FINELY HARMONIC FUNCTIONS WITH BOUNDED DIRICHLET INTEGRAL WITH RESPECT TO THE GREEN MEASURE

Bernt Øksendal

Abstract.

We consider finely harmonic functions h on a fine, Greenian domain $V \subset \mathbb{R}^d$ with bounded Dirichlet integral wrt. Gm, i.e.

$$\int_{V} |\nabla h(y)|^{2} G(x,y) dm(y) < \infty \text{ for } x \in V,$$

where m denotes the Lebesgue measure, G(x,y) the Green function. We use Brownian motion and stochastic calculus to prove that such functions h always have boundary values h* along a.a. Brownian paths. This partially extends results by Doob, Brelot and Godefroid, who considered ordinary harmonic functions with bounded Dirichlet integral <u>wrt. m</u> and Green lines in stead of Brownian paths.

As a consequence og Theorem 1 we obtain several properties equivalent to (*), one of these being that h is the harmonic extension to V of a random "boundary" function h^* (of a certain type), i.e. $h(x) = E^{X}[h^*]$ for all $x \in V$. Another application is that the polar sets are removable singularity sets for finely harmonic functions satisfying (*). This is in contrast with the situation for finely harmonic functions with bounded Dirichlet integral wrt. m.

(*)

FINELY HARMONIC FUNCTIONS WITH BOUNDED DIRICHLET INTEGRAL WITH RESPECT TO THE GREEN MEASURE

Bernt Øksendal

§1. Introduction and statement of results

Properties of harmonic functions with bounded Dirichlet integral have been studied by several authors. In 1962 Doob [4], extending earlier works by Brelot and Godefroid, proved that a harmonic function h on a domain V in \mathbb{R}^d (d \geq 2) admitting a Green function and with a bounded Dirichlet integral, i.e.

$$(1.1) \qquad \int_{V} |\nabla h|^2 dm < \infty$$

(where m denotes Lebesgue measure in \mathbb{R}^{Q}) always has a fine boundary function h^* and $h \rightarrow h^*$ along the Green lines of V. Doob (and Brelot and Godefroid) used a measure on the space of all Green lines.

In this article we use Brownian motion and stochastic calculus to prove a result of this type and establish a corresponding L^2 -isometry (Theorem 1) in the more general situation when h is a <u>finely</u> harmonic function on a <u>fine</u> domain V in \mathbb{R}^d with a Green function G. The assumption that h has a finite Dirichlet integral is replaced by the assumption that

(1.2)
$$\int_{V} |\nabla h(y)|^2 G(x,y) dm(y) < \infty \text{ for all } x \in V,$$

i.c. that h has a finite Dirichlet integral wrt. the Green measure. (It is known (Debiard and Gaveau [2]) that ∇h exists a.e. wrt. m on V .)

In the case when h is harmonic in the ordinary sense on an ordinary Greenian domain V then (1.1) is a stronger assumption than (1.2), because $G(x,y) \rightarrow 0$ as $y \rightarrow \partial V$ (the boundary of V) and the singularity of G(x,y) at y = x is m-integrable. In the general <u>fine</u> situation it turns out that

(1.1) implies that (1.2) holds quasi-everywhere,

i.e. everywhere outside some polar set.To see this let W be a bounded subset of V and assume that(1.1) holds. Then by the Fubini theorem

 $\int_{W} \left(\int |\nabla h(y)|^2 G(x,y) dm(y) \right) dm(x) = \int_{V} |\nabla h(y)|^2 \left(\int_{W} G(x,y) dm(x) \right) dm(y)$ $< \infty , \text{ since } \sup_{y \in W} \left(\int_{V} G(x,y) dm(x) \right) < \infty .$

So (1.2) holds for a.a. $x \in W$ wrt. m. In particular, the function $H(x) = \int_{V} |\nabla h(y)|^2 G(x,y) dm(y)$ is not infinite everywhere in V. But then it follows from Theorem 2.4 in Fuglede [9] that H(x) is a fine potential in V and therefore finite quasi-everywhere, as asserted.

As a consequence of Theorem 1 we obtain several properties equivalent to (1.2), one of these being that h is the harmonic extension to V of a random function h^* (of a certain type), i.e. $h(x) = E^{x}[h^*]$ for all $x \in V$ (Theorem 2). Another application is that the polar sets are removable singularity sets for a finely harmonic function h satisfying (1.2) (Theorem 3). This result is in contrast with the situation for finely harmonic functions h satisfying (1.1). In this case it is known that polar sets need not be removable singularity sets (see Fuglede [8], Théorème 12 and p. 153). Thus the condition (1.1) does not imply (1.2) in general.

