = E*[J |vn(B)|%as]

n m T
m

1

2
|

IA

[/ |¥n(y)
V NV
n m

G(x,y)dm(y) — 0 as m, n —> o« ,
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So the sequence of functions

converges in LZ(Q,PX) to a function h*E€ LZ(Q,PX).

In particular,

h(x) = lim Ex[h(BT )] = EX[h*]
n

and

EX[(h*)?]=1im Ex[hz(BT )1 = h2(x) + [ |vh(y) |%G(x,y)dm(y)
n->co n ) \Y

by Lemma 1 and Lemma 4.

Moreover,
(2.12) h. — h* a.s. wrt. P~ .

Choose y € V . Then by the Harnack inequalities Pykﬂn is
boundedly (uniformly in n) absolutely continuous wrt. PXLBn ’
if n 1is large enough.

So

h —> b* in 12(,pY) as well,

and we have proved (2.10) and (2.11).

It remains to establish (2.8) and (2.9):

For all t > 0 and n € N we get, as before
tat

n
(2.13)  Eftn%(e,, )] = h2(x) + E° [ |vh(B)|%as] .
0

AT
t n

The same procedure as above gives, for n >m ,
tAT

X 2 7_ x n 2
E"[h(B,, . )-h(BtATm)) 1=E [t{T IVh(BS)l ds] -> 0 .

n
m
So letting n —> « in (2.13) we obtain, using (2,12)

tAT

B [h® (B, )] = hP(x) + E¥ J |vh(B,) | %as] ,

where h(B ) is interpreted as h* if t =t .

tAT



Again the same procedure as above gives that, for t > s ,

EX[ (h(B, ) - h(B ))2]-Ex[t?T|Vh(B )lzds]—> 0 as s, t—=>1
' tAT SAT - AT s ‘ ! )
So {h(BtAT)}t converges in L2(Q,PX) as t > T .

The limit is necessarily equal to h* and (2.8) and

(2.9) follow.

Remark. Theorem 1 raises the following question: When is h* a
genuine boundary function? In other words, when is h*
BT -measurable, i.e. of the form g(BT ) for some function

"V \Y
g € L2, 2

X
Any function of the form g(BT ) is JB-measurable (since
v

B. = lim B a.s.), but in general the family of Jd-measurable

Ty n+ 'n A
functions may also contain functions which are net of this type.
For example, if | '

V= {(x,,%x,) ; X 24—x 2 < 1}~ {(x,,0) ; %, <0} ¢ Rz
ll 2 [ l 2 ll 14 l""'"

and
h(xl,xz) = Arg(xl+ix2) = Im(log(xl+ix2)) H (xlrxz) EV

then h has different boundary values as B, approach a peint
(xl,xz) on the negative real axis from above or below, So h*

is not BT —measﬁrable in this case.
v



THEOREM 2. Let h be a finely harmonic function on a fine domain
v ¢ g9 with a Green function G .
Then the following are equivalent:
(1) [ |va(y) %6, y)dm(y) < © for all x €V
\Y

(ii) There exists a ﬁ?-measurable function h* € LZ(Q,PX)

for all x such that
h(x) = EX[h*] for all x € V
(iii) There exists a number M < e« such that
EX[hZ(BT)] <M

for all stopping times T < Ty

Proof,

(i) => (ii) by Theorem 1

(ii) => (iii): Suppose (ii) holds, Let 1 < Ty be-a stopping

time. First assume that T < Tn for some n . Then since h*

is B-measurable

Xr, 2 I BT i 2
E[h"(B )] = ET[(E "[n*"])7]

X X * 2
E"[(E"[6_h |BT]) ]

EX[(EX[h*IBT])Z]

EX[ (h*)?%] = M

1A

In the general case we apply the above argument to T A Tn and
2(B )] <M . Letting n ~> o we get (iii).

TAT
n

obtain Ex[h
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(iii) => (i): 1If we choose 1 = T, as in Lemma 2 we get by

Lemma 1

M > E¥n*(B_ )1 = h¥(x) + J |Vh(y) [Pex,y)am(y)
n Vn
and (i) follows.

This completes the proof of Theorem 2.

THEOREM 3. Let U cIRd be a fine domain with a Green function
G and let h be a finely harmonic function on V = U~ F ,

where F is a polar set. Suppose
(2.14)  f |vh(y)|%G(x,y)dm(y) < » for all x € V .
3 ‘
Then h extends to a finely harmonic function in U .
Proof. Choose finely open sets v, as in Lemma 2 such that

UV, =UNFS>~K,

where K 1is a polar set. Then by Theorem 1l there exists a

B-measurable function h* € LZ(Q,PX) for all x such that

h(x) = EX[h*] for all x € V .

i

Define

R(x) = EX[h*] ; x €U

We claim that h is finely harmonic in U .
To see this choose x € U and a fine neighbourhood D of x
such that D < U . Let T be the first exit time from D,

Since K U F 1is polar we must have T < Th for some n. Hence



since h* is %-measurable we get by the strong Markov property

h(x) = E*[h*] = E*[E"[h"|B_]]
XBT* o~ D
=E[E [h']] = [ h(z)dr "~ (x) ,
9D X

so that h satisfies the required mean value property.

As pointed out to me by B. Fuglede it is possible to give a
stronger, pointwise version of Theorem 3 by combining Theorem 3

with Theorem 2.4 in [9], mentioned in the introduction:

THEOREM 4. Let U be as in Theorem 3 and let h be a finely

harmonic function on U ~ F , where F 1is a polar set.
Suppose
2
(2.15) J |vh(y) | G(xy,y)ldm(y) < o
U
for some point X € F

Then h extends to a finely harmonic function in U ~ (F\~{x0}).

COROLLARY. Let U be as in Theorem 3 and let h be a finely
harmonic function in U ~ {xo} , where x, is some point in U .
Suppose (2.15) holds. Then h extends to a finely harmonic

function in U

Remarks. 1) Note that Theorem 3 contains Theorem 9.15 in
Fuglede [6], because if h is bounded in V then (2.14) holds,

by Lemma 1 and Lemma 4.

2) Consider the special case of an ordinary harmonic
function h on a domain (in the ordinary topology) V in |Rd .

Then the conclusions of Theorems 1, 2 and 3 hold in particular
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if we replace the condition (1.2) by (1.1), since - as noted in

the introduction - (l1.1) implies (1.2) in that case.

In Theorem 3 we must add the assumption that F 1is relatively

closed (a polar set is always finely closed).
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