○.A. Laudal

Introduction. It is now folklore that the hull of a deformation functor of an algebraic geometric object, in some way is determined by the appropriate cohomology of the object and its "Massey products". see [M], [May]. The first hints in this direction occurs in Douadys exposé in $[\operatorname{Car}]$ (196]).

In 1975. I proved that, in fact, there is a kind of Massey product structure induced by the obstruction calculus characterizing this hull, see [La]].

Independently many authors have published results in this direction, see f.ex. $[P a l],[S$ \& $S]$, for references.

This, and a forthcoming paper, are concerned with the problem of actual calculation of these Massey products in two special cases, that of a-algebra A and of an A-module E.

In §1 we recall the general machinery of [Lal] which is common for all the cases we have in mind.

In $\S 2$ we prove the the usual matric Massey products, properly adjusted to our needs, for $\operatorname{Ext}_{A}^{\bullet}(F, F)$ determine the formal moduli of the A-module $E, i . e$. the hull of the deformation functor of F . As a corollary we obtain the following result
(2.10) Any complete local ring A is uniquely determined
by $\operatorname{Ext}_{\mathrm{A}}{ }^{i}(k, k), \quad i=1,2$ and the matric Massey products ${ }_{\otimes}^{n} E x t^{1} \longrightarrow$ Ext 2 。

CONTENTS

Introduction.
§1 Formal moduli and Massey products.
§2 Massey products for $\operatorname{Ext}_{A}^{\circ}(E, E)$.

Bibliography.
\$1 Formal moduli and Massey products
Let x be some algebraic geometric object, say a k-algebra A or an A-module E, and consider the deformation functor

$$
\operatorname{Def}_{X}: 1 \rightarrow \underline{\text { sets }}
$$

see [Lal].
Let $A^{i}=A^{i}\left(k, X ; O_{X}\right)$ be the corresponding cohomology. If X is a k-algebra A, then $A^{i}=H^{i}(k, A ; A)$ is the Andre cohomology, and if X is an A-module $E, A^{i}=\operatorname{Ext}_{A}^{i}(E, E)$.

By [Lal], (4.2.4), we know that the formal moduli of X. i.e. the hull of Def $_{X}$. is determined by a morphism of complete local kalgebras

$$
0: T^{2}=\operatorname{sym}_{k}\left(A^{2^{\star}}\right)^{\wedge} \rightarrow T^{1}=\operatorname{sum}_{k}\left(A^{\star}\right)^{\wedge}
$$

constructed using only the "obstruction calculus" of A..
In fact, (4.2.4) of [lal] implies that the formal moduli H has the form

$$
\mathrm{H} \simeq \mathrm{~T}^{1} \mathrm{~T}^{2} \mathrm{k}
$$

provided $A t$ and A^{2} has countable dimensions as k-vector spaces. We shall assume, in the what follows, that

$$
\operatorname{dim}_{k} A^{i}<\infty \quad \text { for } \quad i=1,2 .
$$

Pick a basis $\left\{x_{1}, \ldots, x_{d}\right\}$ of $A^{1^{*}}$ and a basis $\left\{y_{1}, \ldots . Y_{r}\right\}$ of $A^{2^{*}}$. Denote by $\left\{x_{1}^{*}, \ldots . y_{d}^{*}\right\}$ and $\left\{y_{1}^{*} \ldots . . y_{r}^{*}\right\}$ the corresponding dual bases of A^{1} resp. A^{2}.
put $f_{j}=o\left(y_{j}\right), j=1 \ldots . \operatorname{r}$. Then by (4.2.4) of [La] the ideal (f) of T^{l} generated by the $f_{j} ' s$ is contained in $m_{T}^{2} 1$. Moreover $H \simeq$ $T^{1} /(\underline{f})$. Now, for any surjective homomorphism of local artinian $k-$ algebras $\pi: R \rightarrow S$, such that $\underline{m}_{R} \cdot$ ker $\pi=0$, consider the diagram

$$
\begin{aligned}
\operatorname{Mor}(H, R) & \rightarrow \operatorname{Def}_{E}(R) \\
\downarrow & \\
\not \operatorname{Mor}(H, S) & \rightarrow \operatorname{Def}_{E}(S) .
\end{aligned}
$$

Suppose given a morphism $\phi: H \rightarrow S$ corresponding to the lifting $X_{\phi} \in \operatorname{Def}_{X}(S)$, then in the diagram below, we may always lift the map ϕ^{\prime} to a map $\bar{\phi}$ making the resulting diagram commutative
(1)

The obstruction for lifting X_{ϕ} to R is, by construction of O, and functoriality, given by the restriction of 0 o $\bar{\phi}$ to $A^{2^{*}}$. In fact 0 o $\bar{\phi}$ induces a linear map $A 2^{\star} \rightarrow$ ker π. i.e. an element $O\left(X_{\phi}, \pi\right) \in A^{2}$ ker $\pi=A^{2}\left(k, X_{i} O_{X} \underset{k}{\operatorname{ker} \pi)} \pi\right.$, which is the uniquely defined obstruction. Notice that we have the following identity

$$
\begin{equation*}
o\left(X_{\phi}, \pi\right)=\sum_{k} Y_{j}^{\star} \otimes \phi\left(\overline{\mathcal{F}}_{j}\right) \tag{2}
\end{equation*}
$$

Notice also that the image $X_{\phi_{1}}$ of X_{ϕ} by the map $\operatorname{Def}_{X}(S) \rightarrow$ Def $X_{X}\left(S / \underline{m}^{2}\right)$ corresponds to the map ϕ_{1}. Moreover ϕ_{1} is uniquely determined by the induced map on the cotangent level

$$
t_{\phi}: A^{*}=\underline{m}_{H} / \underline{m}_{\mathrm{H}}^{2} \rightarrow \underline{m} / \underline{m}^{2}
$$

thus by an element $t_{\phi} \in A^{1} \frac{m}{m} \underline{m}^{2}$ which under the isomorphism $\operatorname{Def} X_{X}\left(S / \underline{m}^{2}\right) \simeq A^{1} \otimes \underline{m} / \underline{m}^{2}$ corresponds to $X_{\phi_{1}}$. If $t_{\phi}=\sum_{i=1}^{d} x_{i}^{\star} \otimes t_{i}$, $t_{i} \in \frac{m}{m} \underline{m}^{2}$ then $\phi_{1}\left(x_{i}\right)=t_{i}, i=1, \ldots, d$.
On the other hand, having fixed a basis $\left\{\bar{v}_{1}, \ldots, \bar{v}_{p}\right\}$ for $\underline{m} / \underline{m}^{2}$, we find that $t_{\phi}=\sum_{1=1}^{P} \alpha_{1} \bar{v}_{1}, \alpha_{1} \in \mathbb{A}^{1}$.

Thus there is a one to one correspondence between maps ϕ_{1} and sequences $\alpha_{1} \ldots . \alpha_{p}$ of elements of A^{1}. Pick an $\underline{n}=\left(n_{1} \ldots \ldots n_{d}\right) \in \underline{N}^{d}$ with $|\underline{n}|=\sum_{i=1}^{d} n_{i}=N$ and let $i_{1}<i_{2}<\cdots<i_{p}$ be the indices i for which $n_{i} \neq 0$.

Consider the ideal $J_{n} \subseteq k\left|u_{1}, \ldots, u_{d}\right|$ generated by the set of monomials $\left\{u_{1}{ }^{t} \ldots{ }^{1}{ }_{d}{ }^{t} \mid \exists i^{-}, t_{i}>n_{i}\right\}$ 。
Put $R_{\underline{n}}=k\left[u_{1}, \ldots, u_{d} / / J_{\underline{n}}, S_{\underline{n}}=R_{\underline{n}} /\left(u^{n_{1}} \ldots u_{d}^{n_{d}}\right)\right.$ and let $v_{1}=$ $u_{i_{1}}$ be the image of $u_{i_{1}}$ in $R_{\underline{n}}$ (resp. $S_{\underline{n}}$). obviously $v_{1} \ldots v_{p}$ generates $R_{\underline{n}}$ (resp. $S_{\underline{n}}$) as k-algebra, and induces a basis $\left\{\bar{v}_{1}, \ldots, \bar{v}_{p}\right\}$ of $\underline{m}_{\underline{n}} / \underline{m}_{\underline{n}}^{2}$. Fix this basis.
Now let $\alpha_{1} \ldots \alpha_{p} \in \mathbb{A}^{1}$ and consider the corresponding map $\phi_{1}: H \rightarrow S_{\underline{n}} / \underline{m}_{\underline{n}}^{2}$.

