THE HAUSDORFF DUAL PROBLEM: ALMOST CONNECTED GROUPS

Terje Sund
University of Oslo, Norway.

ABSTRACT. It will be shown that an almost connected locally compact group G has a Hausdorff unitary dual space if and only if G is a compact extension of an abelian group.

1.0. Let G be a locally compact group, G_0 its connected component of the identity. The unitary dual space $\, \hat{\mathsf{G}} \,$ of $\, \mathsf{G} \,$ consists of the set of all equivalence classes of irreducible continuous unitary representations of G. \hat{G} is endowed with the Fell-topology which is the inverse image of the hull-kernel topology, on the set of primitive ideals of the group C^* -algebra $C^*(G)$, under the natural map which assigns to each element π of $\hat{ extstyle G}$ its kernel, when π is regarded as a representation of $C^*(G)$, [3], [4]. It seems to be a reasonable conjecture that $\, \hat{\mathbb{G}} \,$ is a Hausdorff space if and only if G is of type I and is a compact extension of an abelian group. This hypothesis has been verified for connected groups by L. Baggett and the author, [2]. The principal aim of the present article is to settle this question for almost connected groups. Our proof is organized as follows. First we treat the case when G_{Ω} is a noncompact semisimple Lie group. Invoking the fact, proved in [2], that \hat{G}_0 cannot be Hausdorff, we show using the Mackey procedure that \hat{G} contains a convergent sequence with at least two limits. Hence \hat{G} is non-Hausdorff. Next, we assume G_{Ω} is an arbitarry Lie group and that $\, \hat{G} \,$ is $\, T_2 \, . \,$ An induction argument yields the desired structural property for G. Finally, if G is almost connected, locally compact we approximate by Lie groups to reach our theorem.

Theorem 1. An almost connected locally compact group G has a Hausdorff unitary dual space if and only if G is a compact extension of an abelian group.

<u>Proof.</u> <u>1.1.</u> We consider first the case where the group G is a finitely connected Lie group and its identity component G_0 is semisimple and noncompact. Then, by [2, Proposition 4], the dual space of G_0 fails to be Hausdorff. It will be shown below that, in the present situation, \hat{G} connot be Hausdorff. To this end we shall construct a convergent sequence from \hat{G} with at least two limits. We shall assume the center Z of G_0 is finite (if Z is infinite, replace G with the group G/Z).

Let $G_0=KAN$ be an Iwasawa decomposition. Let $\{\rho_m\}$ be a sequence of irreducible unitary complementary series representations of G_0 which converges to a reducible unitary representation ρ . The existence of such a sequence was shown in the proof of [2, Proposition 4] and, in addition, the limit ρ could be written as a direct sum $\rho = \rho^1 \oplus \rho^2$ where the trivial element τ was a subrepresentation of the restriction $\rho^1|K$ and $\rho^2|K$ was disjoint from τ . By [2] again ρ splits into a direct sum of elements of \hat{G}_0 . Hence we can find an irreducible subrepresentation of ρ^1 whose restriction to K contains τ . As a consequence we may assume that ρ^1 and ρ^2 both are irreducible since the sequence $\{\rho_m\}$ converges to every subrepresentation of ρ .

1.2 The complementary series representations ρ_m are induced from (non-unitary) characters of a minimal parabolic subgroup of G_0 , [6], hence we presume they all have the same dimension N = aleph nought. In the present situation there is only a finite number of subgroups of G containing G_0 , so we can find a subsequence, also denoted by $\{\rho_m\}$, for which the stabilizer of each ρ_m in G is independent of m. Let H denote this mutual stability subgroup. Next, let for each m $\tilde{\rho}_m$ be an irreducible cocycle extension of ρ_m to H in the sense of Mackey, [8]. That is, the cocycle ω_m of each $\tilde{\rho}_m$ is the inflation to H of a cocycle on H/G_0 . Within similarity there is only a finite number of cocycles of the group H/G_0 . Taking a subsequence again we assume all the ω_m -s are similar, hence there exists a cocycle ω and, for each m, a coboundary δ_m such that $\omega_m = \delta_m$ ω . Here each δ_m has the form $\delta_m(x,y) = \frac{f_m(x,y)}{f_m(x)f_m(y)}$, where f_m is a (Borel) function of H/G_0 into the circle group.

