SET RECURSION AND Hé—LOGIC

by

Jean~-Yves Girard Dag Normann
Université Paris VII University of Oslo

1. Introduction

1.1. The recent transformation of recursion theory into general-

ized recursion theory essentially consists in

i Retaining the formal aspect: One gives reasonable generaliza-
tions of concepts and results familiar from traditional recur-
sion theory.

ii Giving up the finitary aspect: The generalized computations
are infinite processes.

If we think that the aim of recursion theory is to analyze
infinite "lawlike" sets by means of finitary methods then some-
thing essential has been lost here: the infinite is no longer
"analyzed" since it is taken as part of the primitive data. We
have replaced potential infinity by actual infinity, and though
the formal aspect of the original theory is successfully kept, its
spirit is partly lost!

This evolution towards generalized recursion which started
with G&del's constructible (i.e. lawlike) sets, has ultimately led

to set recursion introduced in Normann[9]. What has been achieved

is the transplantation of the general concepts of lawlikeness from

its original soil (integers, arithmetic) to the more general one

of sets.

1.2. The situation with proof theory is gquite gimilar: many of the
improvements and generalizations which have taken place since the

time of Gentzen have essentially retained the formal aspect of the

theory: typically completeness, cut-elimination theorems... . But

an essential difference is that the finitary aspect has not at all

disappeared. This is due to the fact that the objects of proof
theory must be graspable, i.e. at least theoretically they must be
mechanically accessible. Recall that p-proofs are always recursive
in proof-theoretic applications.

However, the theory succeeds in (of course in a very slow
process) its progressive transplantation from arithmetic to set-
theory. This suggests the idea that the actual contents of gener-
alized recursion theory is not so different from the one of recent
proof-theory. But, if this is true, which part of proof-theory can
match the increase of power that has been gained by allowing in-
finitary methods in recursion theory? The cobvious answer is: the

logical complexity of the new proof-theoretic concepts. As indi-

viduals the objects of proof-theory remain graspable {(i.e. finit-
ary, recursive in the familiar sense) while it is by no means
mechanically checkable if such an object is a genaralized proof,
or "a generalized integer". w-proofs, recursive ordinals are H%—
complete concepts whereas B-proofs, recursive dilators (= denota-
tion system) are H%«complete concepts., These Hé-concepts (essen-
tial denotation systems) originally introduced in Girard [2] will

in this paper be compared with notions coming from set-recursion.

1.3. Of course this opposition between set-recursion which was
actual infinite and H§~logic which uses potential infinite (the
actual infinite being relegated in the concept itself) is a bit

artificial and rhetorical. Since the relation [e}(a) = b is

- 1.3 =

essentially H% there will be trees Te(a,b) uniformly recursive

in sets of integers encoding a and b such that
T(a,b) is well-founded iff {el}(a) = b.

Hence set-recursion can also be expressed by means of traditional
recursion together with a use of logical complexity in the con-
cept. This renders the possibility of a link between set-recursion
and Hé—logic extremely probable, but this also casts a doubt as to
the genuine interest of such a link!

When we write the relation {e|[}(a) =b on a Hé-normal form
we hide the interesting well-founded objects, the computation
trees, and it is within the computation trees that we find the
structure df computations. Thus a link between set-recursion and
dilators based on the computation trees would be less obvious but
more interesting. Dilators are in many respects simpler than
general algorithms and when the set of total set-recursive func-
tions can be characterized using dilators we have gained informa-
tion about these functions. In fact denotation systems (or
dilators) have a very simple, reqular structure and it seems that
among the many ways of constructing total effective ordinal
functions without loosing "the essential", dilators (denotation
systems) are the ultimate simplification.

(To give a close example: It is well-known since Spector [13]
that Bar-recursion of type 2 is a very powerful tool; this princi-
ple expresses the well-foundedness of a tree of finite sequences
of type 2 objects given by means of a type 3 functional. Despite
its theoretical importance no significant use of this principle

has ever been made because of the rather anarchic, messy structure

of the involved trees. Induction on dilators (see 3.12) is a prin-

ciple which is presumably equivalent to Bar-recursion of type 2,

but the well-founded structures have sufficiently been simplified

and induction on dilators already has a lot of applications!)
Finally we arrive to the conclusion that the actual interest

of a lati betwe set-recursion and INl-logic lies in a signif-
re ion between se u > g i signi

icant simplification of the class of algorithms leading to total

functions.

1.4. The first significant applications of Hé—logic to generalized
recursion was done for successor admissibles [1]. Under reasonable
conditions on the ordinal o [See the article of Ressayre [16] for
optimum conditions| every Z] function £ ovér La* is bounded
by a recursive dilator for arguments >a. The value of this reduc-
tion essentially lies in the very simple algebraic structure of
denotation systems (= dilators) which make the computation of

F(x) effective in the argument x. More precisely the computation
of a function of the kind £(x) can be done as follows:

Starting with an oracle expressing. x»>a as a direct limit of
integers l&m(xi,fij) we can
1. Compute the linear order R=l£m(F(xi),F(fij))

2. Introduce the ordinal IRI
3. Compute f£(x) by means of IRI-bounded quantifiers.

Of course only step].vis effective whereas 2. and 3. are
noneffective, but abgreat simplification has undoubtly been
achieved.

Of course functions of the form x ~» IF(x)Il can be accepted
as recursive functions in every possible acception of the word
"recursive", because F(x) can really be computed recursively
in x! The result states that up to inessential things (bounded

quantifiers needed to keep the formal aspect of recursion theory)

there are no other recursive total functions.

- 1.5 =

1.5. Van de Wiele's theorem [14] proves that if f is uniformly

Z] over all admissibles, then for a well-chosen recursive dilator

F we have

f(x) < F(x)

for all x € On.

It is quite remarkable that this result
1 vyields a similar majoration for set-recursive functions
2 proves that uniformly Z] = get recursive for total set-func-

tions.

The result 2 was unknown before Van de Wiele; this illu-
strates the simplifying power of Hé—logic: These two notions of
recursion were reduced to the same "skeleton", dilators.

Of course specialists were soon afterwards able to give
direct proofs of 2 [12]. The direct proof is not so difficult
which precisely enhances the fact that we want to stress: Hé—logic

increases our basic understanding of general recursion, it gives

us a more graspable class of generalized recursive functions.

1.6. The main result of this paper will be a relativisation of Van
de Wiele's argument to a given AO funciton h. The result is as
follows: We construct by induction on dilators a hierarchy @F of

set-recursive functions relative to h

@F(X) = I(F,x,h)

and we prove that if g is set-recursive in h then g(x) <
@F(x) for a certain recursive dilator F and for all x € On.
The hierarchy @F(x) is obviously effective in the data
F,x,h, hence this is a genuine generalization of Van de Wiele's
theorem to relative recursion. (The case of 39 functions is

1
sketched in 5.10.)

1.7. As an application, if o 1is admissible and smaller than

the first recursiv then it will be possible to express

all functions which are I over L by a hierarchy as in 1.6,
44

that o = w?, But our result has no

with g a A0~functzmm
corollary for the first recursively Mahlo.

1.8. Since this result was proved (May 1982) a new proof of 1.7.

recursively inaccessible has been

in the case of the
obtained; the method which is quite general makes use of inductive
definitions and would obvicusly give the same results as in 1.7.

the first recursively Mahlo by the same

Furthermore an analy

is given by the same inductive definitions-

kind of hisrarch

method and this new result is a

]

roper extension of the main

-

results of this paper; see [5].

2. DENOTATION SYSTEMS

2.1 Some examples

Denotation systems are general Cantor-Normal-Form-type of
representations. Before giving the definition we will consider

three examples.

The first will be

where x 1is an ordinal.

If y <« 2* there will be a unique ascending sequence

Xy < x1< cee < xn_] < x such that
X X X
y=2n_]+2n—2+ ..-+20
Since the sequence (xo,...,xn]) describes the number y and

all numbers less than 2- can be described this way we may call

X

xn—] 0

(XO""’xn—]) ~ 2 + c.. + 2

a denotation system for F._. This will, however, not be completely

1

according to our formalism.

