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§1 Introduction

What are the possible numbers of nodes and ordinary cusps that
plane, projective, irreducible and reduced curves of given degrees
can have? A bound is given by the Pllcker formulas ([1], p.120,154)
relating the so called Pllcker characters, but it is known that this
bound is not the best possible. A great deal of work concerning
this problem has been done, for instance by Veronese [2], Lefschetz
[3], B.Segre [4] and zariski [5] (p.219)[6] (p.176,186), but no
final result has been found.

If one works over a field of characteristic 0 one may examine
the problem by choosing either to study the possible number of
singularities on a curve or on its dual curve, but this requires
that we have only a certain type of tangentsingularities.

Definition: A reduced, irreducible curve, C, in IP& is said

to be a Pllcker curve if C and its dual curve have only ordinary
cusps and simple nodes as singularities. (An equivalent definition:
A curve which Plficker characters do not have to be counted with
multiplicity.)

On the other hand, it is clearly an advantage to work with a
class of curves that is stable under generalization and dualization.
But it is easily seen that the Pllcker. curves do not satisfy this
condition: There exist Pllicker curves being the specialization of
nonpllicker curves in the Hilbert scheme of plane curves of degree 4,
for some d (we will give examples.)

We will in this paper restrict our study to reduced, irreducible,
rational plane curves over €. By means of a correspondence between
projections to planes of a fixed normal, rational curve of degree 4 in

Pd and plane rational curves of degree d,we will define a new set



*)

of geometrical conditions stronger than those in the definition of
a Pllcker curve: This class of rational curves will be stable under
generalization (in the set of rational curves in the Hilbert schemes)
and dualization. Furthermore this class is in some sense maximal.

Our method will be simply to examine the set of nonpllcker
curves among the reduced, irreducible plane rational curves of degree
d for every d. Taking the closure we will obtain new curves and
conditions, and wanting equivalent conditions for a curve and its
dual curve we have to add the dual of the new conditions for every
possible d. These have to be treated the same way; by taking
closure and examining the dual situation we get even more conditions.
The result is that this process stops at this step and we get a finite
list of pointconfigurations involving nodes, cusps, flexes, tangents,
flextangents and cusptangents that are not allowed for the curves in
our class. *I

I do not know whether these conditions also are the right ones
for curves of genus 1.

As an application we prove the known fact that given any set of
Pllicker characters with genus 0, then there is a plane rational
curve possessing these characters. The proof will be a variation
over Veronese's ocutline of proof in [2].

In the appendix S.A Strgmme describes the connection between

the scheme of parametrizations of rational plane curves of given

degree having only nodes and ordinary cusps as sinqularities and the

corresponding locally closed subscheme of the Hilbert scheme. His

results are deeply needed in our discussion.

The demand on having simple nodes for a Plicker curve may seem to
be unnatural. But if we allow nonsimple nodes in the definition,
they would all the same occur in the list.



§2. The results

Theorem:
142
(“5 %) -1
Let  Hq= 1, - be the Hilbert scheme of curves of degree d 1in

2 , . . . 5
P@, and let Rdzﬁd be the locally closed subset consisting of reducea.

irreducible rational curves having only ordinary cusps and nodes as
singularities.
Then there exists a family {Od}d'3 of open sets (jcRy such that

1) If C is a plane rational curve of degree d, then CEOd if

(e Xy v . Voo
and only if Cc0Y, where C is the dual curve of C and d its
i

degree.

2) The family {06} is maximal with the property 1) and such that

Od does not contain any nonpllcker curve and Od is open in Rd’

dz3.

Remarks :

a) We will see that 0,=0.

b) There exist Pllcker curves that are specializations of nonpliicker

curves.

