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We study the universal behaviour of the one-electron approxi-

mation in solid state with a short- and ~ero~range interaction in 

three dimensions. More precisely, let H = -6+e-2 1.1Cd I v(l( ·-A.)) 
e: A.EA e 

where V is a short-range potential, 1-1 analytic with 1.1(0) = 1 

and A is a lattice modelling an infinite crystal, an infinite 

straight polymer or an infinite monomolecular layer. We show that 

H converges in norm resolvent sense to the Hamiltonian with point 
E: 

(j;) 

H = JH (e)de where 
E: E: 

~ 
interactions. Decomposing is the Brillo-

uin zone (the dual of A) we expand the eigenvalues and resonances 

of H (e) explicitly to first order in e:. The first order term 
E: 

has a simple form. 
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1. Introduction. 

The well-known Kronig-Penney model [9J provides an explicitly 

solvable model of an infinite crystal in one dimension. The model 

is simply the one elect.ron approximation with a 6-potential inter-

action. 

It was recently discovered by Grossmann, H~egh-Krohn and 

Mebkhout [4J that it is also possible to give a rigorous definition 

of an analogue of the Kronig-Penney model in three dimensions. But 

the definition is much more subtle than in one dimension and it is 

necessary with a renormalization procedure. However, the model is 

still solvable and the spectral properties of it has been thorough

ly studied by Grossmann, H~egh-Krohn and Mebkhout [sj and H~egh

Krohn, Holden, Martinelli [6J. 

In this paper we study in which sense this solvable model with 

zero-range interactions is well approximated by more realistic 

short-range interactions. 

More precisely, let the Hamiltonian H be given by 

co 

H 
t: 

= -t.+c:-2 I 1-!·(E)v.(.!.(·-x.)) 
j=l J J t: J 

( 1 • 1 ) 

where the V. 's 
J 

are suitable short-range potentials, e.g. compact 

support and the 1-1. 's are real-valued analytic functions with 
J 

f.i(O) = 1. 

-3 1 We note that c: V(-(x-x.)) ~ o(x-x.) as t: ~ 0, while we 
t: ? J 

c:-2v(l(x-x.)) = c:(c:-3v(-(x-x.))) which indicates that the 
t: J t: J 

have 

limit c: ~ 0 is not a trivial object to study and that some renor-

malization procedure is necessary to define point interactions 

rigorously. 

In this paper we prove that H 
t: 

tends to the point interac-

tion Hamiltonian as c: tends to zero in norm resolvent sense. 

This extends a result by Albeverio and B~egh-Krohn [3J where con-

vergence in strong resolvent sense is proved, and where ~lso the 
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case with only a f.i,ni te number of terms in the sum is discussed. 

Stronger results in this latter case where however obtained by 

Albeverio, Gesztesy and H¢egh-Krohn [1 ] and Holden, H¢egh-Krohn and 

Johannesen [ 7 J. 
The result is applied to the situation where the set {X. } 

J 
forms a lattice A and V. = V, 

J 
This makes the Hamilto~ 

nian H translation invariant under A and we can decompose the 
€ 

Hamiltonian as 

Et> 

H = ]H ( e )de 
€ € 

~ 

( 1 • 2) 

where ~ _ ~3/r and r is the orthogonal lattice to A (for more 

datails see section 3, 4 and 5). The n~gative part of the spectrum 

of H (e) consists of discrete eigenvalues and we obtain analytic 
€ 

expansion around the point interaqtion eigenvalue. The surprising 

fact is that if E0 (e) denotes the eigenvalue of the decomposed 

point interaction operator and E (e) 
€ 

is an eigenvalue for H (e) 
€ 

converging to E0 (e) we have the expansion 

E e: ( e) = E 0 ( e ) + e:E 1 ( e ) +Q ( e: } (l. 3) 

where 

(1 • 4) 

and depends only on the lattice and e. A,B are independent 

of the lattice and e and only depend on properties of the one-

center operator -!::.+V. For the explicit form of he 
A 

and A and 

B see the next sections. The expansion also applies to the 

positive part of the spectrum and is independent of whether the 

lattice A is 1-, 2~ or 3-dimensional. 

The point interaction model of a straight polymer, i.e. When 

A is 1-dimensional, exhibits real resonances and also in this case 

the expansion (1 .3) is valid. ~ve note the resonances ai;e still 

real to first order in e:. 
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2. Approximati9n to point interactions. 

We consider a countable subset X= {x.} of ~ 3 which is 
J 

discrete in the sense that infjx.-x.j>O and a countable set of 
i=!=j ~ J 

potentials {v. } such that: 
J 

There exists a real Rollnik function V (i.e. 

-.2 
ffjv(x) IIV(y} llx-yj Q.~dy<oo) with compact support such that 

for all j. 

See Simon [13) for properties of Rollnik functions. Let { ll· } be 
.l. 

a countable set of real analytic functions uniformly bounded in a 

neighbourhood. of 0 with llj(O) = 1 for all j. By ~ we denote 

the self-adjoint Laplacian on With these definition we 

have the following. 

Lemma 2.1. The Hamiltonian 

(X) 

H = -~+~-2 I f1.(£)v.(l(·-x.)) 
£ j=l J J £ J 

(2.2) 

is a self-adjoint operator on L 2 (~ 3 ) defined in terms of quadra

tic forms for small £ > 0. 

Proof: Let 

00 

W( x) = £-2 I f!-·( E)v .(l(x.-x.)) 
j=1 J J £ J 

( 2 . 3 ) 

for £ so small that supp v. (l( ·-:JC.)) n supp v .(l( .... }!.: • ) ) ::: 1'25 for 
~ E ~ J ~ J 

all i =!= j. By the KLMN theorem (see Reed-Simon II [ 10]) it is 

enough to prove that w« -~. 



Let now denote the resolvent of the free nam:iltonian, i.e. 

