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1 • Introduction 

1 .1. The recent transformation of recursion theory 

ized recursion essentially consists in 

i Retaining the aspect: One gives reasonable general 

tions of 

sion 

ii Giving up the i aspectg The generalized computations 

are infinite processes. 

If we think that the aim of recursion theory to 

infinite "lawlike" sets by means of finitary methods then some-

thing essent l has been lost here~ the infinite is no longer 

"analyzed" since is t:aken as part of the primitive data. v·le 

have replaced Eote~tial infinity by actual infinity, and 

the formal aspect of the original theory is successfu 

spirit is part losti 

This evolut t:mvards generalized recursion which started 

its 

with Godel's constructible (i.e. lawlike) sets, has u tely led. 

to set. recurs~m! introduced in Normann [ 9 J. What has been achieved 

is the transplantation of the general concepts of lawlikenes~ from 

its or inal soil (integerse arithmetic) to the more general one 

of sets, 
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essential n1 th.ere 
1 

11 be trees T (a,b) uniformly recursive 
e 

in sets of int'o~gers encoding a and b such that 

'I'( a, b) well-founded iff {e}(a) ~b. 

Hence set,·rectcesion can also be expressed by means of traditional 

recurs 

cept. This 

and nl-
2 

ic extremely 

a use of logical complexity in the con-

lity of a link between set-recursion 

le, bnt. this also casts a doubt as to 

the genuine st. of such a link 1 

re {e[ }(a) ~ b on a rr~-normal form 

we hide the well-founded objects, the computation 

>crees, and ·the compu·tation trees that we find the 

si:ructure of ions. Thus a lirik between set~ recursion and 

dilators based on the ion trees would be less obvious but 

more st Dilat:.on;; are in many respects simpler than 

general and. wl1en the set of total set-recursive func-

t dila.tors we have gained informa-

about these fnnc . In fact denotation systems (or 

dilators) have a v<n:-y s e, regular structure and it seems that 

among the many ways of total effective ordinal 

functions loos "the essential" 11 dilators (denotation 

systems) are the ul t simplification, 

(To a close e~ample: It is well~knovm since Spector [13] 

that Bar~recurs of 2 is a very powerful tool: this princi-

ple expresses the well-foundedness of a tree of finite sequences 

of 2 objects means of a type 3 functional. Despite 

its theoret no significant use of this principle 

has ever been :rnade b(otCause of the rather anarchic messy structure 

of the ved trees., Induction on dilators (see 3.12) is a prin-



ed structures have su ciently been simplified 

and lat.ors already has a lot of applications 1) 

v1e an:·ive tD the conclusion that the actual interest 

funct So 

1 • 4 • The r: st i 

recursion was done 

on the 

condit: 

ficant l ions 

fOI'" st1c:cessor admiss 

nal a: [see the 

lies in a signif-

leading to total 

TI~-logic to generalized 

[1 ]. Under reasonable 

cle of Ressayre [16] for 

function f over L + is bounded 
0: 

by a recun:::L v.::" di lat.crr for ;;;, o:. •rhe value of this reduc-

simple algebraic structure of 

denotatim1 computation of 

F ( x) 1-1ffect in x. More precisely the computation 

of a. f(x) can be as follows: 

ng tb :21n o:racle 

1 im ( x . t f .. 1 we can 
f 1 :LJ 

x>a as a rect limit of 

1 • thrs 1 o:tder R""'lim(F{x.) ,F( f,.)) 
+ l. l.J 

2. I t.he 1 IIRII 

f ( ~{ IIRII=bounded quantifiers. 

course 1 • effective whereas 2. and 3. are 

noneffective, but a simplification has undoubt been 

achieved, 

of the form x ,~ !IF( x) 11 can be accepted 

as recurs funct.ions in possible accep·tion of the word 

"recurs ", 'because F'{x) can really be computed recursively 

in xl The result states that to inessential things (bounded 

the formal as12~c_! of recursion theory) 

there are no other r rs 



1 .5. Van de Wiele's theorem [14] proves that if f is uniformly 

over all s, then a well-chosen recursive dilator 

F we have 

f(x) 'E'(x) 

all x ( on. 

It is quite :Cf)markable 'chat this result 

lds s 

2 s that. fonnly 

for set-recursive functions 

~ ~ set recursive for total set-func-
1 

The result. 2 •..,ras unknown be Van de Wiele r this illu-

st.rates the l of 1-logic: These two notions of 

recurs -;>Jere to the same "'skeleton 11 , dilators. 

Of course alists v1ere soon afterwards able to give 

direct [ l 2 ) • •rhe is not so difficult 

which is t.:he fact that we want to stress: II~-logic 

oco:· bc"l.s ic under:s recursion, it gives 

e class recursive functions. 

1 ,6, The main result of a relativisation of Van 

de Wiele's to a 

follows: We construct 

ven tl0 funciton h. The result is as 

induction on dilators a hierarchy ~F of 

relative to h set-recurs 

and we that '-"' :u: set-recurs in h then g( X) ( 

~F( x) for a ce reeursive later F and for all x E on. 

The sly effective in the data 

F,x,h, hence th lization Van de Wiele's 

theorern to relat: recursion. case of functions is 

sketched 5 lO') 



1 • 7 . As a.n pp 

the first rec~u 

all 

wi'ch g a 

carol 

in the ca$e n:f 

obtained 

nit: 

kind of 11i 

met.hod and t11 

results 

is ?;dmi~:OdtJle and smaller than 

J.t. 

L 
(); 

l be possible to express 

h as 1 • 6, 

Brrt our result has no 

2) a nevr proof of 1 . 7 . 

inaccessible has been 

makes use of inductive 

the same results as in 1 .7. 

1 t'-'lahlo the same 

ions-

of the main 
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2. DENOTATION SYS'TEMS 

2 .l Some e es 

DenotEd: ems are general Cantor-Normal-Form-type of 

three 

The 11 be 

where x L 

t:here 

< v c < 
"" '1 < X 

Since the s 

all numbers less t:han 

a tern for 

according to our 1 

Our 

If y < F :1. (X) VJe can '<!liT 

where U. 1 
1 

< x. 

If we list t.he coef 

three denoi: 

i + 

ii 

iii y~~ x• + 

11 be a unique ascending sequence 

such that 

J:i' 
] 

+ 

) describes the number y and 
1 

can be described this way we may call 

] + •.• + 2 

. This 11, however, not be completely 

l be 

y uniquely in the form 

ents in increasing order there are 

< x) 



If we use codes for these three ways of organizing the 

coefficients we again obt.ain a way of denoting all ordinals 

y < F 2 (X) us 

Formaly we 

ordinals less than x. 

It is not essent. haw we choose the codes or indices 1 , 2, 0 • 

In this itl<"'l have followed a standard strategy: Take a 

canonical of the form we wan't to code and use the value 

as the index 

i X 

i X •X 
"1 + 

X •X 
0 + 

Our th 

xr, ~ 
v 

X • o· 

(x 

" ,i{\, + x1 

p 

p 

VJill 

X 
- ( 1 +x) 

- 0, x 1 = 1, x = 2, value 

,_. l 

2 •1 + 0 -· 2 

"" 0, X "" gives value 0 . 

If y < F 3 ( x) then there are unique numbers u 1 > • • • > uk- 1 , 

v 1 , ••• , vk-l, all <x, sud·1 that 

y= (l+x) i+v 1 + 1 ' 

Again any number y < +x x can be uniquely denoted by x, an 

increasing sequence 

and an index are distributed 

as coeff ients and exponc"!'nts. We 11 regard one example 

or written on our form 

y = (1 w) 1 0+'17) ·+- (1+w) 1(1+16) + (1+w)0(1+12). 



