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1 .0. Let G be a locally compact group, G 
0 

its connected campo-

nent of the identity. The unitary dual space (; of G consists of 

the set of all equivalence classes of irreducible continuous uni-

tary representations of G. is endowed with the Fell-topology 

which is the inverse image of the hull-kernel topology, on the set 

of primitive ideals of the group * C -algebra c*(G), under the 

natural rnap which assigns to each element TC of 6 its kernel, 

* [3 L r 4 J . when TI is regarded as a representation of C (G) , It 

seems to be a reasonable conjecture that e is a Hausdorff space 

if and only if G is of type I and is a compact extension of an 

abelian group. This hypothesis has been verified for connected 

groups by L. Baggett and the author, [ 2 ] • The principal aim of the 

present article is to settle this question for almost connected 

groups. Our proof is organized as follows. First we treat the case 

is a noncompact semisimple Lie group. Invoking the fact, 

proved in [2 J, that 

Mackey procedure that 
1\ 
G 

cannot be Hausdorff, we show using the 

contains a convergent sequence with at 

least two limits. Hence t; is non-Hausdorff. Next, we assume G0 

is an arbitarry Lie group and that {j is T2 • An induction 

argument yields the desired structural property for G. Finally, 

if G is almost connected, locally compact we approximate by Lie 

groups to reach our theorem. 

Theorem l . An almost connected locally compact group G has a 

Hausdorff unitary dual space if and only if G is a compact 

extension of an abelian group. 

Proof. 1 • 1 . He consider first the case where the group G is a 

finitely connected Lie group and its identity component G0 is 

semisimple and noncompact. Then, by [2, Proposition 4 L the dual 

space of c0 fails to be Hausdorff. It will be shown below that, 

in the presen~ situation, e connot be Hausdorff. To this end we 

shall construct a convergent sequence from 6 with at least two 

limits. We shall assume the center z of G0 is finite {~f z 

infinite, replace G wit:.h the group G/Z). 

is 
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n Iwasawa decomposition. Let r } IP 111 
be a 

tary complementary series representa-

rges to a reducible unitaty representation 

sequence was shown 1n the proof of [2, 

t.irJnr t.tte lirnii~ p could be 'JJritten as 

re the trivial element was a sub-

li v I, p2jK was disjoint 

~ lits into a direct sum of elements of 

1r ed cible subrepre entat of 

t~ j_ s 

are irrednr:=ible since tlK': sequence 

subrepre etd:atic'n of 

epresentations are induced from 

minimal parabolic subgroup of G0 

11 have the s-::uw,-o dirrt(c'nsion N = aleph 

ituat o.n tbere i~3 only a fini·te number of 

n G_ , so we can find a subsequence, 
u 

'illhich the stabi 1 izer of eac1l Prn in G 

denote ·this rrnJtual st.abili ty sub-

rn be an irreducible cocycle exten-

t-J1c sense of ~1ackey, [ 8 J" That_ is, the co-

s th,-=, inflation to of a cocycle on 

o finite number of cocycles 

J.nq subse<]uence again vle assume all the 

e 

110. t 

J.st.s 

f 
m 

r) 
ITl 

a cocycle lll 

lil Here PC:\Ch 

lS a (Borel 

and 
' 

for eacl1 

8. has the 
m 

function of 
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vv i tit \JC t i11 a r~,:;quence, still 

denote('! {" ], c1f irreducil)1e ext .. ending 

t.he p!H S., (;Orlt.inui of Uw induciwJ .map, [ 4], vie l>a.ve 

. lj ' ' 
Ul.d \ (J J c: . . io m 

+ 
m 

i I J ') ") ) .. \ p . (:tJP - --· -

Let 
i 

be a.n irreducible subrepresentation of . H ( L) 1nd p , Go 
i == 

'2 ' lies over UJ.e G·-o 
i 

p ' i = 1 , 2, see e.g. 