Replacing each $\widetilde{\rho}_m$ with $f_m^{-1}\widetilde{\rho}_m$ we obtain a sequence, still denoted $\{\widetilde{\rho}_m\}$, of irreducible ω -representations of H extending the ρ_m -s. By continuity of the inducing map, [4], we have

$$\operatorname{ind}_{G_0}^H(\rho_m) \quad \underset{m}{\to} \quad \operatorname{ind}_{G_0}^H(\rho^1 \oplus \rho^2) \ = \ \operatorname{ind}_{G_0}^H(\rho^1) \oplus \operatorname{ind}_{G_0}^H(\rho^2) \, .$$

Let τ^i be an irreducible subrepresentation of $\operatorname{ind}_{G_0}^H(\rho^i)$, i=1,2. Then τ^i lies over the G-orbit of ρ^i , i=1,2, see e.g. [1, Theorem 2.2]. By elementary properties of the hull-kernel topology we can find a sequence $\{\tau_m\}$ of elements from \widehat{H} such that each τ_m is a subrepresentation of $\operatorname{ind}_{G_0}^H(\rho_m)$ and, in addition, $\{\tau_m\}$ converges to τ^1 . Here τ_m restricts to G_0 as a multiple of ρ_m , [1, Theorem 2.2]. Whence we can find irreducible ω^{-1} -representations σ_m of H, with each σ_m equal to a multiple of the identity on G_0 , and such that $\tau_m = \widetilde{\rho}_m \mathscr{O}_m$, [8, Theorem 8.3]. Now since the ω^{-1} -dual of H/G_0 is finite we may assume that all the σ_m -s are equivalent (taking a subsequence), say $\sigma_m = \sigma^1$, and therefore $\tau_m = \widetilde{\rho}_m \mathscr{O} \sigma^1$, for all m.

Let W be a fixed Hilbert space of dimension N, where N = aleph nought is the common dimension of all the τ_m -s. Let v be an arbitrary unit vector in the Hilbert space of τ^1 . Since $\tau_m \neq \tau^1$ we can find a sequence $\{v_m\}$ of vectors from W, bounded by 1, such that

$$\langle \tau_{m}(y) v_{m}, v_{m} \rangle \xrightarrow{m} \langle \tau^{1}(g) v, v \rangle$$
 (1)

uniformly in y on each compact subset of H and, in addition,

$$\langle \tau_{m}(g) v_{m}, v_{m} \rangle \xrightarrow{m} \langle \tau^{1}(g) v, v \rangle$$
 (2)

for all continuous complex valued functions g with compact support on H, g \in C $_{G}(H)$.

We show next that $\{\tau_m\}$ is a Cauchy sequence in the complete metric space $Irr_N^-(H)$ of all irreducible representations of H the Hilbert space W, [18, 3.7.4].

Let $h \in H$ and let $\epsilon > 0$ be given. We pick a neighbourhood V of the identity in H such that

$$\|g-g^Y\|_1 < \epsilon/15$$
, for all $y \in V$,

where the integration is w.r.t. a left Haar measure on H, and $g^{Y}(x) = g(y^{-1}x)$; x,y \in H. Let m(h) be a positive integer such that

$$|\langle \tau_{m}(g^{*}\star g^{h})v_{m},v_{m}\rangle - \langle \tau^{l}(g^{*}\star g^{h})v,v\rangle| \langle \epsilon/15 \rangle$$
 (3)

whenever m > m(h). For every y in V we obtain

for each m > m(h).

Let C be any compact subset of H. We cover C with a finite number of translates of V, C $\subset h_1$ VU h_2 VU···U h_r V. Put $m_0 = \max\{m(h_1), \ldots, m(h_r)\}$. Then, for any y in C, we have

$$|\langle \tau_{m}(g^{\star}*g^{Y})v_{m},v_{m}\rangle - \langle \tau^{1}(g^{\star}*g^{Y})v,v\rangle| \langle \epsilon/5|$$
 (4)

Let $w \in W$, $w \neq 0$, and let ε be given, $0 < \varepsilon < 1$. For each m, the set $\{\tau_m(g)v_m\colon g \in C_C(H)\}$ is dense in the Hilbert space W. Hence we can find functions $g_m \in C_C(H)$ such that

$$\|\mathbf{w} - \mathbf{\tau}_{\mathbf{m}}(\mathbf{g}_{\mathbf{m}})\mathbf{v}_{\mathbf{m}}\| < \varepsilon/5(\|\mathbf{w}\| + 1) \tag{5}$$