We getthe;mm@rk?ﬂ from the Theorem and the remark a) as follows:
We have that Rd contains all the rational Plicker curves of degree
d, and since every plane irreducible, reduced cubic is a Plicker
curve the fact that 0,=¢ and that the family {04} is maximal
lead to the existence of a d for which the Pllicker curves do not
form an open subiset of Ry-

More interesting than the pure existence of the family {Od}
are the geometrical properties. of the curves in Od. We will decribe
the reduced, irreducible rational(nwves-not in Od’ and the easiest
way doing thig is setting up the tollowing (symbolic) list. We have

13 families of curves. The first example given in each family represents

the characteristic figure of the general member in the family, the
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ent as we shall see, specilalizations. To the

following ones re

swings 15 the dual type numbered. A x means a flex.

right of the d

The family 171 is higher order flex/cusp.

ywing.

curve of degree d 1is not

in Oﬂ i | nl has and tangents as one or more of
. s
] h : B d=3 we have to add the cuspidal

construction in the following way: The Plicker

ations  1-6  and 10, 11 for every d.

conditic
Taking the closure we will obtain the specializations 7, 8, 9, 12,
13. Wanting equivalent conditions for a curve and its dual curve

e, 18, 21 for every possible d. Taking the

closure obtain the specializations 15, 17, 19, 20, 22, 23, 24.

The dual situations of +

We see from the list that part 1) of the theorem is satisfied

(prootf omitted! Remark al follows from the fact (for instance using
¢ plane cubics. The main

Noether's theorvem) that 30} is generical for

theorem will be to get the maximality

difficulty in px

stated

St

s

3.2 Let V he the triples of homogeneous polynomials over € of

d in two wvariables, équiiéq and Ricﬁi as in the theorem.
L J U .

éCEﬁ(Vd)

to H in the following way:

degree

subset X consisting

We have a

of the
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Let the monomials of degree d 1in X, Y, 4 be a basi1s for

H If p:(po,p1,p))€Xé, then the resultant Rp(X,Y,Z)=

a-
Res(sz—ZpO,Yp2~Zp1) is of degree 2d in X,Y,Z, and by expansion

of the determinant it is easily seen that Zd is a factor of

1
R_(X,Y,%2), So —R (X,Y,Z)€H,, and this defines the map y".
P Zd P d

Furthermore if ' (p) 1is an irreducible polynomial, then it is the
equation of the curve parametrized by p. (It has the right degree

and its set of zeros contains the parametrized curve.)

'

Denote (R.) =X then X is an open subset of I’(Vd),

d a’ d

and Azw" X »R is a surjection since every rational curve over

Xd d d

€ can be parametrized. By the Corollary to the Theorem in the

appendix we have-

3.2.1 If Uck, then A~ (D)=xr7 (v)

i

We can identify X. with an open subset of P (M ) where
d 3,d+1

M3 a+1 is the space of 3x(d+1) matrices, namely identifying
14

t d_jwt,j) and A =(a..)

4i5%0 1 '1i=0,1,2 b 1]

d
x
=0

p=(
J

We have qup)=3 for every pEXd so we can define a morphism
g:XdﬁGr(d—B,d)z The Grassmannian of codimension 3 subspaces of E’d,
by sending a matrix to its "kernel". ©Let C be a fixed normal
rational curve of degree d in E’d. We can then think of Ap as a
pProjection of C to a E>2 with appropriate chosen coordinates, and
then g 1is just forgetting the E’z and giving the center of
projection.

We have an action of PGL(3) on E)(M3,d+1) by left multipli-
cation, and this action restricts to X4 because the properties of

the curves in Rd are independent of choice of coordinates. TFurther-

more the fibres of g are in this way isomorphic to PGL(3).




Let “d be the image of g in Gr(d-3,d), then ud is open

by the definition of the Grassmannian.

Using 3.2.1 and the definition of the Grassmannian we have

Proposition: Let A:X 2Ry, and g:X;~ll; be as above. If UCRd

is such that A_1(U) is invariant under the action of PGL(3) then

O=xag™ (g2~ (U))

The sets we are going to study in Rd will satisfy the condition

of the proposition because, as we shall see, they will be determined
by geometrical properties of curves which are independent of projectiv
equivalence. Hence the proposition tells us that our topological
study of families of curves (as described in 3.1) can be translated

to a study of centers of projections to varying E’Z's of a fixed

normal rational curve of degree d in E’d.

3.3 Notation:

With d given, let C beaonce and for all fixed normal rational

curve of degree d in E’d, and let G(k) denote the Grassmannian

of linear subspaces of dimension k in E’d. For p€C and

Oz r< d=1 let E%r denote the oscullating " for C in P
The symbols X,Y,Z will be used for resp. codimension 3,2,1

subspaces of E’d.