Our second example will be

If vy < Fz(x) we can write y uniquely in the form

= ® +
y X eu, u,

where u_,u_ < x.
1772
If we list the coefficients in increasing order there are

three ways of denoting ordinals <x2:

i Yy = Xexg + X, (xO < X, < x)
ii y = Xex, + xg (xO < xp o< x)
iii y = X *X + X (xO < X)

- 2.2 -

If we use codes for these three ways of organizing the
coefficients we again obtain a way of denoting all ordinals

y < F._.(x) wusing ordinals less than X.

2

Formaly we write

(];xo,xl;x) = XX, + X,

(2:% ,%. :x) = xex, + X
01 1 0

(O;xo;x) = XX, + Xy

It is not essential how we choose the codes or indices 1,2,0.
In this example we have followed a standard strategy: Take a
canonical prototype of the form we want to code and use the value

as the index

i x-xo + x]: Prototype XO = 0, x] =1, x = 2, value
® S =
X XO xl 1
ii X X, + Xyt Prototype 21 + 0 = 2
iii xex, + x4: Prototype Xg = 0, x =1 gives value 0.

Our third example will be
Fa(x) = (14x)"
If y < F3(x) then there are unique numbers u, > ... > U

1 k-1"'

k-1" all <%, such that
u

u
y = (1+x)](]+v]) + .. + (14x) k=1

(1+v)

k-1

Again any number vy < (1+x)* can be uniquely denoted by x, an
increasing sequence

X < ... € X < x
0 =1

0,...,xn 1 are distributed

as coefficients and exponents. We will regard one example

and an index coding how the numbers x

y = wl7¢18 + w17 + 13,
or written on our form

y = (1+0)17(1+17) + (14+0) 1(1+16) + (1+w)0(1+12).

The "coefficients" are 0,1,12,16,17, and the canonical prototype

is (x = 5)

Yo = (1+5) *(1+4) + (1+5)1(1+3) + (145)0(1+2) = 6506.

Thus the denotation for vy < F3(m) will be
(6506:0,1,12,16,17: w) .

We consider (1+x)x instead of x° because it will be

impossible to find unigue denotations for all ordinals < x*

By our convention the index and the length of the sequence of
coefficients will determine the algebraic form that we have in
mind when the general normal form is given. It will in general not
be possible to recapture the full denotation system from such

pairs (c,n).

.2.2. Denotation Systems

We will now give a set of axioms for denotation systems. It

is easily checked that our examples from 2.1 satisfy these axioms.

Definition 2.1

Let F:0n =+ On.

A denotation-system D for F is a class of ordinal denotations

1x))

y = D((c;xo,...,xn_]

for all ordinals vy < F(x) such that
I X < e X -1

II If y <F(x) then vy has a unique denotation

X

(c;xo,...,xn_];x)

IIT If (cixg,...,X x) is a denotation and ygy <...< y, g <V

n-17

then (c;yo,...,yn_];y) is a denotation.

Iv

- 204 -

X Ly eeey : < eX ' e o
If D((c1,xO Xn—] x)) D((c2 XO 'Xm—] x)),
if
YO Cownt yn-‘l Ye YO <o °<ym_] <y
and if
X, € x' <= v, £ y'" and x, » x' <=> . 2 !
1 J 7 yJ 1 J y] YJ

for i < n, j <m

Remark 2.2

a2

o

o]

foN

then

H [N H < eyl ..) H o
D((eyiygereery i¥)) < DUlCysyieenyy 177))
In a denotation (c;xo,...,xn_];x) we will call ¢ the
index and AN ERRTE S the coefficients of the denotation.
Normally (c;xO,...,xn_];x) will be used both for the

denotation and for the denoted ordinal, i.e. we drop the D.
The index ¢ represents some "algebraic" way of describing

y in terms of XyoeeosX %X. The unicity II assumes that we

n=-=1
have some "canonical form", III means that this "form" always
gives a meaning and IV states that in order to decide the
relative wvalue of

Z. = (C %X _,00.,% +x)

1 1°70 n-1
and

z. = (czgxé,c..,x'_ %)

2 1

we only have to consider c],c2 and the relations

{(i,j);xi < x'} and {(i,j);xi > xa}

3
The axioms I-IV say nothing about which objects the ihdiées
may be, and there will be many equivalent denotatin systems.
At some places we will make use of this freedom»to gain

notational simplicity. On the other hand aﬁy‘system may be

represented in standard form as described below:

- 2.5 -

Definition 2.3

a A denotation system D is in standard form if whenever

(c:x :x) 1is a denotation then

ce e, X
0’ " n=-1

c = D((c:0,...,n=1:n))

lo

The trace Tr(D) of the denotation system D is the set
{{e¢,n); (c:0,...,n=1;n) 1is a denotation}

when D 1is in standard form.

In our examples F2 and F3 we gave the denotation-systems
in standard form.
The axioms I-IV are quite powerfull, as we will see later.

First we will show that the denotations will be monotone in the

coefficients.

Lemma 2.4

Let D Dbe a denotation system and let (c;xo,...,xn_];x) be
a denotation where x, + 1 < %, . Then (C:X_,¢eesX.,00e,% P31 X)
i i+] 0 i n-1
< (c;xo,...,xi+],...,xn_];x).
Proof
Assume not. By II we have
* (c7x0"“°'xi+]""’xn—1'7x) < (c;xo,...,xi,...,xn_];x).
By III (c;m~x0,.n.,m-xi+m,...,w-xn];w-x) are denotations for:
each m, and by * and IV we have
(c;w'xo,...,woxi+m+],...,w-xn_];w-x)
< (c;w»xo,...,w~xi+m,...,m-xn_];w-x)

for each m. We will then get an infinite descending sequence of
ordinals, which is absurd.

Another important consequence is

- 2.6 =

Theorem 2.5

Any denotation-system is uniquely determined by its restric-

tion to the natural numbers.

Proof
Let D be a denotation-system for F and let x be given.
Let
D = {{ecex ,...,% %) X <...¢ X < x & (e¢,n Tr(D) .
L= lleix, NEREOTEE N o (c,n) € Tr (D)}
Here we regard is~aq,§gm,xn_];x) just as a formal expression,

since we want to recapture its value.

We give D the following ordering:

® <@ ﬂg‘ . §] °
Let (c],xog.,”gwRM}pﬁ} and (cz,xo,...,xm_],x) be elements of
Dx' Let
e < 7 1 = e e e] (%! e e o ! ®
{&n ootz o} {XO’ x b U {xd) X _]}
Let o,t be such that
x, = =2 ... (i «<n) and x' = =z ,, i < m
i o(i) 3 w(3) (3)
We let
eI SR % X' e ! :
(epixy. n-17*) “p_ (CorXpeeeiXy yi%)

if and only if

D((c};wiwéfQQQ,o(n~1);t)) < D((027T(0),...,T(m—])7t))

By axiom IV the ordering D is the same as the ordering between
X
the denoted ordinals. Since <D is definable from x and DP]N
X

we have proved the theorem.

Remark 2.6
a A system defined on IN, satisfying I-IV restricted to [N and
satisfying monotonicity in the coefficients is called a pre-

denotation-system. Given a pre-denotation-system we may try

to construct a denotation-system like in the proof of Theorem

2.5. The problem is that < may not be a well-ordering.
X
HoWever, if <v is a well~ordering then all <D will be
' X

- 2.7 -

well-orderings and we are dealing with a denotation-system.

lo

If F(n) € N whenever n €IN we call the system weakly
finite. Weakly finite systems are called recursive etc. when
their restrictions to [N are so.

The proof of Theorem 2.5 shows that denotation-systems

10

represent a finitary approach to their functions. Thus
functions permitting a denotation-system have a kind of

continuity-property.

fo

There is a close connection between denotation-systems and
certain functors on the ordinals commuting with pull-backs
and direct limits. These functors are called Dilators and

are treated in full detail in Girard [2]. Dilators are in
fact isomorphic to denotation-systems; the two notions are
different presentations of the same basic material. For that
reason it will be possible to avoid the use of dilators in
this paper. For a deeper understanding, however, we find that
dilators are as important here as linear operators are to

linear algebra.

2.3. The sum of denotation-systems

Let us once more consider our examples from section 2.1,
F,(x) = x2 and F3(x) = (1+x)%. Let F,(x) = x2 + (1+x)* ana
let y < F4(x). Then either y < x2 or y = x2 + y' for some
y' < (1+x)*. In the first case we use the denotation-system for
x2 to denote vy. In the other case we take the (14x) *~denotatin
for y'. If we code into the index which system we use, this gives
us a denotation-system D4 = D2 + D3 for F4.