Put $u_m = \tau_m(g_m)v_m$, and let C be an arbitrary compact subset of H. By (4) we can find m_0 such that

$$\left|\langle \tau_{m}(y)u_{m}, u_{m}\rangle - \langle \tau_{n}(y)u_{n}, u_{n}\rangle \right| < \varepsilon/5 \tag{6}$$

for each y in C, whenever $m,n > m_0$. Using (6) we obtain for all y in C,

$$|\langle \tau_{m}(y)w,w\rangle - \langle \tau_{n}(y)w,w\rangle |$$

$$|\langle \tau_{m}(y)w,w\rangle - \langle \tau_{m}(y)w,u_{m}\rangle | + |\langle \tau_{m}(y)w,u_{m}\rangle - \langle \tau_{m}(y)u_{m},u_{m}\rangle |$$

$$+ |\langle \tau_{m}(y)u_{m},u_{m}\rangle - \langle \tau_{n}(y)u_{n},u_{n}\rangle | + |\langle \tau_{n}(y)u_{n},u_{n}\rangle - \langle \tau_{n}(y)u_{n},w\rangle |$$

$$+ |\langle \tau_{n}(y)u_{n},w\rangle - |\langle \tau_{n}(y)w,w\rangle |$$

$$|\langle \tau_{n}(y)u_{n},w\rangle - |\langle \tau_{n}(y)w,w\rangle |$$

whenever $m,n > m_0$, since by (5)

$$\|u_{m}\| = \|\tau_{m}(g_{m})v_{m}\| \leq \|w\| + \epsilon/5 < \|w\| + 1.$$

This shows that $\{\tau_{_{\rm I\! I\! I}}\}$ is a Cauchy sequence in the complete metric space ${\rm Irr}_{_{\rm I\! I\! I}}({\rm H})$, see [3, 18.1].

Now $\tau_m = \tilde{\rho}_m \otimes \sigma^l$, for all m, and it follows easily that $\{\tilde{\rho}_m\}$ is a Cauchy sequence in the complete space $\omega\text{-Irr}_N(H)$ of all irreducible $\omega\text{-representations}$ of H on the Hilbert space W. Thus let $\tilde{\rho}$ be a limit for the sequence $\{\tilde{\rho}_m\}$ in $\omega\text{-Irr}_N(H)$. Recall that $\tau_m \stackrel{*}{m} \tau^l$, where the restriction $\tau^l | G_0$ contains ρ^l as a direct summand. Assume first that ρ^l doesn't occur as a subrepresentation of $\tilde{\rho} | G_0$. Then the sequence $\{\tau_m\}$ has two nonequivalent limits, $\tilde{\rho} \otimes \sigma^l$ and τ^l . By Mackey, [8], $\pi_m = \operatorname{ind}_H^G(\tau_m)$ is irreducible for each m, and by continuity of inducing the sequence $\{\pi_m\}$ converges to both $\operatorname{ind}_H^G(\tau^l)$ and $\operatorname{ind}_H^G(\tilde{\rho} \otimes \sigma^l)$, which are nonequivalent since, by the above, their restrictions to G_0 are concentrated on different G-orbits. Therefore it follows that \hat{G} is non-Hausdorff.

The remaining possibility is that ρ^1 occurs as a direct summand of $\widetilde{\rho}|_{G_0}$. In this case we replace τ^1 with τ^2 in the above construction. Recall that τ^2 was assumed to be an irreducible subrepresentation of $\operatorname{ind}_{G_0}^H(\rho^1\oplus\rho^2)$ whose restriction to G_0 contains ρ^2 as a direct summand. Thus we can find a sequence $\{\widetilde{\rho}_m \sigma^2\}$ such that $\widetilde{\rho}_m \sigma^2$ is an irreducible subrepresentation of $\operatorname{ind}_{G_0}^H(\rho_m)$ for each m, and the sequence converges to both τ^2 and $\widetilde{\rho}\sigma^2$.

Next, we show that τ^2 and $\rho \otimes \sigma^2$ are in fact nonequivalent. Let $N_{\overline{G}}(K)$ be the normalizer of K in G. It is known that $N_{\overline{G}}(K)$ meets every connected component of G since K is maximal compact and $G_{\overline{O}}$ is semisimple.