'I'1•ec·rPl"' ., 2· l .. ...... )._. ~~-'t:l. 4·"' - .. element .. ary ies of the hull-kernel ·topology 

w'J~/€: can find a sequence of elements from f) such that each 

l.S a sentation of ( \ Pm.l and, ir1 addition, { "m} 

converges to c 1 • Here rest~1cicts to as a multiple of 

[1, Theorem 2.2 ]. Whence we can find irre ucible w- 1-representa-

tions c:r of H, \<~Ti th each 
m 

ecrual to a multiple of the 

identi on G0 , and such that () 
m 

[ 8, 'rheorem 8, 3 ] . 

Now s :u1ce the H 
0 

is finite we may assume that all 

the -s are equivalent. ( t.al~in9 •'" suJ-:;sequence), say c:r -- 0 1 , and 
m 

t_herefore ""' p Ga 1 , .Eor all 
m 

rn. 

Let H be a fixed Hilbert Sf.Jace of di.ntension tJ, where N = aleph 

nought is the common dimension of all the --~sl Let. v be an 

arbitrary unit vector in the Hilbert space of t. 1 • Since 

we can find a sequence { v \ 
. mJ of vectors from H, bounded by 1, 

such that 

<1: (v)v ,v > -> 
m ~ m rn m 

( 1 ) 

uni in ~i on each compact. subset. of H and, in addition, 

<-r (q)v ,v > 
m - m m 

for all continuous complex valued funct g th compact 

s on H g E C (H) 
c 

lde show next that h} m 
is a Cau sequence in the complete 

( 2 ) 

metric space I rr (H) 
N 

of all irreducible representations of H on 

the Hilbert space H, [18, 3.7,4], 
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Let h E H and let e: > 0 be given. We pick a neighbourhood V 

of the identity in H such that 

for all y E V, 

where the integration is w.r.t. a left Haar measure on H, and 

gY(x) = g(y- 1x): x,y E H. Let m(h) be a positive integer such 

that 

* h * h I < 1: ( g *9 ) v ' v > - < 1: l ( g *g ) v ' v > I < E I 1 5 m m m 

whenever rn :> m(h). For every y in V \ve obtain 

1 < • ( yh ) • ( 9 ) v , • ( 9 ) v > - < • 1 ( yh ) • 1 ( 9 ) v , • 1 ( 9 ) v > 1 ,. 
m m m m m 

1 < • ( yh) • ( 9 ) v , • ( 9 ) v > - < • ( 11) • ( 9 ) v , • ( 9 ) v > 1 

m m mm m m m mm m 

+ j<,; (h)-,; (g)v ,1: (g)v >- <• 1 (h)-rl(g)v,-.l(g)v>l 
m m m m m 

+ 1<-cl(gh)v,'tl(g)v>- <'tl(gyh)v,-rl(g)v>j 

.;; II ( 1: (gyh)--r (gh) 'Jv 1111-c (g)v 11+t:l5 m m m m m 

for each m > m(h). 

( 3 ) 

Let C be any compact subset of H. He cover C with a finite 

number of translates of V, C c h 1vu h 2VU•••U hrV. Put m0 = 

max{m(h 1 ), ••• ,m(hr) }. Then, for any y in C, we have 

1 < • 'g * *9Y ) v , v > -· < -r. 1 ( g * *9Y ) v, v > 1 < r:. 1 5 . m m m ( 4) 

Let w E vi, w f: 0, and let c be given, 0 < r:. < 1. For each m, 

the set { ~: (g) v : g EC (H) } is dense in the Hilbert space v.J. m m c 

Hence we can find funct~ions g t C (H) such that m c 

II w- • ( g ) v II < e: / 5 ( II w II + 1 ) 
m m m 

( 5 ) 