3.4 Now we will start the construction of the list. The two first

v

families in the list (I:curves having points of multiplicity 3

and II:curves having tacnodes) are exceptional because they are out-
side Rd' so do not have to be treated. We will define a closed set
‘ , -1 .

Wq=ly such that our wanted Od will be g (U\Wq). We will
examine coincidencemanifolds involving ud, other Grassmannians and

powers of C. When two or more points in a power of C are equal,



they are regarded as infinitesimally near. We will have to describe
11 coincidences, and for the moment denoting the projection of the

coincidence to Uy in each case for Wy ;, i=1,...,11, we automati-
[/ : :
11

cally get W, . closed, and W,= U W
d,i d {1
For some d some of the coincidences : will become empty, but then the

d,i’

corresponding dual situation is also . nonexistent so this will not
contradict the maximality stated in the theorem. So the following

construction is taken for every dz3.

III Higher order flex/cusp

A curve has such a point if and only if there is a line intersecting
a branch of the curve 4 times in a point. Thinking of the inverse
image of the line for an arbitrary projection ]Pd---.-->IP2 of C

we can look at

{(X:Z,p)EUd x G(d=1)x C | Xcz> ]P];}

v Nonsimple nodes
A nonsimple node is a node where one branch intersects its tangent
with multiplicty 23.

pEC 1is projected to a flex if and only if the center of projec-

tion X satisfy Xn({ IPé \.]le) )'#@. Wanting a closed condition we must demand

XNP?2 +@, and this is equivalent to the existence of a IlPd-1 such

that xcpd-1 D]P; s we. can. look. at

{(X,Y,2,p,,p,) €Uy x G(d=2) «x G(d-1) x c? XCYCZQPéz&p1,p2€Y}

If XnIPrl) #fJ (which gives a cusp for p2¢X’) , then we would have got
’ 2
something treated in I, which is impossible for XEUd. If P1=P2,

then Xc<Zo>P? which was treated in III:
2




This illustrates the specializations we will get: A demand on
having a special flex specializes to a cusp. Furthermore a demand

on having a certain line as tangent in a point specializes in the

point being a cusp: XcEﬁ~1:3‘E§'+ Xﬂné)#¢, and at last a node may

specialize in a cusp: Xez1pd 2 3p1,p29 m:EﬂfZ;;mé , When Pq=Pys SO
1

Xﬂmé + . We see in the list that these are the specializations we
1
get from the first example in every family, but we have to be a little

more careful when examining them because there is more than one point

involved.

\ Tritangent.
The tangentline corresponds to a Pd—1‘ so we look at

t(x,2,p ,P,,P )eudxc;(d—1)xc3lXc:z::JPIlD url ump! }

3 1 P2 P
But this does not exclude the possibility of X intersecting one or

pd 3c pd-? intersecting

Pd-3

more of the tangents, on the other hand a
one or more of the tangents is always a specialization of a
in the Eﬁ—1 not intersecting the tangents because the codimension

is 2. So we get 7),8) and 9) in the list.

Remark1: A same kind of aréument will also work in the remaining
L 3
families except IX and X, so we will just study these two families
w.r.t. specialization.
Furthermore in the tritangent case, if p,=p, then M:Z;Eg .
1
which is treated in III.

VI Flextangent being tangent in another point.

{(X,2,p,,p,)EU. x G(d=1) x C?| XczZ>P? U P!}
1752 d Py Py

As above p,=p, 1is treated in III.
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W have now described the centers of projection giving non-
pllcker curves in Ud for every d. Taking the closure aﬁd
examining the dual situation, we obtain the first examples in the
families VII-X which must be studied in the same way for every
possible d because of part 1) in the theorem.

Before we go on we need some lemmas:

Lemma 1: Let C be a normal rational curve of degree d in ik
and p1,...f,ps€c. If n, . i=1,...,s are nonnegative integers
s n, n_
such that £ (n.+1)s d+1, then I ,..., P are in general posi-
i=1 * Py Ps
N-1 S
tion, i.e. they generate a P where N= I (ni+1).
i=1

Proof: This is easily seen using that a hyperplane intersects C
with multiplicity d.
As a result we have for d=4 that two oscullating planes in-

tersect in one and only one point.