In particular, we can find coset representatives x_1, x_2, \dots, x_r of G/G_0 such that $x_i K x_i^{-1} = K$, 1 < i < r. Hence each K-fixed vector of ρ^1 is also a K-fixed vector of $x_i \rho^1$, $(x_i \rho^1(y) = \rho^1(x_i^{-1}yx_i))$, 1 < i < r. It follows that $x \rho^1 | K$ contains the trivial representation for each x in G, and as a consequence, the G-orbits of ρ^1 and ρ^2 in \hat{G}_0 are distinct. Accordingly τ^2 and $\tilde{\rho} \otimes \sigma^2$ are nonequivalent. Inducing the sequence $\{\tilde{\rho}_m \otimes \sigma^2\}$ and its limits to G we see as before that \hat{G} fails to be a Hausdorff space. This completes our argument in case G_0 is a semisimple Lie group.

- 1.3. Remark. The above construction led to a sequence $\{\pi_m\}$ of \hat{G} , each π_m of dimension aleph nought, that converges to the nonequivalent representations π^1 and π^2 , where the restriction of π^1 to a maximal compact subgroup K of G_0 contains the identity representation 1, whereas $\pi^2|_K$ is disjoint from 1.
- 2. We are now ready to complete the proof of Theorem 1 in the Lie case. Assume the identity component G_0 is an arbitrary Lie group

of finite index in G. Our argument will go by induction on the dimension $\dim(G)$. The theorem is obviously correct for finite groups $(\dim(G) = 0)$.

Assume that the result is true for all Lie groups of dimension less than n, where n is a positive integer, and let G be a group of dimension equal to n possessing Hausdorff dual space. First, if G contains a compact normal subgroup K of positive dimension then we apply the inductive hypothesis to the factor group G/K, and obtain easily that G is a compact extension of an abelian group. Therefore we presume that G contains no compact normal subgroups of positive dimension. We have already seen that the connected component of the identity in G can not be semisimple. Thus let A be of maximal dimension among the abelian, connected, normal subgroups of G which are contained in G_{\circ} . The group Ais nontrivial since the center of the nilradical of G_0 is invariant under all automorphisms of G_0 . Put r = dim(A). Then A is isomorphic to a direct product $\underline{R}^{r-j} \times \underline{T}^{j}$ where the torus part $\underline{\underline{\mathtt{T}}}^{\mathsf{j}}$ is G-invariant since the vector group $\underline{\underline{\mathtt{R}}}^{\mathsf{r-j}}$ has no nontrivial compact subgroups. It follows that j = 0 and A is isomorphic to $\underline{\underline{R}}^{r}$. Then, since by the inductive hypothesis G/A is amenable, we can mimic the arguments of [2, p.66]. Hence we deduce first that A is central in G (since the stabilizer of each element in A is seen to equal all of G). Secondly, let K be a compact normal subgroup of G/A for which the factor group in G/A is abelian (the inductive hypothesis applied to G/A).

Let $p: G \to G/A$ denote the canonical map. Since the second cohomology group $H^2(K,A)$ is known to be trivial, the group $p^{-1}(K)$ must be isomorphic to the direct product $K \times A$. In particular, K is normal in G. Let G_1 denote the factor group G/K, and let A_1 be the image of A in G_1 under the canonical map $G \to G_1$.

By assumption K is finite. Then $G_1 = G/K$ must be finitely connected. As in [2, p.66] the groups G_1 and A_1 are seen to have the same Lie algebra, since A_1 is maximal abelian. We conclude that $F = G_1/A_1$ is discrete, hence is finite, and since $H^2(F,A_1) = (0)$ it follows that G_1 is isomorphic to the direct product $F \times A_1$. Thus G is a central extension of the abelian group $F \times A_1$ by the finite group K. This completes our proof of the Lie case.