Definition (1.1). Any map $\phi_{\underline{n}}$ making the following diagram commutative
is called a defining system for the Massey product

$$
\left\langle\alpha_{1}, \ldots \alpha_{\underline{p}} ; \underline{\underline{n}}\right\rangle=o\left(X_{\phi_{\underline{n}}}, \pi_{\underline{n}}\right) \in A^{2} .
$$

When $\alpha_{1}=x_{1_{1}}^{*}$ we shall write $\left\langle\underline{x}^{*} ; \underline{n}\right\rangle$ for the Massey product $\left\langle x_{i_{1}}^{*}, \ldots, x_{i_{p}}^{*}\right.$; $\left.{ }^{n}\right\rangle$.

Suppose now that for some $N \geqslant 2$ and every $j=1, \ldots, r$ we have

$$
f_{j}=\left.\sum_{\mid \underline{n}}\right|_{=N} a_{j, \underline{n} \underline{x}^{\underline{n}}+\text { higher terms }}
$$

and consider any map $\bar{\phi}_{\underline{n}}: T^{l} \rightarrow R_{\underline{n}}$ such that $\bar{\phi}_{\underline{n}} 0 \pi_{\underline{n}}=\rho \circ \phi_{\underline{n}}$. Then $\bar{\phi}_{\underline{n}}\left(f_{j}\right)=a_{j, \underline{n}} \bar{u}_{i_{j}}^{n_{i}} \ldots \bar{u}_{i_{p}}^{n}{ }_{p} \in \operatorname{ker} \underline{n}_{\underline{n}} \simeq k$. Applying the identity
we find
(3)

$$
a_{j, \underline{n}}=y_{j}\left(\left\langle\underline{x}^{*} ; \underline{n}\right\rangle\right) .
$$

It follows that if we let E_{j}^{N} be the degree N (leading) form of f_{j}, then
(4)

$$
f_{j}^{N}(\underline{x})=\left.\right|_{\mid \underline{n}} \mid=N y_{j}\left\langle\underline{x}^{*} i \underline{n}\right\rangle \cdot \underline{x} \underline{n} .
$$

Consider the diagram:

$$
\begin{align*}
& T^{2} \vec{O} \quad T^{1} \xrightarrow{\bar{\Phi}_{N-1}} k\left[u_{1}, \ldots, u_{d}\right] / \underline{m}^{N+1} \tag{5}\\
& \left.\stackrel{\rho \downarrow}{\mathrm{H}} \underset{\phi_{N-1}}{\rightarrow} \underset{k\left[u_{j}\right.}{\psi \pi} \ldots u_{d}\right] / \underline{m}^{N}
\end{align*}
$$

where $\rho \circ \phi_{N-1}\left(x_{i}\right) \equiv u_{i}(\bmod \underline{m}), \underline{m}=\left(u_{1}, \ldots, u_{d}\right)$.
Let $X_{\phi_{N-1}} \in \operatorname{Def}_{X}\left(k\left[u_{1}, \ldots, u_{d}\right] / \underline{m}^{N}\right)$ correspond to ϕ_{N-1}. Notice that by assumption $X_{\Phi_{N-1}}$ is a lifting of the universal lifting of X to $k\left[u_{1}, \ldots, u_{d}\right] / \underline{m}^{2}$. Notice also that ker $\pi=\underline{m}^{N} / \underline{m}^{N+1}=\underline{n}_{|\underline{n}|=N}^{\oplus} k \cdot\left(\underline{u}^{\underline{n}}\right)$. An easy argument then shows that the obstruction for lifting $X_{\phi_{N-1}}$ to $k\left[u_{1} \ldots u_{d}\right] / \underline{m}^{N+1}$ is given by:
(6)

$$
\begin{aligned}
& o\left(X_{\phi_{N-1}}, \pi\right)\left.=|\underline{n}|=N T \underline{x}^{*}: \underline{n}\right\rangle \otimes \underline{u^{n}}=\sum_{j} y_{j}^{*} \otimes(\underline{n} \mid=N \\
&\left.=\sum_{j} y_{j}^{*}\left\langle\underline{x}_{j}^{*} ; \underline{n}\right\rangle u \underline{n}\right) \\
& \underline{n}(\underline{u}) .
\end{aligned}
$$

Now consider the diagram
(7)

$$
\begin{aligned}
& T^{2} \stackrel{\rho}{\rightarrow} T^{1}-\bar{\phi}_{\underline{N}} R_{N+1}=k\left[u_{1} \ldots . u_{d}\right] /\left(\underline{m}^{N+2}+\underline{m}^{N}\left(f_{1}^{N} \ldots . f_{r}^{N}\right)\right) \\
& \text { * } \quad \downarrow^{\pi}{ }^{0}+1 \\
& H \xrightarrow{\phi_{N}} S_{N}=k\left[u_{1} \ldots . u_{d}\right] /\left(\underline{m}^{\mathrm{N}+1}+\left(f_{1}^{N} \ldots . f_{r}^{N}\right)\right) \\
& \phi_{N-1} \sum_{S_{N-1}}^{\pi_{N}}=k\left[u_{1} \ldots . u_{d}\right] / \underline{m}^{N}
\end{aligned}
$$

Since s_{N} is $k\left[u_{1} \ldots . u_{d}\right] / \underline{m}^{N+1}$ divided by the ideal generated by the obstruction for lifting $X_{\phi_{N-1}}$, we may lift $X_{\phi_{N-1}}$ to S_{N}, therefore we may find maps ϕ_{N} and $\bar{\phi}_{N}$ making the diagram commutative.

Pick a monomial basis $\left\{\underline{u}^{\underline{n}}\right\}_{\underline{n} \in \bar{B}_{N-1}}$ for S_{N-1} (take simply all u^{n} with $|\underline{n}| \leqslant N-1)$ and pick a monomial basis $\left\{\underline{u}^{\underline{n}}\right\}_{\underline{n} \in B_{N}}$ for ker $\pi_{N}=$ $\underline{m}^{N} / \underline{m}^{N+1}+\left(f_{1} \ldots f_{r}^{N}\right)$. put $\bar{B}_{N}=\bar{B}_{N-1} U B_{N}$. For every \underline{n} with $|\underline{n}| \leqslant N$ we have a unique relation in S_{N}
(8)

$$
\underline{u}^{\underline{n}}=\int_{\underline{m} \in \bar{B}_{N}} \beta_{\underline{n}, \underline{m}}^{u^{m}}
$$

Since by construction $O\left(X_{\|_{N-1}}, \pi_{H}\right)=0$, this relation together with
(6) implies that for every $\underline{m} \in B_{N}$ (or \bar{B}_{N} if one insists).
(9)

$$
\left.|\underline{n}|=N^{\underline{n}}, \underline{m^{\prime}} \underline{x}^{*} ; \underline{n}\right\rangle=0
$$

Write $\operatorname{ker} \pi_{\underline{N+1}}^{\prime}=\left(\underline{m}^{N+1}+\left(f_{1}^{N} \ldots \ldots f_{r}^{N}\right)\right) /\left(\underline{m}^{N+2}+\underline{m}\left(f_{1}^{N} \ldots . f_{r}^{N}\right)\right)$

$$
=\left(f_{1}^{N} \ldots \ldots f_{r}^{N}\right) / m\left(f_{1}^{N}, \ldots . f_{r}^{N}\right) \oplus I_{N+1}
$$

Pick a monomial basis for $I_{N+1}=\underline{m}^{N+1} /\left(\underline{m}^{N+2}+\underline{m}^{N+1} \cap \underline{m}\left(f_{1}^{N} \ldots \ldots f_{r}^{N}\right)\right.$) of the form $\left\{\underline{u}^{n}\right\}_{\underline{n} \in B_{N+1}^{\prime}}$. We may assume that for $\underline{n} \in B_{N+1}^{\prime}, \underline{u}^{\underline{n}}$ is of the form $u_{k} \cdot \underline{u}^{m}$ for some $\underline{m} \in B_{N}$. Put $\bar{B}_{N+1}^{\prime}=\bar{B}_{N} U B_{N+1}^{\prime}$. For every \underline{n} with $|\underline{n}| \leqslant N+1$ we have a unique relation in R_{N+1}

$$
\begin{equation*}
\underline{u}^{\underline{n}}=\sum_{\underline{m} \in \bar{B}}^{n+1}, \beta_{n}^{\prime}, \underline{m} \underline{u}^{\underline{m}}+\int_{j} \beta_{\underline{n}}^{n}, j^{f_{j}^{N}} . \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{j}^{N+1}=\bar{\phi}_{N}\left(f_{j}\right)=E_{j}^{N}+\int_{\underline{n} \in \bar{B}_{N+1}} b_{j, \underline{n}} \underline{u}^{\underline{n}} \tag{11}
\end{equation*}
$$

then by definition of 0 , the obstruction for lifting $X_{\phi_{N}}$ to $\mathrm{R}_{\mathrm{N}+1}$ is
(12)

$$
\begin{aligned}
\circ\left(x_{\phi_{N}} \cdot \pi_{N+1}^{0}\right) & =\int_{j} y_{j}^{*} \otimes f_{j}^{N+1} \\
& =\int_{j} y_{j}^{*} \otimes f_{j}^{N}+\int_{\underline{m} \in \bar{B}_{N+1}^{i}}\left(\int_{j}^{*} y \otimes b_{j, \underline{n}} \underline{u}^{n}\right)
\end{aligned}
$$