(2.4) 

In L 2 (~ 3 ) GE has an integralkernel wh~ch we denote by GE(x-y) 

which is given by 

iiEI x-yl 
GE ( X -y) = _e-::--,..--.,.-4-,tlx-yl 

where Im IE > 0 • 

As in the proof of theorem 1.21 in Simon [13] we only need to prove 

that given a > 0 there exists an E such that 

00 3 for all <jJ E c0 ( ~ ) • 

Let 

and let 

defi,ne 

Then 

w . ( x) = e: .... J ill . ( e: ) V . ( l ( x- x . ) ) I ~ 
J J J e: J 

X· be the characteristic function for 
J 

00 

x0 = 1 - I x . and <V • = x . <V • 
j=1 J J J 

"' co 

= L < <jl., L w.GEw.R.<ji.R. > 
j=1 J ,R_:;::] J 

00 CD 

" II <jJ H ) II L w .GEw .R.<jl ill)~ 
]=1 J.=] J 

.;; ll<j111 2 11 [wjGEw.R. r IIH 
J 1 ,R_::;.::) 

(2.6) 

(2.7) 

supp wj 

(2.8) 

from the appendix where II II H denotes the Holmgren norm { see 

appendix). From the explicit expression for the kernel of the 

resolvent GE we see that 11 [w jGEw .R.) IIH can be made arbitrarily 

small by choosing E such that ImiE is large. 
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k 
v. = IV·I 2 and u. = v.sgnV. 

J J J J J 

denotes the signum function, sgn ( ;x:) = { b 
-1 

We introduce the Hilbert space 

H = <±> L2(R3) 
j=1 :::: 

and the operators 

D~;::L2(,§.3) ~ H 

BE :H ~ H 

with integral kernels 

E 
D . ( x, y) = 1J., ( E) u . (X} GE ( ex+x . -y) 

J J J J 

Bj~(x,y) = E:!J.j(E)uj(x)GE(E(x-y)+xj-x~)v~(y) 

(2.9) 

X > 0 
X = 0. 
X < 0 

(2.10) 

(2.11) 

(2.12) 

(We suppress the E dependence for the moment in the notation.) 

For these operators we have 

Lemma 2.2. BE, CE: and DE are :Oounded operators and IIBE:II can 

be made arbitrarily small when ImiE is chosen sufficiently large. 

Proof: We have 

sup I liB 1J· II ' 
~ j=J 

sup 
~ 

IV ~(x) IIV .{y) I 
I E liJ. ' ( E) I [ f f---.----......--
j J (4n) 2 le(x-y)+x -x. 1 2 

. J, J 

(2.13) 

!. 
e-2ImiEie(x-y)+x~-xjldxdyJ 2 
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which can be made arbitrarily small when Im!E is sufficiently 
00 

large, and similar for sup I liB~. II. 
j J.=l J 

This implies that also 

can be made arbitrarily small. For ~ E L 2 (R 3 ) we have: 

i/E I e;x+x .-y I 
?mj~n 2 = ?~j(e) 2 flvj(x)Jif e4 11:jex-x.:?.yl ~(y)dyl 2 dx (2.14) 
J J J 

-Im/EI ex+x .-y I 
~ I~.(e;)2Jiv.(x)idxf (4 PI + : j2 dyfe-ImiEJex+xj-yii<)J(y)l2dy 

j J J 11: e;x xj y 

-ImiEI yl 
..; su.p~J.( e;} 2J e dy. fiV(x) ldxf~e-ImiEI ex+xJ.-yJI ~(y) J2dy 

J (4rd"lylz 5 

.. c11Vll 1 11~11~ 

where c is a constant, showing that De; is bounded. A similar 

E: * e argument shows tl1at (C ) is bounded, thus making C bounded. 

We can now state the following theorem which was first proved for a 
N 

finite number of centers (i.e. with H = ~ L2(g 3 ) with N < oo) 
i=l -

in Holden, H~egh-Krohn and Johannesen [7 J. See also Albeverio et 

al [2] for an abstract version of the finite center case. 

Theorem 2.3. Hhen E ~ cr(H ) 
e; 

Proof: The proof is in 3 steps. 

00 

Step 1 : ( GE I W . ) rnG = eC e; (Be;) m-l DE 
j=l J E 

-2 l 
WJ.(x) = E ~.(E)V.(-(x-x.)) 

J J E J 
where and 

Proof: We define the functions: 

~j(x) 
1 

:::: u. (- ( x-x. ) ) 
J e; J 

vj(x) 
1 = v. (- ( x-x. ) ) 

J E J 

wj(x) 
-2 ~.(du.(x). = E 

J J 

m E tl· 

(2.15) 

(2.16} 

(2.17) 
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Let A: H + H be the operator with components 

Then: 
co 

( I' )m ( I' ~ "' )m GE L W. GE = GE L v.w .. GE 
j=l J j=l J J 

= I GE v . A . . . • . A . . w . G 
j 1 , • •J • , jm J 1 J J 2 J m-1 J m J m E 

(2.18) 

I ec7 B7 ...• B7 . o7 = eCE(BE)m-lDE 
· · J1 J1J2 Jm-1JmJm 
J 1 ' • • • ' Jm 

= 

using a change in variables. 

(2.19) 

for Im IE large. 

Proof: Using step 1 and lemma 2.2 we see that 'the right hand side 

of (2.19) is norm convergent when ImiE is large. The formula 

then follows as in lemma II.11 in Simon [13 ]. 

Step 3: Combining now step 1 and 2 we have 

co 

( H - E ) -l = G + e L ( - 1 ) me E ( B e ) m-] D e 
e E m=1 

(2.20) 

= G -eCE(1+Be)-lDe when ImiE is large. 
E 

The theorem follows by analytic continuation on both sides. 