Using the language of the previous construction we have
Lemma 2: Let dz4, C as in lemma 1. Then two flexes/cusps that
coincide give a higher order cusp or the center of projection will

intersect C.

Proof: We have for 1i=1,2 qiEXﬂE> » P;{™Pg and X—»X0 where X is

| Pi
the center of projection. There are two cases:

If the qi's are generical distinct, then we have a line in
X intersecting the two oscullating planes. Going to the limit we

get X intersects 1IP? in a line, therefore p.€X or X
0 Py 0-"0 0

gives a higher order cusp.

— — — 2 2
If q,=q,, then by lemma 1, d=4, and {q1} -JPp1 n ]sz.



v v, .
Looking at the dual curve C in I' .given by the oscullating I <. we see

v
that d4 corresponds to a P*? in IP% containing the tangents corre-

sponding to P; and Pé . Going to the 1limit 9 corresponds
1 2

v
to an oscullating P for C, but that means q0=p0.

Eventually by using lemma 2 it is easily seen for the following
families in the case dz4, that a XEUd will give something treated

in III or VI if two of the points on C coincide.

Remark 2: For d=3 we must examine this situation in the cases
X and XIII (which are the only possible nonempty coincidences for

d=3).

VII 'Flextangent through a node

{(X,¥,2,p /Py iP3) € Ug x G(d—Z)xG(d—1)xc3|1><c5(c221.9;3 & PqP,EY]

F.S (Further specializations):12),13)

VIITI Flextangent through another flex.

. _ 2 o 2 2
{(X,Z,p,‘,pz) € Ud x G(d=1) x C [ XCu_D_IPp1,p2 & Xn]Pp; @}

F.S: 12),13)

IX Two flextangents intersecting in a point on the curve.

HX,Y,p1,p2,p3) € Uy x G(d-2) x c?| XSY3p, & dim (anpi)z1 i=1,2}
Ad remark 1: Fix distinct Pq/Py /Py and a Pd_z as in the
definition. If Pg c:Pd-thmé for 1i=1 or 2 then we get something
i i
. . 2 d"2 - d"3
treated in IV, otherwise let Li=Pp n m i=1,2. Then a
i

intersecting one or both Igi in the point LfﬂPé is a specializa-
i i
d-3 d-2

tion of a - “cP intersecting P; in a point in I€>Pg.
i ) Fi



Hence 14 and 15 are specializations of 13.

X. Three concurrent flextangents

X, Y,py Py ipy) € Uy x G(d-2) x CY| Xy & dim(YﬂIP;i): 1 i=1,2,3}

Ad remark 2: When d=3 the set is empty, because the dual curve
would have been of degree 3 or 4 with 3 cusps or 2 cusps and a flex
on a line.

Ad remark 1: When d=4, fix distinct Py/PysP3- We shall have
a ! contained in a P? and dim (Iﬂan;_) 21. The P? is
determined by the three points of intersyction:;etween the oscullating
planes (lemma 1), because if they did not generate a I P2 they would
have to be a common point of three oscullating planes: Looking at
the dual situation in ﬁ” this corresponds to a I° containing
3 tangents of é, but that is impossible by lemma 1, since é is a
rational curve of degree 4.

Let UcC® be the triples of distinct points. Then the coinci-
dence over U is isomorphic to U «x Eﬂ, where the 3 points of inter-
section determine the coordinates in 1P?. Therefore the coincidence
is irreducible and projecting to Ud we get an irreducible set.

Since the centers of projection giving one or more cusp instead of
flex form a proper closed subset of this set, the irreducibility
gives us 22, 23, 24, as specilalizations of 21.

When dz5, we may always find a Pd—3 through 3 points, and

using the same method as in IX we find the remark 1 satisfied.

Now the remaining families come from the dual situations of the

specializations above.

XI Bitangent through a flex

((X,2,P.1Ps:P,)E U, x G(Ad=1) x C?| XcZop,, P! , P: & XNP>+¢ )
1752'%3 d 1 P, p3 p1

F.S: For dz6: 7), 8), 9)



XII Tangent through two flexes.