The "coe ic ~~ are 0,] , 1 2, 16, 1 7, and. the canonical prototype 

(x = 5) 

·- (1+5)lt( +·4) + (1+5)1(1+3) + (1+5)0(1+2) = 6506. 

Thus the d.::~:nota t. fc)r ,, < F' ( w) 
_l ~ 3 ~ 

(6506;0 1, 12,16,177 w). 

He consider 

impossible to f 

11. be 

xx because it will be 

for 
X 

ordinals < x • 

By our convent i the index and the length of the sequence of 

coefficients will det form that we have in 

mind when the general normal foi'm ~ It will in general not 

be possible to n'?c<::;_pture the ll denote:;. system from such 

pa ( c, n) . 

. 2. 2. D 

We will nov: <:1 set of axioms for denotation systems. It 

Definition 2.1 

Let F On ·> On, 

A denotation- D for F is a class of ordinal denotations 

for all ( x) such that 

I 

II If y <F(x) then y has a denotation 

III If (c~ x) is a denotation and Yo < ••• < Yn-l < Y 

a 
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IV If D((c.; ~, • .,_.,x ,x));;; D(( 
l u n-l 

~ XQ , , , , X ' ~ X ) ) , 
m-1 

if 

Yo < . ~ '• < y, y' < . . . < <y 
] 0 1 

and if 

X / X ~, j•F , ;;; \f i' and X > x'. => y. :;,. v' "" i J ]_ -- ] i J J .L j 

for i n, j m 

then 

Remark 2.2 

a 

b 

c 

d 

In a denotation 

index and 

Normal (c 

, ~ x) we 
1 

ll call c the 

·the coe s of the denotation. 
--~--~--~-~ 

, .. , , xn-l ; x) will be used both for the 

denotation and for the denoted ordinal, i.e. we drop the D. 

'l'he index rep:cesents some " au \Vay Of describing 

y t.erms ():f 1 , x. The c II assumes that we 

have some ical form", III means ·that this "form" always 

gives a mean and IV states that order to decide the 

relative value of 

and 

vJe only have t.o consider c 1 , c 2 and the relations 

The axioms I·- IV 

may be, and there 

At some 

notational e 

{(i,j):x. ;;. x'.} 
1 J 

nothing about ch objects the indices 

1 be many equ lent denotatin systems. 

11 make use of th freedom to gain 

. On the other hand any system may be 

senb::>d in standard form as descr below: 
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a A denot:at D v1henever 

a then 

c -~, ( ( c; 0 , •... , n-1 n) ) 

of the D is the set 

~ 0 , • , , , n-·] : n) a denotation} 

vlhen D 

In our we gave the denotation-systems 

standard 

The ax 11, as we will see later. 

First we 11 be monotone the 

coefficients. 

Lemma 2.4 

Let D be a denota and let ( c; , • , • , X l ~X) be n-
a ion 

Proof -
Assume nc:YL. 

* 
By III 

each m, and 

< 

for each 

ord ls, ch 

Anotru~r 

x + 1 < x Then (c: 
i 1+1 

1 ~X) • 

II we have 

are denotations for 

:X c1nd IV we have 

11 then 

+m+l , ••• , w • x 1 t 1u ~ x n-

an inf des 

is 

sequence of 



tion to thieo 

Proof 

Let 

Here we 

Let 

D . Let 
X 

Let c;, ·1: be 

He let 

if and 

X, 
1. 

D( 

i.f 

By IV T.h 

the OJd 

we have 

Remark 2.6 

a A 

sa tis 

denotat 

to co.n 

However 

l 

n·-l 

1 

tOl 

t 

' ; X } 

D 
X 

unique determined its restric-

for F and let x be given. 

l < x & ( c, n) E Tr (D) } • 

just. as a sion, 

be elements of 

U { ' t o1 \!.'< f 

an.d :1<~ ~. ·- z , , ( j < m) 
J ·n] 

~ {< v) 
1 ' •• ' 

1)7t)) .;:D(( ~ ,;(0), ••.• , 't(m-1) :t)) 

is the sarne as t.he ordering between 

de from x and D ~ \N 

I-IV restricted to \N and 

the coef called a pre-

ven a we may try 

in the proof of Theorem 

not be a 1-ordering. 

then all <D will be 
X 
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well-order and we are dealing with a denotation-system. 

b If F(n) E t.T whenever n E IN we call the system weakly 

fini~e. Weakly finite systems are called recursive etc. when 

their restrict to j:N are so. 

c •rhe proof of Theorem 2. 5 shows that denot.a·tion-systems 

represent a finitary approach to their functions. Thus 

functions permitting a denotation-system have a kind of 

continuity-property. 

d There a close connection between denotation-systems and 

certain functors on the ordinals commuting with pull~backs 

and direct: limits. These functors are called Dilators and 

are treated full detail Girard [2]. Dilators are in 

fact to denotation-systems~ the two notions are 

different present.ations of the same basic material. For that 

reason it 11 be possible to avoid the use of dilators in 

this paper. For a understanding, hmvever, \ve find that 

dilators are as importan·t here as linear operators are to 

linear algebra. 

2 • 3. The sum of denotation-systems 

Let us once rnore consider our examples from section 2 • 1 , 

F 2 ( x) x2 F ( v) X 
F. { x) x2 (1 +x) x and -· and = (1+x) • Let = + 3'"' 4 

let y < F4 (x). Then either y < x 2 or y = x2 + y' for some 

y' < (l+x)x. In the first case we use the denotation-system for 

x 2 to denote y. In ·the other case we take the (1 -tx) x -denotatin 

for y'. If v;e code into the index t.vhich system we use, this gives 

us a denotation-system = D + D 2 3 
for F 4 . 

The method used here is general and can be used for any well-

ordered sequence of denotation-systems. 
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Definition 2.7 

Let {D, } . be denotation-systems for 
1 l<p 

D = 2: D. 
i<~ 1 

{F. } . Q • We let 
]_ ].(1-' 

be defined as follows: 

and 

If (c,n) E ·rr(D.) then we let <c,i> be an index for D 
J_ 

D ( ( < c, i > ; x..., , ••• , x 1 ~ x)) = r F.· ( x) + D1. ( ( c; x0 ~ ••• , xn- 1 ~ x) ) . 
u n-~ j< i J 

Remark 2.8 

If each are in standard form then we get D in standard 

form if we use 2: F.(n} + c instead of <c,i> in defining D. 
j<i J 

Definition 2.9 

a The denotation-·system 0 is the empty system for the 

constant 0 function. 

b The denotation-system is the system with one denotation 

c A non-zero denotation-sytem D is called connected if D is 

not the sum of two systems + 0. 

d If D,D' are denotation-systems in standard from and D' 

is a subfunction of D (i.e. graph(D') c graph(D)) we say 

D' ~ D. 

e If D is a denota·tion-system then let 

Remark 2.10 

a Connected systems correspond to perfect dilators in Girard 

b is connected and I 1 = {,Q •l } · 
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Lemma 2.11 

a D' E ID if and only if for some D" we have that 

D = D' + D". 

If D.1 ,D .. , E ID are systems for Fl ,F 2 resp. e then 
- .<.. 

b 

Dl ~ ))") 
4,. 

