ISBN 82-553-0511-4
Mathematics No 2
March 7
1983

BETTINUMBERS OF MONOID ALGEBRAS.
APPLICATIONS TO 2-DIMENSIONAL TORUS IMBEDDINGS
by
O.A. Laudal and A. Sletsjøe University of Oslo Norway

Introduction
§ 1 Bettinumbers for monoid algebras
§ 2 Application to 2-dimensional torusembeddings

Notation

k any field
Λ a monoid (the unit is denoted by 1)
$A=k[\Lambda]$ the monoid k-algebra
\underline{m} the maximal ideal of A generated by $\Lambda_{+}=\Lambda-\{1\}$
\underline{Z}_{+}the non-negative integers
-112unnetion
The starting point of this paper is the rather elementary observation (1.2), which leads to a Eormula (1.3) Cor the Betti numbers of a monoid algebra in terms of the qorminatorial properties of the monoid, see [1. 2]. The rest of the paper is concerned with the application of this formula to the case of 2-dimensional torus embeddings, see [od]. More specifically: In 8] we give a method for computing the Betti numbers $\beta_{i}=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{A}(k, k)$ when A is the monoid algebra over k of a commutative monoid Λ with cancellation law, and no non-trivial inverses. Proposition 1.3 relates the Betti numbers to the local homology of the simplicial set associated to $\left.A_{+}=\lambda-\|\right\}$ ordered such that $\lambda \leqslant \lambda \cdot \mu$, when $\lambda, \mu \in \Lambda$. In $\$ 2$ this is used to compute the Betti numbers of 2 dimensional torus embeddings A. In particular we prove that the Betti series

$$
B(t)=\int_{n \neq 0} \beta_{n} t^{n}
$$

of A is a rational function $\frac{P(t)}{Q(t)}$. The main result of this paper is, in fact, the explicite computation of the denominator $Q(t)$. see Corollary 2.20 .
\qquad
$\$ 1$ Betti numbers of monoid algebras
Eix a field k and let A be a commutative monoid with cancellation law. i.e. such that $\lambda \cdot \mu=\lambda \cdot \mu^{\prime}$ implies $\mu^{\prime}=\mu^{\prime}$. Let $A=k[\Lambda]$ and put $\underline{m}=\Lambda_{+} \cdot \Lambda$ where $\Lambda_{+}=\Lambda-\{ \} \mid$. Assume $A / m=k$, i.e. assume A has no non-trivial subgroups. Put $\beta_{i}=$ $\operatorname{dim}_{k} \operatorname{Tor}_{i}^{A}(k, k)$, the $i-t h$ Betti number of $k|A|$. Then the power series $B(t)=\Sigma_{n \geqslant 0} \beta_{n} t^{n}$ is called the Betti series of A. The
purpose of this first paragraph is to give a method for computing the Betti series of A using only combinatorial properties of Λ_{+}. Let A_{+}be ordered as follows: $\lambda_{1} \leqslant \lambda_{2}$ if and only if there exists a $\mu \in \Lambda$ such that $\mu \cdot \lambda_{1}=\lambda_{2}$. Thexe is a natural presheaf (projective system)

$$
\mathrm{F}: \mathrm{A}_{+} \rightarrow \mathrm{Ab}
$$

defined by: $P(\lambda)=A$
where $F\left(\lambda_{1} \leqslant \lambda_{2}\right): F\left(\lambda_{2}\right)+F\left(\lambda_{1}\right)$ is multiplication by

$$
p=\frac{\lambda_{2}}{\lambda_{1}}
$$

Lemma 1-1

$$
\operatorname{Lim}_{X_{+}} E=\left(\Lambda_{+}\right) \cdot A=m^{2}
$$

Proof

Eor every $\lambda \in \lambda_{t}$, consider the moxphism $\eta_{\lambda}: E(\lambda) \rightarrow A$, the multiplication by x. This defines a morphism $n: 1 \frac{1 m}{\Lambda_{+}} \mathrm{F} \rightarrow \frac{m}{}$. Given an element $x \in m_{0}$ there is a unique representation $\alpha=\Sigma_{i=n} \alpha_{i} \alpha_{i}, \alpha_{i} \in k_{i} \lambda_{i} \in \lambda_{+}$. Consider α_{i} as an element of $F\left(\lambda_{i}\right)$ and let α_{i} be the Image of α_{i} in $1 \frac{i m}{\lambda_{+}} P$. Define $\mu: m \rightarrow \operatorname{Lim}_{+} F$ by $u(a)=N_{i=1}^{N} a_{j}$. Then μ is an inverse of n. Q.E.D.