Definition (1.2). Whe map ϕ_{N} is called a defining system for the Massey products

$$
\left\langle\underline{x}^{*} ; \underline{n}\right\rangle=\int_{j} b_{j, n} y_{j}^{*} \in A^{2} \text {, for } \underline{n} \in B_{N+1}^{i}
$$

With these notations we have:

$$
\begin{equation*}
E_{j}^{N+1}=\int_{m \in B_{N}^{:}} y_{j}\left\langle x^{*} ; m>u^{m}+\sum_{n \in B_{N+1}^{*}} y_{j}\left\langle x^{*} ; n\right\rangle u^{n}\right. \tag{13}
\end{equation*}
$$

where we have put $B_{N}^{\prime}=\{n| | n|=N|$.
Consider the diagram
(14)

$$
T^{2} \quad Q^{1} T^{\bar{\phi}}-1 R_{N+2}=k\left[u_{1} \ldots . u_{d}\right] /\left(\underline{m}^{N+3}+m \cdot\left(E_{1}^{N+1} \ldots . E_{r}^{N+1}\right)\right)
$$

$$
\begin{aligned}
& \psi \quad \psi \pi_{N+2}^{i} \\
& \text { II } \xrightarrow[-]{\phi+1} S_{N+1}=R_{N+1} /\left(E_{1}^{N+1} \ldots . E_{r}^{N+1}\right) \\
& \phi_{\mathrm{N}}>\mathrm{S}_{\mathrm{N}} \pi_{\mathrm{N}+1}
\end{aligned}
$$

Since S_{N+1} is R_{N+1} divided by the ideal generated by the obstruction for lifting $X_{\phi_{N}}$ to R_{N+1} " we may lift $X_{\phi_{N}}$ to S_{N+1}. therefore we may find maps ϕ_{N+1} and $\bar{\phi}_{N+1}$ making the diagram above commutative.

Pick a monomial basis $\left\{u^{n}\right\}_{n \in B_{N+1}}$ for ker π_{N+1} such that $B_{N+1} \subseteq$ B_{N+1}^{\prime}. Put $\bar{B}_{N+1}=\bar{B}_{N J} U B_{N+1}$. Then $\left\{\underline{U}^{n}\right\}_{n \in \bar{B}_{N+1}}$ is a monomial basis for S_{N+1}. For every n with $|n| \leqslant N+1$ we therefore have a unique relation in S_{N+1}

$$
\begin{equation*}
\underline{u}^{\underline{n}}=\sum_{\underline{m} \in \bar{B}_{N+1}} \beta^{\prime}, \underline{m} \underline{u}^{m} \tag{15}
\end{equation*}
$$

Since by construction $o\left(X_{\Phi_{N}}, \pi_{U+1}\right)=0$, this implies for every $\underline{m} \in B_{N+1}$ the following identity:

$$
\begin{equation*}
\sum_{n \in B_{N+1}^{0}} \beta_{n, m}\left\langle x^{*}: n\right\rangle=0 \tag{16}
\end{equation*}
$$

which is analoguous to (9).

Write, again, ker $\pi_{N+2}^{0}=\left(\underline{n}^{N+2}+\left(f_{1}^{N+1} \cdots f_{r}^{N+1}\right) \nmid\left(\underline{m}^{N+3}+\underline{m}\left(f_{1}^{N+1} \ldots f_{r}^{N+1}\right)\right)\right.$ $=\left(E_{1}^{N+1} \ldots E_{r}^{N+1}\right) / \underline{m}\left(E_{1}^{N+1} \ldots E_{r}^{N+1}\right)^{\oplus 1} I_{N+2}$ 。
Pick a monomial. basis for $I_{N+2}=\underline{m}^{N+2} /\left(\underline{m}^{N+3}+m^{N+2} n \underline{m}^{N}\left(f_{1}^{N+1} \ldots f_{r}^{N+1}\right)\right.$) of the form $\left\{\underline{u}^{\underline{n}}\right\}_{\underline{n} \in B_{N+2}^{\prime}}$, where we may assume that for $\underline{n} \in B_{N+2}^{\prime}$. $\underline{u}^{\underline{n}}$ is of the form $u_{k} \cdot \underline{u}^{m}$ for some $\underline{m} \in B_{N+1}$ and some k. put $\bar{B}_{N+2}^{\prime}=\vec{B}_{N+1}^{\prime} \cup B_{N+2}^{\prime}$. For every n with $|\underline{n}| \leqslant N+2$ we have a unique relation in R_{N+2}
(17)

$$
u^{\underline{n}}=\sum_{\underline{m} \in \bar{B}_{N+2}^{\prime}} \beta_{\underline{n}, \underline{m}}^{\underline{u}^{\underline{m}}}+\sum_{j} \beta_{\underline{n}, j}^{\prime} \underline{f}_{j}^{\underline{N}+1}
$$

of the same form as (10).
Let

$$
\begin{equation*}
f_{j}^{N+2}=\bar{\Phi}_{N+1}\left(f_{j}\right)=f_{j}^{\mathbb{N}+1}+\int_{\underline{n} \in B_{N+2}^{,}} c_{j, \underline{n}} \underline{u}^{\underline{n}} . \tag{18}
\end{equation*}
$$

Again, by definition of 0 , the obstruction for lifting $X_{\phi_{N+2}}$ to R_{N+2} is

$$
o\left(X_{\phi_{N+1}} \cdot \pi_{N+2}^{\prime}\right)=\int_{j} y_{j}^{*} \otimes f_{j}^{N+2}
$$

$$
\begin{equation*}
=\sum_{j} Y_{j}^{*} \otimes f_{j}^{N+1}+\sum_{\underline{n} \in B_{i+2}^{i}}\left(\sum_{j} Y_{j}^{*} \otimes c_{j, \underline{n}^{\underline{n}}}\right) \tag{19}
\end{equation*}
$$

Definition (1.3). The map Φ_{N+1} is called a defining system for the Massey products $\left\langle\underline{x}_{i}^{*} \underline{n}\right\rangle=\Sigma_{j} c_{j, n} \underline{y}_{j}^{*} \in A^{2}$, for $\underline{n} \in B_{N+2}^{\prime}$. With these notations, we have the following

$$
\begin{equation*}
f_{j}^{N+2}=\sum_{\underline{I} \in B_{N}^{i}}\left\langle\underline{x}^{*} ; \underline{\underline{n}} \underline{u}^{\underline{l}}+\sum_{\underline{m} \in B_{N+1}^{,}} y_{j}\left\langle\underline{x}^{*} ; \underline{m}\right\rangle \underline{u}^{\underline{m}}+\sum_{\underline{n} \in B_{\underline{N}+2}^{*}} y_{j}\left\langle\underline{x}^{*} ; \underline{m}\right\rangle \underline{u}^{\underline{n}}\right. \tag{20}
\end{equation*}
$$

Clearly this process may be continued indefinitely. For every $k \geqslant 0$ we obtain a diagram
(21)

$$
\begin{aligned}
& \mathrm{T}^{2} \xrightarrow{\circ} \mathrm{~T}^{1} \xrightarrow[\rightarrow]{\bar{\phi}_{\mathrm{N}+\mathrm{k}}} \mathrm{R}_{\mathrm{N}+\mathrm{K}+1} \\
& \begin{array}{lll}
\downarrow \\
\phi_{N+k} & S_{N+K}^{N+K+1} \\
S_{N+K}
\end{array} \\
& \psi \pi_{\mathrm{N}+\mathrm{k}} \\
& \mathrm{~S}_{\mathrm{N}+\mathrm{K}-1}
\end{aligned}
$$

 with $|\underline{n}| \leqslant N+k$ there is a unique relation in S_{N+k}

$$
\begin{equation*}
\underline{u}^{n}=\int_{\underline{m} \in \bar{B}_{N+k}} \beta_{\underline{n} \cdot \underline{m}} \underline{u}^{\underline{m}} \tag{22}
\end{equation*}
$$

inducing the identity

$$
\begin{equation*}
\sum_{\underline{n} \in B_{N+k}^{\prime}} \beta_{\underline{n}, \underline{m}}\left\langle\underline{x}^{\star} i \underline{n}\right\rangle=0, \quad \underline{m} \in B_{N+k} \tag{23}
\end{equation*}
$$