<=> F 1 ( w) " F 2 ( w) 

Proof 

a If v1e assume that D,D' and D" are in standard form this 

b => 

trivial. 

is trivial so assume that F1 (w) ~ F2 (w). Let 

·x) 1 ' . be a n 1 ~denotation. Since n1 ~ D it is 

also a D-denotation with the same value. Assume that it is 

not a D2 -denotation. Then (c~k0 , •.. ,kn-l ~w) is never a 

n2 -denot.ation" Since n2 < D there cannot be any other n2 -

denotation (c1 :k0, ... ,k~_ 1 :w) such that 

( c ~ k 0' , . • . , k • : w ) ;;. ( c ~ k 0 , • • • , k ; w ) 
l m-1 n-1 

since then D2 must either fail to be a subfunction of D or 

fail to be a denotation-system, by not being onto F2 (w). 

Consequently 

which contradicts the assumption. 

An important consequence is the first decomposition theorem: 

Theorem 2.12 

Let D be a denotation-system. Then D can uniquely be 

given as the sum L: D, 
i<~ 1. 

of connected denotation-systems. 
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Proof 

By Lemma 2.11 .b the set ID is well-ordered by the ordering 

<7 let {F } 
i i,.;~ 

let D.:::F -
1. i+1 

be 

F. 
1. 

ID ordered by F. ' F. <=> i < j. For 
1 J 

(by Lemma 2.11a this makes sense). Each 

j < ~ 

D. 
1 

is clear connected and F1 = E Dj for all 
j< i 

i < ~· Moreover, if 

D = E D'. 
j < 0: J 

then each E D '. , = F. for some 
j'<j J 1. 

F. 
1 

so the alternative 

decomposition will be coarser than the one we defined. 

Remark 2.13 

We call this decomposition of a system decomposition into 

sums. 

2.4. connected systems of denotations 

When we decompose a disconnected system into sums we see that 

the trace Tr(D) may be stratified into layers according to which 

component the element comes from. If (c1 ,n) and (c2 ,m) comes 

from D,,D. resp. with i < j then 
1. J 

(c 1 rx 0 , ... ,xn_ 1 ~x) < (c 1 ~x0 , ... ,x~_ 1 ~x) 

for all choices of I 0 x0 , ••• ,x 1 ,x0 , ••• ,x 1 ,x. 
n- m-

For a connected system the situation is different, there the 

values for the different indices will be interwoven. This is in 

fact the reason why they are called connected. 

Lemma 2.14 

Let D * 1 be a connected system for F. Let x be a limit 

ordinal and let (c,n} E Tr(D). Then 

is cofinal in F(x). 



Proof 

Let 

x = {(c',m) E TdD); 3y0 < ••• < ym-l < x, x0 

((c':y0 , ... ,y ;x) c (c~x 0 , ... ,x :x)) 1r 
~ rn-1 n-1 

< ••• < X < X 
n-1 

Since the value of a denotation is monotone in the coefficients we 

may without loss of generality assume that x0 > ym-l in defining 

X. By axiom IV this means that X is independent of the limit 

ordinal x, 

Claim 

For any ordinal y 

{(c'·y v ·yl· y· 
' ' 0 ' ' • • ' "' m-1 ' - ' ' 0 

< ••• < y 1 < y & ( c' em) E X} 
m~ 

is an initial segment of F(y). 

Proof of claim: 

If y is a limit: ordinal this holds by the definition of X, 

since we may use y instead of x in defining X. 

If y is a successor ordinal, (c',m) EX and 

( d: x0 , ... , x . : y) < ( c' ~ y 0 , ... , y 1 ; y) then 
t~J m-

so (d,t) E X for X defined from y + w. This proves the claim. 

By the claim DIX ~D. Since D is connected we must have 

D~X = D and X~ Tr(D). The lemma then follows from the defini-

tion of X. 

If we have two denotations for ordinals 
X 

u,v < (1+x) we can 

decide the relative order of u and v by looking at the coeffi-

cients and exponents. The one with the largest exponent is largest. 
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If they are the same ~:Je regard the corresponding coefficients. If 

they also are the same look at the next exponents etc. 

Suitably modified this strategy can be used for all connected 

denotation-systems. v~e will neither prove nor need the full 

results but the idea will be clear from what we do, and 

details can be found in Girard [2]. 

Definition 2.15 

Let D :f 1 be a connected denotation-system for F and let 

is a denotation. Let 

i ~ n-1 

i.e. we 

If 

i be c,n 

and let 

a. = (c;0,2, ... ,2i/2i+1 , •.. ,2n-2:2n) 
1 

replace """ & .C:l. 2i + 1 • 

> a. we say that i is more important 
J 

the most irr1port.ant index. In a denotation 

1 ; X} 

than 

we will call x. the most important coefficient. 
:1 c,n 

Remark 2.16 

a Hhen D :j: 1 is connected and ( c, n) E Tr(D) then -
b If u = (c:u 0 , ..• ,un~l ;x) and 

v = ( c; v 0 , .•• , v n-l : x} 

and if we have 

u. < u. > v. and t * i, j => ut = vt 1. J J 

then 

u ( v <""'> j more important than i. 

j. Let 

n > o. 

The ordering "'more important than" is a strict ordering of 

{o,.,. ,n~1} i.e. it defines a permutation of {0, ••• ,n-1}. 
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We can decide the relative order of t\vo denotations by 

looking at the relative order of the coefficients with falling 

importance. 'A of this result is the following: 

Lemma 2.17 

Let D :f 1 be a connected denotation-system and use the 

u = ( c ~ u 1 , • , • , u 1 ' x) . n~ 

l i X) 

be two denotations, let P = i c,n 

u " v • p q 

Proof 

and q = i , . If c ,m u ( v then 

In ord(:::r to obtain a contradiction assume that u ..; v but 

u > v • 
p q 

loss of generality we may assume that x is a 

limit ordinal, ) 
q 

the coef ients and 

will not be altered). 

+ lD and 

X by w 

) v, + w (If we multiply 
J 

etc.) the relative order 

If we reduce some of the coefficients in a denotation we 

reduce its valueg so 

(c~u0 , ••• ,u ,u +1 , ••• ,u +(n-1-p)~x) cu. p p p -

If vle increase the value of the most important coefficient and 

decrease any of the other coefficients then we will increase the 

value. If we let 

s =' (c',. , .•• ,v 1 6 V +k 6 V +k+1, ••• ,v +2k:x) 
q- q q q 

where k = m- q- 1, then we have s > v. Since v + 2k < u q p 

axiom IV gives t.hat whenever u < z < ••• < z 1 p p n-
< X we have 

( c; l ,z , ... ~z 1 ~x) < s. 
P n-

But since are of small importance compared to 

we see that 
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for all zo < ••• < 2 n-1 < x. 

This contradicts Le:mma 2.14 and this lemma is proved. 

If vve the ·va lt1e of the most important coefficient to 

y < x then the set 

{(c 

& p 

forms an 

x 0 , •• ,,x 1 ,v,x +1 , ••• ,x 1 ,.x) p- ~ P n- (c,n) E Tr(D) 

is the most important index i } 
c,n 

of ordinals < F(x). This is a consequence of 

Lemma 2.17, F(x) is the union of these intervals and we may 

think of the denot.:.ations leading to ordinals in each interval as 

components of the for F(x) We get the components of D 

by fixing y and let x > y vary. This leads us to the following 

concept.s: 

Defini·tion 2, 18 

Let D :f be a connected denotation-system. Let y,x be 

ordinals. 

a Let 

b 

xy,x""' { cru0 , ••• ,up_ 1 ,y,y+l+xp+i''""'y+1+xn-l;y+1+x).~ 

{c,n) E Tr(D), p= i , u0 < ••• < u 1 < Y c,n p-

and xp+ 1 < ••• < x 0 _ 1 < x}. 