Lemma 1.2

$$
\frac{1+m}{\Lambda_{+}}(n)^{E}=0 \text { for } n \geqslant 1=
$$

proof
By [La 1. (1, 1.4)] it is enough to show that F is coflabby (coflasque) f Let $\lambda \in \Lambda_{+}$and suppose $\Lambda_{\}} \leq\left\{\lambda^{*} \in \Lambda_{+}\left|\lambda \leqslant \lambda^{\circ}\right|\right.$ is such that if $\lambda^{*} \in \Lambda_{1}$ and $\lambda^{*} \leqslant \lambda^{\prime \prime}$ then $\lambda^{n} \in \Lambda_{1}$

F is coflabby if in this situation

$$
\lim _{\hat{\Lambda}_{1}} F \longrightarrow \lim _{\left\{\lambda^{\prime} \stackrel{\rightharpoonup}{\epsilon} \Lambda_{+} \mid \lambda \leqslant \lambda^{\prime}\right\}}=F(\lambda)=A
$$

is an injection.
However, the proof of Lemma 1.1 applies to show that $\lim _{\vec{\Lambda}_{1}} F=$ $\left\{\left.\frac{\lambda^{\prime}}{\lambda} \right\rvert\, \lambda^{\prime} \in \Lambda_{1}\right\} \cdot A$ and that the morphism $\lim _{\vec{\Lambda}_{1}} F \longrightarrow \lim _{\left\{\lambda^{\prime} \in \Lambda_{+} \mid \lambda \leqslant \lambda^{\prime}\right\}} F$ is the obvious inclusion. Therefore we are done.
Q.E.D

Consider the resolving complex $C_{0}\left(\Lambda_{+} ;-\right)$for $\lim _{\Lambda_{+}}$see [Lal. (1.2)]. By Lemma 1.2, $C .\left(\Lambda_{+} ; F\right)$ is an A-free resolution of the maximal ideal \underline{m} of A. Therefore

$$
\operatorname{Tor}_{i}^{A}(k, k) \simeq \begin{cases}k & i=0 \\ H_{i-1}\left(C .\left(\Lambda_{+} ; F\right) \otimes k\right) & i \geqslant 1\end{cases}
$$

Now C. $\left(\Lambda_{+} ; F\right) \underset{A}{\otimes} k=C \cdot\left(\Lambda_{+} ; F_{A} \otimes k\right)$, therefore

$$
H_{i-1}\left(C \cdot\left(\Lambda_{+} ; F\right) \otimes k\right)=\lim _{A}^{\vec{\Lambda}_{+}}(i-1)\left(F \otimes_{A} k\right) .
$$

Observe that the projective system $F \otimes_{A} k$ is isomorphic to $\frac{1}{\lambda \in \Lambda_{+}} k(\lambda)$, where $k(\lambda)$ is the projective system defined by:

$$
k(\lambda)\left(\lambda^{\prime}\right)= \begin{cases}0 & \text { if } \lambda^{\prime} \neq \lambda \\ k & \text { if } \lambda^{\prime}=\lambda\end{cases}
$$

Put for any $\lambda \in \Lambda_{+}$.

$$
\begin{aligned}
\hat{\lambda} & =\left\{\lambda^{\prime} \in \Lambda_{+} \mid \lambda^{\prime} \leqslant \lambda\right\} \\
L(\lambda) & =\left\{\lambda^{\prime} \in \Lambda_{+} \mid \lambda^{\prime} \leqslant \lambda, \quad \lambda^{\prime} \neq \lambda\right\}=\hat{\lambda}-\{\lambda\}
\end{aligned}
$$

It is easy to see that there are isomorphisms:

$$
\lim _{\vec{\Lambda}_{+}}(n) \underset{\vec{\lambda}}{ } k(\lambda) \simeq \lim _{\vec{\lambda}}(n) k(\lambda) \quad \text { for } n \geqslant 0
$$

In fact this follows from the existence of a 1 -projective resolution of $k(\lambda)$, trivial outside of $\hat{\lambda}$, see $[$ La $1,(1.2)]$.

Let k_{λ} be the constant projective system on $\hat{\lambda}$ defined by $\underline{k}_{\lambda}\left(\lambda^{\prime}\right)=k$, and let $\underline{k}_{\lambda}^{\prime}$ be the subprojective system of \underline{k}_{λ} defined by $\underline{k}_{\lambda^{\prime}}^{\prime}\left(\lambda^{\prime}\right)=0$ if $\lambda^{\prime}=\lambda$ and ${\underset{-}{k}}_{\lambda^{\prime}}\left(\lambda^{\prime}\right)=k$ if $\lambda^{\prime} \neq \lambda$. Then there is an exact sequence of projective systems on $\hat{\lambda}$

$$
0 \rightarrow \underline{k}_{\lambda}^{\prime} \rightarrow \underline{k}_{\lambda} \rightarrow \mathrm{k}(\lambda) \rightarrow 0
$$

As

$$
\underset{\hat{\Lambda}}{\lim _{\vec{\Lambda}}(n)-\frac{k}{\lambda}}= \begin{cases}k & \text { for } n=0 \\ 0 & \text { for } n \geqslant 1\end{cases}
$$

and since

$$
\lim _{\overrightarrow{\hat{\Lambda}}}(n) \underline{k}_{\lambda}^{\prime} \simeq \lim _{L(\vec{\lambda})}(n) \underline{k} \simeq H_{n}(E(\lambda) ; k) \quad n \geqslant 0
$$

where \underline{k} is the constant projective system k on $L(\lambda)$, and where we denote by $E(\lambda)$ the simplicial set defined by the ordered set $L(\lambda)$, see $[\operatorname{La} 1,(1.1)]$, we obtain an exact sequence
and isomorphisms:

$$
\lim _{\underset{\hat{\lambda}}{ }}(n) k(\lambda) \simeq H_{n-1}(E(\lambda) ; k) \quad n \geqslant 2
$$

Notice that $\underset{\widehat{\lambda}}{\lim } k(\lambda)=0$ unless λ is minimal in Λ_{+}, in which case $\lim _{\vec{\lambda}} k(\lambda) \simeq k$, and $\lim _{\vec{\lambda}}^{\hat{\lambda}}(1) k(\lambda)=0$.