- 2 -

§2. Boundary behaviour and removable singularity sets

In the following $B_t(\omega)$, $\omega \in \Omega$, $t \ge 0$ will denote Brownian motion in \mathbb{R}^d $(d \ge 2)$. The probability law of B_t starting at $x \in \mathbb{R}^d$ is denoted by \mathbb{P}^x and \mathbb{E}^x is the expectation operator wrt. \mathbb{P}^x .

For a finely open set $V \subset \mathbb{R}^d$ we will let $\tau_V = \inf\{t > 0 ; B_t \notin V\}$ be the first exit time from V $(\tau_V = \infty \text{ if } B_t \in V \text{ for all } t > 0)$. If $\tau_V < \infty$ a.s. the <u>harmonic measure</u> λ_x^V at x wrt. V is defined by

(2.1) $\int_{\partial V} f d\lambda_{x}^{V} = E^{x} [f(B_{\tau_{v}})] ,$

if f is a bounded, continuous real function on $\,\partial V$, the boundary of V .

The <u>Green function</u> G(x,y) of a fine domain $V \subset \mathbb{R}^d$ is defined by

 $G(x,y)dm(y) = \int_{0}^{\infty} P^{X}[B_{s} \in dy, s < \tau_{V}]ds,$

provided the integral converges.

Intuitively, G(x,y)dm(y) is the expected length of time Brownian motion starting at x stays in dm(y) before it exits from V. See Chung [1] for more information.

<u>LEMMA 1</u>. Let h be a finely harmonic function in a finely open set $V \subset \mathbb{R}^d$ with a Green function G. Let τ_V be the first exit time from V. Then

(2.2)
$$E^{x}\left[\int_{0}^{t_{V}} |\nabla h(B_{s})|^{2} ds\right] = \int_{V} |\nabla h(y)|^{2} G(x,y) dm(y)$$

for all $x \in V$.

- 3 -

<u>Proof</u>. By the Fubini theorem we have $(\chi$ denotes the indicator function)

$$\begin{split} & E^{X}\left[\int_{0}^{\tau} |\nabla h(B_{s})|^{2} ds\right] = E^{X}\left[\int_{0}^{\infty} |\nabla h(B_{s})|^{2} \chi_{[0,\tau_{V})}(s) ds\right] \\ &= \int_{0}^{\infty} (\int |\nabla h(y)|^{2} \cdot P^{X}[B_{s} \in dy , s < \tau_{V}]) ds \\ &= \int |\nabla h(y)|^{2} (\int_{0}^{\infty} P^{X}[B_{s} \in dy , s < \tau_{V}] ds) = \int |\nabla h(y)|^{2} G(x,y) dm(y), \end{split}$$

which proves Lemma 1.

LEMMA 2. Let f be a real, finely continuous function on \mathbb{R}^d . Then

$$t \rightarrow f(B_{+}(\omega))$$

is continuous on $[\,0\,,\infty)$, for a.a. $\omega\,\in\,\Omega$.

<u>Proof</u>. By Theorem 3.5.1 in Chung [1] the function $t \rightarrow f(B_t(\omega))$ is right continuous on $[0,\infty)$, a.s. Left continuity follows by the same argument as in the proof of Theorem 4.5.9 in the same book: Choose c > 0 and define the reverse process

$$\widetilde{B}_{t} = \begin{cases} B_{c-t} & \text{for } 0 \leq t \leq c \\ B_{0} + B_{t} - B_{c} & \text{for } c < t \end{cases}$$

Then \widetilde{B}_t is again a Brownian motion, so $t \rightarrow f(\widetilde{B}_t)$ is right continuous, a.s. Since this holds for all c > 0 the function $t \rightarrow f(B_t)$ is left continuous, a.s.