(i) 

We now assume in addition that 

0 is a simple zero energy resonance for -t:,+V. for j E N, 
J 

i.e. -1 is a simple eigenvalue for ujGOvj with eigenfunc

tion ~j such that ~j = G0vj~j' which fullfils (-t:,+Vj)~j = 0 

in the sense of distributions, is~ in L2(~ 3 ). For later 

use we define ¢j = ~j sgn Vj which fullfils 

A very convenient criterium to decide when 

(1 +v. G0 u. ) ¢ . = o. 
J J J 

~ is in L 2 ( ~ 3 ) 
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is the following. We have that <jJ. E L 2R 3 ) iff (vt<P.) = 0. 
J :;:: J 

{See Albeverio, Gesztesy, H9)egh-Krohn [ 1 J • ) 

( ii) There exists an interval I around 1 such that -t:.+ A.V. 
J 

has no zero energy resonances for A. E l "{1} when j E ~· 

Remark: For a discussion of assumption (i) in the finite center 

case, see Albeverio, H9)egh-Krohn [3], Albeverio, Gesztesy, H¢egh~ 

Krohn [1] and Holden~ H9)egh-Krohn, Johannesen [7]. 

We will now introduce the Hamiltonian corresponding to the 

formal operator 

CD 

-6 
X 

= - 6- I v . 6 ( •-x . ) 
j=l J J 

(2.21) 

where X= (x 1 ., ••• ,xn, ••• ), v = (v 1 , ••• ,v0 , ••• ) with and 

6 is Dirac's delta function. 

This formal operator can be rigorously defined as the unique 

self-adjoint operator -6 
(X, ex) 

with resolvent which 

has an integralkernel defined by: 

(2.22) 

where ImiE > 0, 

X ::j: 0 
{2.23) 

X = 0 

3 [ ) ... 1 a = ( a1 , • • • , an, •.. ) , an E ~ , and is the inverse of the 

matrix [ ] on 12(x). See Grossmann, H¢egh-Krohn and Mebkhout [4), 

[sj for this definition and the relation between the v. of 
J 

(2.21) and the ex. of (2.22). Using this definition we can 
J 

state the main theorem in this section. 
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Theorem 2.4. Under the general assumptions stated in the beginning 

of this section and assumptions (i) and (ii) we have that 

converges to -f.. 
(X,o:) in norm resolvent sense as E ~ 0 

a= (o:1 , ••• ,an' ... ) has components 

~ -2 
a.= fl.~(O)(cp.,cp.)l(v.,!J>.)I • 

J J J J J J 

Remarks: 

H 
E 

where 

(2.24) 

l. In Albeverio, H¢egh-Krohn [3J it is proved strong convergence 

in the resolvent sense. 

2. In the one-dimensional case (i.e. as operators on L 2 (~)) 

this is proved in Albeverio et al [2J. However, in one 

dimension both -f.. 
(X, a) and GE(x) are given by other 

expressions than in three dimensions. 

3. In the finite center case this is proved in Holden, H¢egh 

Krohn and Johannesen [7] and in the one-center case in 

Albeverio, Gesztesy and H¢egh-Krohn [1 J. 

Proof: Using theorem 2. 3 we only have to find the limit of the 

operators as E tends to zero. 

When ~ E L 2 (~ 3 ) we have (for simplicity we assume 

"' I II(D~-D9)<jJII 2 
j=1 J J 

"' iiEIEx+x.-yl 
= jll flvj(x) II J[e4rcj EX+xj~YI 

oo iiEIEx+x.-yl 
-< j ll J I v j ( x) I J I e 4 rc I Ex- x j ~'Y I 

• fe-2Im1Eixj-yll~(y)j2dydx 

iiEIEx+yj ei/EiyJ 2 2ImiEIYid 
-< fjV(x)jJJe - I e y 4rcl Ex+yj 4rcjyj 

. JI e-2 Im IE I x j -y i I ~ ( y) I 2 dydx 
j 

fl.·- 1) 
J 

(2.25) 
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= c( E) 11<[>11~ where c(e:) + 0 as e: + o. 

(Ce:)* 
n 

(CO}* A similar argument shows that + and therefore 

n 
co. ce: + (2.26) 

To study (1+Be:)-J we split Be: into the diagonal and off-

diagonal elements with kernels: 

Ej~(x,y) = oj~~j(e:)uj(x)Ge:2E(x-y)vj(y) (2.27) 

e: 
Fj~(x,y) = (1-oj~)~j(e:)uj(x)GE(e:(x-y)+xj-x~)v~(y) 

We have that e: 0 2 IIF -F 11 8 + 0 since 

by dominated convergence theorem. 

Expandiug E7. 
JJ 

in e: we have 

~.(e:)u.G 2Ev. = u.G 0v.+e:L.+o.(e:) 
J J e: J J J J J 

where 

L. = ~~(O)u.G 0v.+4i/Eiu.><v.j J J J J TI J J 

n 
and lo. (e) + 0 

e: J 
as e: + 0 uniformly in j . 

s = if><gl is defined to be Sh = f(g,h).) 

after this theorem, we show that 

-1 d 1 + e:+u .G 0v . ) = P .+o . ( 1 ) 
J J J J 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(The operator 

In lemma 2.6, proved 

(2.32) 



where P. = 
J 

j¢.><~.1 
J J 

(~.,¢.) 
J J 

uniformly in j. 
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is uniformly bounded and o.(l} '"""0 
J 

From (2.30) and (2.32) we obtain after a short computation 

(see Holden, H¢egh-Krohn and Johannesen [7 ]) 

(2.33) 

where o(1) + 0 as E + 0 and 

K = [ i/E 2 ' ~ -1 ...., J o.n(-4 l<v.,¢.)1 -~.(o)(¢.,¢.)) J¢.><¢.1. 
J~ n J J J J J J J 

(2.34) 

Using now (2.25), (2.26) and (2.33) we finally obtain 

-1 n 1 
( H - E ) + ( - L'l ) - E ) - as E + 0 

E X,a (2.35) 

after a computation where a is as defined in the theorem. Before 

we prove the remaining lemma we state a corrolary. 

Corollarx 2.5. If there is only a finite number of different 

potentials we still have that 

n 
( H - E ) - l + ( - L'l ( ) - E ) -] as e: + 0 

E X,a: 
(2.36) 

without assumption (ii). 

