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ABSTRACT. It will be shown that an almost connected
locally compact group G has a Hausdorff unitary dual
space 1f and only if G 1is a compact extension of an

abelian group.



1.0. LLet G Dbe a locally compact group, GO its connected compo-
nent of the identity. The unitary dual space & of G consists of
the set of all equivalence classes of irreducible continuous uni-
tary representations of G. 8 is endowed with the Fell-topology
which 1is the inverse image of the hull-kernel topology, on the set
of primitive ideals of the group C*—algebra C*(G), under the
natural map which assigns to each element = of é its kernel,
when n is regarded as a representation of C*(G), [3], [4]. 1t
seems to be a reasonable conjecture that & is a Hausdorff space
if and only if G 1is of type I and is a compact extension of an
abelian group. This hypothesis has been verified for connected
groups by L. Baggett and the author, [2]. The principal aim of the
present article is to settle this question for almost connected
groups. Our proof is organized as follows. First we treat the case
when G is a noncompact semisimple Lie group. Invoking the fact,

0
proved in [2 ], that éO cannot be Hausdorff, we show using the
Mackey procedure that @ contains a convergent sequence with at
least two limits. Hence é is non-Hausdorff. Next, we assume GO
is an arbitarry Lie group and that 8 is T2. An induction
argument yields the desired structural property for G. Finally,
if G 1is almost connected, locally compact we approximate by Lie

groups to reach our theorem.

Theorem 1. An almost connected locally compact group G has a
Hausdorff unitary dual space if and only if G 1is a compact

extension of an abelian group.

Proof. 1.1. We consider first the case where the group G 1is a
finitely connected Lie group and its identity component GO is
semisimple and noncompact. Then, by [2, Proposition 4], the dual
space of GO fails to be Hausdorff. It will be shown below that,
in the preser: situation, & connot be Hausdorff. To this end we
shall construct a convergent sequence from & with at least two
limits. We shall assume the center 7 of GO is finite (if 27 1is
infinite, replace G with the group G/Z).



= VAN be an Iwasawa decomposition. Let {pm} be a

nce of irveducible unitary complementary series representa-

tions of Gpy which converges to a reducible unitary representation
p. The existence of such a sequence was shown in the proof of [2,
Proposition 4 | irn addition, the limit p could be written as

a direct sum p = plwp? where the trivial element 1 was a sub-

K and p?|K was disjoint

spresentation of the restriction pl

again  p  splits into a direct sum of elements of

.

we can find an irreducible subrepresentation of p!

contains 1. As a consequence we nay

- 1 - ) - . - . .
assume that Y oand  p? both are irreducible since the sequence

o

lp_| converges to every subrepresentation of p.

ementary series representations P, Are induced from

sry ) characters of a minimal parabolic subgroup of GO ;

(6 1, hence we presume they all have the same dimension N = aleph
nought.. In the present situation there is only a finite number of

subgroups of G containing GO , so we can find a subsequence,

|, for which the stabilizer of each o in G

also denoted by  |p

m
is independent of . Let H denote this mutual stability sub-

~

agroup. Next, let for each m P be an irreducible cocycle exten-
sion of p  to M in the sense of Mackey, [8]. That is, the co-

m
cycle o of each P is the inflation to H of a cocycle on

H/GOQ Within similarity there is only a finite number of cocycles

of the group H/un Talking a subsequence again we assume all the
[ ¢ 8

w ~5 are similar, hence there exists a cocycle w and, for each

m, a coboundary & such that »n = & w. Here =2ach & “has the
? mn m m m

E(x,y)

. N i . .

form 5 {x,y) = -7, where [ _ is a (Borel) function of

m - Co{w)t (y) m

i m -

H/G into the circle group.