((X,2,p,,0,,P3) € Ug x GlA-T) x c? XCZDE¥S, P,/P, & xnné)¢¢ i=1,21}
- 3 i

F.S: For d=»5: 26),27). For dz6: 8),9)

XIII Three colinear flexes

(X, 2,p /Py ,py) € Uy x G(A=1) x c? X<Z3p, & XﬂPé{#Q, i=1,2,3 1}

Ad remark 2: When d=3 we get an exceptional case since this

situation is generical, the specialization being the cuspidal cubic.

The dual curve of a cuspidal cubic is itself a cuspidal cubic, so
we do not get any new conditions,

The theorem now follows from the construction.

We have not proved independency between these 13 families, but
looking at the construction the fact U3=Q leads to the existence
of Pllicker curves of degree 6 with 3 colinear cusps. Such a curve may
for instance be constructed as the dual curve of a Pllcker curve of
degree 4 with 3 concurrent flextangents and no cusps. An example
is the curve parametrized by plt)=(t3(t=-4), (t-1)%(2t+1), t(t=1))
with flexes for +t=0,1,~-2 giving (0,1,0),(1,0,0),(16,27,2) and
flextangents X=0,Y=0 and 27X-16Y=0 all through (0,0,1). By
calculation one can prove this is a Pllcker curve. Denoting
pz(po,p1,p2)f then the dual curve is parametrized by
(P Py = P,Pyr PyPy ~ PyP, « PgP) ~ PyPg)s and using’the resultant-

map in 3.2 we may find the equation of the sextic.

§4 The Plﬂckernchamxﬁer& of a rational curve.

4.1 The Plticker formulas for a rational Pllcker curve of degree d,

v .
class d, with i flexes and « cusps are
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1) d=2(a-1)- ¢ 2) i=3(d-2) - 2v
The other Pllcker characters are then given by the genusformulas.
The possible Pllcker characters are, by 2), giveﬁ by those
(d,k) where d=1 and OZK;[%(d~2)]. From the construction of
{Od} we will get.

Proposition:

For every pair of integers (d,«x) with dz4, 0gks %(d—Z)] and

(d,x) #+ (4,3) there exists a curve in Od with K cusps.

The reason why we have to exclude (4,3) is the fact that the
three cusptangents intersect, since the dual curve is of type (3,0)
having 3 flexes on a line. Since every curve of type (3,0),(3,1)
or (4,3) are pllicker curves, the proposition gives us the existence

of rational Plflicker curves to every set of Pllilcker characters with

genus 0.

4.2 Proof of the proposition

1) and 2) give, using i=d-2+d-2-«:
v

\%
4.2.1 d-2<k £ 5(d-2) »0Zi<d -2 and then d<d,

L

v v v
K=d-2 e i=d-2 and then d=d.

4.2.1 tells it 1s sufficient to consider the case, for every 4,
k:d-2, because either the curve or the dual curve is of this type.
We will not use this directly, but 4.2.1 is crucial since wanting
to have « cusps means, in the sense of §3, ghépsing;§ center of
projection that intersects C's developable of tandeqﬁs {n: K
points, and when kid-2 it is always possible to find?a dimension
_d—3 subspace containing ¥ points.
Notation:
We will use the notation of §3: C is a fixed normal rational curve

of degree d-4 in ﬂfl, and let D be its developable of tangents.



- 15 =

Let Ué < Gr (d-3) be the centers of projection that give rise to

birational projections of C, so UdCU§. Eventually by using the
same method as in §3 for the families I and II, one shows that the
centers of projection giving curves of type I-XIII form a closed

subset of U}

g+ denote this by wt.

d

We will prove the proposition by induction on d, using the fact

that Wé

its dual curve. This will reduce the problem to examining the nodal

is closed and the conditions are equivalent for a curve and

cubic.
< Dk, 0<k<d-2, be the k-tuples of linear independent points

is open and dense in Dk.