<u>LEMMA 3</u>. Let $U \subset \mathbb{R}^d$ be finely open and let τ be a stopping time. Then for a.a. ω we have:

If $B_{\tau}(\omega) \in U$ then there exists $\varepsilon > 0$ such that $B_{t}(\omega) \in U$ for all $t \in (\tau(\omega) - \varepsilon, \tau(\omega))$. <u>Proof</u>. Since the fine topology is completely regular we can for each $x \in U$ find a finely continuous function $y \rightarrow f_x(y)$ on \mathbb{R}^d such that $0 \leq f_x \leq 1$, $f_x \equiv 1$ on $\mathbb{R}^d \setminus U$ and $f_x(x) = 0$. Let $D_x \subset U$ be a fine neighbourhood of x such that $f_x < \frac{1}{2}$ on D_x . The family $\{D_x\}_{x \in U}$ covers U, so by Doob's quasi-Lindelöf principle ([3]) we can find a countable subfamily $\{D_{x_1}\}_{k=1}^{\infty}$ such that

$$K = U \sim \bigcup_{k=1}^{\infty} D_{k=1}$$

is polar. Put

$$f = \sum_{k=1}^{\infty} 2^{-k} f_{x_k}.$$

Then f is finely continuous, $f \equiv 1$ on $\mathbb{R}^d > U$ and f < 1on U > K. Assume $B_{\tau} \in U$. Since K is polar $B_{\tau} \notin K$ and therefore $f(B_{\tau}) < 1$, a.s. By Lemma 2 t -> $f(B_{t})$ is continuous a.s. So for a.a. ω there exists $\varepsilon > 0$ such that $f(B_{t}) < 1$ for $\tau - \varepsilon < t < \tau$. This implies that $B_{t} \in U$ for $\tau - \varepsilon < t < \tau$ and Lemma 3 is proved.

<u>LEMMA 4</u>. Let h be a finely harmonic function in a fine domain $V \subset \mathbb{R}^d$. Then there exists an increasing sequence of fine bounded domains $V_n \subset V$ such that with

$$\tau_n = \tau_{V_n}$$
 we have

(2.3) $\tau_n + \tau_V$ a.s. as $n \to \infty$ and (2.4) $E^{X}[h^{2}(B_{\tau_n})] = h^{2}(x) + E^{X}[\int_{0}^{\tau_n} |\nabla h(B_s)|^{2}ds] < \infty$

for all n and all $x \in V$.

<u>Proof</u>. Choose $x \in V$. Then there exists a fine bounded neighbourhood $U_x \ni x$ with compact closure $\overline{U}_x \subset V$ and a sequence of functions h_n harmonic (in the ordinary sense) in a neighbourhood of \overline{U}_x such that $h_n \rightarrow h$ uniformly on \overline{U}_x . (Fuglede [7], Theorem 4.1.)

Put $\tau = \tau_{U_{\mathbf{y}}}$. Then by Ito's formula

$$h_n(B_{\tau}) - h_n(x) = \int_0^{\tau} \nabla h_n(B_s) dB_s$$
 for all n .

So by the basic isometry for Ito integrals

$$E^{x}[(h_{n}(B_{\tau}) - h_{n}(x))^{2}] = E^{x}[\int_{0}^{1} |\nabla h_{n}(B_{s})|^{2} ds],$$

i.e.

$$E^{X}[h_{n}^{2}(B_{\tau})] = h_{n}^{2}(x) + E^{X}[\int_{0}^{\tau} |\nabla h_{n}(B_{s})|^{2} ds],$$

since $E^{X}[h_{n}(B_{\tau})] = h_{n}(x)$, for all n.

Letting n $\rightarrow \infty$ we obtain, using Lemma 1,

$$E^{x}[h^{2}(B_{\tau})] = h^{2}(x) + E^{x}[\int_{0}^{\tau} |\nabla h(B_{s})|^{2}ds] < \infty$$

The family $\{U_x\}_{x\in V}$ covers V, so by Doob's quasi-Lindelöf principle [3] we can find a countable subfamily denoted by $\{W_n\}$ such that

$$\bigcup_{n=1}^{\infty} W_n = V \smallsetminus K ,$$

where K is a polar set. Now define

$$V_n = \bigcup_{k=1}^n W_k$$
; $n = 1, 2, ...$

Since K is polar (2.3) holds.