Proof: The only place where we use assumption (ii) is in order to 

have uniformity in equation (2.32). 

Lemma 2.6. With the same assumptions as in theorem 2.4 we have 

where 

-1 d 1+E+u .G 0v .) = P .+o .(1) 
J J J J 

P. = 
J 

j<!J.><~.j 
J J 

(~.,¢.) 
J J 

is bounded uniformly in 

uniformly in j. 

j and 

(2.37) 

no. (1) 11 + o 
J 
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Proof: From lemma 3.1 in Albeverio, Gesztesy and H!2Segh Krohn [1 J 

we have the norm convergent expansion 

where 

and 

where r. 
J 

-] d l+e:+u .G0v.) 
J J 

= p .- I e:ll\ri? 
J m=J J 

-lrh -1 1<~>.><~.1 
p . = { 2 ni) 'f dz ( z-u .G 0 v . ) - J J 

J r. J J (<!> •• ~.) 
J J J 

surrounds only the isolated eigenvalue 

We now have that 

{2.38) 

(2.39) 

(2.40) 

-] of 

(2.41) 

when z :f: 0 
1 !.: 

where G5vjGO is a self-adjoint Hilbert-Schmidt 

operator. ~ The operator ujGO is bounded with: 

!.: ~ * = II u . G 2 ( u . GO ) II = 
J J 

llu.G0 u.ll 
J J (2.42) 

where IIVIIR = [ f fiV(x)V(y) II x-yj-2dxdy J~ is the Rollnik-norm). 
k !.: ~ 

Similarly IIG0v j 11 2 .;;; IIV 11 R. Since G0VG~ is self-adjoint, 

(2.43) 

where d( •, •) denotes the distance. 

From assumtion (ii) on the potentials there is a neighbourhood 

u arounO. -1 such that O'(u.G 0v.) 
J J 

n u = { -1 } for all j . 

Since 
k k 

cr(G0v jG0) u { 0} = cr(u.G0v.) 
J J 

u { 0} there exists a 

constant c such that 



... 1 ~ -

for all j. 

F~om (2.41} we have that ( z-1,1 .G 0v . ) ""1 
~ . ) 

which makes P. and T. 
J J 

uniformly hounded. 

(2.44) 
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3. Cry~ti:\ls. 

In this section we IJ.Se the :r~s\Jlts of section 2 in t.he case 

where the set X of point$ with po~nt inter~ction fo~rns a la,t.tice, 

thus modellins an infinite cryst~l. 

The convergence of the operator will be used to <!raw conclu-

sions about the convergence of eigenval4es simi~ar ~o that in 

aoldenf a¢egh-Krohn and Johannesen [7 J, Due to sy~etry th~ 

formulas will actually be simplified in t;his case. 

first we introduce some notations. 

Let A be the lattice in ~ 3 , i.e. 

( 3. ] ) 

where 

The orthosonal lattice r is 

where b. E R3 anO. a. •b. ::; 2no ..• 
~ = ~ J lJ 

We identify the dual group ~ ~ ~3/r with the Brillouin zone B 

where 

(3.2) 

Let E ::;: { ~ 1 , •.. , l;n} be a finite subset of the basic periodic;: cell 

0 where 

Assumin9 that the potentiale; v . , j ;o;:; 1 , ~ •. , n, are real 
J 

Rollrd.'k functions with compact support qnd 1,1, j ( ~), ~ ;;; 1 , , ~ • f n, al!'e 

I:eal analytic functions arol,.lnd E '"" 0 wit'P. ~-tj(O) ::; 1, j = 1, .•• ,n,f 

we can use lemma 2.1 to define the self.,..adjoint o}?erator 
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From theorem 2.3 we have 

when E 4 a(H ) and using corollary 2.5 we conclude that 
E 

.where is the unique self ... adjoint operator 01:1 

with resolvent 

where 

A ,_ 1 
(-6(~ )-E) 

~,(X 

n 
G + L L IG (·-,.,-~.) > 

E j , .t= 1 A. I A. I E A E J 

J-1 
A.A.'j.t is the inverse kernel as operator ~n 

(3.4) 

(3.5) 

(3.6) 

( 3 • 7 ) 

(see Gros~mann, H~egh-Krohn and Mebkhout [5J for more details on 

the limit operator}. 

Now H from (2.10) can be identified with 

( 3. 8) 

The operators and D 
E: have kernels 

E 
Dj,A.(x,y) = ~j(E)uj(x)GE(e:x+~j+A.-y) (3.9) 

B j, .t , A. A. I ( X I y ) = E ~ j ( e: ) u j ( X ) GE ( E ( ~ ""'Y ) + ~ j ""~ .t +A. ... A ' ) v J. ('I ) 

c: ,(x,y) = GE(x ... Ey-r;.•>..)v.(y). 
] 1 I\ ~ J 

To simplify (3.5) we use Fourier-analysi~ on A. 



v~e have a natural unitary operator 

(3.10) 

where ~ is to be interpreted as B with its Haar measure~. i.e. 

Lebesque measure divided by jBj, the meaeure of B. u is defined 

on the Schwartz space S by 

(Uf)(e,x) = ~ I e-ie·~f(x+A) 
I 0 I "A.E A 

with e E B, x E Q (see Reed-Simon IV [11 J). 
Using this operator we have the commutative q~agram 

gE 
L2(~,L2(Q)) ~ 

where we define the function 

and the operator gE by 

ED 

gE = JgE( 9)d9 

~ 

-1-U 

X E ~3, 9 E B 

(3.11) 

CL 12) 

(3.13) 

(3.14) 

(3.15) 
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~urther we introduce the fourier transform r with 

respect tq A to obt~in the following commutative ~iagrams 

DE 
L2(R3) ~ L 2 ( A'~ n$L 2 ( § 3 ) ) 

U{- {- F (3.16) 

'j)E 
L2(1t,L2(Q)) ~ L 2 ( 1t. ~n0L 2 (!! 3)) 

BE 

L 2 ( A ' ~ n ®L 2 ( l3, 3 ) ) -- L2 UH~ner,.2 (~3 p 

F -1- -1- F (3~17) 

"'E 

L 2 ( i, ~n ®L 2 ( ~ 3) ) 
B - L2('A Cn<a~L2(B3)) 

f=; ... 