Let Yk

in D, then'Yk

Let K ={(X,pys---.spy) € ué « Y, |p;€ X,i=1,....,k}. We have K.
irreducible because of the linear independence, and letting

ﬂ:Kk+Ué be the projection, then ﬂ(Kk) is irreducible. Let Zd’k
denote FT§;3CUé, then Zd,k is irreducible and by counting con-

ditions we get dim Zd,k=3d_6_k’ So we have Zd,ODZd,1D""DZd,d—2'
. . . 1
Let Zd,d~1 denote the projection to Ud of
{(Xypyseeeeipg_ ) EUF * cd'1[ xnPl+¢ i=1,...,k}. Then, for instance
i I

by looking at explicit parametrizations of plane rational curves,
(using that we are in Ué and not necessarily in Ud) we see
23,a-2>2%4,a-1 % 7"

Suppose we have proved the existence as in the proposition for
curves of degree <d. Assume there does not exist a curve of degree
d with « cusps having a center of projection outside Wé. By
induction «ksd-2, otherwise we may dualize and get a contradiction

v

s o 1
since then d<d by 4.2.1. So Zd,K\Zd,K+JE'W , and because of the

irreducibility we get

—- 1
a,d-252%a,c7 %3, %a, ka1 Mg
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I

A curve with «k cusps 05£ksd-2 does not have to correspond to a
XEZd,K since we do not know whether the intersections of a X, that
gives the curve, with the developable are in general position or not.
But a curve of degree d with the maximal number of cusps,
[%(d—Z)], and of the required type exists by induction since é<d,
aﬁd for such a curve d-2 of the intersections with the developable

have to be linear independent: Otherwise we could force one more

intersection but that is impossible by the maximality (even if the

center would not give a birational projection). This contradicts
1
4.2.2. that Zd’d-2 c Wd‘

To start the induction for d=4, we may use the same method as
above to prove the existence for «=0,1,2, by looking at the proper-
ties of the curves of type (d,x)=(3,0) being the dual of the type
(4,3). Using the irreducibility of the Z4,k's, the only thing that
does not work as earlier is if all the curves with centers of
projection in Zd,d—2=Z4;2 are in the family X. But every curve of
type (4,2) has a center of projection in Z4,2 (only 2 intersections
with D), looking at the dual situation, which is also of type (4,2),
we get every curve of type (4,2) is the dual type of the family X.

A curve of type (4,2) has two flexes so we get the possibilities 27
and 29 in the list. The first one is impossible since the degree is
4, the second one leads to all curves of type (4,2) are in the family
XIT. But then we may use the same argument as in the inductionstep

to get a contradiction.



Refe: .

[1] wWalker, R.J.
[2] Veroncse, G

[3] Lefschetz, S.:
[4] Segre, B.

[5] Zariski,O.

[6] Zariski,O.

Alf Bjgrn Aure

Algebraic Curves. Princeton University Press (1950).
Princip des Projicirens und Schneidens.
Mathematische Annalen XIX. Band (1882).

On the Existence of Loci with given Singularities.
Trans. Amer; Math.Soc. Vol 14 (1913).

Esistenza e dimensione di sistemi continui

di curve piane algebriche con dati caratteri.

Atti Accad.nazaLincei, Rend VI.s Vol 10 (1929).
Algebraic Surfaces. Springer-Verlag (1971).

Collected Papers. Vol III. MIT Press (1978).

Dept. of Mathematics

University of Oslo

Norway



Appendix: Families of rational plane curves.

This note is concerned with the relationship between families of

parametrized plane rational curves and families of unparametrized
plane curves. Let d bé é fixed positive integer, and denote by
X the following contravariant functor on the category of

. k=schemes:

X(T) = set of finite T-morphisms ¢:Pé > P% such that for all geo-

metric points t + T, the fiber of ¢ 1is birational

¢t
onto its image, which is a curve of degree d with only

ordinary nodes and cusps as singularities.

Clearly X is represented by an open subscheme X of projective
(3d+2)-space. Denote by $:P£ > Pé the universal family.