The method used here is general and can be used for any well-

ordered sequence of denotation-systems.

- 208 -

Definition 2.7

Let {Di}i<B be denotation-systems for {Fi}i<ﬁ' We let
D =12 D,
i<

be defined as follows:
If (e¢,n) ¢ Tr(Di) then we let <c,i> be an index for D
and

D((<c,i>:x .,,xn_];x))= Y F.(x) + Di((c;xo,...,xn_];x)).

o'’ sy
j<i

Remark 2.8

If each Di are in standard form then we get D in standard

form if we use I F.(n) + ¢ instead of <c¢,i> in defining D.
jei

Definition 2.9

a The denotation-system 0 is the empty system for the

constant 0 function.

b The denotation-system 1 is the system with one denotation
(0::x) = 0.

c A non-zero denotation-sytem D is called connected if D is
not the sum of two systems #+ 0.

d If D,D' are denotation-systems in standard from and D'
is a subfunction of D (i.e. graph(D') < graph(D)) we say
D' < D.

e If D is a denotation-system then let

I, = {[p*;p* < D},

Remark 2.10

a Connected systems correspond to perfect dilators in Girard

[2].

1 is connected and I, = {0.11}.

o

Lemma 2.11

a D' € Iy if and only if for some D" we have that
D =D"'+ D".
b If D],D2 € ID are systems for F],F2 resp., then

D, <D, <= F](w) < Fz(w)

Proof

If we assume that D,D' and D" are in standard form this

|

is trivial.

o

=> 1is trivial so assume that F](w) < Fz(w). Let

n_];x) be a D]—denotation. Since D] < D it is

also a D-denotation with the same value. Assume that it is

(c;xo,...,x

not a D2—denotation. Then (c;ko,...,kn_];w) is never a

Dz-denotation. Since D2 < D there cannot be any other D2-
9 o v ' e

denotation (c],ko,...,km_],w) such that

(c ;ké,...,k%_ sw) > (crk

] : O,...,kn s w)

-1
since then D2 must either fail to be a subfunction of D or
fail to be a denotation-system, by not being onto Fz(w).

Consequently

Fz(w) < (c;ko,...,kn_]:w) < F](Q)

which contradicts the assumption.

An important consequence is the first decomposition theorem:

Theorem 2.12

Let D be a denotation-system. Then D can uniquely be

given as the sum I D, of connected denotation-systems.
i<p

- 20]0 -

Proof

By Lemma 2.11.b the set ID/ is well-ordered by the ordering

< . ., < F, <=> i < j. j <
; let {Fi}1<ﬁ be I = ordered by F, Fy <=> i< j. For J B
let D, = F, - F, (by Lemma 2.1la this makes sense). Each D,

i i+l i 1
is clearly connected and Fy = 2 Dj for all i < B. Moreover, if

jed
D = % D. then each r D., = F, for some F, so the alternative
i<a 3 <] * '

decomposition will be coarser than the one we defined.

Remark 2.13

We call this decomposition of a system decomposition into

sums.

2.4, Connected systems of denotations

When we decompose a disconnected system into sums we see that
the trace Tr(D) may be stratified into layers according to which
component the element comes from. If (c],n) and (cz,m) comes
from Di'Dj resp. with i < j then

(c];xo,...,x) < (c];xé,...,x' x)

n-1°% m-1°

for all choices of xo,...,x

For a connected system the situation is different, there the

n_],xé,...,xé_],x.

values for the different indices will be interwoven. This is in

fact the reason why they are called connected.

Lemma 2.14
Let D # 1 be a connected system for F. Let x be a limit
ordinal and let (c,n) € Tr(D). Then

{(c;xo,...,xn_];x); X, <...< X < x}

is cofinal in F(x).

PPN

Proof
Let

X, X. €...< X < x
70 - “n-1

sy qi%) < (erxgaeeanx ix))]

X = {(c',m) € Tr(D); I

((c';yo,..
Since the value of a denotation is monotone in the coefficients we
may without loss of generality assume that Xy > A in defining
X. By axiom IV this means that X 1is independent of the limit

ordinal x.

Claim
For any ordinal vy
{(C':yop===,ym_];y): Yo €eee€ Yy g €Y & (c',m) € x}

is an initial segment of F(y).

Proof of claim:

If y 1is a limit ordinal this holds by the definition of X,
since we may use y instead of x in defining X.
If y 1is a successor ordinal, (c',m) € X and

(d;xo,...,xt_];y) < (c ;yo,...,ym_];y) then

(dex _, ..

. sytw) < (C'sy s ees :
o X, _pryre) < (efiygaeeeny Liyto)

so (d,t) € X for X defined from y + w. This proves the claim.

By the claim D[X < D. Since D is connected we must have
DM =D and X = Tr(D). The lemma then follows from the defini-

tion of X.

. . X
If we have two denotations for ordinals wu,v < (1+x) we can

decide the relative order of u and v by looking at the coeffi-

cients and exponents. The one with the largest exponent is largest.

= 20]2 =

If they are the same we regard the corresponding coefficients. If
they also are the same look at the next exponents etc.

Suitably modified this strategy can be used for all connected
denotation-systems. We will neither prove nor need the full
result, but the general idea will be clear from what we do, and

details can be found in Girard [2].

Definition 2.15

Let D # 1 be a connected denotation-system for F and let
(c,n) € Tr(D). Then (¢;0,2,...,2n-2;2n) is a denotation. Let
i < n-1 and let
a; = (c:O,é,...,2i/2i+],...,2n—2;2n)
i.e. we replace 2i with 2i + 1.

If a, > aj we say that i is more important than Jj. Let

ic n be the most important index. In a denotation

(CsX_) eee,X i X)

0 n-1

we will call X the most important coefficient.
c,n

Remark 2.16

a When D # 1 is connected and (c,n) € Tr(D) then n > O.
b If u-= (c;uo,...,un_];x) and
v = (c;vo,...,vn_];x)
and if we have
uy < Vi uj > vj and t # i,3j => u, = vt

then

u < v <=> j is more important than i.

The ordering "more important than" is a strict ordering of

{0,...,n=1} i.e. it defines a permutation of {0,...,n-1}.

- 2.13 =

We can decide the relative order of two denotations by
looking at the relative order of the coefficients with falling

importance. A fragment of this result is the following:

Lemma 2.17

Let D 4+ 1 be a connected denotation-system and use the

notation of Definition 2.15. Let

u = (c;u],..f,un_];x)
= L M
v (c 'VO""’Vm—]’x)
be two denotations, let p = 1 and g =i, . If u < v then
c,n c',m
u < V @
p gq
Proof

In order to obtain a contradiction assume that u < v Dbut
u_ > vq. Without loss of generality we may assume that x is a

p

L . . _ . .
limit ordinal, u, 2 vq + w and vj+] > Vs w (If we multiply

the coefficients and x by w (wex etc.) the relative order
will not be altered).

If we reduce some of the coefficients in a denotation we
reduce its value, so

(c;uo,,..,up,up+],...,up+(n—]—p);x) < u.

If we increase the value of the most important coefficient and
decrease any of the other coefficients then we will increase the
value. If we let

s = (c ;vO,...,vq_],vq+k,vq+k+],...,vq+2k;x)

where kX =m - g - 1, then we have s » v. Since v_ + 2k <« up

axiom IV gives that whenever -up < zp»<...< zZ.q ¢ X we have
H ® & & H < L]
(c,uo,...,up_],zp, 'Zn—l'x) s
But since uo,..,,up_] are of small importance compared to zp

we see that

- 2.14 -

(c;zo,...,z _,iX%X) <'s
for all =z, <...< =z < X.

This contradicts Lemma 2.14 and this lemma is proved.

If we fix the value of the most important coefficient to
y < x then the set

X x) : (c,n) € Tr(D)

{(c;xo,...,xp_],y,xp+],.. n-1?