If λ is not minimal, then

$$
\underset{\widehat{\lambda}}{\lim _{\vec{\lambda}}}(1) k(\lambda) \simeq \tilde{H}_{0}(E(\lambda) ; k)
$$

where \tilde{H}. is the augmented homology.
Summing up we have proved the following

Proposition 1.3

$$
\operatorname{Tor}_{n}^{A}(k, k) \approx \begin{cases}k & n=0 \\ k^{p} & n=1 \\ \frac{1}{\lambda \in \Lambda_{+}} \tilde{H}_{n-2}(E(\lambda) ; k) & n \geqslant 2\end{cases}
$$

where ρ is the number of minimal elements of Λ_{+}.

§2 Application to 2 -dimensional Torus embeddings

Let $\Lambda^{\prime} \underset{\underline{Z}}{\underline{Z}}{ }_{+}^{2}$ be the saturated rational monoid generated by $\left(m_{1}, n_{1}\right)$ and $\left(m_{2}, m_{2}\right)$ satisfying the two conditions
i) $\left(m_{i}, n_{i}\right)=1 \quad i=1,2$
ii) The system $\left\{\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right)\right\}$ is right-oriented i.e. satisfies

$$
m_{1} \cdot n_{2}-m_{2} \cdot n_{1}=p>0
$$

Whenever needed we shall consider ${\underset{\underline{Z}}{+}}^{2}$ as embedded in \underline{Q}^{2} or \underline{R}^{2} by the obvious inclusions.

Consider the linear transformation

$$
T: \underline{\underline{Q}} \times \underline{\underline{Q}} \rightarrow \underline{\underline{Q}} \times \underline{\underline{Q}}
$$

given by

$$
\begin{aligned}
& T\left(m_{1}, n_{1}\right)=(p, 0) \\
& T\left(m_{2}, n_{2}\right)=(0, p)
\end{aligned}
$$

We may represent T by the 2×2 matrix

$$
T=\left(\begin{array}{cc}
n_{2} & -m_{2} \\
-n_{1} & m_{1}
\end{array}\right)
$$

We are interested in the image of Λ^{\prime} under the transformation T, denoted by $\Lambda=T\left(\Lambda^{\prime}\right)$. In particular we are interested in the subset $\Lambda \cap[0, p]^{2}$. If $p=1$, then $\Lambda=\underline{Z}_{+}^{2}$, and therefore $A=$ $k[\Lambda]=k\left[x_{1}, x_{2}\right]$. This case presents no problem, so we assume $p>1$. Consider the intersection $\Lambda_{1}=\Lambda \cap\left\{(1, n) \in \underline{Z}_{+}^{2}\right\}$. The following lemma holds:

Lemma 2.1

There exists $\xi \in \underset{=+}{\underset{=}{2}}$ with $0<\xi<p$ such that

$$
\Lambda_{1}=\left\{(1, \xi+\eta \cdot p) \mid \eta \in \underline{\underline{Z}}_{+}\right\}
$$

Moreover, for this ξ we have

$$
\begin{aligned}
\Lambda_{n} & =\Lambda n(\{n\} \times \underline{\underline{Z}}) \\
& =\{(n, n \cdot \xi+\eta \cdot p) \mid \eta \in Z \text { and } n \cdot \xi+\eta \cdot p \geqslant 0\}
\end{aligned}
$$

Proof
Since $\left(m_{2}, n_{2}\right)=1$, there exists an integer parr $\left(x_{0}, y_{0}\right) \in z^{2}$ such that

$$
T\left(x_{0}, y_{0}\right)=\left(n_{2} x_{0}-m_{2} y_{0},-n_{1} x_{0}+m_{1} y_{0}\right) \in(\{1\} \times \underline{\underline{Z}}) .
$$

The set $\left\{\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right)\right\}$ forms a basis for $\underline{\underline{Q}}^{2}$, and there exist $\alpha, \beta_{0} \in \varrho$ such that

$$
\begin{equation*}
\left(x_{0}, y_{0}\right)=\alpha\left(m_{1}, n_{1}\right)+\beta_{0}\left(m_{2}, n_{2}\right) \tag{*}
\end{equation*}
$$

But T is a linear map so we have

$$
\begin{aligned}
T\left(x_{o}, Y_{o}\right) & =\alpha \cdot T\left(m_{1}, n_{1}\right)+\beta_{O} \cdot T\left(m_{2}, n_{2}\right) \\
& =\alpha \cdot(p, 0)+\beta_{0} \cdot(0, p) \in(\{1\} \times Z)
\end{aligned}
$$