-1-U (3.18) 

wqere 

<±-> 
""E J iJE(e)de D = 

1 
EEl 

-e; 
B = J ~E(e)de (3,19) 

1 
$ 

""E c = J cE(e)de 

~ 

.and 
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(3.20) 

We want to prove that 

(B 

(1+B 8 )-l = f(1+B 8 (9))-1de. (3.21) 

~ 

To this end we use the faithful c*-algebra homomorphism 

(3.22) 

(where B (H) denotes the bounded operators on H) de;f:in~d by 

ffi 

= fA< e)de. 

~ 

From this we have that 1+B8 is invertible in 

iff 1+BE:(e) is invertible in 

<±> 
(1+BE:)..,.J = f(l+B 8 (9))-1de. 

~ 

Thus we have the following theorem. 

Theorem 3.1. We have the integral decomposition 

UH U-l 
E 

ED 
= fH ( e) de 

E 

~ 

where H (e) has resolvent 
E: 

(3.;23) 

(3.24) 

(3.25) 
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(3.26) 

when E ~ a(H (8)). 
E: 

Similar to this decomposition for HE: we also have one for 

the operator 

Theorem 3.2. The operator 

following way 

11. -1 
U(-6( 2 , a:) )U 

-t/' 
(2,a:) 

where -611.(~ )(8) has resolvent 
~. a: 

11. -1 
(-6(~ )(e)-E) 

~, a = 

Remark. We have defined 

can oe composed in the 

(3.27) 

(3.28) 

(3.29) 

where we remember GE(x) = GE(x) if x * 0 and GE(O) = 0: Then 

we have (see Grossmann, H¢egh-Krohn and Mebkhout [5J) 

i(8+y)•x 

I j e+y j2-E 
yEr 

eix.e[(2n)-3 lim( IBI 
w+co 

if xEll. (3.30) 

1 i/E I 1 e+yj2,...E -4nw) ... "4"'"'" J 
yEf .TI 

if xEll. 

jy+e I <w 

Proof: In Grossmann, H¢egh-Krohn and Mebkhout [5J the operator 

of 

is decomposed in p-space. We denote the p-space version 

1\ 
-/::, 

(3:,a:) by -!:; • 
a 

Then we have 
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$ 

-tc, = f-tc, ( e)de 
a a 

(3.31) 

~ 

where -6 (e) is an operator on 1 2 (r) whoee resolvent has intea 

gral kernel given by 

(-6 (e)-E)-1 = 
a YY' 

(3.32) 

2 -1 -3 ~ [ i!E ~ . . . J-l ( I y+ e I -E) o , + ( 2 rc) L ( a . - -4 ) o . o -gE ( ~ . - ~ o , e ) . Jt 
y y j , Jt= 1 J . 'Jt ~ "' J ,.... J 

.,-i(y+8)•1;. 
e J I y+e I z_E • 

i(y'+8)•1; e Jt 
I y'+ej2-E . 

Defining the operator S by 

and 

<s~)(e,x) = (2rc)-3 / 2 2 ~(e,y)ei(e+y)·x 
yEr 

(3.33) 

(3.34) 

when ~ E L2(~,1 2 (r}) we can show that the following diagram 

commutes: 

"' 

L 2 (~,1 2 (r)) 
gE 

L 2 (~.1 2 (r)) ----..-+ 

S-1- +S (3.35) 

L2 (~,L2(Q)) 
gE 

L2(~,~2(Q)) -
where 

(3.36) 

(this gE is not to be confused with the gE(x,e) defined by 

( 3. 29)) and 
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(3.37) 

Using this operator we obtain the stated decomposition. 

Theorem 3.3. The decomposed operator H (e) converges in norm 
E: 

A 1 
resolventsenseto -ll( 2,a)(e) as e:-+0 when a=(a1 , •.. ,an) 

is given according to 

~ -2 
a.= iJ'.(O)(<j>.,<!J.)I(v.d.)i • 

J J J J J J . 
(3.38) 

Proof: The proof is identical to that of theorem 2.5 in Holden, 

H~egh-Krohn and Johannesen [7 J except that one has to replace GE 

by gE. 

By this decomposition we have in the standard way reduced the 

band spectrum of H and -fl. A to isolated eigenvalues for 
E: ( 2, a) 

each H (e) and A when ~- The union operator -Li(._, )(e) e E 
E: ~,a 

over all eigenvalues for all e E ~ gives the spectrum of H and 
E: 

A 
.-fi.('H' )" 

~~ a 

We now want to use the norm resolvent convergence to expand in 

E: the eigenvalues of -H ( e} • 
E: 

To simplify matters we first study the one center case, i.e. 

121 = 1, and we can assume 3 = {o} without loss of generality. 

In this case the spectrum is completely described by the following 

A _ A A A 
theorem. We put -lla = -ll{o},a and similarly -lla(e} = -ll{o},a(e). 

Theorem 3.4. 

(a) -liA(e) has pure point spectrum and E8 is an eigenvalue for 
a 

-fi.A{e) with multiplicity m iff 
a 

(I) 

or 

(3.39) 
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(II) There exist rn+1 points y0 , .. ,y m E r such that 

(3.40) 

(b) The spectrum of is absolutely continuous and there 

exist numbers E0 (a), E1 (a) such that 

(3.41) 

E 1 (a) < 0 iff a< a0 < 0 ~.<There a 0 is given in [5j. 

Proof~ See Grossmann, H¢egh-Krohn and Mebkhout [ 5 J. 

Remark. We observe that the negative eigenvalues are all in case 

(I) • 

We can now prove the following theorem. 