Let rry,x map the interval 

the ordinal 

X y,x order-preservingly onto 

pY(x) = Ordertype of X y,x 

c Let Dy be i:he denotation-system for pY defined by 

U ')- • 
' • , ' 0 p- 1 . y' 

denotes 

IT ( ( c : uo ' ' • • Q u 1 ' y ' y+ ] + X + 1 , • • • I y+ 1 +X , : y+ 1 +X) ) y,x p- p n-J 

we call D Y the of D. 



- 2.15 -

Remark 2.19 

a 

b 

c 

It is easi verified that Dy is a denotation-system for 

The ion 

We have not described 

the standard for~ of 

Girard [2] corresponds to 

v D-' in standard form. The index for 

( < c ' uo ' .. ,, ' > :x 1 , ••• ,x 1 ~x) 
Y p+ n-

ll be 

c' = rr ((cruo···~,u 1,y, y,n-p p-
1 , ••• ,y+n-p-1 ~y+n-p)) 

which is the value of 

Definition 2 20 -
a If D - 2:: -

i< ~ 

tion-system 

b If D :f: 1 

lB the decomposition of a non-connected denota-

D into sums, then Di < D for all i < ~. 

is connected then Dy .-< D for each y E On. 

c -<. is the minimal transitive ordering satisfying a and b. 

The second decompost ion theorem states that < is well-

founded. In a sense this means that any denotation-system can be 

constructed from 1 by sum and a special kind of diagonalisation at 

cofinality On. We will not explore this aspect further here. 

Lemma 2.21 

Let D :f: be a system, Fy as in Definition 2.18. 

Let y a be bvo ordinals such that a > 0 and a 
y < w • Then 



Proof 

If 
a 

y < w then 

Moreover, any denotat 

~ 2.16 ~ 

y + 1 
a a 

+ w = w ' so 

for an ordinal < F(y+l+wa) = F(wa) where 

the most important coefficient is > y will dominat.e X a. 
y,w 

There are clearly such denotations, so X 
y,wa 

is bounded in 

F(wa). Thus FY(wa) "" Order~type (X a) < F(wa). 
y,w 

Theorem 2.22 

'rhe order of Definition 2.20 is well-founded. 

Proof 

Assume not.. Then there is a descending sequence {Di} i EN 

where Di+1 -< D. a 
l -

If D. - 2: (D.). 
1. j<~ 1. J 

or b of 2.20. 

then Di+l 
:::: (D. ) . 

1. J· ]_ 

for some j. < ~· If 
1. 

Y· 
Di is connected then Di+J = Di 1 for some yi E On. Let a 

dominate all the y' in question. Then {Fi(wa) }iEN will be a 

descending sequence of ordinals, where 

associated 

Remark 2.23 

D .• 
1 

F. is the function 
J. 

In Girard [2 J ·the decomposition is formulated different, and 

the predecessor ordering will be linear. His predecessors 

correspond to the Kleene-Brouwer order of < in a certain sense. 

We vlill discuss this ordering at the end of paragraph 3. 



3. IN'r:t::RPRETl>...TION OF ·rREES 

1 
~3_.~1 __ ~A~·--,~~~~~----~~~~-o_f~~rr 2:sets 

n1 ~loaic 2 .J 
a coll of concepts of complexity like 

~-proofs, dilators, trees etc. and the mathematics 

thereof. Denotation together with the equivalent concept 

Dilators is one of the sible paths to c. We will not 

treat all the of 1 . rr2-log:tc, only establish the link 

between 

Let A c:: U:J be a 
l n ~set and let B be such that 

Vg E (n,g) E B 

Then there a recurs:tv·~ map n,g where T n,g is a tree 

on iN such th;:::t. 

(n,g) E B ::.:";> '1' 
n,g not well founded. 

v\fe use t.hE~ let te:r for ~: lements of 1'1 On • 'f!~e then have 

(f(O.<t>) ( tCa<t+1))) 

where a(t) is the ( 0'(0), ••• , o(t~l)) identified with 

its sequence number. 

From f: + On 1.>1e may define g ~ ~ ~ -+ IN" as follows :r 

(An explanation is order~ gf(O) is the number of steps f is 

decreasing. ] ) is the number of steps from then on that f is 

decreasing etc,) 

It is easi seen that f ,~ g f is a projection of on'IN onto 



We t.hen have 

, VL, 3cr E T 3t < lh(a)-1 
1 -~ n,gf 

2 

(r 1 (a(t))< f 1 (a(t+1))) 

Any sequence f be spl 

f (i) -· f(2i), f2 i) "" f(2i+1) 

Moreover, when we for each cr decide if o E T 
n, 

or if 

3t< lh(cr)-1 < £ 1 (6 t+1 )), we use only the relation 

not the actual values t take 

ve s us tJ1(~ fo1 result~ 

Theorem 3.1 

Let A be 

sequences of 

i 

( o( i) 

ii 

iii 

Remark 3.2 

a anti and 

• 'l~hen there are trees {s }. of finite 
n nEN 

such t:hat. 

lfl ( lh ( Cf) 

j """> ·di) ~ •(j)) => (crES <'"-"> -cES ) ) 
n n 

3t s (f(t)) n· 

ive recurs uniformly in n. 

are standard for the sets of finite 

sequences from On and 

b The i says t.hat if a and 1: are order isomorphic 

then cr E 

A tree sated called invariant. 

c Without loss of !Jt~nerali we may assume that the tree 

, i.e. finite. In the next section we 

trees this extra property 



corre systems, and they 

correspond to denot,ation~systems if and only if the tree is 

well~ founded. 

d Jervell [ 6 J a class of trees called [rx,~[-homo-

geneous trees, f3 < ""a and to a subclass 

of the denotation . Our well-founded order invariant 

trees [ 0 00 [ So An [a,~[-homogeneous tree 

is a tree of S\FJCjT!encE'::s of ordinals where each koordinate is 

bounded order for koordinates ) 

ing the order-

[a, ", [-homogeneous for some a:. 

e The tree a va:ciant of the t:ree constructed 

Shoenfield l11 and can be used to prove the Shoenfield 

absoluteness theorem, 

3.2 Order-invari&nt trees 

Definition 3.3 

a 

b 

c 

Let S be a non- order-· 

If X is a_n l, let 

-- { ., 
'~ E ~-a ._,, < lh ( a) ( cr ( i) < x) } 

Let < be the Kleene-Brouwer 
X 

well-founded, let llli be the 
X 

If s 
X 

well-founded, a E s 
n 

ax1.d 

tree. 

on S . If S is 
X X 

norm for < 
X 

1 } = { cr ( i ; i < lh ( a ) } 

then we let 

where c aE"; follows: Let -r~lh(cr) -... n such that 

en c = II 1:: II 
n 



Lemma 3.4 

a If each s 
n 

is well-founded then 

systern. 

b a denot::'t if and 

if and if 

Proof 

If y .,;; x then c: S 8C) 
X 

Both a. and b ther:~ foll(:;w from 

Claim 

D satis ,, the axioms for a 

ordinals 

Proof of c -·--
I and II are 

III follows frc.1m the J:'act; that: 

IV follows fron.1 the 

invariant unde:c 

Remark 3 .5 

a The cons in 'rheorem J , ] 

h d ~ 1~.1 so we ave re .ucec any .t, -re ... 
recurs de not. a. syst.em.s. 

complete 

D s a denotation-

if S is well-founded 

well--founded. 

for the 

is 

on subsets of on. 

and Lemma. 3 ,4 are effective 

on w to the set of 

set i·tself rl1 
-2 and thus 

b The of well-founded order- iant trees to 

denotation~ st:erns c<:mnot be reversed there are denotation 

n.ot. c·:n:r 
'lr and 2 ,. 

correspond not. 