75y C I



Replacing each pm with fﬁlpm we obtain a sequence, still

denoted {QW], of irreducible w-representations of H extending
T
the Pm“S-“BY continuity of the inducing map, [4}, we have

1

ina' (p ) = ina'l (plep?) = ing'! (g)l)windf (p2).
G m m G G G
0 0 8] 0
i _ L . . .H i .
Let 1 be an irreducible subrepresentation of 1ndG (p7), 1 =
. . 0
1 . . 1 .
1,2. Then = lies over the G-orbit of p , 1 = 1,2, see e.qg. [],

Theorem 2.2]. By elementary properties of the hull-kernel topology

we can find a sequence {1 |} of elements from il such that each
. . . H . C s
T is a subrepresentation of ind_. (p_) and, in addition, {t_}
m : G 0 m m
converges to +tl. Here T restricts to GO as a multiple of Y

[1, Theorem 2.2 ]. Whence we can find irreducible o~ l-representa-
tions o of H, with each . equal to a multiple of the

and such that <t = p & o . [8, Theorem 8.3].

identity on G
m m

O i

Now since the w~l!-dual of H/GO is finite we may assume that all

the o, ~§ are equivalent (taking a subsequence), say O = ol, and
therefore T = S @gl, for all m.

m m
Let W be a fixed Hilbert space of dimension N, where N = aleph

nought 1is the common dimension of all the rm—s. Let v be an
arbitrary unit vector in the Hilbert space of <1!. Since T T
we can find a sequence {vm} of vectors from W, bounded by 1,
such that

1
<T v > > < vV, V>
rn(}‘) ~lv T (g) ¢ (])
uniformly il’l Y on each compact subset of H and, in addition,

< > <!
rm(g)vm.v > tt(g)v,v> (2)

i

for all continuocus complex valued functions g with compact
support on H, g € CC(H).

We show next that {rm} is a Cauchy sequence in the complete
metric space IrrN(H) of all irreducible representations of H on

the Hilbert space W, []8, 3.7.4].



Let h € H and let e > 0 Dbe given. We pick a neighbourhood V
of the identity in H such that
lg-g¥1, < e/15 ,  for all y €V,

where the integration is w.r.t. a left Haar measure on H, and
gy(X) = g(y=1x); X,y € H. Let m(h) Dbe a positive integer such
that

|<Tm(g**gh)vmlvm> - <11(g**gh)v,v>| < €/15 (3)

whenever m > m(h). For every y in V we obtain

- 1 1 1
|<Tm(yﬁ)Tr‘1(g)vn],rm(g)vm> <ti(yh)t!(g)v,tl(g)v>| <«
|<mm(yh)rm(g)vm,tm(g)vm> - <rm(h)¢m(g)vm,rm(g)vm>|
+ |<1m(h)1m(g)vm;rm(g)vm> - <tl(h)tl(g)v,tl(g)v>]|

+ [<rl(gMv, tl(g)vs - <xl(g¥M)v, xl(g)v> |
< H(tm(gyh)—rm(gh)k%ﬂ"rm(g)vmﬂ+e/5

(e (g =2 (g™ ) vl (g)vi

yh_gh"]+€/]5+"gh_gyh”] < ¢/5,

< g
for each m » m(h).

Let C be any compact subset of H. We cover C with a finite
VU h

number of translates of V, C < h VUeeeU hrV. Put m, =

1 2 0

max{m(h]),...,m(hr)}. Then, for any y in C, we have
* *
|<ﬁn(g *gy)vm,vm> - <gl(g *gy)v,v>l < s/S,_ (4)

Let w € W, w £ 0, and let ¢ be given, 0 < g < 1. For each m,
the set {1 (g)v _: gGCC(H)} is dense in the Hilbert space W.

Hence we can find functiouns Iy € CC(H) such that

llw—-'cm(gm)vml! < ¢/5(1wi+1) (5)



Jv o, and let © be an arbitrary compact subset of

H. By (4) we can {find m_ such that

< e/5 (6)

for each vy in C, W m,n > m,. Using (6) we obtain for all

y . in C,

é < Tiw VW s =<7 . ({' Yy } W, W I
[ - [ <y - wr %oy 1% « i “ “©y

MR R “mgy;wﬁum>ITi<Tm(y}w’um>m<rm(y)um’um>‘

+ L >=<t {y)u _,u >|+]< u_,u_>-< u_,w>
e " Lﬁ\y) n’ ' n | Tn(y) n' n Tn(y) n' l

; AU . ’ . F L
+ | {ylu_,w-|<t {y)w,w> |

e t+e/5+lhu hilu —wl
m i n I

+ fu ~wihiwl < 5¢g/5 = g ,

whenever m,n > m_ , since by

9,
tu_ o=t (g Jv_ I < dwh+e/5 < lwi+1.
m m7m’om
This shows that {1 | is a Cauchy sequence in the complete metric

space IrrH§H}p see |[3, Eg“?]‘

Now T = Sm @cl, for all m, and it follows easily that {Em}

is a Cauchy complete space w—IrrN(H) of all

irreducible ~ions of H on the Hilbert space W.

it for the sequence {S } in w—IrrN(H).