We prove (2.4) by induction: The argument above proves that (2.4) holds for n = 1. To prove the induction step assume that it holds for n = k. Put $S_0 = \tau_k$, $T = \tau_{k+1}$ (= $\tau_{V_k}UW_{k+1}$). Define

$$S_1 = \inf\{t > S_0; B_t \notin W_{k+1}\}$$

 $S_2 = \inf\{t > S_1; B_t \notin V_k\}$

and inductively

$$S_{2j+1} = \inf\{t > S_{2j}; B_t \notin W_{k+1}\}$$

$$S_{2j+2} = \inf\{t > S_{2j+1}; B_t \notin V_k\}; j = 0, 1, 2, ...$$

Then $\{S_j\}$ is an increasing sequence of stopping times. Since $S_j \leq T < \infty$ a.s. the limit

$$S = \lim_{j \to \infty} S_j$$

exists a.s. and $S \leq T$.

Since $B_{S_{2j+1}} \in \partial_{f} W_{k+1}$ for all j (∂_{f} denotes fine boundary) we must have $B_{S} \notin W_{k+1}$ a.s., by Lemma 3. Similarly $B_{S} \notin V_{k}$ a.s. Thus $S \geq T$ and therefore S = T.

Therefore it suffices to prove that

(2.5)
$$E^{x}[h^{2}(B_{S_{j}})] = h^{2}(x) + E^{x}[\int_{0}^{S_{j}} |\nabla h(B_{S})|^{2}ds]$$
 for all j.

For if (2.5) is established then the induction step of (2.4) follows by bounded convergence if we let $j \rightarrow \infty$. (Recall that h is bounded on V_{k+1}).

We establish (2.5) by induction on j. The strong Markov property states that if τ is a stopping time and η is measurable wrt. {B_s; s ≥ 0}, then

(2.6) $E^{X}[\theta_{\tau}\eta|B_{\tau}] = E^{B_{\tau}}[\eta]$,

where θ_+ is the shift operator:

$$\theta_{t}(g_{1}(B_{t_{1}})...g_{i}(B_{t_{i}})) = g_{1}(B_{t_{1}}+t)...g_{i}(B_{t_{i}}+t)$$

(See Dynkin [5], Theorem 3.11, p. 100 or Øksendal [10], (7.15).)

- 7 -

Assume (2.5) holds for a given j. For simplicity put $a = S_j$, $b = S_{j+1}$. Then, using (7.16) in [8]

$$E^{X}[h^{2}(B_{b})] = E^{X}[E^{X}[h^{2}(B_{b})|B_{a}]] = E^{X}[E^{Ba}[h^{2}(B_{b})]]$$

$$= E^{X}[h^{2}(B_{a}) + E^{Ba}[\int_{0}^{b} |\nabla h(B_{s})|^{2}ds]]$$

$$= h^{2}(X) + E^{X}[\int_{0}^{a} |\nabla h(B_{s})|^{2}ds] + E^{X}[E^{Ba}[\psi]]$$

where $\psi = \int_{0}^{b} |\nabla h(B_{s})|^{2} ds = \int_{0}^{\infty} |\nabla h(B_{s})|^{2} \chi_{[s,\infty)}(b) ds$. Since $E^{x}[E^{Ba}[\psi]] = E^{x}[E^{x}[\theta_{a}\psi|B_{a}]] = E^{x}[\theta_{a}\psi]$ and

$$\theta_{a}\psi = \int_{0}^{\infty} |\nabla h(B_{a+s})|^{2} \cdot \chi_{[a+s,\infty)}(b) ds$$
$$= \int_{a}^{\infty} |\nabla h(B_{u})|^{2} \chi_{[u,\infty)}(b) du = \int_{a}^{b} |\nabla h(B_{s})|^{2} ds ,$$

we obtain from (2.7) that

$$E^{X}[h^{2}(B_{b})] = h^{2}(x) + E^{X}[\int_{0}^{b} |\nabla h(B_{s})|^{2} ds]$$

which establishes the induction step of (2.5) and thus completes the proof of Lemma 4.

Let V_n , τ_n be as in Lemma 4. Then we let \mathcal{B}_n denote the σ -algebra of subsets of Ω generated by the random variables $\{B_{\tau_k} : k \geq n\}$ and we define $\mathcal{B} = \bigcap_{n=1}^{\infty} \mathcal{B}_n$,

i.e. $\mathcal B$ is the tail field of the sequence $\{{\bf B}_{{\bf \tau}_n}\}$.