(x 2 ·- {en (cr .;2}) 

de(~reas 



it 

1 

and set-recursive 

De 

Let. 

a E 

·r.et 

b Let 

c (i) 

d 

e Let na,xa be the order- cf s c1ndE:r t.he K • ~ B • 
pX 

to the 

norms 

if: +x some 

s but not 
a 

:eo:c !1'1;11 we 
cr,x 

ll code s 

u~s ·to tl1.e fo} 

a E S, x 

E On and 1: E S 



b 

The 

J 

< 
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Let m(a) {. * } Sa "" •: a ,; E S & ,; ( 0} ;;.. m ( a) and let D cr,m( cr) be 

the denotation-system corresponding to the Kleene-Brouwer ordering 

on s~( a). Again is easy to show that Dcr,m(a) really is a 

denotation~ Moreover 

since the value of 1:( 0) is most important in order to decide the 

order of 1: in ·the Kleene-Brouwer ordering. 

It remains to show that if D :1: 0 
cr,m(cr) -

then it is connected 

and :f: 1 and to show that 

Dy D 
cr,m(cr} ~ cr*(m(cr)+y) · 

If * a m(a) E S then * a (m( cr)+y) E S for all y E On, by order 

invariance. S the value of 1:(0) separates the values of the 

correspondinq denot~ations we have 

1 • If c 1 and are D ( )-indices we cannot have that all 
a, m cr 

2. 

c 1 -denotations from a limit ordinal 

denotations from x. Thus D 
cr,m( cr) 

For a fixed D ( )-denotation a, m a 

x dominates all 

is connected. 

c -2 

the coefficient corresponding to •(0) will be the most 

important one. 

Now fix y,z and let v 
h be as in Definition 2.18 a 
y,z 

D ( ) . The ordinals in X will give the location of a,m a y,x 

S * in a ( m ( a} +y) , x 
m( a) 

s where cr,x 

8 m( a) = 
a,x 

{ 1: E S~( a); Vi < lh( ,;} ( 1:(i) < m( cr)+x)} 

for 

By this correspondance we see that the standard denotation-systems 

of Dy 
a, m( cr) 

and D * a (m( cr)+y) will be the same. 

This ends the proof of Lemma 3.9. 
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Remark 3 10 

Lemma 3.9 shows that there is a connection between the sub-

components of a denotation-system D ( {D';D'< D}, see Definition 

2. 20) • 

For a more systernatic discussion of the connection between 

denotation-systems and ordinal trees, see Girard [2], Jervell [6] 

or Girard-Jervell [4] 

3 . 4 Lin ear _ _::iecompos i tion and imbedding s 

We have been cussing the decomposition of a denotation-

system into the subcomponents. There is an alternative way which 

corresponds to the Kleene-Brouwer ordering on the decomposition 

tree. 

Definition 3.11 

5!. Let D be a denotation-system, D = D1 +D2 where D1 ,D2 :f 0. 

b 

Then n1 

If D = D +D 
1 2 

a predecessor of D. 

and is connected, then each D 1 +.~ D~ 
]<y 

is a predecessor of D. 

c The predecessor relation is the minimal transitive relation 

satisfying a and b. 

Lemma 3.12 

Let D be a denotation-system. The predecessors of D are 

well~ordered by the predecessor relation. 

Proof 

By Theorem 2.22 and general facts about Kleene-Brouwer 

orderings we see that it is well-founded. 

Linearity follows by a simple induction on the hight in this new 

ordering. Not.ice that the predecessor relation itself is not well-

ordered. 
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Remark 3.1 3 

Let D = D s be a denotation-system obtained from an order-

invariant well~founded tree. The predecessors are all defined from 

initial segments of the Kleene-Brouwer ordering in the following 

way; let I be an ial segment. 

i If I has a maximal element a, let 

I'= f~;~<a lexiographically} 

Then D = D +D 
I I ' a 

ii I has no maximal element, a is minimal outside I and a 

has extensions S Let I' be as above and let 

iii I has no maximal element, a is minimal outside I and a 

has no extension in s. Let 

X = {'t"; 1;<cr lexicographically, 1: is not the extension 

of any element in I}. 

Then DI = L D , where X 
't" EX 't 

is ordered lexicographically. 

So far we have defined two "less than" orderings, subcompo.-

nents and predecessors. There is also a third natural one: 

Definition 3.14 

Let E,D be two denotation systems. We say that T is an 

imbedding of E into D if 

i T: Tr (E) 
] -1 

-+ Tr( D) 

ii If ( c, n) E Tr (E) then 'f ( c, n) = ( c 1 , n) for some c'. 

iii T induces an order-preserving map on denoted ordinals. 

Remark 3.15 

Let E,D be denotation-systems for G,F resp. Then an 

imbedding T: E -+ D 

follows. 

will induce imbeddings T 
X 

G(x) -+ F(x) as 
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If y = and T ( c, n) = ( c' , n; i:hen 

If E and D are st.~ ·dard form we w.~.11 have T(c,n) = 

bet;111een denotation- systems correspond to 

natural transformat !~tween Dilators, see rard [ 2]. 

Lemma 3.16 

a If T: E D is connected, E * Q then E is 

connected" there is a canonical decomposition of T 

into 

b If T: E ,;. D D """" ~: D , E = L: E where D . oE. all 
,<, 

(! i j< a j l. J I·' 

are coirrie(::~t:ecl r: 1:J~!·8n. ':here is a unique p: a "" ~ and a cano-

1 T into T;: 
J 

Proofs 

for the reader. For a that the 

most for ( c, n) <vvill be t.he same as that for 

(c',n) = T(c.n). To n.otice that T induces an imbedding of 

each must by ~ be in one of the connected 

parts, D. • 
J 

p l 

Remark 3,17 

s is that any ordinal the direct limit 

of numbers and • This is used to develope n;-logic 

in a 

Using ngs bet.'/?(sen denotation systems v..re can shO\<l that 

i:he limit of a directed of systems 

th i:o; c2~n be used to de versions 

of ee Girard [2] for ls, 



- 3. n -

1 • If D = I D. then each D. is imbeddable into D. 
i<~ 

1. 1. 

2 • If D :j: connected then oY is imbeddable in Dz when 

y .;;; z. 





·~ SE'l' RECURSION 

For th~~ saJ.;:e of we here t:he de of 

set-recursion and state the results that. we need •.ore do not 

are a vast on the 

ect. 

The set-recursive functions are defined schemes, 

having an , and the definition is real an 

of t.:he relation 

' ' ..,. {e }(x) "' y 

which has the follm..ring interpretat.ion 

no. e appl to the sequence of set.s 

halts and takes the value y. 

Definition 4.1 

Set-recursion is defined 

i e::: <1,n, 

{e}(x_,. 
1 

ii e = <2,n,i,j, 

v 

X. • 
1 

u 
y 1 

the fol schemes~ 

}(x,&~·o X )j 
1 n' ' 



In most expos set~ recurs to relat:.ions, 

but here we it to s'i:'lt- . This 1 compli-

cate the theory at ~.ri:l.nced level beL r,,ot for the resul·ts that 

we are interested in. 