Thus let o be a "

Recall that =t = 1!, where the restriction tllGO contains p!l
mom

as a direct summand. Assume first that pl! doesn't occur as a

subrepresentation of pEG . Then the sequence’ {rm} has two non-

. G ~ 3 ) ) . .G
equivalent limits, ®gl and tl. By Mackey, [8], T = 1ndH(tm)

is irreducible for each m, and by continuity of inducing the

G . ~
to both ind (z)!) and lndg(p®cl),

} cony H

sequence {ﬁn

which are nonequivalent since, by the above, their restrictions to

on different G-orbits. Therefore it follows

G are concentrated




The remaining possibility is that pl! occurs as a direct summand
of S'GO’ In this case we replace <l with <2 in the above
construction. Recall that 1?2 was assumed to be an irreducible
subrepresentation of indgo(plwpz) whose restriction to G0
contains p? as a direct summand. Thus we can find a sequence

{S @02} such that S @02 1is an irreducible subrepresentation
m m

H

Go(pm) 2

of 1ind for each m, and the sequence converges to both =
and poo?.
Next, we show that =12 and E®o2 are in fact nonequivalent. Let

NG(K) be the normalizer of K in G. It is known that NG(K)

meets every connected component of G since K is maximal compact

and GO is semisimple.

In particular, we can find coset representatives x],xz,...,xr of

G/GO such that xinll = K, 1 < 1 < r. Hence each K-fixed vector
of pl! is also a K-fixed vector of Xipl, (xipl(y) = pl(leyxi)),

1 < i < r. It follows that XpllK contains the trivial represen-

tation for each x in G, and as a consequence, the G-orbits of

pl and p2 in @O are distinct. Accordingly 2 and 5602

are nonequivalent. Inducing the sequence {gmecz} and its limits
A .
to G we see as before that G fails to be a Hausdorff space.

This completes our argument in case GO is a semisimple Lie group.

1.3. Remark. The above construction led to a sequence {n } of
— m

A : .
G, each T of dimension aleph nought, that converges to the
nonequivalent representations =l and =2, where the restriction

of nl to a maximal compact subgroup K of GO contains the

identity representation 1, whereas nle is disjoint from .

2. We are now ready to complete the proof of Theorem 1 in the Lie

case. Assume the identity component G0 is an arbitrary Lie group



of finite index in G. Qur argument will go by induction on the
dimension dim(G). The theorem is obviously correct for finite
groups (dim(G) = 0).

Assume that the result is true for all Lie groups of dimension less
than n, where n 1is a positive integer, and let G Dbe a group of
dimension equal to n possessing Hausdorff dual space. First, if

G contains a compact normal subgroup K of positive dimension
then we apply the inductive hypothesis to the factor group G/K,
and obtain easily that G is a compact extension of an abelian
group. Therefore we presume that G contains no compact normal
subgroups of positive dimension. We have already seen that the
connected component of the identity in G can not be semisimple.
Thus let A Dbe of maximal dimension among the abelian, connected,
normal subgroups of G which are contained in GO. The group A

is nontrivial since the center of the nilradical of GO is
invariant under all automorphisms of GO. Put r = dim(A). Then A
gr—j y Zj

] . . . r-j o
. is G-invariant since the vector group R J has no nontrivial

is isomorphic to a direct product where the torus part

=

compact subgroups. It follows that j = 0 and A 1is isomorphic to
gr. Then, since by the inductive hypothesis G/A is amenable, we
can mimic the arguments of [2, p.66]. Hence we deduce first that A
is central in G (since the stabilizer of each element in A is
seen to equal all of G). Secondly, let K be a compact normal
subgroup of G/A for which the factor group in G/A is abelian
(the inductive hypothesis applied to G/A).