This implies $\alpha=\frac{1}{p}$ and from equation $(*)$ and the fact $\left(m_{1}, n_{1}\right)=1$ we deduce that $\beta_{0} k \underline{\underline{Z}}$. So there exists an integer $\mu \in \underline{\underline{Z}}$ such that $0<\beta_{0}+\mu<1$ and

$$
T\left(\left(x_{0}, Y_{0}\right)+\mu\left(m_{2}, n_{2}\right)\right)=\alpha \cdot(p, o)+\left(\beta_{o}+\mu\right)(0, p) \in(\{1\} \times[0, p])
$$

Put $\beta=\beta_{0}+\mu$ and $(x, y)=\left(x_{0}, y_{o}\right)+\mu\left(m_{2}, n_{2}\right) \in \underline{\underline{Z}}_{+}^{2}$. $\alpha, \beta \in \varrho$ are rational numbers, and γ the product of their denominators. The numbers $\gamma \cdot \alpha, \gamma \bullet \beta$ are integers, and

$$
\gamma \cdot(x, y) \in \Lambda^{\prime} .
$$

Since the monoid Λ^{\prime} is saturated, it follows that $(x, y) \in \Lambda^{\prime}$. Let $\xi=\beta \cdot p$. Then $T(n \cdot(x, y))=(n, n \cdot \xi)$. Now consider the equivalence

$$
\begin{aligned}
n \cdot \xi+\eta \cdot p & =n \cdot \beta \cdot p+\eta \cdot p \\
& =(n \cdot \beta+\eta) \cdot p \geqslant 0 \\
\Leftrightarrow & n \cdot \beta+\eta \geqslant 0 .
\end{aligned}
$$

If $n \cdot \xi+\eta \bullet p \geqslant 0$ then we have

$$
\begin{aligned}
(n, n \cdot \xi+n \cdot p) & =T\left(n(x, y)+\eta\left(m_{2} \cdot n_{2}\right)\right) \\
& =T\left(n \cdot \alpha\left(m_{1}, n_{1}\right)+(n \cdot \beta+\eta)\left(m_{2}, n_{2}\right)\right)
\end{aligned}
$$

and $(n, n \cdot \xi+\eta \cdot p) \in \Lambda$. This follows from the fact that an integer pair, positively generated by $\left(m_{1}, n_{1}\right)$ and $\left(m_{2}, n_{2}\right)$ is element of Λ^{\prime}.

Suppose $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \Lambda^{\prime}$ satisfy $T(x, y) \in \Lambda_{a}, T\left(x^{\prime}, y^{\prime}\right)$
E A a for some a $e_{\underline{Z}}^{\underline{Z}}+$. Then we have

$$
n_{2} \cdot x-m_{2} \cdot y=n_{2} \cdot x^{\prime}-m_{2} \cdot y^{\prime}
$$

or equivalently

$$
n_{2}\left(x-x^{*}\right)=m_{2}\left(y-y^{\prime \prime}\right)
$$

Since $\left(m_{2}, n_{2}\right)=1$ this is equivalent to

$$
x-x^{\prime}=c \cdot m_{2} \quad y-y^{\prime}=c \cdot n_{2}
$$

for some $C \in$ (Z. But then we have

$$
\begin{aligned}
-n_{1} \cdot x+m_{1} \cdot y & =-n_{1}\left(c \cdot m_{2}+x^{\prime}\right)+m_{1}\left(y^{\prime}+c \cdot n_{2}\right) \\
& =-n_{1} \cdot x^{\prime}+m_{1} \cdot y^{\prime}-c\left(n_{1} \cdot m_{2}-m_{1} \cdot n_{2}\right) \\
& =-n_{1} \cdot x^{\prime}+m_{1} \cdot y^{\prime}+c \cdot p
\end{aligned}
$$

It is easy to see that this proves the lemma.
Q.E.D.

Thus we have a complete description of Λ given by

$$
\Lambda=\left\{\left.(a, b) \in \frac{z^{2}}{2} \right\rvert\, a \cdot \xi \equiv b(\bmod p)\right\}
$$

If we interchange $\left(m_{1}, n_{1}\right)$ and $\left(m_{2}, n_{2}\right)$ and apply the proof of Lemma 2.1 we get a number $\eta \in \underline{Z}_{+}$satisfying
i) $0<\eta<p$
ii) $\quad \eta \cdot \xi \equiv 1(\bmod p)$

The use of this will appear later.

Remark 2.2

One of the advantages with this description of Λ is the following property of $\Lambda:$ If $\lambda=(a, b), \lambda^{\prime}=\left(a^{\circ}, b^{\circ}\right) \in \Lambda$ and if $\lambda^{\prime}-\lambda=\left(a^{\prime}-a \cdot b^{0}-b\right) \in{\underset{\underline{t}}{2}}_{2}^{\underline{+}}$, then $\lambda^{\prime}-\lambda \in \Lambda$. In fact since for $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right) \in \Lambda_{i} b \equiv a \cdot \xi(\bmod p), b^{\prime} \equiv a^{\prime} \cdot \xi(\operatorname{modp})$ and $a^{\prime}-a \geqslant 0, b^{\prime}-b \geqslant 0$ we find $b^{0}-b=\left(a^{\prime}-a\right) \cdot \xi(\bmod p)$ therefore $\left(a^{\prime}-a, b^{\prime \prime}-b\right) \in \Lambda$. Notice that this implies that the order relation on Λ (see §1) induced by the order relation on Λ° is the restriction of the ordinary order relation on Z_{i}^{2}.