Put. u 

H. 4 

y c, 

< T f 

+ 

1 

spa.ce 

Now 

is a Cau 

ir 1:-educ l)le 

'I'hus let. p 

Recall i:ha l 

as a d.irect !J 

subrep.tesen~:-'.lt-

equivalent 1-i_rn u 

is irreducible foe 

.s,.eg_ U.?c~n.ce 

\/ ~, e 

a.re C()(! Cf~ L 

5 

If 
rn 

v 
'.1 

ar~ a Lrary subset of 

( 6 ) 
n 

• U:::;j_ (6) we obta for all 

l' ,, ~-m 

L! , u > 11 + I --- v u , u -· < 1: ( y) u , w> j 
r n n 2 n n n n 

"' 5+ II u. ii II u --\,J II 
n 

II+ s I! ·cJ II+ 1 

equence in the complete metric 

uJ·- I rr N ( H) of all 

(Jf r-~ on the Hilbert space w. 
r~ 

l J.n w-IrrN (H) 

contains 

f j_ :c .s t 1:=.l~"a_ t. doesn"t occur as a 

- I 
l-

th 

tJ~.e se~=lttenr~e { has two non-

t\1ackey, [8], -rr = indHG ( -r, ) m m 

cont.i of inducing the 

?Jnd 
G ~ 

ind_ (p®o 1 ), 
H 

-u,e ,:bove « their restrictions to 

Therefore it follO'idS 



The remaining pass 1 that occurs as a direct summand 

of pI G0 . In this case \.Ve replace 'tl with in the above 

construction. Recall that 't 2 was assumed to be an irreducible 

subrepresentation of . dH ( l 2 i ln. p E!:Jp , whose restriction to G0 

contains 2 p 

such 

of indGH ( p ) 
Jo m 

and pGcr2. 

Go 
as a direct summand. Thus we can find a sequence 

that. is an irreducible subrepresentation 

for each m, and the sequence converges to both 

Next, we show that 1:2 and p®CJ 2 are lD fact nonequivalent. Let 

NG(K) be the normalizer of K in G - . It lS knovJn that N8 (K) 

meets every connected of G since K is maximal compact 

and G 
0 

is semis le ·~ 

In particular, we can find coset representatives X , X? , • , , , X ·1 ~ r 
of 

G/G 
0 

such that ' i ' r. Hence each K-fixed vector 

of is also a K-fixed vector of X l 
" . p ' l 

( x l. P l ( y) = P 1 ( x-:- 1 yx . ) ) ' 
l l 

' i ' r. It follows that contains the trivial represen-

tation for each x 1.n G, and as a consequence, the G-orbits of 

and in are distinct. Accordingly and 

are nonequivalent. Indusing the sequence and its limits 
/\ 

to G we see a::: before t~hat G fails to be a Hausdorff space. 

This completes our a~ in case is a semisimple Lie group. 

1 • 3 • Remark. The above construction led to a sequence { TI } 
m 

of 

1\ 
G, each 1)u of dimension aleph nought, that converges to the 

nonequivalent representations TI 1 and n 2, vvhere the restriction 

of Til to a maximal compact subgroup K of Go contains the 

identity represent~at l ' vvherea.s It 2 1 K lS disjoint from l • 

2 • live are no;>~ !:..o complete t:.he p-coof of Theorem l in the Lie 

case. Assume the identity comporJJo'nt G0 is an arbitrary Lie group 



e>f finite in G., Our 11 go by induction on the 

dimension dim(G) The theorem u; obviously correct for finite 

groups (dim(G -·· 0). 

ll.ssume that the result i true for all Lie groups of dimension less 

than n, er, and let G be a group of 

dimens 1 t:.o n possess Hausdorff dual space. First, if 

contains a normal s roup K of posit dimension 

then we appl thP 1.JC~t. i ~Je s1s to the factor: group G/K, 

and obt.ain eas:L extension of an abelian 

subgroups of pos live 1mension. We have already seen that the 

connected 

Thus let A be of 

normal oupr.:;, 

is nontrivial since 

invariant under al 

of t.h•::o ident in G can not be simple. 