And there is a corresponding basis $\left\{\underline{u}^{\underline{n}}\right\}_{\underline{m} \in B_{N+k+1}^{i}}$ for the component I_{N+k+1} of ker $\pi_{N+k+1}^{\prime}=\left(E_{1}^{N+k} \ldots f_{r}^{N+k}\right) / m\left(f_{1}^{N+k} \ldots \ldots f_{r}^{N+k}\right) \oplus I_{N+k+1}$ such that in R_{N+k+1} we have for every n with $|\underline{n}| \leqslant N+k+1$

$$
\begin{equation*}
\underline{u}^{\underline{n}}=\sum_{\underline{m} \in \bar{B}_{\underline{N}+k+1}^{\prime}} \beta_{\underline{n}}^{\prime}, \underline{m} \underline{u}^{\underline{n}}+\int_{j} \beta_{\underline{n}, j}^{\prime} \tilde{E}_{j}^{N+k} \tag{24}
\end{equation*}
$$

where we have put $\bar{B}_{N+k+1}=\bar{B}_{N+k} \cup B_{N+k+1}^{\prime}$.
Moreover.

$$
\begin{equation*}
f_{j}^{N+k+1}=\bar{\phi}_{N+k}\left(f_{j}\right)=f_{j}^{N+k}+\sum_{\underline{n} \in B_{N+k+1}^{\prime}} \underline{u^{n}} . \tag{25}
\end{equation*}
$$

The obstruction for lifting $X_{\phi_{N+k}}$ to R_{N+k+1} is

$$
\begin{align*}
o\left(X_{\phi_{N+k}} \cdot \pi_{N+k+1}^{\prime}\right) & =\sum_{j} Y_{j}^{*} \otimes f_{j}^{N+k+1} \tag{26}\\
& =\sum_{j} Y_{j}^{*} \otimes f_{j}^{N+k}+\sum_{\underline{n} \in B_{N+k+1}^{\prime}}\left(\sum_{j} Y_{j}^{*} \otimes \omega_{j, n} \underline{u}^{n}\right)
\end{align*}
$$

Definition (1.4). The map $\phi_{\mathrm{N}+\mathrm{k}}$ is called a defining system for the Massey products $\left\langle\underline{x}^{*} ; \underline{n}\right\rangle=\sum_{j} \omega_{j, n} Y_{j}^{*} \in A^{2}$ for $\underline{n} \in B_{N+k+1}^{\prime}$.

$$
\begin{equation*}
E_{j}^{N+k+1}=\sum_{1=0}^{k+1} \sum_{\underline{n} \in B_{N+1}^{\prime}} y_{j}<\underline{x}^{*} ; \underline{n}>\underline{u} \underline{n} \tag{27}
\end{equation*}
$$

Notice that by (4.2.4) of [Lal] we have

$$
\begin{equation*}
\mathrm{H} \simeq \lim _{\substack{k}} S_{\mathrm{N}+\mathrm{k}} \tag{28}
\end{equation*}
$$

therefore

$$
\begin{equation*}
H I \cong k\left[\left[u_{1}, \ldots, u_{d}\right]\right] /\left(\bar{f}_{1}, \ldots, \bar{f}_{d}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathrm{f}}_{j}=\lim _{\mathrm{k} \rightarrow \infty} \mathrm{f}_{\mathrm{j}}^{\mathrm{NJ}+\mathrm{k}} . \tag{30}
\end{equation*}
$$

Formally we may therefore write

$$
\begin{equation*}
\bar{f}_{j}=\sum_{1=0}^{\infty} \sum_{\underline{n} \in B_{N+1}^{\prime}} y_{j} \underline{x}^{\star} ; \underline{n}_{1}>\underline{u} \underline{n} . \tag{31}
\end{equation*}
$$

§2 Massey products for Ext ${ }^{\circ}$ (E,E)

In this paragraph we shall let A be any k-algebra and we shall let X, in $\S 1$, be some A-module E. We shall thus be concerned with the deformation functor of E as an A-module

$$
\operatorname{Def}_{E}: 1 \rightarrow \text { Sets }
$$

defined as follows.

$$
\operatorname{Def}_{E}(S)=\left\{\begin{array}{llc|l}
S \otimes_{k} A & \rightarrow & \operatorname{End}\left(E_{S}\right) & E_{S} \text { is S-flat } \\
\downarrow & & \downarrow & \psi \\
A & & \operatorname{End}(E) & E_{S} \otimes_{S} k=E
\end{array}\right\} / \text { iso. }
$$

As is well known, the corresponding cohomology is

$$
A^{i}=\operatorname{Ext}_{A}^{i}(E, E)
$$

The deformation theory for modules, as hinted at on page 150 of [Lal]. parallels the corresponding theory for algebras. There is a global theory and a relative theory, and the main theorem (4.2.4) of [Lal] holds. There are no surprices, and we shall therefore

Pick any free resolution I. of E as an A-module, and consider the associated single complex $\operatorname{Hom}_{A}^{*}(\mathrm{~L} ., \mathrm{J} . \mathrm{O})$ of the double complex $\operatorname{Hom}_{A}(L ., L$.$) . By definition we have$

$$
\operatorname{Hom}{\underset{A}{P}(L, . I,)=\prod_{m \geqslant 0} \operatorname{Hom}\left(L_{m}, L_{m-P}\right), ~(I)}
$$

Let $d_{i}: L_{i} \rightarrow L_{i-1}$ be the differential of J_{1}. , then

$$
a^{p}: \operatorname{Hom}_{A}^{p}(L, . L .) \rightarrow \operatorname{Hom}^{p+1}(L,, L .)
$$

is defined by

$$
\alpha^{\mathrm{P}}\left(\left\{\alpha_{i}^{\mathrm{p}}\right\}_{i \geqslant 0}\right)=\mathrm{d}_{i} o \alpha_{i-1}^{\mathrm{p}}-(-1)^{\mathrm{p}} \alpha_{i}^{\mathrm{P}} \circ \mathrm{~d}_{i-p}
$$

Clearly $\operatorname{Hom}_{A}^{\bullet}(L ., L$.$) is a graded differential associative A-$ algebra, multiplication being the composition of $\operatorname{Hom}^{\circ}$ (L., L.).

Lemma (2.1). There is a natural isomorphism

$$
\operatorname{Ext}_{A}^{i}(E, E) \simeq H^{i}\left(\operatorname{Hom}_{A}^{*}\left(I, \ldots I_{\mu}\right)\right), \quad i \geqslant 0
$$

Consider any surjective morphism $\pi: R \rightarrow S$ in \underline{I}, such that $\underline{\mathrm{m}}_{\mathrm{R}} \cdot$ ker $\pi=0$.

Assume there exists a lifting $\left\{L . \otimes_{k} S, d_{i}(S)\right\}$ of the complex $\left\{L . . d_{i}\right\}, i . e$. of the free resolution L. of E.
This means that there exists a commutative diagram of the form

$$
\begin{aligned}
& 0 \leftrightarrow-\mathrm{H}_{\mathrm{O}}(\mathrm{~L} .) \quad \leftarrow \mathrm{L}_{0} \quad \mathrm{~L}_{1} \quad \mathrm{~L}_{1} \quad \begin{array}{c}
\mathrm{d}_{2} \\
\end{array}
\end{aligned}
$$

where for every i, the composition

$$
d_{i+1}(s) \circ d_{i}(s)=0
$$

We shall see that ary such lifting is, in fact, an $A \otimes_{k}$ S-free resolution of $H_{o}\left(J, \otimes_{k} S\right)=E_{S}$, and that E_{S} is a lifting of $E=H_{o}(L$.$) to S$.

Both contentions are obviously true for $s=k$, so by induction we may assume they hold for S. If we then are able to prove the corresponding statements for R, we are through.