Let $p \in{\underset{Z}{z}}_{+}^{2}$. Define the ordered set \hat{P} assochated with p by $\hat{p}=\{\lambda \in \Lambda|\lambda \leqslant \rho| \subseteq \Lambda$. The associated simplicial set will also be denoted by B.

Correspondingly we shall let $L(P)=\{\lambda \in \Lambda \mid\{P\}$ also denote the associated simplicial set. (When $P \in \Lambda$, this is preciely the set $E(P)$ of paragraph 1.)

Remark 2.4
Notice that for $P \in \underline{Z}_{+}^{2}-\Lambda$ we have $L(P)=\hat{P}$.

Lemma 2.5
Let $\vec{\xi}$ and η be defined as above Let $U \subseteq \underline{\underline{Z}}_{+}^{2}$ be the set defined by

$$
u=\left\{(a, b) \in \underline{Z}_{+}^{2} \mid b>p+a \cdot \xi \text { or } \quad a>p+b \cdot n\right\}
$$

Then for any $P \in U$

$$
\tilde{H}_{n}(L(D))=0 \quad n \geqslant 0 .
$$

Proof

It is obviously sufficient to prove the lemma in the case where $P=(a, b)$ satisfies the condition $b>p+a \cdot \xi$. Given $P=(a, b) \in Z_{+}^{2}$, and suppose $b>p+a \cdot \xi$. Then there exist integers $\alpha, \beta \in \mathbb{Z}$ such that

$$
b-a \cdot \xi=\alpha \cdot p+\beta
$$

with $0<\beta \leqslant p$ and $\alpha \geqslant 1$. We shall prove the lemma by induction on the integer a.

Suppose $a=0$. Then $L(P)$ has a final object and the homology vanishes.

Suppose $a>0$. Let $P=(a, b) \in U$, and suppose the formula is

implies $(a, b-\beta)=(a, a \cdot \xi+\alpha \cdot p) \in \Lambda$.
Now it easy to see that
i) $L(P)=(a-1, b)^{\wedge} U(a, b-\beta)^{\wedge}$
ii) $(a-1, b-\beta)^{\wedge}=(a-1, b)^{\wedge} \cap(a, b-\beta)^{\wedge}$

Apply the Mayer-Vietoris sequence and obtain the long exact sequence

$$
\begin{aligned}
\cdots & \rightarrow \tilde{H}_{n}(a-1, b-\beta) \rightarrow \tilde{H}_{n}(a, b-\beta) \oplus \tilde{H}_{n}(a-1, b) \\
& \rightarrow \tilde{H}_{n}(L(p)) \rightarrow \tilde{H}_{n-1}(a-1, b-\beta) \rightarrow \cdots
\end{aligned}
$$

where $\tilde{H}_{.}(P)$ is the homology of the ordered set associated with P. But now we have $b>p+a \cdot \xi>p+(a-1) \cdot \xi$ and $b-\beta=\alpha \cdot p+a \cdot \xi \geqslant p+a \cdot \xi$ $>p+(a-1) \cdot \xi$, so $(a-1, b) \in U$ and $(a-1, b-\beta) \in U$. The induction hypothesis implies

$$
\tilde{H}_{n}(a-1, b-\beta)=\tilde{H}_{n}(a-1, b)=0 \quad \forall n \geqslant 0 .
$$

$(a, b-\beta) \in \Lambda$ and $(a, b-\beta)^{\wedge}$ has a final object; therefore

$$
\tilde{H}_{n}(a, b-\beta)=0 \quad \forall n \geqslant 0
$$

Thus, using the exactness of the above sequence, we get

$$
\tilde{H}_{n}(p)=0 \quad \forall n \geqslant 0
$$

which proves the lemma.
Q.E.D.

Definition 2.6
Let $P \in \underline{Z}_{+}^{2}$. The maximal polygon associated with $P, M(P)$ is the set of maximal elements of the convex hull $C(L(P)) \subseteq \mathbb{R}_{+}^{2}$ of $L(P) \cdot R_{+}^{2}$ is regarded as an ordered set with the obvious ordering relation.