imal dimension among the abelian connected, 

thr:..· 

a.u 

ch are contained in G o 'I'he group 
0 

A 

center of the nilradical G 
0 

is 

lSffiS 

t 

of o 0 . Put 

r~ j '/ .,.. J 
R /' L 

r = dim(A). Then A 

v1here the torus part 

is G-invariant s1nc the vector group has no nontrivial 

compact OU.!?S 

r 
R . Then, since 

can mimic the a 

is centra in 

seen to equal all of 

j ~ 0 and A is isomorphic to 

the induct: ve is G 1s amenable, 'Vl.re 

t:.s C;t [2, p .. 56]" Hence we deduce first that A 

:Lnce the s<.::.abi lizer of each element in is 

(;) .. let K be a normal 

subgroup of for \o/hich t.he factor group G/A lS abelian 

(the inductive applied to G/ A), 

Let p: G + G/ nonical map. Since the second 

co homo group H 2 K , }\ is knmvn. to be trivial, i:he group p-·l(K) 

must be isorno the direct_ uct K x A. In particular. K 

is normal in Cle the factor group G 

be the image of in under the canonical map G + G1 . 
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By assumption K is finite. •rhen G1 = G/K must be finitely 

connected. As in [2, p.66] the groups G 
1 

are seen to 

have the same Lie algebra, since A1 is maximal abelian. We 

is discrete, hence is finite, and since 

it follows that G1 is isomorphic to the direct 

product F x A1 . Thus G is a central extension of the abelian 

group F' X A 
1 

by the finite group K. This completes our proof of 

the Lie case. 

3. Final let G be an almost connected locally compact group, 

i.e., the identi·ty component is cocompact in G. Then the group is 

a projective limit, G = proj lim(G ), of finitely connected Lie 
a 

groups G 
a 

[ 9 , § 4 . 6 J • Now , if at. 1 east one G 
a: 

is noncompact and 

semisimple then 

is natural 

1\ 
G must be non"-Hausdorff by §l .1 

Ct 

embedded as a closed subspace of 

above. Since 

1\ 
G, it is clear 

that 
1\ 
G cannot be a T2 -space. Therefore assume no G 

a 
is semi-

/\ 
simple. If G 

1\ 
is Hausdorff then each G has the same property, 

a: 

hence G is a compacJc extension of an abelian group by the Lie 
a 

case. Then G is also a compact extension of an abelian group by 

definition of projective limit. Conversely, if G is almost 

connected and, in addition has a precompact commutator subgroup, 

then G is in fact a compact extension of a vector group. In 

particular G is of type I. In this case 8 is known to be 

Hausdorff, see e.g. [10]. Our proof of Theorem 1 is complete. 

4, We give belov.r some applicat_ions of Theorem 1. An element x of 

a topological space ~1 is said to be a Hausdorff point of M if 

for every element y of ~1, not in the closure of x, we can find 



1 fol e-· 

compact: 

G/N 

amt'-'ln;~bl ():_t 

t.:r 

G y) f 

Our 

p 

1 nt_ "· 

( i 

Proof, 

Gin.ce fl 

and 

r +: al 

(' 
~' is 

Haur:; ff. 

1 f G 

sentat ()n it it~ 

dn .•l.<i<"·l point of 



each element 

Let: (., 
J be an almost connected, amenable locally 

/\ 
, Tl'len G is a Hausdorff space if and only if for 

_x of * C (G) the map is 

continuous at the trivial representation. 

Proof. 'I'h 

Carol 

* Then c (G) 

is a consequence of Proposition 4 and [3, 3.9.4]. 

Let G be an almost connected locally compact group. 

th a continuous trace if and only 

'f 1\ L .. G is a Hausdorff space. 

Proof, If is Hau::;•.:Jor f f ·then * C (G) has a continuous trace by 

Theorem and t .. he Coro] 1ar:{ in [5], •rhe converse follows from [3, 
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