Theorem 3.5. Assume that e z (E) is an eigenvalue for H (e) 
E: 

for 

E > 0 which remains bounded for small positive E. 

Let {E } be a positive sequence decreasing to zero and let 
n 

E 8 be an accumulation point for {z 8 (E ) }. 0 n 

Then E8 is an eigenvalue for -6A(e). Assume that this 0 a 

eigenvalue is in case (I). Then we have that if 

there exists an analytic (differentiable) function 

where 

where 

is an eigenvalue for H (8) 
E 

A, B and are given by 

A= ~· (0) (¢, ¢' )-a(v, ¢)+~~"(0) a-~· (O)a 

B = ~'IT; f f ¢ ( x) v ( x) I x-y I v ( y) ¢ ( y) dxdy 

and we have 

in E 

(3.42) 

(3.43) 

(3.44) 

(3.45) 
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and 

(3.46) 

Remarks. 1. The formula for E~ has a surprising simplicity. 

The terms A and B are independent of the lattice and depends 

only on the properties of one point withoQt any lattice. The 

lattice dependence is only the term 

From the analysis in Grossmann, a~egh~Krohn 

we know that each eigenvalue E9 in case (I) tor 

and Mebkhout [SJ 

-t.A(e) gives 
a 

rise to a band when e varies. The bands are connected at points 

E 9 where there are at least three points y1 ,y2 ,y 3 E r with 

Ee I= yl+ej2 = jy2+ej2 = lr3+el2~ 
eo 

If we now let E be such a point of connection and let 

e ~ e0 with E9 in case (I) we see from (3.43} that Ef ~ o. 

Thus in this sense we have that the bands do not dissolve to first 

order. 

2. Expanding B to higher order makes it possible to obtain 

formulas to the next order of e E (e:). However the formulas do not 

have the same simplicity as the first one. 

Proof: From the norm resolvent convergence we conclude that 

is an eigenvalue for -t.A(e). 
a 

Case ( i) . Ee 
0 < 0. 

e 
0 which implies Then z ( e: ) < that n the pole of the resolvent 

of H (9) has to 
e: 

come from (l+Be:(e))- 1 , i.e. -1 is an eigen-

value for Be:(e). 

The proof now closely follows the proof of theorem 3.1 in 

Holden, H~egh-Krohn and Johannesen [7 J, so we wi~l sketch this 

part. 
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We expand the operat.or 1 +B: (e) in e: wher~ we have intro

duced the E depenqence in the operator qefined by (3.20), i.e. 

where 

and 

We split the space into 

where 

Then 

L 2(_~3) - H +H - o· 1 

H 0 == Ker ( l +S) , H 1 = Ran ( 1 +s) . 

(3.47} 

(3.48) 

{3.50) 

(3.51) 

p:;:: IP<~I (3.52) 
($, <P) 

is a projection onto H0 • 

~is enables us to W+ite B~(e) in th~ following way 

(3.53) 

where we have 

and similarly for S(e) and o(e:). 

We now introduce the operator a~ (e) defined by 

(3.55) 
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Then one can deduce that when £ > 0 

-1 E cr < B ~ ( e ) ) < = > -1 E cr ( B~ ( e ) ) (3.56) 

and the operator B~(e) has the advantage that when e = 0, B~(e) 

depends on E and e while B~(e) = s is independent of both E 

a.nd e. 

This fact together with (3.56) makes it possible to use 

implicit function theory on the function 

d( e, e8E) = det2 (l+B~( e)) (3.57) 

where det 2 denotes the modified Fredholm-determinant (see e.g. 

Simon [12]). 

Putting £ = 0 in (3.57) we obtain 

d ( e 8 o 8 E ) = det 2 
~+(Too-l l 

TlO ~+SlJ 
det2 

G+(Too-1 l ~ G ~+s 1 J (3. 58) = 
TlO 

det 2 
G+(Too-1 l ~ det2 G ~+s] = 

10 

Now det 2 (1+s 11 ) is independent of e,E and the other terms 

except the first are never zero. 

We have: 

(3.59) 

when we have normalized ~ such that (v,~) = 1. 
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This implies that 

(3.60) 

Thus by the implicit function theorem we obtain an analytic func

tion E9(e:) with E9(o) = Ee and 
0 

e d(e,e:,E (e:)) = o 

i.e. is an eigenvalue for H ( e >. 
€: 

(3.61) 

Returning to Be:e (e) we have an analytic operator with -1 
E ( e:) 

as a simple eigenvalue when e: is small. 

Then there exists an eigenvector such that 

analytic and 

Expanding Be:e (e) and ~e: in powers of e: we obtain 
E ( e:) 

is 

(3.62) 

(3.63) 

to zeroth order where ~ = ~~ is independent of e. We normalize 

~ such that (~,v) = 1. To first order we have 

(3.64) 

which implies that 

(3.65) 

where is a constant. To second order we have when we take 
~ 

inner-product with ~ = ~ sgn V that 

2a(v, ~· )-21-l' (0) ('4), ij>' }+21-l' (0) a-ll"(O) a (3.66) 

e 
Eo e I B I 1 
4n J J lj> (X) v (X) I x-y I v ( y) ¢ ( y) dxdy+2E 1 T2'1tj"3'y IE r . . = 0 

( I y+e j2-E~) 2 
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where 

(3.67) 

Defining 

A = !l ' ( 0 ) ( '¢, <P ' ) -a ( v; <P ' ) +~ !l 11 ( 0 ) ex -ll ' ( 0 ) ex (3.68) 

1 
B = 8 n f f <P ( x) v ( x) I x-y I v ( y) <P ( y) dxdy (3.69) 

and 

(3.70) 

we obtain the stated expansion (3.42). 

Case ( ii) . Ee 
0 

# 0 and Ee 
0 

is in case (I) • 

Then Ee 
0 * I y+e 12 for all y E r which implies that 

0 I r+e 12 for all thus making a pole of ( 1 +B~ ( e) ) - 1 • z :j: y E r 
E 

We now follow the same argument as in case (i) except now we 

cannot say that B~(e) and thus B~(e) is analytic. 