& p is the most important index i n}

¢

forms an interval of ordinals < F(x). This is a consequence of
Lemma 2.17. F(x) is the union of these intervals and we may
think of the denotations leading to ordinals in each interval as
components of the system for F(x). We get the components of D

by fixing y and let x > y vary. This leads us to the following

concepts:

Definition 2.18

Let D # 1 Dbe a connected denotation-system. Let y,x be

ordinals.
a Let
Xg.x = {(c;uo,...,up_],y,y+]+xp+],...,y+1+xn_],‘y+]+x)7
(c,n) € Tr(D), p = ic,n’ Uy <eeec L <y
and Xy Ceee€ X g < x}.
b Let Hy,x map the interval Xy,x order-preservingly onto

the ordinal

FY (x) = Ordertype of X

yex’
c Let DY Dbe the denotation-system for FY defined by
(<c,u0,...,up_]>y;xp+],...,xn_]}x)
denotes
Hylx((c;uo,...,up_],y,y+]+xp+l,..‘,y+l+xn_];y+]+x)5

we call DY the y'th component of D.

- 2.15 -

Remark 2.19

a It is easily verified that DY is a denotation-system for
FY.
b The decomposition in Girard [2] corresponds to
Y = 3o’
y'<y
c We have not described DY in standard form. The index for

the standard form of

< co oy > : g oo ey H
(Crlg up-—] V% xp+] *h-1 x)
will be
¢! = ny'nmp((c;uo,...,up_],y,y+],...,y+n—p—];y+n—p))

which 1is the value of

(<c,u 0,1,...,n-p-2;n-p-1)

O,..,,up_]>y;

Definition 2.20

a If D=2 D, is the decomposition of a non-connected denota-
i<B

tion-system D into sums, then Di’< D for all i < B.

If D #1 is connected then DYF< D for each y € On.

o’

< is the minimal transitive ordering satisfying a and b.

la

The second decompostition theorem states that < is well-
founded. In a sense this means that any denotation-system can be
constructed from 1 by sum and a special kind of diagonalisation at

cofinality On. We will not explore this aspect further here.

Lemma 2.2]
Let D # 1 be a connected system, FY as in Definition 2.18.

Let y,a be two ordinals such that a > 0 and vy < w®. Then

Fy(wa) < F(wa)

- 2.16 -

Proof

If y <« »® then v+ 1 + 0 = ma, sO

a
X 5 c Flu?)

YW

Moreover, any denotation for an ordinal < F(y+]+ma) = F(w®) where

the most important coefficient is > y will dominate X as
Y,w

There are clearly such denotations, so X a is bounded in
Y

F(w?). Thus FY(w?) = Order-type (X a) ¢ Flw?).
YW

Theorem 2.22

The ordering <« of Definition 2.20 is well-founded.

Proof
Assume not. Then there is a descending sequence {Di}ieN

where Di+]'< Dy by a or b of 2.20.

If D, =% (Di)j then D, , = (Di)j. for some j., < B. If
J<B 1
Yi
D. 1is connected then D, = D, for some vy, € On. Let a
i i+l 1 1
dominate all the yis in question. Then {Fi(wa)}iEN will be a

descending sequence of ordinals, where F. is the function

associated with Di'

Remark 2.23

In Girard [2] the decomposition is formulated different, and
the predecessor ordering will be linear. His predecessors
correspond tc the Kleene-Brouwer order of < in a certain sense.

We will discuss this ordering at the end of paragraph 3.

3. INTERPRETATION OF TREES

3.1 A representation of H;-sets

H;—logic is a collection of concepts of complexity H; like
B~proofs, dilators, homogeneous trees etc. and the mathematics
thereof. Denotation systems together with the equivalent concept
Dilators is one of the possible paths to H;—logic. We will not
treat all the concepts of H;-logic, only establish the link

between Hé—sets and denotation systems.
Let AcC IN be a H;-set and let B be Z} such that
ne€aA <> vg em(n,g) €B
Then there is a recursive map n,g ~> T where T is a tree
n,g n,g
on [N such that

(n,g) ¢ B <=> Tn g is not well founded.

We use the letter £ for elements of OJN. We then have
(n,g) ¢ B <=> Vf Jog €T Jt < lh(o)-1
n,g
(£(o(t)) < £(a(t+1)))

where o(t) is the sequence (o(0),...,0(t-1)) identified with

its sequence number.

From £: [N + On we may define Jge: N » N as follows
g£(0) = pi (£(3+1)>£(3)), h(0) = g (0)+]
gf(n+]) = uj (f(hf(n)+j+]) > f(hf(n)+j)
hf(n+]) = hf(n) + gf(n+])+].

(An explanation is in order: gf(O) is the number of steps £ is

decreasing. gf(]) is the number of steps from then on that £ is

decreasing etc.)

W

It is easily seen that £ ~ g is a projection of On onto
Y £]

.

- 3.2 -

We then have

n €A <=> Vf] vf2 Jo € Tn,gf Jt < lh(o)=1
2

(£, (o(t)) < £,(o(t+1)))

1
Any sequence f may be split into
f](i) = f£(21), fz(i) = £(2i+1)
Moreover, when we for each ¢ decide if o € Tn or if
lgf2
3t < 1h(o)-1 (f](E(t)) < f](E(t+])), we use only the relation
{(i,9); £(1) < £(3)},
not the actual values £ take.

This gives us the following result:

Theorem 3.1

Let A Dbe H;. Then there are trees {S of finite

n}nGN

sequences of ordinals such that
i Vn Vo,v € on" (1h(o) = Ih(<) A Vi,j < 1h(o)

(o(i) < o(3) <=> (i) < =(3N)=> (o5 <=> t€S))
ii n €A <= VE It s (£(t))

iii Sn P t\]!-\'I ig primitive recursive uniformly in n.

Remark 3.2

a Ony and Nt‘>I are standard notations for the sets of finite

sequences from On and [N.

lo

The property i says that if o and <t are order isomorphic

then o € S {=> T €85 .
n n

A tree satsifying this property is called order invariant.

c Without loss of generality we may assume that the tree
s, [M is well-founded, i.e. finite. In the next section we

will show how order-invariant trees with this extra property

= 3&3 -

correspond to weakly finite predenotation-systems, and they
correspond to denotation-systems if and only if the tree is

well-founded.

Jervell [6] introduces a class of trees called [a,p[-homo-

o

geneous trees, « < B < », and they correspond to a subclass
of the denotation system. Our well-founded order invariant
trees will be [0,=[-homogeneous. An [«,B[-homogeneous tree
is a tree of sequences of ordinals where each koordinate is
bounded by g and which is order invariant for koordinates >
¢. All the subtrees that we study in decomposing the order-

invariant trees will be [a,«[-homogeneous for some «.

lo

The tree Sn is a variant of the tree constructed by
Shoenfield [11] and it can be used to prove the Shoenfield

absoluteness theorem.

3.2 Order-invariant trees

Definition 3.3

Let S8 be a non-empty order-invariant tree.

a If x 1is an ordinal, let
S, = {0 € 8; Vi < 1h(o)(o(i) < x)}
b Let <x be the Kleene-Brouwer ordering on Sx. If Sx is
well-founded, let ""x be the ordinal norm for <x'
c If Sx is well-founded, o € Sn and

{xo <ooel xnm]} = {o(i); i < 1n(o)}

then we let

D.((e;x

s O’°"’Xn—1;x)) = Hanx

where ¢ 1is obtained as follows: Let <t:1h(oc) » n such that

i) = ..s Th co= gl .
o(i) XT(l) Then ¢ T

- 3.4 -

Lemma 3.4

a If each Sn is well-=founded then DS is a pre-denotation-
system.
b D is a denotation system if and only if S is well-founded

S

if and only if each S, is well-founded.

Proof
If vy < x then §_«< § SO
y — TX

Sx is well-founded => Sy is well-founded.

Both a and b then follow from

Claim
D satisfies the axioms for a denotation system for the

ordinals x such that Sﬁ is well-=founded.

&

Proof of claim

I and II are trivial.
III follows from the fact that 8 is order invariant.
IV follows from the fact that the Kleene-Brouwer ordering is

invariant under order-preserving transformations on subsets of On.

Remark 3.5

a The constructions in Theorem 3.1 and Lemma 2.4 are effective

so we have reduced any H;urelation on w to the set of

. 1
recursive denotation systems. This set is itself H2 and thus
1
complete Hz,

The reduction of well-founded order-invariant trees to

o

denotation-systems cannot be reversed; there are denotation

X
systems that do not correspond to such trees. x?2 and 2

X
correspond to such trees but x 2427 does not.