But first we have an existence problem. Given a lifting E_{S} of E to S it is easy to see that there is a corresponding lifting $\left\{L . ब_{k} S, d_{i}(S)\right\}$ of $\left\{L, d_{i}\right\}$ to S. By assumption we have conversally that any such lifting $\left\{L . \otimes_{k} S, d_{i}(S)\right\}$ of $\left\{L, d_{i}\right\}$ to S determines a lifting $E_{S}=H_{o}\left(L . \otimes_{k} S\right)$ and is, itself, an $A \otimes_{k} S$-free resolution of ${ }^{E}{ }_{S}$. Pick one such lifting $\left\{L . \otimes_{K} S, d_{i}(S)\right\}$, and let us compute the obstruction for $\operatorname{lifting}\left\{L . \otimes_{k} S, d_{i}(S)\right\}$ to R. This obstruction is then, clearly, an obstruction for lifting E_{S} to R. For every $\quad i, p i c k$ a lifting $d_{i}^{\prime}(R): L_{i} \otimes_{k} R \rightarrow L_{i-1}{ }_{k} \otimes_{k} R$ of $d_{i}(S)$: $L_{i} \otimes_{k} S \rightarrow L_{i-1} \otimes_{k} S$, to R. This is obviously possible, since all L_{i} are A-free.

Since $d_{i}(S) \operatorname{lid}_{i-1}(S)=0$ and since $I=$ ker π is killed by the maximal ideal \underline{m}_{R} of R, the composition $d_{i}^{\prime}(R) o d_{i-1}^{\prime}(R): I_{L_{i}} \otimes_{K} R \rightarrow$ $L_{i-2}{ }_{k}{ }_{k} R$ is induced by a unique map

$$
O_{i}: L_{i} \rightarrow I_{i-2} \otimes_{k} I
$$

The family $\left\{O_{i}\right\}_{i \geqslant 0}$ defines an element

$$
O \in \operatorname{Hom}^{2}(L ., L .) \otimes_{k} I
$$

One checks that $d^{2} O=0$, so that O is a 2 -cocycle of $\operatorname{Hom}_{A}^{\bullet}\left(L ., L_{0}.\right)$, defining an element

$$
O\left(E_{S}, \pi\right) \in \operatorname{Ext}_{A}^{2}(E, E) \otimes_{k} I .
$$

It is easily seen that $O\left(E_{S}, \pi\right)$ is independent of the choice of the $d_{i}^{\prime}(R)$'s lifting the $d_{i}(S)$'s.
Moreover, if $O\left(E_{S^{\prime}} \pi\right)=0$, there exists an element
$\xi \in \operatorname{Hom}_{A}^{1}(L ., L.) \otimes_{k} I$ such that $d \xi=-0$. Put

$$
d_{i}(R)=d_{i}^{\prime}(R)+\varepsilon_{i}
$$

then one finds

$$
d_{i}(R) \quad o d_{i-1}(R)=0
$$

and $\left\{L \cdot \otimes_{k} R, d_{i}(R)\right\}$ is a lifting of $\left\{T, \otimes_{k} S, d_{i}(S)\right\}$ to R. Now let $\left\{L \cdot \otimes_{k} R_{i} d_{i}(R)\right\}$ be any lifting of $\left\{L . \otimes_{k} S, d_{i}(S)\right\}$ to R, then there is an exact sequence of complexes

$$
0 \rightarrow\left\{L \cdot \otimes_{k} I_{0} d_{i} \otimes I I\right\} \rightarrow\left\{L \cdot \otimes_{k} R, d_{i}(R)\right\} \rightarrow\left\{I \cdot \otimes_{k} S, d_{i}(S)\right\} \rightarrow 0
$$

inducing a long exact sequence

$$
\begin{aligned}
& \rightarrow H_{n}\left(L \cdot \otimes_{k} I\right) \rightarrow H_{n}\left(L \cdot \otimes_{k} R\right) \rightarrow H_{n}\left(L \cdot \otimes_{k} S\right) \\
& \rightarrow H_{n-1}\left(I \cdot \otimes_{k} I\right) \rightarrow H_{1}\left(L \cdot \otimes_{k} S\right) \\
& \rightarrow H_{0}(L \cdot \otimes I) \rightarrow H_{0}(L \cdot \otimes R) \rightarrow H_{0}\left(L \cdot \otimes_{k} S\right) \rightarrow 0
\end{aligned}
$$

from which it follows that

$$
\begin{array}{r}
H_{n}\left(L \cdot \otimes_{K} R\right)=0 \text { for } n \geqslant 1, \text { and } \\
0 \rightarrow E \otimes_{k} T \rightarrow H_{0}(L . \otimes R) \rightarrow E_{S} \rightarrow 0
\end{array}
$$

is exact.
Therefore $H_{o}(L . \otimes R)=E_{\text {, }}$ is a lifting of F_{R} to R.
Moreover, given two liftings $\left\{L_{,} \otimes_{k} R_{i} d_{i}(R)_{1}\right\}, 1=1,2$ of $\left\{L \cdot \alpha_{k} S, d_{i}(S)\right\}$, corresponding to two liftings F_{R}^{1} and E_{R}^{2} of E_{S}, the differences $d_{i}(R)_{1}-d_{i}(R)_{2}$ induce maps

$$
\eta_{i}: L_{i} \rightarrow L_{i-1} \otimes_{k} I .
$$

The family $\left\{\eta_{i}\right\}_{i \geqslant 0}$ is a l-cocycle of $\operatorname{Hom}^{\circ}(L, \ldots$.$) defining an$ element $\quad \bar{\eta} \in \operatorname{Ext}_{A}^{1}(E, E)$.

In this way we obtain a surjective map

$$
\left\{\text { liftings of } E_{S} \text { to } R\right\} \times \operatorname{Ext}_{A}^{1}(E \cdot E) \rightarrow\left\{\text { liftings of } E_{S} \text { to } R\right\}
$$

making the set of liftings of E_{S} to R a principal homogenous

We have established the following,
rupusition (2.2). Let $E_{S} \in \operatorname{Def}_{F}(S)$ correspond to the lifting $\left\{L . \otimes_{k} S, d_{i}(S)\right\}$ of L. to S. Then there is a uniquely defined obstruction

$$
o\left(E_{S}, \pi\right) \in \operatorname{Ext}_{A}^{2}(E, E) \otimes_{K} I
$$

given in terms of the 2-cocycle O of $\operatorname{Hom}_{A}^{\circ}(L ., L.) \otimes I$ defined above, such that $O\left(E_{S}, \pi\right)=0$ iff E_{S} may be lifted to R.

Moreover, if $O\left(E_{S}, \pi\right)=0$ then the set of liftings of E_{S} to R is a principal homogeneous space (torsor) over Ext ${ }_{A}^{1}(E, F)$.

Thus we have at hand a nice obstruction calculus for $\operatorname{Def}_{\mathrm{E}}$ given entirely in terms of the complex L. and its liftings.

Using this we shall apply the constructions of $\S 1$ and compute the Massey products, $\left\langle\underline{x}^{*}, \underline{n}\right\rangle$ for $\underline{n} \in B_{N+k}^{\prime}$. In fact, the < $\left.\underline{x}^{*}, \underline{n}\right\rangle$ of §] will turn out to be some generalized "ordinary" Massey products of the differential graded k-algebra $\operatorname{Hom}_{A}^{\circ}(L ., L$.$) .$ Pick a basis $\left\{x_{1} \ldots \ldots x_{d}\right\}$ of $\operatorname{Ext}_{A}^{1}(E, E)^{*}$ and a basis $\left\{Y_{1}, \ldots, y_{r}\right\}$ of $\operatorname{Ext}_{A}^{2}(E, E)^{*}$. Denote by $\left\{x_{1}^{*}, \ldots . x_{d}^{*}\right\}$ and $\left\{Y_{1}^{*}, \ldots, Y_{r}^{*}\right\}$ the corresponding dual bases of Ext ${ }^{1}$ and Ext ${ }^{2}$.

Let for $i=1 \ldots . . . d_{i} \in \operatorname{Hom}_{A}^{1}\left(L \ldots, L_{i}\right)$ be a cocycle representing x_{i}^{*} and let for $j=1 \ldots, Y_{j} \in \operatorname{Hom}_{A}^{2}(L \ldots L$.$) be a cocycle$ representing Y_{j}^{*} 。
Pick an $\underline{n}=\left(n_{1} \ldots . n_{d}\right)$ with $|\underline{n}|=\sum_{i=1}^{d} n_{i}=N$ and consider as in §1 the k-algebras $S_{\underline{n}}$ and $R_{\underline{n}}$. Fix the basis $\left\{\bar{v}_{1} \cdot \cdots \bar{v}_{p}\right\}$ of $\underline{m}_{\underline{n}} / \underline{m}_{\underline{n}}^{2}$. Recall that we have in $R_{\underline{n}}$ the following slightly confusing identities

$$
\begin{align*}
& v_{1}=u_{i_{1}}, \quad l=1, \ldots, p \tag{1}\\
& u_{i}=0 \quad \text { if } \quad i \notin\left\{i_{1}, \ldots, i_{p}\right\}
\end{align*}
$$

insisted upon because it makes the notations more streamlined later

We shall pick a monomial basis for the k-vectorspace $\mathrm{S}_{\underline{n}}$ of the form

$$
\left\{u_{1}^{m_{1}} \cdots u_{d}^{m_{d}} \mid \quad 0 \leqslant m_{i} \leqslant n_{i}, \quad \underline{m} \neq \underline{n}\right\}
$$

written as

$$
\left\{\underline{u}^{\underline{m}}\right\}_{\underline{m} \in \overline{\mathrm{~B}}_{\underline{n}}}
$$