Let p: G » G/A denote the canonical map. Since the second
cohomology group HZ?(K,A) is known to be trivial, the group p~1!(K)
must be isomorphic to the direct product K x A. In particular, K

is normal in G. Let G) denote the factor group G/K, and let A]

be the image of A in G, under the canonical map G » Gy-



By assumption K is finite. Then G] = G/K must be finitely

connected. As in [2, p.66] the groups G] and A, are seen to

have the same Lie algebra, since A, is maximal abelian. We

conclude that F = G]/A] is discrete, hence is finite, and since

HZ(F,A])

product F x A

(0) it follows that G, is isomorphic to the direct

1° Thus G 1s a central extension of the abelian

group F x A] by the finite group K. This completes our proof of

the Lie case.

3. Finally, let G Dbe an almost connected locally compact gréup,
i.e., the identity component is cocompact in G. Then the group is
a projective limit, G = proj lim(Ga), of finitely connected Lie
groups Ga ' [9, §4.6]. Now, if at least one Ga is noncompact and
semisimple then éa must be non-Hausdorff by §1.1 above. Since

A

A
G, is naturally embedded as a closed subspace of G, it is clear

A . .
that G cannot be a T.,-space. Therefore assume no Ga is semi-

2
simple. If é is Hausdorff then each éa has the same property,
hence Ga is a compact extension of an abelian group by the Lie

~case. Then G 1is also a cbmpact extension of an abelian group by
definition of projective limit. Conversely, if G 1is almost
connected and, in addition, has a precompact commutator subgroup,
then G 1is in fact a compact extension of a vector group. In

. : . ; A ‘
particular G is of type I. In this case G 1s known to be

Hausdorff, see e.g. [10]. Our proof of Theorem 1 is complete.

4. We give below some applications of Theorem 1. An element x of

a topological space M 1is said to be a Hausdorff point of M 1if

for every element y of M, not in the closure of x, we can find



two neighbourhoods in M separating x and y. An inspection of

the proof of [2, Lemma 5] leads at once to the following improve-

mént of that lemma.

Lemma 3. Let N be a closed normal subgroup of a locally compact
group G, and assume that N is of type I and also that G/N is
amenable. If the trivial representation is a Hausdorff point of el
then the map vy » G{y) of i into the space of all closed

subgroups of G is continuous at the trivial element of t. Here

G(y) denotes the stability group in G of «y.
Our next result should be related to [10, Theorem 1 ].

Proposition 4. IL,et G be an almost connected, amenable locally

compact group. Then the following statements are equivalent.
. . . . A
(1) The trivial representation is a Hausdorff point of G.

(2) & is a Hausdorff space.

Proof. The implication (2) => (1) is clear. Assume (1) is true.

Since G 1is amenable, its identity component must be either non-
semisimple or compact. If GO is compact then G 1is compact and

é is a Hausdorff space. Therefore, let A Dbe of maximal dimension
among the connected normal abelian subgroups of G. Using the above
lemma with N = A, we see as in [2, p.66] that A is central in

G. Then we argue as in the proof of Theorem 1, §2. It follows that
G 1is a compact extension of an abelian group, proving that & is

Hausdorff.

Remark. If G is a semisimple T,ie group then the trivial

representation may well be a Hausdorff point of &. 1n fact, it is

possible for the trivial representation to be an is.iatred point of

the dual, [6, Remark 10 ].



Corollary 5. Let G be an almost connected, amenable locally

A . ' .
compact group. Then G is a Hausdorff space if and only if for
each element x of C*(G) the map = > lI=n(x)1, C*(G)A > R, is

continuous at the trivial representation.
Proof. This is a consequence of Proposition 4 and [3, 3.9.4].

Corollary 6. Let G be an almost connected locally compact group.

* . * , , ,
Then C (G) is a € -algebra with a continuous trace if and only

o A .
if G 1is a Hausdorff space.

AL ‘ * .
Proof. If G is Hausdorff then C (G) has a continuous trace by
Theorem 1 and the Corolliary in [5]. The converse follows from [3,

4.5.3].
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