(x2

it

{o; 1h(a)<2])

X . .
(27 = o: o is decreasing})
g

s

3.3 The decomposition of D

s
In this section we will describe the decomposition of DS.
This description will be used in later paragraphs where we will

study the connection between denotation-systems and set-recursive

functions.

Definition 3.6

Let €& be a well-founded order-invariant tree on On. Let

c € 8.
* * .
a Let §_ = [t:06°7 € 8} (where " is concatenation).
b Let m{o) = max{o(0),...,0{n=1)}41 where n = 1lh{o).
< Let s_ = {t €5 vi< In(s)(s(i) < m(o)+x]
; o
d Let I 1 ~ be the Kleene-Brouwer norm on S .
. 0'!’}{ OIIX
e Let lo,xll be the order-type of Ss < under the K.-B.
&
ordering.
We will construct denotation-systems D corresponding to the
o
norms bt s
o, %
If 1 ¢ SG we separate 1 into two parts:
(i) if 1(i) < m(o)
o (i) = |
undefined otherwise.
2 if (i) = m{o)+x Ffor some x
7, (i) = {
undefined otherwise.
SG will be order-~invariant with respect to T but not with
respect to 1,. Thus when we construct a denotation for <l we

1 g, X

will code 11 into the index and T, into the coefficients. This

leads us to the following:

Definition 3.7

Let S be a well-=founded order-invariant tree. Let ¢ € 8§, %

€ Oon and =t € S .
o, X

Let

{XO<"'<xn~i} = | 12(E), zzii) is defined]

and let s dom(t?) + n be such that

(i) = Xy
Then

D {{c: x_,...,% sX)) o= Il
o 1 ot

9] = Oy
where ¢ 1is defined as follows:

Let

(i) if i € dom(x.)

5 i

(i) = | I
m{ag) + s(i} if i € dcm{xz)

Then < = (1"l .
o, n
Lemma 3.8

Each DG is a denotation-system.

The proof is simple and is left for the reader.

Lemma 3.9

D = D

jw

< > S
b If o0 €S but ¢ has no extension in S then
D =1
o
c If o €8 and ¢ has an extension in S then
D =) D _ .+ <D R + 1.
o j<m(o) ot 3 ot (m{ g)+y) ye€On
Proof

a and b are trivial.

The final 1 in ¢ comes from the denotation corresponding to < >.
. * PR . *
If j < m{s) then m{og j) = m{g). Moreover if o 1 € S and
t(0)=3 < m{o) then the norm ﬁr%g . °of 1 in Ss % is exactly
§ <= r
* v
P 2 L 3 B P
3¢5 g j,X

where t={i} = {i+1}.

- 3.7 -

m(o) _ *
Let S _ = {1; 61 €8 & 1(0) > m(o)} and let L — be
the denotation-system corresponding to the Kleene-Brouwer ordering
m(o) C e s .
on Sc . Again it is easy to show that Dc,m(c) really is a

denotation-system. Moreover

D =) D*;*+ Doyt L
(¢ j<m(O')GJ O, g

since the wvalue of <(0) 1is most important in order to decide the
order of 1t in the Kleene-Brouwer ordering.

It remains to show that if D $# 0 then it is conhected

O'Im(G)
and % 1 and to show that

Y -
Dc,m(c) B Dc*(m(c)+y)

If o'm(g) € S then o*(m(c)+y) € s for all y € On, by order
invariance. Since the value of 1(0) separates the values of the

corresponding denotations we have

1. If ¢, and ¢ are D —-indices we cannot have that all
1 2 o,m(o)

c]—denotations from a limit ordinal x dominates all c2-

denotations from x. Thus D is connected.

o m(O')i

2. For a fixed D)—denotation

o,m(o

(cex_, e, X

0 1 X)

n-1
the coefficient corresponding to +t(0) will be the most
important one.

Now fix vy,z and let X ” be as in Definition 2.18 a for

[

Dc,m(c)' The ordinals i? Xy,x will give the location of
. m(o
So*(m(o)+y),x in Sg,x where

S~ (o e ™9 v < In(e) (s(i) < mo)+x))

By this correspondance we see that the standard denotation-systems

of DY and D * will be the same.

o, m(o) o (m(o)+y)

This ends the proof of Lemma 3.9.

Remark 3.10

Lemma 3.9 shows that there is a connection between the sub-
components of a denotation-system D ({D':D'< D}, see Definition
2.20).

For a more systematic discussion of the connection between
denotation~systems and ordinal trees, see Girard [2], Jervell [6]

or Girard-Jervell [4].

3.4 Linear decomposition and imbeddings

We have been discussing the decomposition of a denotation-
system into the subcomponents. There is an alternative way which
corresponds to the Kleene~Brouwer ordering on the decomposition

tree.

Definition 3.11

a Let D be a denotation-system, D = D]+D2 where D],D

Then D] is a predecessor of D.

If D= D_+D and D, # 1 is connected, then each D.+ I pJ

Jop

1 72 2 1. 2
) <y
is a predecessor of D.
c The predecessor relation is the minimal transitive relation

satisfying a and b.

Lemma 3.12
Let D be a denotation-system. The predecessors of D are

well-ordered by the predecessor relation.

Proof
By Theorem 2.22 and general facts about Kleene-Brouwer

orderings we -see that it is well-founded.

Linearity follows by a simple induction on the hight in this new
ordering. Notice that the predecessor relation itself is not well-

ordered.

- 3.9 -

Remark 3.13

Let D = Ds be a denotation-system obtained from an order-
invariant well-founded tree. The predecessors are all defined from
initial segments of the Kleene-Brouwer ordering in the following

way; let I be an initial segment.

i If I has a maximal element g, let
I' = {7;1<0 lexiographically}

hen D_ = D_ . +D .
T I I' o

ii I has no maximal element, o is minimal outside I and o
has extensions in S. Let I' Dbe as above and let

= + -1).
D, = D, (Dgl)

iii I has no maximal element, ¢ 1is minimal outside I ané o
has no extension in §S. Let
X = {r; t<o lexicographically, 1 is not the extension
of any element in I}.

Then D_ = D , where X is ordered lexicographically.

X
I T€X
So far we have defined two "less than" orderings, subcompo-

nents and predecessors. There is also a third natural one:

Definition 3.14

Let E,D be two denotation systems. We say that T 1is an

imbedding of E into D if
. 1-1
i T: Tr(E) > Tr(D)
ii 1f (c,n) € Tr(E) then T(c,n) = (c',n) for some c'.

iii T induces an order-preserving map on denoted ordinals.

Remark 3.15

Let E,D Dbe denotation-systems for G,F resp. Then an
imbedding T: E » D will induce imbeddings Tx: G(x) » F(x) as

follows.

- 3.10 -

i

If vy {esx ,000,%x 3%y and T(e,n) = (c¢',n} then

n-1 E

0

v, .
(o ,xgg.abﬁxnm}EE)D.

T (v)
If E and D are ir sts-dard form we w'll have T(c,n) =
(T, (e¢),n). Imbeddings between denotation-systems correspond to

natural transformations between Dilators, see Girard [2].

Lemma 3.16
a If T: E+D and D is connected, E # 0 then E is
connected. Moreover there is a canonical decomposition of T

into TY: 8¥ » pY.

b If T: E » D, D= 3, D, , E = L, E. where D,,E. all
= i<g 71 j<a 7 J i"73
are connected, then there is a unique p: ¢ + B and a cano-
nical decomposition of T into T.,: E. + D ,.,.
it 3 p(3)
Proofs

The details are left for the reader. For a notice that the
most important coefficient for (c,n) will be the same as that for
(¢',n) = T(c,n}. To see b notice that‘ T induces an imbedding of
each Ei into D. The image must by a be in one of the connected

parts, Dj' Let p(i) = 3.

Remark 3.17

A property of ordinals is that any ordinal is the direct limit
of numbers and finite morphisms. This is used to develope H;—logic
in a functorial way.

Using imbeddings between denotation systems we can show that
any dénotation~system is the limit of a directed system of systems
with finite traces. This can be used to define higher type versions

of denotation systems, see Girard [2] for details.