With this done, let $\alpha_{1} \ldots \alpha_{p} \in \operatorname{Ext}{ }_{A}^{1}(E, E)$ and consider the element $\quad \sum_{1=1}^{p} \alpha_{1} \otimes \bar{v}_{1} \in \operatorname{Ext}_{\mathrm{A}}^{1} \underline{m}_{\underline{n}} \underline{m}^{2} \underline{n}$.
Let $\phi_{1}: H \rightarrow S_{\underline{n}} / \underline{m}^{2} \underline{n}$ be the corresponding map and let $E_{\phi_{1}} \in$ $\operatorname{Def}_{E}\left(S_{\underline{n}} / \underline{m}_{\underline{n}}^{2}\right)$ be the induced deformation of E.
Assume there is given a defining system $\phi_{\underline{n}}: H \rightarrow S_{n}$ for the Massey product $\left\langle\alpha_{1} \ldots . \alpha_{p} \underline{n}\right\rangle$ (see (1.1)), corresponding to a lifting $E_{\phi_{n}} \in \operatorname{Def}_{E}\left(S_{\underline{n}}\right)$ of $E_{\phi_{1}}$.
Then $E_{\phi_{1}}$ is represented by a lifting $\left\{\operatorname{L} \cdot S_{\underline{n}} / \underline{m}_{\underline{n}}^{2} ; d_{i}\left(S_{\underline{n}} / \underline{m}_{\underline{n}}^{2}\right)\right\}$ of L. and $E_{\phi_{\underline{n}}}$ is represented by a lifting $\left\{L . S_{\underline{n}} ; d_{i}\left(S_{\underline{n}}\right)\right\}$ of $\left\{L \cdot \Delta S_{\underline{n}} / \underline{m}_{\underline{n}}^{2} ; d_{i}\left(S_{\underline{n}} / \underline{m}_{\underline{n}}^{2}\right)\right\}$.

The family of $A \otimes_{K} S_{n}$-linear maps

$$
d_{i}\left(S_{\underline{n}}\right): L_{i} \otimes_{k} S_{\underline{n}} \rightarrow L_{i-1} \otimes_{k} S_{\underline{n}}
$$

is uniquely determined by the restriction to $L_{i} \otimes 1$, thus by the family of A-linear maps

$$
\alpha_{i, m}: L_{i} \rightarrow L_{i-1}, \underline{m} \in \bar{B}_{\underline{n}}
$$

defined by

$$
\left.d_{i}\left(S_{\underline{n}}\right) \mid L_{i} \otimes\right]=\sum_{\underline{m} \in \bar{B}_{\underline{n}}} \alpha_{i, \underline{m}} \underline{u}^{m} .
$$

With this notation, we may assume

$$
\alpha_{i}\left(S_{\underline{n}} / \underline{m}^{2} \underline{n}^{n}\right) \mid L_{i} \otimes 1=\sum_{l=1}^{p} \alpha_{i, \underline{\varepsilon}_{1}} \underline{u}^{\underline{\varepsilon}_{1}}
$$

where $\underline{\varepsilon}_{1}=(\underbrace{0, \tilde{l}_{1}}_{\mathrm{i}_{1}}, 0, \ldots, 0) \in \overline{\mathrm{B}}_{\underline{n}}$.

According to (1) we may also write

$$
d_{i}\left(S_{\underline{n}} / \underline{m}_{\underline{n}}^{2}\right) \mid L_{i} \otimes 1=\sum \alpha_{i, \underline{E}_{1}} \otimes \bar{v}_{1} .
$$

For every $\underline{m} \in \bar{B}_{\underline{n}}$ the family $\left\{\alpha_{i, \underline{m}}\right\}_{i}$ is a cochain

$$
\alpha_{\underline{m}} \in \operatorname{Hom}_{A}^{1}(L . . L .)
$$

such that $\alpha_{\varepsilon_{1}}$ is a cocycle representing the cohomology class α_{1}. $1=1, \ldots, p$, and $\alpha_{i, 0}=d_{i}, i \geqslant 0$.
Since $d_{i}\left(S_{\underline{n}}\right) o d_{i-1}\left(S_{\underline{n}}\right)=0$ for all $i \geqslant 0$ we find that the family $\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in \bar{B}_{\underline{n}}}$ satisfies the following identities

$$
\begin{aligned}
& \sum_{\underline{m}_{1}+\underline{m}_{2}=\underline{m} \underline{m}_{1}} \circ \alpha_{\underline{m}_{2}}=0 \quad \text { for all } \quad \underline{m} \in \bar{B}_{\underline{n}} . \\
& \underline{m}_{i} \in \bar{B}_{n}
\end{aligned}
$$

Moreover the obstruction for lifting $E_{\phi_{\underline{n}}}$ to ${ }_{R_{\underline{n}}}$. i.e. the obstruction $O\left(E_{\phi_{\underline{n}}}, \pi_{\underline{n}}\right)$ for lifting $\left\{L_{i} \otimes S_{\underline{n}} \cdot d_{i}\left(S_{\underline{n}}\right)\right\}$ to $R_{\underline{n}}$. is easily seen to be represented by the, (à priori), cocycle

$$
\begin{aligned}
& \sum_{\underline{m}_{1}+\underline{m}_{2}=\underline{n}^{\prime} \underline{m}_{1}} \circ \alpha_{\underline{m}_{2}} \in \operatorname{Hom}_{A}^{2}(\mathrm{~L} ., \mathrm{L} .) \\
& \underline{m}_{i} \in \bar{B}_{n}
\end{aligned}
$$

Proposition (2.3). Given à sequence of p cohomology classes $\alpha_{1} \in \operatorname{Ext}_{A}^{1}(E, E)$, then a defining system for the Massey product $\left\langle\alpha_{1} \ldots . \alpha_{p}\right.$ 바 corresponds to a family $\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in \bar{B}_{\underline{n}}}$ of 1 -cochains of $\operatorname{Hom}_{\mathrm{A}}^{1}\left(L, ., L_{\text {. }}\right)$, such the for every $\underline{m} \in \bar{B}_{\underline{n}}$

$$
\text { * } \begin{aligned}
& \sum_{1} \alpha_{1} \circ \alpha_{2}=\underline{m}_{2}=0 \\
& \underline{m}_{i} \in \underline{B}_{1} \underline{n}
\end{aligned}
$$

and such that $\alpha_{i, 0}=\alpha_{i}$ for $i \geqslant 0$ and $\alpha_{\underline{\varepsilon}_{1}}$ represents $\alpha_{1}, \quad 1=1, \ldots, p$.
Conversally, any such family $\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in \bar{B}_{\underline{n}}}$ give rise to a defining system for the Massey product $\left\langle\alpha_{1} \ldots . \alpha_{p}\right.$ nㅡ.

$$
\begin{gathered}
\text { Moreover, given such a defining system, the Massey product } \\
\left\langle\alpha_{1}, \ldots . \alpha_{p} \underline{n}\right\rangle \text { is represented by the } 2 \text {-cocycle } \\
\sum_{1}+\underline{m}_{2}=\frac{m_{2}}{m_{1}} \underline{m}_{1} o \alpha_{B_{2}} \in \operatorname{mom}_{A}^{2}\left(L . . L_{1}\right) .
\end{gathered}
$$

Proof. This is just the observation that a lifting $\mathrm{E}_{\phi_{\underline{n}}}$ of $\mathrm{E}_{\phi_{1}}$ corresponds to a lifting $\left\{1 . \otimes_{K_{\underline{n}}} S_{i} d_{\underline{n}}\left(S_{n}\right)\right\}$ of $\left\{L \cdot \theta_{k} S_{\underline{n}} / \underline{m}_{\underline{n}}^{2} ; d_{i}\left(S_{\underline{n}} / \underline{m}_{\underline{n}}^{2}\right)\right\}$, thus to families $\left\{\alpha_{i, m}\right\}_{\underline{m} \in \bar{B}_{\underline{n}}}$ such that
$\star \star \quad d_{i}\left(s_{n}\right) \mid r_{i} \otimes 1=\sum_{\underline{m} \in \bar{B}_{\underline{n}}} \alpha_{i, \underline{m}^{\otimes} \underline{u^{m}}}$.
The relation $d_{i}\left(s_{n}\right) o d_{i-1}\left(s_{n}\right)=0$ translates into $*$. Conversally ${ }^{\prime}$ proves that $d_{i}\left(S_{n}\right)$ defined by $* *$ defines a lifting $\left\{T_{1} . a S_{n} ; d_{i}\left(S_{\underline{n}} / \underline{m}_{\underline{n}}^{2}\right)\right\}$, thus also a lifting $\mathrm{E}_{\phi_{n}}$ of $E_{\phi_{1}}$. Finally any such $\mathrm{E}_{\phi_{\underline{n}}}$ corresponds to a map $\phi_{\underline{n}}: H \rightarrow \underline{S}_{\underline{n}}$, i.e. to a defining system.
Q.E.D.