Let A be the Hilbert scheme of plane curves of degree d

1

(i.e. projective %d(d+3)-space), and let A c A, be the open sub- .

scheme corresponding to irreducible curves with only nodes and
cusps as singularities. Since % 1is finite, the formation of

$*(OP1) commutes with arbitrary base change on X. Hence the
X

closed subscheme C < Pé defined by the zero-th Fitting ideal of

. (0 1) defines a morphism ¢:X =+ A.
* PX

Theorem: The morphism ¢ factors as follows:

®
X — A
o | |4
Y —



where R < A is the closed subscheme corresponding to' rational
curves (with reduced subscheme structure), n:Y » R is the normali-
& .

zation morphism, and ¢:X + Y 1is a principal PGL(2)-bundle. . Fur-

thermore, Y is nonsingular and n is a homeomorphism.

Corollary: Put A=no¢:X » R. For any subset U c R, we have

Y(v).

A (B) ="
Remark: One may show that n  is an isomorphism precisely over the
open subset RO © R corresponding to curves without cusPs. More |
precisely, if ©réR corresponds to a curve with <y cusps, the germ
of R at r is analytically isomorphic to a product of y ordi-

nary (1-dimensional) cusps and a smooth part (of dimension

3d-1-v).

Proof of the theorem: We shall define Y wvia its functor of

points, and later show that it coincides with the normalization of

R.

For any A-scheme T, let CT c P% be the pullback of the uni-

versal family C, < Pi. Consider the following functor Y on the

category of A-schemes:
Y(T) = set of subschemes S ¢ CT with the following properties:

(i) S is etale and finite over T of rank p =(§5])

(ii) 8(2) c CT' where 8(2) is the first infinitesimal
neighborhood of S in P% (defined by the square of

the ideal of S in P%).



Note that condition (ii) 1is equivalent to the condition (ii)':

S is contained in the singular locus of the morphism CT +> T

(defined, for example, by the first Fitting ideal of Qé /T)'

T
Clearly Y is represented by a locally closed subscheme Y

of HileQXA. I claim that the natural morphism v:Y » A is

proper. Indeed, by the valuative criterion for properness, if

suffices to complete the following commutative diagram

where T 1is the spectrum of a discrete valuation ring, and
T.=T-{t}, t€T the closed point. So we are given CT and

: _ : 2
Sm < Slng(CTO/TO). Put S closure of STO in PZ. Then Sj

is flat and finite over T and condition (ii) holds. It remains

only to show that the closed fiber St is nonsingular. If not,
there are local parameters (u,v) of Pi such that IS = (u?,v).
t

4 2 2 .
But then IC < (u ,u v,v ), contrary the assumption that Ct has
t

only ordinary nodes and cusps.

Now let Ly be the blowing up of C along S I claim

Y Y*

that L is flat over Y, and that for any base change Y' =+ Y,

Y
the pullback LY' of LY concides with the blowing up of CY'
along SY" Indeed, the question is local on CY (for the etale

topology) hence the claim follows from [Wahl, 1.3 and 1.6]. 1In

particular, all the geometric fibers of L are projective lines,

Y
and LY >Y is a Pl-bundle. Let $':X' » Y bhe the associated

principal PGL(2)-bundle [Serre]. TIts functor of points on the



category of Y-schemes is X'(T) = set of T-isomorphisms P% > LT.
Let a:Pi. > LX' be the universal isomorphism. Then the composed
map
a
Py byr 7 Cxo P2

defines a morphism p:X'-+X.
I claim that g 1is an isomorphism. Indeed, define a closed

subscheme § < P§ by the first Fitting ideal of $*(OP1). Then S
X

is etale and finite over X of rank p, and defines a morphism
$:X > Y. Clearly, the map $:P§ > o= P§ coincides with the
blowing up of ¢ along S. Therefore ¢ can be lifted to an
inverse of 8.

Summing up our result so far, we have defined the following

part of the diagram of the theorem:

¢

X — A

q;\ /v=i on
Y

Furthermore, we have shown that ¢ is a principal PGL(2)-bundle,
hence Y 1is nonsingular. Since any ratiQnal plane curve of degree
d with ordinary nodes and cusps has a total of p of these singu-
larities, v 1is injective on geometric points. Since v 1is pro-
per, it is a birational homeomorphism onto its image R. This also

shows that Y is the normalization of R.

Remark: There is a natural action of PGL(2) on X. One may,
starting in the other end, check that this action is free, and

construct (Y, ¢) as a geometric quotient of this action.
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