THEOREM 1. Let h be a finely harmonic function in a fine domain $V \subset \mathbb{R}^d$ with a Green function G , and assume that

$$\int_{V} |\nabla h(y)|^2 G(x, y) dm(y) < \infty \quad \text{for all} \quad x \in V.$$

Then there exists a function $h^* \in L^2(\Omega, P^X)$ for all x such that

(2.8)
$$\lim_{t \uparrow \tau_{V}} h(B_{t}) = h^{*} \text{ a.s. } P^{X}$$

and

(2.9)
$$E^{x}[(h(B_{t\wedge\tau_{V}}) - h^{*})^{2}] \rightarrow 0 \text{ as } t \uparrow \infty, \text{ for all } x \in V.$$

We may regard h^* as a generalized (random) boundary value function of h , in the sense that h^* is measurable wrt. the tail field \mathcal{B} and h is the "harmonic extension" of h^* to V , i.e.

(2.10)
$$h(x) = E^{X}[h^{*}]$$
 for all $x \in V$.

Moreover, we have the isometry

(2.11)
$$E^{x}[(h^{*})^{2}] = h^{2}(x) + \int_{V} |\nabla h(y)|^{2} G(x,y) dm(y)$$
 for all $x \in V$.

<u>Proof</u>. Let V_n , τ_n be as in Lemma 4. Choose n > m and $x \in V$. Then

$$E^{X}[h(B_{\tau_{n}})h(B_{\tau_{m}})] = E^{X}[E^{X}[h(B_{\tau_{n}})h(B_{\tau_{m}})|B_{\tau_{m}}]]$$

= $E^{X}[h(B_{\tau_{m}})E^{X}[h(B_{\tau_{n}})|B_{\tau_{m}}]]$
= $E^{X}[h^{2}(B_{\tau_{m}})]$.

Therefore

$$E^{X}[(h(B_{\tau_{n}}) - h(B_{\tau_{m}}))^{2}] = E^{X}[h^{2}(B_{\tau_{n}})] - 2E^{X}[h(B_{\tau_{n}})h(B_{\tau_{m}})] + E^{X}[h^{2}(B_{\tau_{m}})]$$

$$= E^{X}[h^{2}(B_{\tau_{n}})] - E^{X}[h^{2}(B_{\tau_{m}})] = E^{X}[\int_{\tau_{m}}^{\tau_{n}} |\nabla h(B_{s})|^{2}ds]$$

$$\leq \int_{V_{n} \leq V_{m}} |\nabla h(y)|^{2}G(x, y)dm(y) \rightarrow 0 \quad \text{as} \quad m, n \rightarrow \infty.$$

So the sequence of functions

$$h_n = h(B_{\tau n})$$

converges in $L^{2}(\Omega, P^{X})$ to a function $h^{*} \in L^{2}(\Omega, P^{X})$. In particular,

$$h(x) = \lim E^{X}[h(B_{\tau_{n}})] = E^{X}[h^{*}]$$

and

$$E^{X}[(h^{*})^{2}] = \lim_{n \to \infty} E^{X}[h^{2}(B_{\tau_{n}})] = h^{2}(x) + \int_{V} |\nabla h(y)|^{2}G(x,y)dm(y)$$

.....

by Lemma 1 and Lemma 4.

Moreover,

(2.12)
$$h_n \to h^*$$
 a.s. wrt. P^X .

Choose $y \in V$. Then by the Harnack inequalities $P^{Y} | \mathscr{B}_{n}$ is boundedly (uniformly in n) absolutely continuous wrt. $P^{X} | \mathscr{B}_{n}$, if n is large enough.

So

$$h_n \rightarrow h^*$$
 in $L^2(\Omega, P^Y)$ as well,

and we have proved (2.10) and (2.11).

It remains to establish (2.8) and (2.9): For all $t \ge 0$ and $n \in N$ we get, as before

(2.13)
$$E^{x}[h^{2}(B_{t\wedge\tau_{n}})] = h^{2}(x) + E^{x}[\int_{0}^{t\wedge\tau_{n}} |\nabla h(B_{s})|^{2} ds]$$

The same procedure as above gives, for n > m,

$$E^{\mathbf{X}}[h(B_{t\wedge\tau_{n}}) - h(B_{t\wedge\tau_{m}}))^{2}] = E^{\mathbf{X}}[\int_{t\wedge\tau_{m}}^{t\wedge\tau_{n}} |\nabla h(B_{s})|^{2} ds] \rightarrow 0.$$