Put $M_{o}(P)=L(P) \cap M(P)$. Then the following lemma holds.
Lemma 2.7

```
MO(P) is the set of maximal elements of Lu(P).
```


Proof

Let max $L(P)$ be the set of maximal elements of $L(P)$. Obviously $M_{0}(P) \subseteq \max L(P)$. Assume $\lambda \in \max L(P)$ and $\lambda \neq M_{O}(P)$. $M(P)$ is a convex polygon and λ has to sit strictly below some edge e. Pick vertices of $e ; \mu, \mu^{\prime} \in M_{o}(p), \mu \neq \mu^{\prime}$, and consider the element $\eta=\mu+\mu^{\prime}-\lambda$. Since $\eta \in{\underset{\underline{Z}}{+}}_{2}$ we have seen (Remark 2.2) that $\eta \in \Lambda$. An easy argument then shows that $\eta \in L(P)$ and that η is above the edge $e, ~ a ~ c o n t r a d i c t i o n . ~$
Q.E.D.

It is easily seen that $M(P)$ must lie inside a square, $p \times p$, with P as the maximal point.

Lemma 2.8

$$
\begin{gathered}
\text { For every } p \in{\underset{O}{2}}_{+}^{2} \text { with } p \geqslant(p, p) \text {, and every } \lambda \in \Lambda \text { : } \\
M(p+\lambda)=M(p)+\lambda
\end{gathered}
$$

Proof
It is enough to show the equality $M_{0}(P+\lambda)=M_{0}(P)+\lambda$. So let $\mu \in M_{0}(P)$. Then $\lambda \leqslant \mu+\lambda<P+\lambda$. Now choose $\eta \in M_{0}(P+\lambda)$ such that $\lambda \leqslant \mu+\lambda \leqslant \eta<P+\lambda$. Then we have $\mu \leqslant \eta-\lambda<P$. Since $\mu, \eta, \lambda \in \Lambda$, the remark (2.2) implies $\eta-\lambda \in \Lambda$, thus we get $\mu=\eta-\lambda$ or $\eta=\mu+\lambda$. Consequently $\mu+\lambda \in M_{0}(P+\lambda)$ and $M_{0}(P)+\lambda \subseteq M_{0}(P+\lambda)$. To prove the inverse inclusion, we first notice that if $\mu \in M_{o}(P+\lambda)$ then $\mu \geqslant \lambda$. This follows from the fact that $P \geqslant(p, p)$ and that $M_{0}(P+\lambda)$ sits inside a square $p \times p$ with $P+\lambda$ as the maximal point.

So let $\mu \in M_{o}(P+\lambda)$. Then $\mu<P+\lambda$ or $\mu-\lambda<P$. Choose
$\eta \in M_{0}(P)$ such that $\mu-\lambda \leqslant \eta<P$. This implies $\mu \leqslant \eta+\lambda<P+\lambda$. But $\mu \in M_{0}(P+\lambda)$ so the last equation implies $\mu=\eta+\lambda$ which proves the lemma.

Definition 2.9

Let $P \in \underline{Z}_{+}^{2}$ and denote by:

$$
\left\{V_{i, j}(P)\right\}_{j}^{i}=1,2, \ldots, n \quad \text { the lattice point on } M(P) \text { where }
$$

i is the number of the edge counted from right, and j is the number of the lattice point on the edge, also counted from right.

Put $V_{i}=V_{i, 1}$ for $i=1,2 \ldots, n$ and $V_{n+1}=V_{n, m_{n}}$. Notice that for $i=1,2, \ldots, n$ we have $m_{i} \geqslant 2$ and $V_{i, m_{i}}=V_{i+1}$.

Denote by

$$
\left\{e_{i, j}(P)\right\}_{j}^{i}=1 \ldots, \ldots, m_{i} \quad \text { the edges between } V_{i, j}(P) \text { and } V_{i, j+1}(P)
$$

For $i=1, \ldots, n e_{i}(P)=\bigcup_{j=1}^{m_{i}^{-1}} e_{i, j}(P)$ are then the edges of $M(P)$.
Let

$$
\begin{aligned}
& \left\{S_{i}(P)\right\}_{i=1} \ldots \ldots n \quad \text { be the absolute values of the slopes of the } \\
& e_{i}(P)^{\prime} s
\end{aligned}
$$

and let finally

$$
\left\{X_{i}(P)\right\}_{i=1}, \ldots, n \quad \therefore X_{i}=x\left(V_{i, 2}\right)-X\left(V_{i, 1}\right)
$$

and $\left\{Y_{i}(P)\right\}_{i=1, \ldots, n}, Y_{i}=Y\left(V_{i, 2}\right)-Y\left(V_{i, 1}\right)$ be the differences in the values of the coordinates of $V_{i, 1}(P)$ and $V_{i, 2}(P)$.

It is clear that $M(P)$ is determined by these families of numbers. Moreover, we deduce the following

$$
Y_{i}(P)=S_{i}(P) \cdot X_{i}(P) \quad i=1, \ldots, n
$$

Put, as a shorthand, $\quad \alpha_{i}(P)=X(P)-X\left(V_{i}(P)\right)$ and $\beta_{i}(P)=Y(P)-$ $Y\left(V_{i}(P)\right)$, and notice that $\alpha_{i+1}(P)>\alpha_{i}(P), \beta_{i+1}(P)<\beta_{i}(P)$.