If g: V + V set-recurs to g 

by adding the scheme 

= q (x.) e- ~ 

Remark 4.2 

a In the Union-scheme iv the ion halts 

tions halt for all 

b In the composition scheme 1. l h 1~ f \ X 1 , o • , , X n, a L.S 

the i'th value above. 

An important set~ the 

and the subcomputation 

Definition 4.3 (Es 

a A computation 

e E IN and each X. E V. 
1. 

[8]) 

• • v 

b If e does not indica·te that it a 

c 

n, we let <e, , , •• ex > be a 
n 

Computations from i-}ii and 

subcomputations: 

i are called 

the comput.a-

and only 

'cvhere 

of length 

f. 

and have no 

d If e ~ <4,n,i,j> then has the fol 

subcomputations~ 

e If then are 

i ""' 1 3 



The 

sa tis 

fe.}(x , .. ,qx)- y, 
- ~ 1 n 1. 

for all i -·· ,. , , • r n then 

Remark 4.4 

a We do not ask 

b In all cases for 

1s primitive recurai 

first are 

may be morE· so 

l.S one of t.i1e 

also 

also a 

the trans ive relation 

halt~ when we def the 

the set of ~mbcomputations 

The 

, but hc.lt the values 

11 the last ion. This 

difficult but 

c A o.vill halt if and the sub-computation 

re s relation for 

the -t::r:ee recursive in the 

input if the ion halts, but not. in qeneJcal., 

We v1ill work with g~ On + On. If we let 

g 1 (x) ~ g(rank(x)) we have an ate extension to all sets. 

In an appl ion of the result \ve 11 use the following 

obse 

Lemma 4,5 

Let g: On ~On, x E V and let E9 (x) ·be the. least tran~;d-

ti ve set that x as an element and 

for all e E N. The relation formly 

over ( x) by a formula t.hat. absolute re to v. 



Remark 4.6 

g. ) E (X will be a subset of A9 (x); the 'next admissible' 

relative to g. 'l'hus the relation ' { e} g ( ~) halts' uniformly ~l 

over all g-admissibles. 

4.2 denotat 

Definition 4o7 

We call a function g the funct.j 

{X) 

has a 

Examples of tl0-funct are 

ly cessible above a: 

a ,-+ the first. recurs £1ahlo above Oi 

From flO'\!<! on sect 11 let g be a fixed 

ing ~func.::tic)rl on ()!:'1 a.nd \_,,,re 

Vet E On {e 19 a:) halts. f 

We will const.ruct a. f order ·that for 

some a does not halt. T \J\i''all be c:::>ns tent but 

will not have any \vell~ roodels. s ll bts used to 

construct a that controlles the computations 

Definition .8 

Let T b'"' t.he first order de as follov;s: 

a L 

i The of set E, and t'liJO special symbols 

for On and Rank. 

ii A constant a 



iii 'l'wo 1 sts of cons"tant.s 

iv Extend i:"JH:: above to 

Henk constant:s for all f.ters i:n ·"formulas. 

ST 

!2o 

A. 1 -.1.+ 

(Set. 

extens 1 

o; E 

a con:j u 

and .~ 
.::i+1 

like 

descr re between 

'l'he 

of c " '1'he ax:Loms ;01r:e as follows: 

~ If ;;;_ C()Jri.pt1"tE1t .. iCJt1 and 

H -e 

If c. 
-l 

c is ft 

If 

d. = 0 
-1 

and 

1.s a ·tra.ns 

tion trr::~Ehi.l for 

If is liOt 21 

\IJe add Hen]< ax 

the 

Remark 4.9 

All the axJ.orus are 

will satis all the 

computation-trees in a 

tion by or t.hen - ¢ and 

t.hen either 

> for 50lTtc~ j < m, or 

computa-

. , n and 

fo:r all our enk constants ~· i.e. 

11 be a Henk 

of T 

use tha "";hen •ve define 



Lemma 4.10 

T has no vJell-founded model. 

Proof 

In such a model would Cl 

lrc. } . as a 
-1. 1 EN 

in the computation-

Let 

and 

'I'. 
] .. 

'I. 
1. 

v/here 

enkin extEnls 

Let. be a recurs1.ve enumerat 

of the theory 'l' suc'h ·that. c a:ce 

constant ::t.n -+ On and let 

T U f ( i) ~ j 

Lemma 4.11 

Proo 

cons let 

model 11 be \'1!ell~founded the rank-function f, 

diets Lemma 4.10" 

If a a finite sequence of ordina 

lh 

where j such for 

consist.ent:}, 

Lemma 4.12 

s a •well-founded order~invarian 

Proof 

Immediate. 

a and 

f.)CCU:t' for 

constants 

o(j)}. 

) ' 
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Remark 4.13 

We will work with the tree S which .. E 
0 n1 • There is no 

problem in extending s to a t.ree S' ; vihich is still well- founded 

and order invariant but a1Gc ~?I :i.mitive r':cursive. Any statement we 

prove about S v,lill al·::<:) Ix~ !"xue :for S .. 
" 

Remark 4.14 

If g is the identity-function we can show that 

'\Ia {e }<a) < II S 1 II. a+ 

For general g this will not hold, but we will dominate 

{e }<a:) via primitive recursion over the decomposition of the 

denotation-system corresponding to s. This will be the theme of 

the next paragraph. 

4. 3 The domina·tion of_ a computation 

In this section we will let g,e,L,T and S be as in section 

4.2. 

The tree Sx cannot be expected to dominate {e} 9 (x) in any 

sense because 

X~ liS II 
X 

is outright set-recursive while g may not be. 

If we let D be the corresponding denotation-system we will 

show that we can dominate 

by a function obtained from g and a simple uniform primitive 

recursion on the decomposition of D. 

Definition 4.15 

Let h be a function, x an ordinal and E a denotation-

system. By induction on the linear decomposition of E (see 

section 3.4) we fine 



i I(Q,x,h) = h(x) 

I ( E+ 1 , X, h) = I ( E , X, h)+] 

iii If E = ~E. where 
' <J (J. 1. 

is a limit ordinal and each E. is 
1 

iv 

]_ 1-' 

connected, let 

If 

I ( E, x h) "" sup {I ( L E "x, h) ; i < ~} 
j<i J 

'<vhere is connected, let 

Lemma 4.16 ( 

Assume ·that h is increasing. 

a If x < y then I(E,x,h) < I(E,y,h) for each denotat.ion 

system E. 

b If T: E' ->-E an imbedding (section 3.4) then 

I(E',x,h) ~ I(E,x h for each ordinal x. 

Both a and b are induction on the ition-tree for 

E. Observe Lermna 3.16 for b. 

Our aim is to show that if we let D - Ds then 

{E~ }(x) ( I(D,x,g) 

for all x. 