We have that B~(e) is a c 2 operator-valued function in E 

when E ;;. 0. 

Following Kato [BJ the projection P(E) onto the eigenspace 

corresponding to the eigenvalue -1 of B~(e) is a c 2 function 

in E· 

Defining <P is an eigenfunction for 

B~(e) we obtain (3.62) which can be expanded sufficiently to give 

e 
the equation (3 .66) for E1 . 

Also in the general case with n centers par lattice site 

one is able to give some properties of the spectrum in the limit 

when c = 0. 

~ve recall ·the following theorem ( IE I is the number of points 

in the set E ) • 



Theorem 3.6. Let n ~ IEJ. 'rhen cr(/:).1(''H' )) n (-oo,O) 
~,ex 

consists of 

at most. n disj 

Proof: Se<~ Holden and Martinelli [6J. 

Again we can st.ate a theorem concerning the convergence of the 

negative lues of the ed operators. 

Theorem 3.70 an eigenvalue for H ( 8) 
E 

such 

that ~·co < 0 when t: > 0 is small. 

Let { E } be .3. posit.i ve sequenze decreasing to zero and let 
n 

E~ be an accumulat. for { z 9 ( e: ) } • 
n n 

Then 
8 

an l: . .1e for 
1\ 

~f:j.('H' )(e). 
~,a 

Let m be its 

multipl 

Then v.1e have z 

There st. m mult lued analytic functions 8 e E,(e:), ••• ,E (E) 
! rn 

with 
8 e E (n = j'" is an eigenvalue for H (8) 

E 

and we have 

e, ) e 1 
E.ts ~ +c: 

] 
(3.71) 

where 
e 

is E~ 1 
..) ' . 

(3.43) when m = and is a solution of 

(3.82) whe:rt m > 

Proof: We clos follcrw i:he strategy of the proof of theorem 3. 5. 

Expanding ( e 

l+B~( e) = 1+S+E'I'+o( E) (3.72) 

where nov; 

s ::::: [ 0 ' v' J (3.73) 
] J 

T [ ( ' ( "I . -~ 
i!E 

. 1 ) o . ~ +g,., < ~; . -~;; ~ , e ) 1 u . > < v ~ 1 J == L:. I tL > 
J ' '11: J J J ~ J J .J 
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n 
He spl,it H = <tJ 4?(R 3 ) into Ho;::: Ker(l+$) apd H1 ::=.; Ran(l+S), 

j:::;:l .,.. 

i.e. 

Now 

i¢>.><~.1 
p = [6j~ J J J 

(~.,<j>.) 
J J 

is a projection onto H0 • 

(3.74) 

(3.75) 

Using this decomposition to define the operator B~(e) as in 

(3.55) we have with 

(3.76) 

that 

(3.77) 

and in this case 

The explicit expression (3.7S) imp;J.ies t.}'l.e e:JCistence o! m (where 

m is the multiplicity of the eigenvalue of not 

necessarily different multiva1ued anatytiQ funct.ions 
9 9 9 9 

E 1 ( ~ ) , ••• , Em ( ~ } with E j ( 0 ) = Eo , ,i • e • 

where 

E 9( )-E9+e(l/~> j E - Q 9j e: 

9 g. 
J 

is analytic, e 
gj(O) = O. 

Conside~ing the operator 
m 

""E ( ) a e m e 
E. ( e ) 

;:J 

operator with constant eigenvalue ~1. 

(3.79) 

we have ap analytic 
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Then there exists (see the proof of theorem ~.1 in Holden, 

H95egh-Krohn and Johannesen [7 j) an analyt:.lo eigenvector such that 

(3.80) 

e 
When m == we get the same formul~ for E ~ ;;; Q.E ( e) I 

1 de · ~::==0 
as 

before, i.e. 

When m > 1 we obtain by t~1d,ng th~ derivative in 
• e e n times that El I the derivative 0~ the ;function Ej ( e ), 

solution of the system of equations: 

e n _l~_ i(e+y)·(~.-~~) 
E1 (q,q,v,) I~( I e · , , ' ~ · )(lr1 ,~~) 

J J ~=1 ~ yEr <le+yj2-E0 )2 

i/Ee 
- iJ. ~ ( 0 ) ( ';p~ , <I> ~ ) + --4 ° ( <I> q , v . )( v . , <I> : ) 

J J J n J J J J 

n 
+ (<l>~,vj) I 9 9 <~j-~~,e){v~,<l>i) = 0 

~==1 E0 

(3 .81) 

(3.80) m+J 

is a 

(3.82) 

for j :::: l, ... ,n where ((vl,cp~), ••• ,(v ,<j>o)) full fills · n n 

n iiE~ 
L [(ex.- )ojl-9 e(~j-~1.e)](v~,<l>1) == 0 

1=1 J 4n Eo 
and 

( 1 +u .G 0 V . ) if>'. = 0 
J J J 

for j :::: 1, .•• ,n. 
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4. Infinite strai2ht polymers. 

In this section we replace the latt~ce 

A~ {n1a 1+n 2a 2+n3a 3 jai E ~} from section 3 with the discrete 

abelian subgroup A= {(O,O,na) E ~ 3 jn E ~} where a > 0. This 

then, is a model of an infinite straight polyme~. 

Let furthermore ~ = {~ 1 , ••• ,~n} be~ finite subset of R 3 

with 0 ( ~~<a where si = (~!,~?~~~). Then we can define the 
~ ~ ~ ~ 

self-adjoint operator 

n 
= - !:1+ L L c:-2 fi . ( e; ) v j ( .1. ( • - s .... A ) ) 

j=l AEA J c: J 

where v. are Rollnik functions with compact support and 
J 

( 4. 1 } 

are 

analytic function with fi.(O) = 1, and we know frqm corollary 2.5 
J 

that this operator converges in norm resolvent sense to the operator 

-6 with resolvent 
( 2, a) 

-1 ~ \' [ ( i IE) ..,., I J -1 ( - 6 ( ~ ) - E ) =G + G L, a . - --4 & • n 6 ~ ' • -G E ( A- A. +I; . - ~ n ) • 0"> ' I 

~' a E j , J.= 1 A, A ' E A J 'It J "- 1\. 1\. · J "- J "- 1\. 1\. 