So letting $n \rightarrow \infty$ in (2.13) we obtain, using (2.12)

$$E^{\mathbf{X}}[h^{2}(B_{t\wedge\tau})] = h^{2}(\mathbf{x}) + E^{\mathbf{X}}\left[\int_{0}^{t\wedge\tau} |\nabla h(B_{s})|^{2} ds\right],$$

where $h(B_{t \wedge \tau})$ is interpreted as h^* if $t = \tau$.

$$E^{X}[(h(B_{t\wedge\tau}) - h(B_{S\wedge\tau}))^{2}] = E^{X}[\int_{S\wedge\tau}^{t\wedge\tau} |\nabla h(B_{S})|^{2} ds] \rightarrow 0 \text{ as } s, t \rightarrow \tau.$$

So $\{h(B_{t\wedge\tau})\}_{t}$ converges in $L^{2}(\Omega, P^{X})$ as $t \rightarrow \tau.$
The limit is necessarily equal to h^{*} and (2.8) and
(2.9) follow.

<u>Remark</u>. Theorem 1 raises the following question: When is h^* a genuine boundary function? In other words, when is h^* B -measurable, i.e. of the form $g(B_{\tau V})$ for some function V_{V} g $\in L^2(\partial V, \lambda_x)$?

Any function of the form $g(B_{\tau_V})$ is \mathcal{B} -measurable (since $B_{\tau_V} = \lim_{n \to \infty} B_{\tau_n}$ a.s.), but in general the family of \mathcal{B} -measurable functions may also contain functions which are not of this type. For example, if

$$V = \{ (x_1, x_2) ; x_1^2 + x_2^2 < 1 \} \\ \{ (x_1, 0) ; x_1 \le 0 \} \subset \mathbb{R}^2$$

and

$$h(x_1, x_2) = Arg(x_1 + ix_2) = Im(log(x_1 + ix_2))$$
; $(x_1, x_2) \in V$

then h has different boundary values as B_t approach a point (x_1, x_2) on the negative real axis from above or below. So h^{*} is not B_{τ_v} -measurable in this case.

Then the following are equivalent:

(i)
$$\int_{V} |\nabla h(y)|^2 G(x, y) dm(y) < \infty$$
 for all $x \in V$

(ii) There exists a \mathscr{B} -measurable function $h^* \in L^2(\Omega, \mathbb{P}^X)$ for all x such that

$$h(x) = E^{x}[h^{*}] \text{ for all } x \in V$$

(iii) There exists a number M < ∞ such that

$$E^{X}[h^{2}(B_{T})] < M$$

for all stopping times $\tau < \tau_V$.

Proof.

(i) => (ii) by Theorem 1

(ii) => (iii): Suppose (ii) holds. Let $\tau < \tau_V$ be a stopping time. First assume that $\tau < \tau_n$ for some n. Then since h^* is \mathfrak{B} -measurable

$$E^{X}[h^{2}(B_{T})] = E^{X}[(E^{T}[h^{*}])^{2}]$$

= $E^{X}[(E^{X}[\theta_{T}h^{*}|B_{T}])^{2}]$
= $E^{X}[(E^{X}[h^{*}|B_{T}])^{2}]$
 $\leq E^{X}[(h^{*})^{2}] = M$

In the general case we apply the above argument to $\tau \wedge \tau_n$ and obtain $E^{x}[h^{2}(B_{\tau \wedge \tau_n})] \leq M$. Letting $n \rightarrow \infty$ we get (iii).

(iii) => (i): If we choose $\tau = \tau_n$ as in Lemma 2 we get by Lemma 1

$$M \geq E^{\mathbf{X}}[h^{2}(B_{\tau_{n}})] = h^{2}(\mathbf{x}) + \int_{V_{n}} |\nabla h(\mathbf{y})|^{2}G(\mathbf{x},\mathbf{y})dm(\mathbf{y})$$

and (i) follows.

This completes the proof of Theorem 2.

<u>THEOREM 3</u>. Let $U \subset \mathbb{R}^d$ be a fine domain with a Green function G and let h be a finely harmonic function on $V = U \sim F$, where F is a polar set. Suppose

(2.14)
$$\int_{U} |\nabla h(y)|^2 G(x,y) dm(y) < \infty \text{ for all } x \in V$$

Then h extends to a finely harmonic function in U .

<u>Proof</u>. Choose finely open sets V_n as in Lemma 2 such that

 $\bigcup_{n=1}^{\infty} V_n = U \, \cdot \, F \, \cdot \, K ,$

where K is a polar set. Then by Theorem 1 there exists a \mathscr{B} -measurable function $h^* \in L^2(\Omega, P^X)$ for all x such that

$$h(x) = E^{x}[h^{*}]$$
 for all $x \in V$.