Remark (2.4). In the light of (2.3) we shall let the notion of a defining system for the Massey product $\left\langle\alpha_{1}, \ldots, \alpha_{p} ; \underline{n}\right.$ refer to either the map $\phi_{\underline{n}}$ or the family $\left\{\alpha_{\underline{m}}\right\}$ depending on the situation.

Remark (2.5). Let $\underline{n}=\left(n_{1} \ldots . n_{d}\right)$ be given such that $n_{i}=0$ for $i \notin\left\{i_{1}, \ldots, i_{p}\right\}$, then the Massey product $\left\langle\alpha_{1}, \ldots, \alpha_{p}\right.$; n, if defined, depends only upon $\alpha_{1} \ldots \ldots \alpha_{p}$ and the p-uple $\left(n_{i_{1}}, n_{i_{2}} \ldots n_{i_{p}}\right)$. Given $\alpha_{1} \ldots \ldots \alpha_{p} \in E x t{\underset{A}{l}}(E, E)$ and any p-uple $\underline{m}=\left(m_{1} \ldots m_{p}\right)$ there is no confusion in writing

$$
\left\langle\alpha_{1}, \ldots, \alpha_{p} ; \underline{m}\right\rangle
$$

Suppose $p=1$ and $\underline{n}=(n), \alpha_{1}=\alpha \in \operatorname{Fixt}_{A}^{1}(E, E)$, then a defining system for $\left\langle\alpha_{i} \underline{n}\right\rangle$ is a family $\left\{\alpha_{\underline{m}}\right\}_{0 \leqslant \underline{m}<\underline{n}-1}$ of 1 -cochains

$$
\alpha_{m} \in \operatorname{Hom} \frac{1}{A}\left(\Gamma_{s}, \Gamma_{1} .\right)
$$

such that, $\alpha_{i, 0}=d_{i}, i \geqslant 0$ and α_{1} represents α, with the property that for every $0 \leqslant \underline{m}<\underline{n}-1, \int_{\underline{m}_{1}+\underline{m}_{2}=\underline{m}^{-1}}^{1} \alpha_{\underline{m}_{2}}^{0} \alpha_{\underline{m}_{2}}=0$. If a defining system exists, then

$$
\langle\alpha: \underline{n}\rangle=c 1\left(\sum_{\frac{m}{o} \frac{m_{2}}{0} \frac{m_{1}}{<m-1}-m_{1}} \alpha_{1} \alpha_{m_{2}}\right)
$$

In particular for $n=(2)$ the Massey product $\langle\alpha,(2)\rangle$ is always defined and is represented by the 2 -cocycle $\alpha o \alpha$. These are the "Bocksteins".

If $P=2$ and $\underline{n}=(1,1), \alpha_{1}, \alpha_{2} \in \operatorname{Ext} \frac{1}{A}(E, E)$ then the family $\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in\{(0,0),(1,0),(0,1)\} \text { where } \alpha_{(0,0)}=\left\{a_{i}\right\}_{i \geqslant 0} \alpha(1,0), ~(0, ~}$
 for $\left\langle\alpha_{1}, \alpha_{2} ;(1,1)\right\rangle$ wich is represented by $\alpha(1,0)^{0} \alpha(0,1)$ +

Now, having a purely cohomological expression for the (defined) Massey products $\left\langle\alpha_{1} \ldots . . \alpha_{p}\right.$ nㅡ, we shall procede as in §l. computing step by step a set of generators for the ideal of T l defining the formal moduli of F.

Assume, as in \&1 that the formal power-sexies $f_{j}=o\left(y_{j}\right) \in T^{1}=$ $k\left[\left[x_{1}, \ldots . x_{d}\right]\right]$ may be written as

$$
E_{j}=\sum_{|\underline{n}|=N} a_{j, n} x^{\underline{n}}+\text { higher terms } j=1 \ldots r
$$

for some $N \geqslant 2$.
Then by $\S 1(3), \alpha_{j, n}=y_{j}\left\langle x^{*} ; n\right\rangle$ where, by assumption $\left\langle x^{*} ; n\right\rangle=$ $\left\langle x_{i}^{*}, x_{i_{2}}^{*}, \ldots x_{i}^{*}: n\right\rangle$ is (uniquely) defined.
Put $f_{j}^{N}=\Sigma|\underline{n}|=N a_{j \cdot n} \underline{u}^{n}$ and consider the diagram $\S 1$ (7). The map ϕ_{N-1} induces defining systems for all Massey products <x * n > for $|\underline{n}|<N$, and corresponds therefore to a family
(2)

$$
\left\{\alpha_{m}\right\}_{m \in \bar{B}_{N-1}}
$$

of 1 -cochains of $\operatorname{Hom}_{A}^{*}\left(I_{1}, \ldots ..\right)$ such that for every $i \geqslant 0, \alpha_{i, 0}=$ d_{i}, and $\alpha_{e_{i}}$ is a cocycle representing $x_{i}^{*} \underline{e}_{i}=(\underbrace{0}_{i}, 0, \ldots 0)$
ϵ N. Moreover, for every $\underline{m} \in \bar{B}_{N-1}$
(3)

$$
\int_{\underline{m}_{1}+m_{2}=m}^{\underline{m}_{i} \in \bar{B}_{N-1}} \alpha_{1} \circ \alpha_{\underline{m}_{2}}=0
$$

Let $d_{i}\left(S_{N-1}\right): I_{i}{ }_{K} S_{N-1} \rightarrow I_{i-1}{ }_{k} S_{N-1}$ be the $A \otimes S_{N-1}$-1inear map defined by

$$
d_{i}\left(S_{N-1}\right) \mid L_{i} \otimes 1=\sum_{\underline{m} \in \bar{B}_{N-1}} \alpha_{i, \underline{m}} \underline{u}^{\underline{m}} .
$$

Then (3) implies that $\left\{I . \otimes_{k} S_{N-1} ; d_{i}\left(S_{N-1}\right)\right\}$ is a lifting of the universal deformation of L. to S_{2} defined by the map

$$
\phi_{1}: \Pi \rightarrow k\left[u_{1}, \ldots . u_{d}\right] / \underline{m}^{2}
$$

Recall that ϕ_{1} corresponds to the deformation of L. or of E if one wishes, to S_{2} defined by the element

$$
\sum_{i=1}^{d} x_{i}^{*} \otimes \bar{u}_{i} \in \operatorname{Ext}_{A}^{1}(E, E) \otimes \underline{m} \underline{m}^{2}=\operatorname{Def}_{E}\left(S_{2}\right)
$$

By construction $\left\{L \cdot \otimes_{k} S_{N-1} ; d_{i}\left(S_{N-1}\right)\right\}$ induces the deformation $E_{\phi_{N-1}} \in \operatorname{Def} E_{E}\left(S_{N-1}\right)$.