(4.2) 

when 

...., I 1-2 a.= fi'.(O)(<!>.,<!>.) (v.,4>.) • 
J J J J J J 

(4.3) 

To study the spectral properties with thi~ approximation we simpli

fy to the case when j2j = 1 and again we can assume that 

2 = {o}. We denote by -6A and similarly for the 
a 

decomposed operator. From theorem 2.3 we have that 

(4.4) 

and again we use Fourier-analysis to analyse the spectrum. 

The analysis is quite similar to that of the model of the 
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crystal so we will sketch this part. 

Considering HE as an operator on L 2 (~,L2(~ 2 )~L2(Q)) where 

1\ 
Q = [O,a) and A is identified with [ 'lt 'lt - - -) a' a with Haar-measure 

we can decompose H 
E 

EEl 

H = JH ( e)d e 
E E . 

~ 

where H (8) has resolvent 
E 

(4.5) 

(4. 6) 

The operators gE(e), Ce(e), Be(e) and De(e) have integral 

kernels given by 

(4. 7) 
""£ 
B (e) (x,y) = q.t( du(x)gE ( dx-.y) I e)v(y) 

PV£ rv ,...., 

D ( e > ( x , ( y 1 , y 2 , y) ) = ~ ( d u ( x > g e ( ex ... < y 1 , y 2 , y > , e ) 

(4 .8) 

In Grossmann, H¢egh-Krohn and Mebkhout [s] the operator 

is decomposed in p-space. 

By making essentially a Fourier~transform we obtain a decompo

sition of -A~ considered on L2(~fL2(§2)eL2(Q)) 

(4.9) 

where 



and 

Again we have 
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iiE __ _!_ ln2 (cos/Ea-cosea) - ---4 ~ • - 4 na ,. 

(4. 11 ) 

Theorem 4.1. The operator H ( e) 
e: 

conver9esin norm r~solvent sense 

to -6 (e) when e: ~ 0 and a is given according to (4.3). 
a 

Proof: Similar to that of theorem 2.5 in Holden, H¢egh-Krohn and 

Johannesen [7 J. 
Using this theorem we could precede as in section 3 to expand 

the eigenvalues in e:. However this model of an infinite straight 

polymer has one property which is not shared by the model for the 

crystal, namely real resonances on which we will concentrate here. 

Concerning the real resonances of -6 we have 
a 

Theorem 4.2. If a >-ln 2 there exists at least one 
2na ·· e E; ~ such 

that -6 (e) has an infinite number of simple real resonances a 
e 1 ... 4naa 2 
En=~ (arccos(cose+~e }+2nn) (4.12) 

when n E ~· 

Proof: From (4.10} we see that resonances and eigenvalues are 

solutions of 

cos/Ea -4nao; = cos ea+~e . (4.13) 

From the assumption a > 
ln 2 

-~· we can infer the existence of at 

least one e such that 
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which implies that 

1 -41taa 2 
E =~(arc cos(cose+~e )+21tn) , n E N. 

rn Grossmann, H¢egh-Krohn and Mebkhout [5] it is argued why these 

are resonances and not eigenvalues. 

Theorem 4.3. Let ;;; ln 2 and let e be according to theorem a -~ 

4.2 and 

has a 

where 

E ( e) be defined by (4.12). n 
e 

simple resonance En ( e:) such 

E~( e:) 

e e 
41t/E (cos IE a-cos ea) 

n n 
-e siniE a 

n 

Then for e: 

that 

and A,B are given by (3.44), (3.45) respectively~ 

> 0 small H ( e) 
e: 

Proof: The proof follows that of theorem 3.5, e~oept for the fact 

that we have to argue that the resonance for -A (e) 
a 

has not 

turned into an eigenvalue. But from the norm resolvent convergence 

this is impossible. 

Remark. ·By observing that the formula for gives a real 

number we have that the resonance is real also to first order in 

e:. 
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5. Mono-molecular layer. 

We can of course also use the methods utilized in section 3 

and 4 to study a model of a mono-molecula:x; layer, i.e. to define A 

as 

( 5 • ] ) 

where a. = (a~,a?,o) E __ R 3 
]. l. l. 

i = 1, 2 and and are linearly 

independent. 

Again we get the same structure of the eigenvalues to first 

order, i.e. 

( 5. 2) 

where A,B are as usual given by (3.44) and (3.45) and is a 

term depending on the A considered. In the case of a 

mono-molecular layer, i.e. when A is given by (5.1) we have that 

(5.3) 

where r = {n1b 1+n 2b 2 ini E g} is the orthogonal lattice, i.e. 

a . • b . = 2 no . . and y = ( y 1 , y 2 , 0 ) E r. 
l. J l.J 

where 

The dual group ~ is identified with the Brillouin zone B 

We omit the details. 

"s. < 1} 
l. 

( 5 .4) 
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Appendix. 

In this appendix we will define the so-called Holmgren-norm. 

Let {H } be a sequenze of Hilbert-spaces and define 
n 

H = EB H • 
n=l n 

Let further A = [A .. j l.J be an operator on 

If ~ = (~ ) E H we have 
n 

IIA4>II 2 = L II L A .. ~ .112 
i j l. J J 

( L c L IIA •. 11 
i j l.J 

~ sup L IIA .. II L < L IIA •. II II <P • II 2 ) 
l.J l.J J 

where 

i 

.;; sup 
i 

j j 

L IIA .. II sup 
j J.] j 

i 

L IIA .. II 
l.J 

- (supLIIA .. llsupLIIA .. II)~ 
i j l.J j i l.J 

is the Holmgren-norm of A. 

We note that 
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