To this end 1;\TB let X E On be fixed and vJe let. co, 

be a sequence of computation tuples starting 

such that each c is an immediate subcomputation of 

c i; i = 0 9 ••• 'k-1 • 

Let t be maximal such that 

{ i . e . ~0 , • . , , the maximal segment of our listing of the 

constants such that ::;:k+l , 2k+l is not used. ) 
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Choose interpretations e 0 , ... ,et of {~0 , ... ~t} resp. 

consistent with 

Then cr E S s 

the i 

Lerruna 4 • 1 7 
-~~ 

and x. Let 

a·( i) = rank ( e , ) , i < t. 
:t 

cr be the sequence 

e the se is a model for Tcr 

of e., 
-:L 

a.s 

Let 6 = m(cr) = max{cr(i)7 i < lh(cr)}+1. Let ~ = I(D ,6,g) 
cr 

(see Definition 3.7 Dcr). Then the computation-tree of Ck is 

in 

Proof 

We use induction on the height of ck in the computation-txee 

of {e}9 (x). 

i If is an computation we have D > 1 so 
cr 

Then the computation-tree of will be in 

ii If ck is an lication of the union scheme 

then 

I(D ,o,g) > sup{I(D * ,o,g}~ y < rank(y)}+1, 
cr cr y 

since we have an imbedding T: E D * + 1 y<rank(y) a y 
-+ D • 

(J 

Let ~· ~ sup{I(D * ,o,g)~ y < rank(y) }. By the induction 
' (J y 

hypothesis all computation-trees for the subcomputations of 

L~', Since the computation-tree of 

ckwill be L~. 

iii The enumeration scheme S 6 is treated in a similar way. 

iv is an application of composition 



Let 

Since the ran!< of 

D*,o,g) 
(J y 

each {d. }( i) , 
1. 

as a computation-tUple, 

not exeed tb.e rank of ck it follows from the induction-

does 

hypothesis that the e for each { } + 
(X) is in 

L~', 

Let 

If rank ( y. ) < 6 for each i "' 1 , ,, , , , k t.hen the computation~ 
l. 

tree of i~.:: also 

of 11 be in 

If for some i, then 

D 
(J 

+ <D * . .> + 1 
a ( o+ ~ ) ~ EOn 

where each 

let.t. 'l'hen 

Again let 

D' = 

Then 

and 

P' -') ~ 

I D 
y<o 

+ 

By the induction-hypothes 

rank of the computat 

By the 

ll be 

0 g)' Let 

+ 

, rank ( y . ) < ~ ' • 
1. 

rd. 1 ry 
l f\ 1'''"' 

Let o' 

) • 'l'hen 

tree of 

so the tree 

be the 

But D * e, can be imbedded in D' . It follows that the 
(J 0 

computation·-tree of 11 be in 

This ends the proof of Lenwa 4.17. 



Theorem 4 . 1 8 

Assume that for all x E On 

where g is A0 and increasing. Then there is a denotation-system 

D and a uniform primitive recursive operator I(D,x,g) such that 

Proof 

Immediate from Lemma 4.17 and the constructions leading ~p to 

it. 

Remark 4.19 

Since any A0-function g can be dominated by a 60-function h 

primitive recursive in g such that h is increasing, that 

assumption is mainly technical. 





5. RECURSION Ol'J DEl:W'r?.'l'ION SYSTEHS 

5 • 1 General primitive recursion 
.b~-·~..._-~. ~~ ---·"""-=----~~""""--

In 4 we defined the operator I by means of a 

certain rs over the 1 decomposition of a 

denotation ~ In s section we will give a general defini-

tion of such t.i ve recursion. We have not worked out any de-

tailed properties o£ this notion, and it might not be the richest 

possible. On the other h,::ind it is clear from our results and their 

proofs that notion of primitive recursion on deno-

tation-systE~ms ll share i:he properties we are interested in. 

Defini t.io:n 5. 1 

Let a, ~.y denote ordinals, D,E denote denotation-systems 

with corre fun FD , FE respectively, and let f,g 

denote ordinal 

~ 

Let x denote a of as, D 1 s and f's. we d~fine the 

9~erators with arguments 

in On by s as follows: 

A 

B 

Schemes for 

-+ r 0 (a,x) = a 

·>' r 1 (a,x) ~ a:+l 

recursion on On: 

( x) if a = 0 
'~ -+ 

<a: r 2 (~,x),a,x) 

where J 1 and J 2 are primitive recursive operators, and 

rg< y) if y < a 
( i\~ <a g(~))(y) ·~ J 

l 0 if y ) a 

Schemes of appli 

' ~) I..,\a,D,x 
..) 

= f<"D ( a) 

~ ~ 7, .. r 4 {a,g,x) = g Cf .¥ 

~ 

supl_g(~ ~ < a} r 5 (a,g,x) -
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C Schemes of 

-!> + -;. 
I 6 (X) = ,J ( (X , X) 

1 

where J 1 Rnd are primitive recurs operators. 

where J ive recursive and ,; is a permutation of 

the var s' 

Q A scheme for recursion over denotation systems~ 

i 

ii 

iii 

J 3 be primitive recurs operators. Then I is 

primitive :a~cursive where I defined by 

If D = L:. D. 
:L<a .1. 

vvhere 

is connected, then 

+ 
I(D, a, "., "t-

1, /\f:i sup 
i<cr. 

is a imit ordinal and each D. 
1 

i v If D = D '+E vihere E :f: 1 is connected we let 

+ "± + 
I(D, a:,t:,D) = 

Remark 5. 2 

a - Clearly the ·tor I of paragraph 4 is primitive recursive 

b By the decompos theorems clearly all primitive recursive 

operators are total. 

c If \ve add a scheme of enumeration in analogy with K~eene' s S9 

( [ 7 ] ) we a notion of full recursion on denotation-systems. 

This not however of no particular interest in this paper~ 
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d Another possible extension is ·to add an 'oracle-scheme' in 

analogy with Kleene's S8: 

If J 1 ,J2 are recursive and 

D = f... ( c; x0 , ••• , xn-l ; x) J 1 ( < c, x0 , ••• , xn-l , x > , i£) 

is a denotation-system, then 

is recursive. 

This scheme will introduce partial functions. It turns out 

that the total ordinal functions of this theory is exactly 

the total set-recursive functions. This can be relativized to 

functions g with ~0-graph. 

our first task now is to reduce primitive recursion to set~ 

recursion and to this end we will represent denotation-systems by 

sets. By Theorem 2. 5 a system D is determined by D ~ lN which is 

a set. For simplicity we will write D but we will always mean 

D ~ lN when we use D as an argument for an algorithm. 

Lemma 5.3 

a The function FD(a) is uniformly set-recursive in D,a. 

b Uniformly set-recursive in D we can decide if D is 

c 

connected and if D = 1 or 0. 

If D = l:.< D. 
l. a l. 

where each D. 
1. 

is connected then 

each D. are uniformly set-recursive in D. 
1. 

a and 

d If D * Q,l is connected then oY is uniformly set~recursive 

in D,y. 

The proofs are implicit in the discussion of the decomposition 

and in the constructions of the subcomponents. Notice that D~ IN 

an infinite object so w will be set-recursive in Dl N. 
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Lemma 5.3 and the recursion-theoran for set-recursion gives us 

Theorem 5.4 

Each primitive recursive operator is uniformly set-recu,r~ive 

in an index for the scheme defining it. 

Remark 5.5 

In general vJe c;g_nnc)t~ set-recurs decide if a pre-denotionF 

system real a denotation-system. Thus the algorithm of Theorem 

5.4 may work c<:u:~c:~s v1here the input is not a denotation-system. 

Theorem 5 .4 ccm be, relati vi zed to any function g without 

further effort. 

5.2 General tota1_1: 1 -functions 

Theorem 4.8 was for total set-recursive functions r~la-

tive to ~0-functions g. There are deep problems in relativizing 

the result to ar·bi sets, since the construction of the 

countable theory 'I' essential to the proof. In a forthcomming 

note we intend to cate how a more general relativization st.i,ll, 

can be part achieved. 

The proof of 'I'heorem 4.8 can easily be relativized to enumer-. 

a ted transitive sets. 'rhis gives us the following appl.icat:i,on: 

Theorem 5.6 

Let a be an sible ordinal such that 

L ~ All sets are countable. 
a 

Then the following are equivalent: 

i a is recursive Mahlo 

ii For all total a-recursive g: a + a there is a total a:-re-

cursive f such that f is not dominated by any function 

primitive recursive g and a denotation-system in L • 
a 
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Proof 

i => ii. As:::.mnH::; that ex recurs ly Mahlo and let g be given. 