- 30]] -

In general a subcomponent cannot be imbedded into a denotation

system. The following observations will moretheless be useful:

1. If D= D, then each D, is imbeddable into D.
i<p

2. If D %1 is connected then 0¥ is imbeddable in p? when

y < z.

4, SET RECURSION

4.1 The recursion theory

For the sake of completeness we here give the definition of
set-recursion and state the main results that we need. We do not
give any proofs since they are covered by a vast litterature on the
subject.

The set-recursive functions are defined by six schemes, each
having an index, and the definition is really an inductive

definition of the relation
fehx) =y

which has the following interpretation

algorithm no. e applied to the sequence of sets X
halts and takes the value v.

Definition 4.1

Set-recursion is defined by the following schemes:
i e= <1,n,1i>

{e}(x],...,xn) = x,.

i
ii e = <2,n,i,3>
{e}(x],...,xn) = xi-xj.
iii e = <3,n,1i,j>
{e}(x],,..,xn) = {xi,xj}.
iv e = <4,n,e'>
{e}(x],...,xn) = U {e‘}(y,xz,...,xn).
Yex,
v e = <5,n,m,e',e],..,,em>

"“’Xn))

{e}(x],.,.,xn) = {eB }({el }(X.lrwﬂiixn)l“"’l {em}(x]

vi e = <6,n,m>

{e}(e],x],...,xn,y],...,ym) = {e}(x],...,xn)

s 4‘02 s

In most expositions set-recursicn ig relantivized to relations,
but here we will relativize it to set-functions. This will compli-
cate the theory at tns advanced level but not for the results that
we are interested in.

If g: V »V 1is a function we relativize set-recursion to g

by adding the scheme

vii e = <7,n,i>

{e}g(x],,.,,xn) = g(xi)

Remark 4.2

a In the Union-scheme iv the computation halts if the computa-

tions {e'}(y,xz,.,.,xn) halt for all vy € x,.

o

In the composition scheme {e}(x],...,xn) halts if and only
if {ei}(x],...,xn) halts for i=1,...,m and {e'}(y],...,ym)
halts, where 9, 'iS'the i*th value above.

An important aspect of set-recursion is the computation-tree

and the subcomputation relation:

Definition 4.3 (Essentially Y.N. Moschovakis [8])

a A computation tuple is any seguence <e,x],.;.,xn> where

e €N and each X5 € V.

b If e does not indicate that it accepts a sequence of length
n, we let <e,x],...,xn> be a subcomputation of itself.

c Computations from i-iii and vii are called initial and have no
subcomputations:

d If e = <4,n,i,J> +then <e,x]5°@.5xn> has the following
subcomputations:

{<e',y,x2,..,,xn>;y€x]}@
e If e = <5,n,m5e’ge],°e,iem> then <ei,x],,e@yxn> are

subcomputations of <e,x]ge&egxmb for i =1,...,n.

- 4,3 -

Moreover, if there are y],.,.,ym such that

X peeesX =y,

{ei}(» R

for 2all i =1,...,n then <e',y],...,yn> is also a
subcomputation.

The subcomputation-relation is the minimal transitive relation

satisfying a-d

o

Remark 4.4

a We do not ask if a computation halts when we define the
subcomputations.
b In all cases except for composition the set of subcomputations

is primitive recursive in the given computation-tuple. The
first subcomputations are simple, but if they halt the values
may be more complex and so will the last subcomputation. This
is one of the phenomena that makes set-recursion difficult but

also interesting.

c A computation will halt if and only if the sub-computation
relation below it is well-founded. We call this relation for

the computation tree. The computation tree is recursive in the

input if the computation halts, but not in general.

We will mainly work with functions g: On » On. If we let
g'(x) = g(rank(x)) we have an immediate extension to all sets.
In an application of the main result we will use the following

observation:

Lemma 4.5
Let g: On » On, x € V and let Eg(x) be the least transi-

tive set that contains x as an element and is closed under {e}?

59

for all e ¢ N. The relation "{e]}9(x) halts" is uniformly]

over Eg(x) by a formula that is absolute with respect to V.

- 4.4 -

Remark 4.6
Eg(x) will be a subset of Ag(x); the ‘next admissible'
relative to g. Thus the relation '{e}9(X) halts' is uniformly z

over all g-admissibles.

4.2 The denotation-system of an algorithm

Definition 4.7

We call a function g AO if the function

g'(x) = Lg(x)
has a AO graph.

Examples of Ao-functions are

+
o ~r o

o ~> the first recursively inaccessible above «

o ~> the first recursively Mahlo above «

From now on in this section we will let g be a fixed

increasing Ao-functiQn on On and we will assume that

ve € on {e}9(a) halts.

We will construct a first order theory T stating that for
some « {e}g(a) does not halt. T may well be consistent but
will not have any well-founded models. This will be used to

construct a denotation system that controlles the computations

{e }g(o) .

Definition 4.8

Let T be the first order theory defined as follows:
a2 Language L
i The language of set theory, =, €, and two special symbols
for On and Rank.

ii A constant «

- 4.5 -

iii Two lists of constants

EO’S]""
go,gl,,e.
iv Extend the above language to L such that there are

Henkin-constants for all guantifiers in Aawformulas.

o

Axioms
ST (Set Theory): Relevant Ao—facts about set theory like

extensicnality and axioms describing On and Rank.

A.O & € QE A S‘:Q = <e,_gc_>
éi+] is a conjunction of axiomg describing the relation between
S éi and Sip1” The point is to say in a A}«way that
Ci4l is a subcomputation of hp The axioms are as follows:
- If <4 is a computation by i-iii, wvii, then gi = @ and
Siv1 T S
- If ¢, is a computation by iv or vi then d. = $ and
c. is a subcomputation.
i+1
- If ¢ = <<5,n,m,eo,el,...,em>,x1,..e,xn> then either
. = . = <e, o > i
él $ and §l+] ej,x], 0 ¥ for some j < m, or
éi is a transitive set containing well-founded computa-
tion trees for {ej}(x],.,.,xn) =¥y i j=1,...,n and
. < o ® @ >'
Sit1 T Syt
- If ¢, 4is not a computation-tuple then d, = ?.
H We add Henkin-axioms for all our Henkin constants e, i.e.

the -part of the theory will be a Henkin-theory.

g
Remark 4.9

All the axioms are A g0 a term-model for a completion of T

OP

will satisfy all the axioms. We use that g is 4, when we define

computation=-trees in a Ay-way.

- 4.6 -

Lemma 4.10

T has no well-founded model.

Proof
In such a model we would interprete « as an ordinal o and

{Si}iEN as a descending path in the computation-tree of {el(a).

Let T, be the part of T where <o, , dﬁ do not occur for
i -] =

j > i, i.e. Ti is the AO—Henkin extension E;f the axioms ST
and AO,...,Ai.

Let EO' g],.e. be a recursive enumefati@n of the constants
of the theory T such that Si , éi are enumerated before any

constant in T»Tie Let £f: N » On and let

Tf =T U {Rank(gi) < Rank(gj); £(i) < £{3}.

Lemma 4.11

£ . . .
T 1s inconslistent.

Proof
. * .
If Tf is consistent let T be a completion. The term-
model will be well-founded by the rank-function £, which contra-

dicts Lemma 4.10.

If o 1is a finite sequence of ordinals, let

7% = Ty U [Rank(e;) < Rank(es): 1,3 < 1h(o) A oli) < o(3) }.
where j is maximal such that Sj = Ei for some i < 1h{o).
Let S = {o; 7 is consistent }.

Lemma 4.12

S is a well-founded order-invariant tres on On.

Proof

Immediate.

- 4-7 -

Remark 4.13

. . . : 0 .
We will work with the tree S which _.¢ H]. There is no
problem in extending S to a tree S' i which is still well-founded
and order invariant but alsc primitive recursive. Any statement we

prove about § will alzo be true for 8°.

Remark 4.14

If g 1is the identity-function we can show that

va {e}(a) < IS 0

For general g this will not hold, but we will dominate
{e}(a) via primitive recursion over the decomposition of the
denotation-system corresponding to S. This will be the theme of

the next paragraph.

4.3 The domination of a computation

In this section we will let g,é,L,T and S be as in section
4.2.