Sticking to the notations of §1, and noticing that for every $\underline{n} \in B_{\underline{N}}^{\prime}=\left\{\underline{m} \in \underline{N}^{d}| | \underline{m} \mid=r\right\}$ the Massey product $\left\langle\underline{x}^{*} ; \underline{n}\right\rangle$ is represented by the 2-cycle

$$
\begin{aligned}
& Y(\underline{n})= \sum_{\underline{m}_{1}+\underline{m}_{2}=\underline{n}} \alpha_{m_{1}} 0 \alpha_{m_{2}} \\
& \underline{m}_{i} \in \bar{B}_{N-1}
\end{aligned}
$$

§1 (8) and (9) translates into the following. For every $m \in B_{N}$. $\Sigma_{\underline{n} \in B_{N}^{0}} \beta_{n, \underline{m}} Y(\underline{n})$ is a coboundary.
 that
(4)

$$
d \alpha_{\underline{m}}=\sum_{n \in B_{N}^{\prime}} \beta_{n, n} x(\underline{n})
$$

aml consinter the family

$$
\begin{equation*}
\left\{\alpha_{\underline{m}}\right\}_{\underline{m}} \in \bar{B}_{N} \tag{5}
\end{equation*}
$$

Let, for every $i \geqslant 0, d_{i}\left(S_{N}\right): L_{i} \otimes S_{N} \rightarrow L_{i-1} \otimes S_{N}$ be defined by: $d_{i}\left(S_{N}\right) \mid L_{i}{ }^{\otimes} 1=\sum_{\underline{m} \in B_{N}} \alpha_{i, \underline{m}^{*} \underline{u}^{I n} .}$. Then (4) translates into

$$
d_{i}\left(S_{N}\right) \circ d_{i-1}\left(S_{N}\right)=0 .
$$

Consequently $\quad\left\{L \cdot \otimes_{k} S_{N} ; d_{i}\left(S_{N}\right)\right\}$ is a lifting of $\left\{L \cdot \alpha_{K} S_{N-1} ; d_{i}\left(S_{N-1}\right)\right\}$ to S_{N}, and induces therefore a lifting $E_{\phi_{N}} \in \operatorname{Def} E_{E}\left(S_{N}\right)$ of ${ }^{E} \phi_{N-1} \cdot E_{\phi_{N}}$, again, corresponds to a map ϕ_{N} : $H \rightarrow S_{N}$ which we now fix.

According to (1.2) ϕ_{N} is a defining system for the Massey products $\left\langle\underline{x}^{*} ; \underline{n}\right\rangle$ for $\underline{n} \in B_{N+1}^{\prime}$. Since ϕ_{N} is induced by, and induces, a family (5), we shall refer to any such family as a defining system for the Massey products $\left\langle\underline{x}^{\star} i \underline{n}\right\rangle, \underline{n} \in B_{N+1}^{\prime}$. By definition, see (1.2), these Massey products are given in terms of the obstruction, see §1 (11), $O\left(E_{\phi_{N}}, \pi_{N+1}^{\prime}\right)$.
By (2.2) this obstruction is defined by the 2 -cocycle $0=\left\{0_{i}\right\}$ where

$$
O_{i}=d_{i}^{\prime}\left(R_{N+1}\right) o_{i-1}^{i}\left(R_{N+1}\right)
$$

$d_{i}\left(R_{N+1}\right): L_{i} \otimes R_{N+1} \rightarrow L_{i-1} \otimes R_{N+1}$ being any lifting of $d_{i}\left(S_{N}\right)$. Pick $d_{i}\left(R_{N+1}\right.$ such that

$$
d_{i}^{\prime}\left(R_{N+1}\right) \mid L_{i} \otimes 1=\sum_{\underline{m} \in \bar{B}_{N}} \alpha_{i} \underline{m}^{\otimes} \underline{u}^{m}
$$

then streight forward calculation, using §l (10), shows that

$$
\begin{aligned}
& +\sum_{j=1}^{r}\left(\sum_{|\underline{m}| \leqslant N+1} \underline{m}_{\underline{m}}+\underline{m}_{2}=\underline{m} \underline{m}_{\underline{m}}^{\prime} j^{\cdot \alpha}{ }_{i, \underline{m}_{1}}{ }^{\alpha \alpha}{ }_{i-1}, \underline{m}_{2}\right) f_{j}^{N} .
\end{aligned}
$$

Remember that $d_{i}\left(S_{N}\right)$ od $\left.{ }_{i-1} / S_{N}\right)=0$.
Comparing this with (1.2) and §1 (11), we have proved the following Proposition (2.6). Given a defining system $\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in \bar{B}_{N+1}}$ for the Massey products $\left\langle\underline{x}^{\star} i \underline{n}\right\rangle, \underline{n} \in B_{N+1}^{\prime}$, $\left\langle\underline{x}^{\star} ; \underline{n}\right\rangle$ is represented by the 2-cocycle

$$
\begin{aligned}
& \underline{m}_{i} \in \bar{B}_{n}
\end{aligned}
$$

By $\S 1$ (16) we know that for every $m \in B_{N+1}$ the 2-cochain

$$
\beta_{\underline{m}}=\sum_{\underline{n} \in B_{N+1}^{\prime}} \beta_{\underline{n}, \underline{m}} Y(\underline{n}) \in \operatorname{Hom}_{A}^{2}\left(L_{0}, L_{0}\right)
$$

is a coboundary. Pick one $\alpha_{\underline{m}} \in \operatorname{Hom}_{A}^{2}(L ., L$.$) such that \alpha \alpha_{\underline{m}}=\beta_{\underline{m}}$. and consider the family

$$
\begin{equation*}
\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in \bar{B}_{N+1}} \tag{6}
\end{equation*}
$$

Just as above, (6) is seen to correspond to a defining system, ϕ_{N+1}, for the Massey products $\left\langle\underline{x}^{*} i \underline{n}\right\rangle, \underline{n} \in B_{N+2}^{0}$. There are relations §1, (17), (18), (19), and we may copy the procedure above.

We end up with the following,

Proposition (2.7). Given a defining system $\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in \bar{B}_{N}+k-1}$ for the 7 Massey products $\left\langle\underline{x}^{\star} ; \underline{n}\right\rangle, \underline{n} \in B_{N+k}^{1},\left\langle\underline{x}^{\star} ; \underline{n}\right\rangle$. is represented by the 2-cocycle

$$
\begin{gathered}
Y(\underline{n})=\sum_{|\underline{m}| \leqslant N+k} \sum_{\underline{m}_{1}+\underline{m}_{2}=\underline{m}} \underline{\underline{m}}_{i} \in \bar{B}_{N+k-1} \\
\underline{m}_{\bullet}^{\prime} \underline{n}{ }^{\alpha} \underline{m}_{1}{ }^{\circ}{ }^{\alpha} \underline{m}_{2} \\
\end{gathered}
$$

Moreover, the polynomials

$$
f_{j}^{N+k}=\sum_{1=0}^{k} \int_{\underline{n} \in R^{\prime}}^{N+1} y_{j}<\underline{x}^{\star} ; \underline{n}>\underline{u} \underline{n} \quad j=1 \ldots, r
$$

induces identities §1 (22) and (23), such that if we for every $\underline{m} \in B_{N+k}$ pick a cochain $\alpha_{\underline{m}} \in \operatorname{Hom} \frac{1}{A}(L ., L$.$) with$

$$
\mathrm{d} \alpha_{\underline{m}}=\sum_{\underline{n} \in B^{\prime}} \beta_{N+k} \underline{n}, \underline{m} Y(\underline{n})
$$

then the family

$$
\left\{\alpha_{\underline{m}}\right\}_{\underline{m} \in \bar{B}_{\mathrm{N}+\mathrm{k}}}
$$

is a difining system for the Massey products $\left\langle\underline{x}^{*}: \underline{n}\right\rangle, \underline{n} \in B_{N+k+1}^{\prime}$. We may, refering to $\$ 1(28),(29),(30)$, sum up the content of this §2 as follows

Theorem (2.8). Given an A-module E the formal moduli H of E is determined by the Massey products of $E x t_{A}^{\circ}(E, E)$. In fact

$$
H \simeq k\left[\left[x_{1}, \ldots . x_{d}\right]\right] /\left(f_{1}, \ldots . f_{r}\right)
$$

where

$$
\mathrm{E}_{j}=\sum_{1=2}^{\infty} \sum_{\underline{n} \in B_{1}^{\prime}} Y_{j}\left\langle\underline{x}^{*} ; \underline{n}\right\rangle \underline{x} \underline{n} .
$$

Corollary (2.9). Any complete local k-algebra A with residue field k is determined by $\operatorname{Ext}_{A}^{i}(k, k), i=1,2$ and its Massey-products.
proof. Obviously A is the formal moduli of k as an A-module. Q.F.D.
[Car] Cartan H. Seminaire 1960-61. Institut Henri Poincaré, Paris, 1962.
[Lal] Laudal, O.A., Formal Moduli of Algebraic structures, Lecture Notes in Mathematics No 754. Springer-Verlag 1979.
[La2] Laudal, O.A., Groups and Monoids and their Algebras. Preprint Series, Inst. of Math., University of Oslo, No 12 (1982).
[M] Massey, W.S., Some Higher order Cohomology operations. Symposium International de Topologia Algebraica. p.p. 145-154, La Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City 1958.
[May] May, J.P., Matric Massey Products, Journal of Algebra 12 (1969), p.p. 533-568.
[PAL] Palamodov, V.P.. Cohomology of analytic algebras (russian). Trudi Moskovskogo Matematitseskogo instituta (Vol 44) 1982, pp. 3-61.
[S\&S] Schlessinger, M. \& Stasheff, J.. Deformation theory and rational homotopy type \& The Tangent Lie Algebra of a Commutative Algebra, Manuscripts, 1982.