Define

$$\widetilde{h}(x) = E^{X}[h^{*}]; x \in U$$
.

We claim that \tilde{h} is finely harmonic in U. To see this choose $x \in U$ and a fine neighbourhood D of x such that $\overline{D} \subset U$. Let T be the first exit time from D. Since KUF is polar we must have T < τ_n for some n. Hence since h^* is \mathscr{B} -measurable we get by the strong Markov property

$$\widetilde{\mathbf{h}}(\mathbf{x}) = \mathbf{E}^{\mathbf{X}}[\mathbf{h}^*] = \mathbf{E}^{\mathbf{X}}[\mathbf{E}^{\mathbf{X}}[\mathbf{h}^*|\mathbf{B}_{\mathbf{T}}]]$$
$$= \mathbf{E}^{\mathbf{X}}[\mathbf{E}^{\mathbf{B}_{\mathbf{T}}}[\mathbf{h}^*]] = \int_{\partial \mathbf{D}} \widetilde{\mathbf{h}}(z) d\lambda_{\mathbf{x}}^{\mathbf{D}}(\mathbf{x})$$

so that \tilde{h} satisfies the required mean value property. As pointed out to me by B. Fuglede it is possible to give a stronger, pointwise version of Theorem 3 by combining Theorem 3 with Theorem 2.4 in [9], mentioned in the introduction:

<u>THEOREM 4</u>. Let U be as in Theorem 3 and let h be a finely harmonic function on U > F, where F is a polar set. Suppose

(2.15) $\int_{U} |\nabla h(y)|^2 G(x_0, y) dm(y) < \infty$

for some point $x_0 \in F$.

Then h extends to a finely harmonic function in $U \sim (F \setminus \{x_0\})$.

<u>COROLLARY</u>. Let U be as in Theorem 3 and let h be a finely harmonic function in $U \setminus \{x_0\}$, where x_0 is some point in U. Suppose (2.15) holds. Then h extends to a finely harmonic function in U.

<u>Remarks</u>. 1) Note that Theorem 3 contains Theorem 9.15 in Fuglede [6], because if h is bounded in V then (2.14) holds, by Lemma 1 and Lemma 4.

2) Consider the special case of an ordinary harmonic function h on a domain (in the ordinary topology) V in $|\mathbb{R}^d$. Then the conclusions of Theorems 1, 2 and 3 hold in particular if we replace the condition (1.2) by (1.1), since - as noted in the introduction - (1.1) implies (1.2) in that case. In Theorem 3 we must add the assumption that F is relatively closed (a polar set is always finely closed).

<u>Acknowledgements</u>. I am very grateful to B. Fuglede for many valuable comments.

REFERENCES

- [1] K.L. Chung: Lectures from Markov Processes to Brownian Motion. Springer-Verlag 1982.
- [2] A. Debiard and B. Gaveau: Differentiabilité des fonctions finement harmoniques. Invent. Math. 29 (1975),111 - 123.
- [3] J.L. Doob: Application to analysis of a topological definition of smallness of a set. Bull. Amer. Math. Soc. 72 (1966), 579 - 600.
- [4] J.L. Doob: Boundary properties of functions with finite Dirichlet integrals. Ann. Inst. Fourier 12 (1962), 573 - 621.
- [5] E.B. Dynkin: Markov Processes I. Springer-Verlag 1965.
- [6] B. Fuglede: Finely Harmonic Functions. Springer Lecture Notes in Math. 289, Springer-Verlag 1970.

- [7] B. Fuglede: Fonctions harmoniques et fonctions finement harmoniques .Ann. Inst. Fourier 24 (1974), 77-91.
- [8] B. Fuglede: Fonctions BLD et fonctions finement surharmonique. Université de Paris 6: Seminaire de Theorie du Potential No. 6 (1982), 126 - 157.
- [9] B. Fuglede: Integral representation of fine potentials. Math. Ann. 262 (1983), 191 - 214.
- [10] B. Øksendal: An Introduction to Stochastic Differential Equations with Applications. Agder College Lecture Notes 1982.

Bernt Øksendal Agder College Box 607 N-4601 Kristiansand NORWAY

Current address:

Mathematical institute University of Oslo Blindern, Oslo 3 NORWAY