The tree 5, cannot be expected to dominate {e}g(x) in any
sense because

X ~> IS_1
X

is outright set-recursive while g may not be.
If we let D be the corresponding denotation-system we will
show that we can dominate

rx [e)9(x)

by a function obtained from g and a'simple uniform primitive

recursion on the decomposition of D.

Definition 4.15

Let h Dbe a function, x an ordinal and E a denotation-
system. By induction on the linear decomposition of E (see

section 3.4) we define

- 4.8 -

i 1(0,x,h) = h(x)

ii I(E+1,x%x,h) = I(E,x,h)+1

iii If E = E, where B is a limit ordinal and each E, is
i<p :
connected, let

I(E,x,h) = sup{I(} E.,x,h); i < B}
3<i

iv If E = E]+E2 where E2 + 1 is connected, let

I(E.+ T £y

I(E,x,h)] 20
y<I(E],x,h)

I(E],X,h),h)-

Lemma 4.16 (Monotonicity)

Assume that h 1s increasing.

_—

a If x <y then I(E,x,h) < I(E,y,h) for each denotation
system E.
b If T: E' » E 1is an imbedding (section 3.4) then

I(E',x,h) < I(E,x,h) for each ordinal x.

Both a and b are proved by induction on the decomposition-tree for
E. Observe Lemma 3.16 for Db.
Our aim is to show that if we let D = DS then
{[e}(x) < 1(D,x,q9)

for all x.

To this end we let X € On Dbe fixed and we let c_,c

seeesC

0’ k
be a sequence of computation tuples starting with <e,x> = 4 and
such that each €y is an immediate subcomputation of
Cyi i=0,...,k=1.

Let t Dbe maximal such that

oo, @ -

{_e_or I__t} — Tk

(i.e. EO""’Et is the maximal segment of our listing of the
constants such that ¢ , a is not used.)

k+1 —k+1

- 409 =

Choose interpretations egrov-re, Of {go,...,gt} resp.
consistent with co,...,ck and x. Let ¢ be the sequence
o(i) = rank(ei), i< t.

Then o € S since the universe is a model for TG, with e, as

the interpretation of e

Lemma 4.17

Let &6 = m(o) = max{o(i); i < lh(o)}+1. Let B = I(Dc,é,g)
(see Definition 3.7 for Do)' Then the computation-tree of Cx is

in L

8"

Proof

We use induction on the height of Cy in the computation-tree

of {e}g(x).

i If Sy is an initial computation we have Dc >1 so

B = I(Do,é.g) > g(8)+1.

Then the computation-tree of ¢ will be in L .

k B
ii If) is an application of the union scheme
([aly.y) = u {a' Hz,y,¥)
ZEy
then

I(Dg,é,g) > suP{I(DG*Y,é,g); y < rank(y) }+1,
since we have an imbedding T: & Dx +1 » D .
y<rank(y) o vy o
Let g' = SuP{I(DG*Y,é,g); vy < rank(y)}. By the induction

hypothesis all computation-trees for the subcomputations of

ckw1ll be in LB..

ckw1ll be in LB.
iii The enumeration scheme S 6 is treated in a similar way.

Since B » B'+1 the computation-tree of

iv e is an application of composition

- 4,10 -

(<6 DG*Y,é,g)

Since the rank of each {di}(§), as a computation-tuple, does

Let B' = I(:

not exeed the rank of Cp it follows from the induction-

hypothesis that the computation-tree for each {di}(;) is in

Lo

_) "
Let Yi = {dl}(x) s i=1,...,k.
If rank(yi) < 8§ for each i =1,...,k then the computation-

tree of {d}(yl,...,yk) is also in LB,. B' < B so the tree
of ck will be in LB.
If rank(yi) > & for some i, then

D =) D% + <D % ' > + 1
o s O o (86+B) BeOn

where each Dc*(5+8) # 0. This follows from the order-invar-
iance by letting ¢, ., = {d}(y],.;.,yk). Then rank(ck+]) > 6.
Again let B' = I(zY<6 Dc*y,é,g). Let

D'= JDx_ +) D% + 1

¥<s oy y<p' © (6+y) -

Then

B = I(Do_:5,g) = I(D',B':g)
and

B' < B.
By the induction-hypothesis, rank(yi) < B'. Let &' be the
rank of the computation-tuple {d}(y],...,yk). Then &' < B'.
By the induction-hypothesis the computation-tree of
{d}(y],...,yk) will be in LB" where

B" = I(Do*é"6'+]'g)'
But D * can be imbedded in D'. It follows that the

o &'

computation~tree of e will be in Lﬁ'

This ends the proof of Lemma 4.17.

= Ted =

Theorem 4.18

Assume that for all x € On
{e}g(x) halts

where g is A and increasing. Then there is a denotation-system

D and a uniform primitive recursive operator I(D,x,g) such that

vk € on {e}3(x) < 1(D,x,9)

Proof

Immediate from Lemma 4.17 and the constructions leading up to

it.

Remark 4.19

Since any Ao-function g can be dominated by a Ao—function h

primitive recursive in g such that h is increasing, that

assumption is mainly technical.

- 5.1 -

5. RECURSION ON DENOTATION SYSTEMS

5.1 General primitive recursion

In paragraph 4 we defined the operator I by means of a
certain primitive recursion over the linear decomposition of a
denotation system. In this section we will give a general defini-
tion of such primitive recursion. We have not worked out any de-
tailed properties of this notion, and it might not be the richest
possible. On the other hand it is clear from our results and their
proofs that any reasonable notion of primitive recursion on deno~

tation-systems will share the properties we are interested in.

Definition 5.1

Let «a,B,y denote ordinals, D,E denote denotation-systems
with corresponding functions FD ' FE respectively, and let £,g
denote ordinal functions.

Let % denote a sequence of «a's, D's and f's. We define the

. o v ‘ s >
set of primitive recursive operators with arguments X and values

in On by schemes as follows:

A Schemes for primitive recursion on On:
.
Ig(a,x) = «a
-3
I] (a,X) = q+1

Jl(g) if a =0

Ip(e,x) = J,(AB < @ IZ(B,E),a.i)

where Iy and J, are primitive recursive operators, and

gly) if vy < «a

(AB<a g(B))(y) =
0 if vy > a

Schemes of application:

{+s]

I,(a,D,X) = Fla)

I4(5,g,§) = g(a)

Is(a,g,g) sup {g(B); B<a}

Te)

1o

- 5.2 =

Schemes of generation:
> >, >
Ig(x) = J,(3,(x),x)

where J] and J2 are primitive recursive operators.

I (%) = J((%))

where J is primitive recursive and 1t 1is a permutation of

the variables.

A scheme for recursion over denotation systems:
Let J], J2, J3 be primitive recursive operators. Then I is

primitive recursive where I 1is defined by

> >
, (@ %,D)

1(p+l, a,£,D) = Jz(x§1(D,§,f,5),Z,%,ﬁ))

If D= ¢, D, where « is a imit ordinal and each D.
1<a 1 1

is connected, then

1(p,%,£,0) = 3,2 sup 1(] 0y.3,£.0),3,%D))
i<aq j<i

If D= D'+E where E % 1 1is connected we let

1(D, a,£,D) = J3(k(y,§)I(D'+ v %, 8,.5,8),2,5D).
z<Ly

Remark 5.2

a .

o

o

Clearly the operator I of paragraph 4 is primitive recursive

by this definition.

By the decomposition-theorems clearly all primitive recursive

operators are total.

If we add a scheme of enumeration in analogy with Kleene's $9
([7]) we get a notion of full recursion on denotation-systems.

This notion is however of no particular interest in this paper.

Jo?

Another possible extension is to add an 'oracle-scheme' in
analogy with Kleene's S8:

If J J2 are recursive and

']I

— o >
D = h(c,xo,...,x x)J](<c,xo,...,xn_],x>,x)

n-1°
is a denotation-system, then

1(x) = J,(D,%)
is recursive.
This scheme will introduce partial functions. It turns out
that the total ordinal functions of this theory is exactly

the total set-recursive functions. This can be relativized to

functions g with Ao—graph.

our first task now is to reduce primitive recursion to set-
recursion and to this end we will represent denotation-systems by
sets. By Theorem 2.5 a system D 1is determined by DP!N which is
a set. For simplicity we will write D but we will always mean

D/ N when we use D as an argument for an algorithm.
Lemma 5.3
a The function FD(a) is uniformly set-recursive in D, a.

b Uniformly set-recursive in D we can decide if D is

connected and if D =1 or 0.

pX

la
H
'—h
v]
I

i<q Di where each Di is connected then o and

each D, are uniformly set-recursive in D.