- 3. Finally, let G be an almost connected locally compact group, i.e., the identity component is cocompact in G. Then the group is a projective limit, $G = \text{proj lim}(G_{\alpha})$, of finitely connected Lie groups G_{α} , $[9, \S4.6]$. Now, if at least one G_{α} is noncompact and semisimple then \hat{G}_{α} must be non-Hausdorff by $\S1.1$ above. Since \hat{G}_{α} is naturally embedded as a closed subspace of \hat{G} , it is clear that \hat{G} cannot be a T_2 -space. Therefore assume no G_{α} is semisimple. If \hat{G} is Hausdorff then each \hat{G}_{α} has the same property, hence G_{α} is a compact extension of an abelian group by the Lie case. Then G is also a compact extension of an abelian group by definition of projective limit. Conversely, if G is almost connected and, in addition, has a precompact commutator subgroup, then G is in fact a compact extension of a vector group. In particular G is of type I. In this case \hat{G} is known to be Hausdorff, see e.g. [10]. Our proof of Theorem 1 is complete.
- $\underline{4}$. We give below some applications of Theorem 1. An element x of a topological space M is said to be a <u>Hausdorff point</u> of M if for every element y of M, not in the closure of x, we can find

two neighbourhoods in M separating x and y. An inspection of the proof of $\begin{bmatrix} 2 \end{bmatrix}$ Lemma $5 \end{bmatrix}$ leads at once to the following improvement of that lemma.

Lemma 3. Let N be a closed normal subgroup of a locally compact group G, and assume that N is of type I and also that G/N is amenable. If the trivial representation is a Hausdorff point of \widehat{G} then the map $\gamma \to G(\gamma)$ of \widehat{N} into the space of all closed subgroups of G is continuous at the trivial element of \widehat{N} . Here $G(\gamma)$ denotes the stability group in G of γ .

Our next result should be related to [10, Theorem 1].

<u>Proposition 4.</u> Let G be an almost connected, amenable locally compact group. Then the following statements are equivalent.

- (1) The trivial representation is a Hausdorff point of \hat{G} .
- (2) \hat{G} is a Hausdorff space.

<u>Proof.</u> The implication (2) => (1) is clear. Assume (1) is true. Since G is amenable, its identity component must be either non-semisimple or compact. If G_0 is compact then G is compact and \hat{G} is a Hausdorff space. Therefore, let A be of maximal dimension among the connected normal abelian subgroups of G. Using the above lemma with N = A, we see as in [2, p.66] that A is central in G. Then we argue as in the proof of Theorem 1, §2. It follows that G is a compact extension of an abelian group, proving that \hat{G} is Hausdorff.

Remark. If G is a semisimple Lie group then the trivial representation may well be a Hausdorff point of G. In fact, it is possible for the trivial representation to be an isolated point of the dual, [6, Remark 10].

Corollary 5. Let G be an almost connected, amenable locally compact group. Then \hat{G} is a Hausdorff space if and only if for each element x of $C^*(G)$ the map $\pi \to \|\pi(x)\|$, $C^*(G)^{\wedge} \to \underline{\mathbb{R}}$, is continuous at the trivial representation.

Proof. This is a consequence of Proposition 4 and [3, 3.9.4].

Corollary 6. Let G be an almost connected locally compact group. Then $C^*(G)$ is a C^* -algebra with a continuous trace if and only if \hat{G} is a Hausdorff space.

<u>Proof.</u> If \hat{G} is Hausdorff then $C^*(G)$ has a continuous trace by Theorem 1 and the Corollary in [5]. The converse follows from [3, 4.5.3].

REFERENCES

- [1] L.W. Baggett, A weak containment theorem for groups with a quotient R-group, Trans. Amer. Math. Soc. 132 (1968), 175-215.
- [2] L.W. Baggett and T. Sund, The Hausdorff dual problem for connected groups, J. Functional Anal. 43 (1981), 60-68.
- [3] J. Dixmier, Les C*-algèbres et leurs representations, Gauthier-Villars. Paris 1964.
- [4] J.M.G. Fell, Weak containment and induced representations of groups, Canad. J. Math. 14 (1962), 237-268.
- [5] E. Kaniuth, Primitive ideal spaces of groups with relatively compact conjugacy classes. Arc. Math. 32 (1979), 16-24.
- [6] B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642.
- [7] C.C. Moore and J. Rosenberg, Groups with T, primitive ideal spaces, J. Funct. Anal. 22 (1976), 204-224.
- [8] G.W. Mackey, Unitary representations of group extensions, Acta Math. 99 (1958), 265-311.
- [9] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955.
- [10] J. Peters, Groups with completely regular primitive dual space, J. Funct. Anal. 20 (1975), 136-148.
- [11] T. Sund, Duality theory for groups with precompact conjugacy classes, II, Trans. Amer. Math. Soc. 224 (1976), 313-321.