For every pair $(i, j), i=1, \ldots, n, j=1 \ldots m_{i}$ the proof of
Temma 2.7 gives the existence of unique points $Q_{i, j}(P)=$ $\left.\left.\because i_{1, j}(P)\right), Y\left(V_{i, j+1}(P)\right)\right)$ and $P_{i, j}(P)=\left(X\left(V_{i, j+1}(P)\right), Y\left(V_{i, j}(P)\right)\right)$
with the properties

$$
\begin{aligned}
L\left(Q_{i, j}(P)\right) & =V_{i, j}(P)^{\wedge} U V_{i, j+1}(P)^{\wedge} \\
P_{i, j}(P)^{\wedge} & =V_{i, j}(P)^{\wedge} \cap V_{i, j+1}(P)^{\wedge}
\end{aligned}
$$

Definition 2.10

Denote by P_{i} the unique element of $\underset{Z}{Z_{+}^{2}}$ such that $P_{i}^{\wedge}=\cap_{j=1}^{m_{i}} P_{i, j} \wedge$ 。

Let $\lambda \in \Lambda$ and let n be the number of edges of $M(\lambda)$. The next lemma will show that $M\left(P_{i}(\lambda)\right)$ is congruent to the polygon
 vertices and the edges etc. of $M\left(P_{i}(\lambda)\right)$ by restricting the corresponding indexing of $M(\lambda)$. Thus $e_{i}\left(P_{i}(\lambda)\right)$ does not exist and, modulo translation, $e_{j}\left(P_{i}(\lambda)\right)$ is congruent to $e_{j}(\lambda)$ whenever $i \neq j$. Ifikewise $V_{i}\left(P_{i}(\lambda)\right)$ does not exist and
$V_{i-1, r_{i-1}}\left(P_{i}(\lambda)\right)=V_{i+1}\left(P_{i}(\lambda)\right)$. Notice that the intersection points $P_{j}\left(P_{i}(\lambda)\right)$ and $P_{i}\left(P_{j}(\lambda)\right)$ are, in general, different when $i \neq j$. Let $P\{i, j\}(\lambda)$ denote their intersection, i.e. the unique element of \underline{Z}_{+}^{2} such that

$$
P_{\{i, j\}}(\lambda)^{\wedge}=P_{i}\left(P_{j}(\lambda)\right)^{\wedge} \cap P_{j}\left(P_{i}(\lambda)\right)^{\wedge} .
$$

In general we make the following definition, ($\lambda \gg 0$ means $X(\lambda), Y(\lambda) \gg 0)$ 。

Definition 2.11
Let $\lambda \in \Lambda$ and $M(\lambda)$ as above, $\lambda \gg 0$. Let $I \subseteq\{1,2, \ldots, n\}$ be a set of integers different from the empty set. Define $P_{I}(\lambda)$ recursively via the intersection property

$$
P_{I}(\lambda)^{\wedge}=\bigcap_{i \in I} P_{i}\left(P_{I-\{i\}}(\lambda)\right)^{\wedge}
$$

where $P_{\phi}(\lambda)=\lambda$.

Lemma 2.12 will show that $M\left(P_{\{i, j\}}(\lambda)\right)$ is congruent to $M(\lambda)$ with the i-th and the j-th edge removed, and that in general $M\left(P_{I}(\lambda)\right)$ is congruent to $M(\lambda)$ with the $i-t h$ edge removed for every $i \in I \subseteq\{1,2, \ldots, n\}$.

Lemma 2.12
Let $\lambda, M(\lambda)$ be as above and let $I \subseteq\{1,2, \ldots, n\}$ be a set of integers, the empty set included.
i) The maximal polygon $M\left(P_{I}(\lambda)\right.$) of the set $P_{I}(\lambda)^{\wedge}$ is congruent to the maximal polygon $M(\lambda)$ of λ^{\wedge} with the i-th edge removed for every $i \in I$.
ii) Let for $i=1,2 \ldots, r_{i}=\left(\alpha_{i}, \beta_{i}\right)$. Then for every $j \neq I$

$$
P_{j}\left(P_{I}(\lambda)\right)=\lambda-\sum_{i \in I} r_{i} r_{n+1}-\sum_{\substack{h \neq I \\ h \geqslant j}} e_{h}-\left(\alpha_{j+1}-\alpha_{j}, 0\right)
$$

where e_{h} is the vector $\bar{V}_{h} \vec{V}_{h+1}$ associated to the edge $e_{h}(\lambda)$, and $\alpha_{i}=\alpha_{i}(\lambda), \beta_{i}=\beta_{i}(\lambda)$.