For each x E L we have that Eg(x), the set-recursive closure of 

x relative to g, element of La. Thus the relation "{~} 9 (x) 

halts" is Theorem 5. 4 we can a:-

enumerate all functions recurs g and a 

denotat S'lSi:em in a (we will necessarily include 

a faJ more funct in the enumerat:ion since we cannot decide when 

a pre-system a svstE:m in a .o1 

argument). 

that is not ndt:ed any 

, but s do not hurt our 

we a ll 1-function f 

in the enumeration. 

ii => L NOW" as::n1me~ that a: is not recursively ftlahlo. Then there 

is an a-recurs:tVE; h. such that a is the least h-admissible 

ordinal. Let x E L bE~ such that~ h is X 
~ 1 • Let 

h( y) - ~ < > 

Let g( "" [.tp L" 3f3'<~ 41 ( y' f3',x,y). Then a is flo and g ;:;J 

p 

dominates h. [iJOl~f:!OVer L = E9 (x) (see Remark 5 • 7) . 
IX 

Let f be a~rec11r·s 'I'hen f is set~ recursive in g and some 

parameter y. ized version of Theorem 4.18 we can find 

a denotation~ D primitive recursive in ~-codes for x,y 

such that 

f( I(D, y,g) 

(If y > a \ve 1 et f ( y) = y ) 

Then f is ted as by the ·theorem. 

Remark 5. 7 

The set-:n':!cursiv<:: closure of an enumerated set will be the 

next admiss holds even when relativized to a fl0-function 

g. Essential in the argument for this is that when a can be enu-

merated then f3 =<;;(a can be enumerated by a Skolem-Lowenheim 



argument. Thus it. is more out of convenience than out of mathema-

tical necess that vJe use set-recursion in proving these results. 

VJe may use a similar trick to prove a relativized version of 

Van de Wiele's theorem. 

Theorem 5.8 

Let g: On """ On be 6.0 . Let f be uniformly 2:{-definable 

over all g-adrn 

in g. 

sible structures L . Then 
a 

f is set-recursive 

One alterna·ti'"e to employ a method deviced by T. Slaman 

[12 ] which is set .. ·~recursi ve. Al ternat .. i vely one may show that 

f is dominated a primitive recursion in g and some primitive 

recursive system . To this end \.Ve need a notation-system 

for the next; after a relative to g, and to describe 

this system ct. Here i·t is essential that the cardina;Li ty of 

g(~) is that (:;.f ~ and 'chat this is effective in g (~).We omit 

the details. 



6. FUNCTORIALITY 

We nave pO far used constructions inv~~ving ordtnals and 

dilators such as I of 4.15 in a gen~ral~zeq recursion spirit. Of 

course, a trea,tment of these qqncepts more in the spirit of rr;­
logic is possible; let us first question th~ int~rest of such a 

treatment! We wi~l from now on qave to aspume a certain familiarity 

1 
with the general notions Qf rr~~lo~ic~ 

6.1 Interest 

When we define, say, a function w{~~p) mapping ordinals and 

denotation systems into ordinalp tqHm to be in agreement with the 

spirit of rr;-logic we sho~1d try to make it functorial. This means 

that we have to define ~ ~lso on morphisms of the corresponding 

categories. We must define ~(f,T) wh~re f is an ~ncreasing 

function from one ordinal to another, and T is an imbedding of 

one denotation system into ~npther in suph a way that w is a 

functor preservin~ direct limits an~ pullbaeks, i.e. ~ is a ~~ 

see Girard [3] Ch.XII. If su9h a thing ~an be qone (and ~ssentially 
I 

it can be done) then we g~in something s~nce w~ ar~ now able to do 

our computations ~y means of direct limits: for instance we can 

express D as a direct limit 9f fini~e dimentional d~notation 

systems etc. Hence functoriality is an addit~onal step in the 

direction of the simp~,if~c~tion 9~ .th~ class of algoz;-ithms. 

6.2 Example 

Assume that h is a given funct~on from On tQ On and that 

h is normal, i.e. strictly increasing and continuous. Then we can 

define hierarchy of fu~ctions as follows; 

i) /A(!?_, X 1 h) :e= X 

ii) /A(D+l_,x,h) = /A{D,h(x},h) 



iii) /A( }:D ,x,h) =the 
y< 0: y 

th 
x point in the intersection of the 

classes 

rg( A.y lA( I D .,y,h)) . ~ 
. l. ( y . 

when a is a limit ord~pal. 

iv} ~(D 1 +o 2 ,x,h) = 4(D 1+ ~ D~,O,h) 
y<x 

when o2 is connected and * 1 • ..... 

It is not very difficult to sl).0\'1' that given a recursive F one can 

find a recursive D such that 

(1) I(F,x,h) ( ~(D,x,h) for all x E on. 

Moreover, with a rather slight modification we can turn ~ into a 

functor. Let us be a bit more precise. 

1 • TJve will assume that h is such that 

h(x+1) = h(x)+l + H1 (x) 

for a certain denotation system H1 . Then it is easy to see 

that h itself is of the form h(x) = ~(x) for a certain 

denotation system H (such a denotation system is called a 

nice flower). 

2. If f E I(x,x 1 ), T is an imoedoing from D to n1 and V is 

an imbedding from H to H1 o:e the form 

V(x+1) = V(x)+E 1+V 1 (X) 

then it is possible to define 

fA ( T I f' v} E I (/A ( D, X, H) , lA ( D 1 I X 1 , H1 ) ) 

This extension makes M a functor of the ~ argu~ents preserving 

direct limits and pull-backs. 

Let us take an example inside our eftample: It is possible to 

choose H (not at all recursive) such that H(x) = w~K for all x 



of the first stable 

" ' ( 1 ') ma]orat1on _ or the result of Gir?trd.-Vauzei.lles, directly in 

terms of ~) lds 

CK } r 0 =sup (D,O,H); Dis a recursive denotation system 

and in particular, CK ordinal < r 0 can be (non-uniquely) 

written as 

for a certain recursive D. 

The fact that the construction is functorial enables us to "compute 

x by menas of a direct sys·tem 

denotation systems. 

6.3 Other possibilities 

(H.,V .. ) 
]. 1J 

of finite-dimentional 

Not any ion ~(x,D) can be extended into a ptyx; in 

particular the primitive recursive schemes of §5 are not, strictly 

speaking, de pytxes. But the essential part of the 

schemes can be reformulated in a functorial way. Let us give an 

example: 

Consider for instance 

CJ?(_Q,D') = <V0 (D') 

CJ?(D+l,D') = CJ?(D,D')+<j!1 (D,D',$(D,D')) 

CJ? ( I D , D ' ) = sup CJ? ( I D . , D ' ) 
y . 1 y<a y<a 1<y 

ili(D 1+D 2 ,D') = ~(D 1 ,D')+<J.> 2 (D 1 ,D',t-,xQ)(D 1 + Y D~ 1 ,D')) 
x' <x 

is in fact functorial (provided of course <V 0 , <t> 1 and <t> 2 are 

already functorial) , 

There is no trouble in defining CJ?(T,T~) (similar equations). This 

clearly indicates that the primitive recursion of §5 can be handled 

functorially. 1~~is ~ is indeed one of the many variants of the 

functor ~ of [2], Ch. 5. 

II 
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