¥+ 0,1 1is connected then pY is uniformly set-~recursive

o
—
Fh

lo

The proofs are implicit in the discussion of the decomposition
and in the constructions of the subcomponents. Notice that D[IN

an infinite object so w will be set-recursive in D[W.

- 5.4 -

Lemma 5.3 and the recursion-theorem for set-recursion gives us

Theorem 5.4

Each primitive recursive operator is uniformly set-recursive

in an index for the scheme defining it.

Remark 5.5

In general we cannot set-recursively decide if a pre-denotionr
system really is a denotation-system. Thus the algorithm of Theorem
5.4 may work in cases where the input is not a denotation-system.

Theofem 5.4 can be relativized to any function g without

further effort.

5.2 General domination of total Z]—functions

Theorem 4.8 was proved for total set-recursive functions rela-

tive to Ao—functions g. There are deep problems in relativizing
the result to arbitrary sets, since the construction of the
countable theory T 1is essential to the proof. In a forthcomming
note we intend to indicate how a more general relativization still
can be partly achieved.

The proof of Theorem 4.8 can easily be relativized to enumer-

ated transitive sets. This gives us the following application:

Theorem 5.6

LLet « be an admissible ordinal such that
L, E nll sets are countable.

Then the following are equivalent:

i «a is recursively Mahlo

ii For all total a-recursive g: « » o there is a total g-re-
cursive £ such that f is not dominated by any function -

primitive recursive in g and a denotation-system in L .
a

- 5.5 -

Proof

i => ii. Assume that « is recursively Mahlo and let g be given.
For each x € L, we have that Eg(x), the set-recursive closure of
X relative to g, is an element of L, - Thus the relation "{e}g(x)

halts" is A

1 over La , see Remark 4.6. By Theorem 5.4 we can a-

‘enumerate all functions primitive recursive in g and a
denotation-system in La in a A]-way (we will necessarily include
a few more functions in the enumeration since we cannot decide when
a pre-system is a system in a A]—way, but this do not hurt our

argument). By a diagonal construction we find a A]—function £

that is not dominated by any function in the enumeration.
ii => i. Now assume that a 1is not recursively Mahlo. Then there
is an a-recursive h such that « 1is the least h-admissible

X

ordinal. Let x ¢ Lr be such that h is Z]. Let

hi(y) = g <=> dy ¢(y,B,x,y)

Let g(y) = pp v € LB 1g'<p ¢(y,B',%x,y). Then g is By and g
dominates h. Moreover L = £ (x) (see Remark 5.7).

Let f Dbe oa-recursive. Then f is set-recursive in g and some
parameter vy. By a relativized version of Theorem 4.18 we can find
a denotation-system D primitive recursive in [N-codes for X,y

such that

f('Y} < I(Dl Ylg)

(If v > « we let f£(y) = y.)

Then f is dominated as required by the theorem.

Remark 5.7

The set-recursive closure of an enumerated set will be the

next admissible. This holds even when relativized to a Ao—function

g. Essential in the argument for this is that when o« can be enu-

merated then B = g(a) can be enumerated by a Skolem-L&wenheim

- 5.6 -

argument. Thus it is more out of convenience than out of mathema-
tical necessity that we use set-recursion in proving these results.
We may use a similar trick to prove a relativized version of

Van de Wiele's theorem.

Theorem 5.8

Let g: On » On be A Let £ Dbe uniformly 2?-definable

O'
over all g-admissible structures La' Then £ 1is set-recursive

in g.

Indication of proofs

One alternative is to employ a method deviced by T. Slaman
[12] which is purely set-recursive. Alternatively one may show that
f is dominated by a primitive recursion in g and some primitive
recursive denotation-system . To this end we need a notation-system
for the next admissible after « relative to g, and to describe
this system inside «. Here it is essential that the cardinality of
g(B) is that of B and that this is effective in g (B). We omit

the details.

6. FUNCTORIALITY

We have so far used constructions involving ordinals and
dilators such as I of 4.15 in a'gengralized recursion spirit. Of
course, a treatment of these concepts more in the spirit of H;—
logic is possible; let us first question the interést Qf such a
treatment! We will from now on have to assume a certain familiarity

with the general notions of Hévlogic,

6.1 Interest

When we define, say, a function ‘Q(xﬁD) mapping ordinaié and
denotation systems into ordinals then to be in agreement w1th the
spirit of H -logic we should try to make 1t functorlal This means
that we have to deflne & glso on morphisms of the‘corresponding
categories. We must define &(f£,T) where f is an inc¢reasing
function from one ordinal to another, and T is an imbedding of
one denotation system into another in such a way thatr d is a
functor preservxng dlrect limits and pullbacks, 1 e. @ is a g_x_

see Girard [3] Ch.XII. If such a thing can be done (and essentially

it can be done) then we gain something since we are now able to do
our computations by means of direct limits: for instance we can

express D as a direct limit of finite dimentional denotation

systems etc. Hence functoriality is an additional step in the

direction of the simplification of the class of algorithms.

6.2 Example

Assume that h is a given function from On to On and that
h is normal, i.e. strictly increasing and continuous. Then we can

define hierarchy of functions as follows:
1) m-(l_)_lxlh) = X

ii) A(D+1,x,h) = A(D,h(x),h)

- 6.2 =

.. th \ . .
iii) /A(z D ,%x,h) = the x point in the intersection of the
y<a. -

classes
rg(ay 4(§ D.,y.h))
) i<Y
when o 1is a limit ordipal.
+) pY,0,h)

y<x 2

iv) me]+D2,x,h) = m(D]

when D2 is connected and # l.

It is not very difficult to show that given a recursive F one can

find a recursive D such that
(1) I(F,x,h) < A(D,x,h) for all x € On.

Moreover, with a rather slight.modification we can turn /A into a
functor. Let us be a bit more precise.

1. We will assume that. h is. such that‘
h(x+1) = h(x)+1 + H](x)

1+ Then it is easy to see

for a certain denotation system H
that h itself is of the form h(x) = H(x) for a certain
denotation system H (such a denotation system is called a

nice flower).

2. If £ ¢ I(x,x]), T 1is an imbedding from D to D, and V is

] N

an imbedding from H to H of the form

1

V(x+1) = V(x)+E]+V'(x)
then it is possible to define
(T, £,v) € I(A(D,x,H), M(Dl'xT'Hl))

This extension makes /A a functor‘of the 3 arguments preserving
direct limits and pull-backs.
Let us take an example inside our example: It is possible to

choose H (not at all recursive) such that H(x) = wiK for all x

anoa very large inittisal segment 54 of the first stable Iye The
majoration (1) (or the result of Girard~Vauzeilles, directly in

terms of) yields

ISK = sup{A(D,0,H); D is a recursive denotation system}

and in particular, every ordinal < ISK can be (non-uniquely)
written as
x = p(D,0,H)
for a certain recursive D.
The fact that the construction is functorial enables us to "compute

x by menas of a direct system (Hi'vij) of finite-dimentional "

denotation systems.

6.3 Other possibilities

Not any function &(x,D) can be extended into a ptyx; in
particular the primitive recursive schemes of §5 are not, strictly
speaking, definable by pytxes. But the essential part of the
schemes can be reformulated in a functorial way. Let us give an
example:

Consider for instance
®(0,D') = ¢O(D')

#(D+1,D') = &(D,D')+¢, (D,D', 6(D,D"))

 Yp ,D') = sup &(J Di,D')
y<a y<o i<y

i

1] [] x' L]
@(D],D)+¢2(D],D ,xx@(D]+) D5 +D))

&(D +D2,D')
x'<x

1

is in fact functorial (provided of course ¢0, ¢] and ¢2 are
already functorial).

There is no trouble in defining &(T,T') (similar equations). This
clearly indicates that the primitive recursion of §5 can be handled
functorially. This & is indeed one of the many variants of the

functor A of [2], Ch. 5.