Proof

We shall prove the lemma by induction on the number of elements of $I . \# I=k$. The case $k=0$ is vacous; just notice that $e_{h}=r_{h}-r_{h+1}$ so $\begin{aligned} & \lambda-r_{n+1}- \sum_{h} \sum_{h} e_{h}=\lambda-r_{j} . \\ & h \geqslant j\end{aligned}$
Suppose the lemma holds for $\# I=k-1,0<k \leqslant n$, and let $I \subseteq\{1, \ldots . . n\}$ with $I=k$. To simplify notation, write for every $i \in I ; P_{I, i}(\lambda)=P_{i}\left(P_{I-\{i\}}(\lambda)\right)$. Obviously

$$
\left.P_{I}(\lambda)^{\wedge}=\cap_{i \in I} P_{I, i}(\lambda)^{\wedge}=\min _{i \in I} X\left(P_{I, i}(\lambda)\right), \min _{i \in I} Y\left(P_{I, i}(\lambda)\right)\right)^{\wedge}
$$

so we have to study the relation between the intersection points $P_{I, i}(\lambda)$. The induction hypothesis gives

$$
\begin{align*}
P_{I, j}(\lambda) & =\lambda-\sum_{i \in I-\{j\}^{r}} r_{n+1}^{-r_{n+1}} \sum_{\substack{h \mid I-\{j\} \\
h \geqslant j}} e_{h}-\left(\alpha_{j+1}-\alpha_{j}, 0\right) \\
= & \lambda-\sum_{i \in I} r_{i}+\sum_{\substack{h \in I \\
h>j}} e_{h}-\left(\alpha_{j+1}-\alpha_{j}, 0\right)
\end{align*}
$$

Consider the last part of the above sum, $\sum_{h \in I, h>j} e_{h}+\left(x\left(e_{j}\right), 0\right)$. The fact that $\alpha_{j+1}>\alpha_{j}$ and $\beta_{j+1}<\beta_{j}$ shows that the x-value of this vector increases and the Y-value decreases with increasing $j \in I$. So it follows that

$$
\begin{aligned}
P_{I}(\lambda)^{\wedge} & =P_{I_{,} i_{1}}(\lambda)^{\wedge} \cap P_{I_{,} i_{k}}(\lambda)^{\wedge} \\
& =\left(X\left(P_{I_{,} i_{1}}(\lambda)\right), Y\left(P_{I, i_{k}}(\lambda)\right)\right)^{\wedge}
\end{aligned}
$$

where $I=\left\{i_{1}<i_{2}<\cdots<i_{K}\right\}$. From $(* *)$ we deduce that $X\left(P_{I}(\lambda)\right)=$ $X\left(P_{I_{, ~} i_{1}}(\lambda)\right)=X\left(\lambda-\Sigma_{i \in I^{r}}{ }_{i+1}\right)$ and $Y\left(P_{I}(\lambda)\right)=Y\left(P_{I, i_{k}}(\lambda)\right)=$ $Y\left(\lambda-\Sigma_{i \in I} r_{i}\right)$. In addition we get the two inequalities

$$
\begin{aligned}
& P_{I, i_{1}}(\lambda)<\lambda-\sum_{i \in I} r_{i+1} \\
& P_{I, i_{k}}(\lambda)<\lambda-\sum_{i \in I} r_{i}
\end{aligned}
$$

Obviously $\lambda-\Sigma_{i \in I^{r}}{ }_{i} \geqslant \lambda-\Sigma_{i \in I^{r}}{ }_{i+1}-r_{1}$ and $\lambda-\Sigma_{i \in I^{r}}{ }_{i+1} \geqslant \lambda-\Sigma_{i \in I^{r}} i^{-r_{n+1}}$ and therefore $\lambda-\Sigma_{i \in I^{r}}{ }_{i+1}{ }^{-r_{1}}<P_{I}(\lambda)$ and $\lambda-\Sigma_{i \in I^{r}}{ }^{-r} r_{n+1}<P_{I}(\lambda)$. Thus $\lambda-\Sigma_{i \in I^{r}}{ }_{i+1}{ }^{-r_{1}}$ and $\lambda-\Sigma_{i \in I^{r}} i^{-r} n_{n+1}$ are the "endpoints" of the maximal polygon of $P_{I}(\lambda)$.

Using the fact that $\sum_{h=1}^{n} e_{h}=r_{1}-r_{n+1}$ we have the equalities

$$
\begin{aligned}
\lambda-\sum_{i \in I} r_{i+1}-r_{1} & =\lambda-\sum_{i \in I} r_{i+1}^{-r} r_{n+1}-\sum_{h=1}^{n} e_{h} \\
& =\lambda-\sum_{i \in I}\left(r_{i+1}-r_{i}\right)-\sum_{i \in I} r_{i}-r_{n+1}-\sum_{h=1}^{n} e_{h} \\
& =\lambda-\sum_{i \in I} r_{i}-r_{n+1}-\sum_{h} e_{h}
\end{aligned}
$$

This proves part i)

To prove ii) observe that i) implies

$$
\begin{aligned}
x\left(P_{j}\left(P_{I}(\lambda)\right)\right) & =x\left(\lambda-\int_{i \in I} r_{i+1}-r_{1}+\sum_{h \neq I}^{h} e_{h}\right) \\
& =x\left(\lambda-\sum_{i \in I} r_{i}-r_{n+1}-\sum_{\substack{h \neq I \\
h \geqslant j}} e_{h}+e_{j}\right)
\end{aligned}
$$

We already know

$$
Y\left(P_{j}\left(P_{I}(\lambda)\right)\right)=Y\left(\lambda-\sum_{i \in I} r_{i}^{-r} n+1 \sum_{\substack{h \notin I \\ h \geqslant j}} e_{h}\right)
$$

and therefore

$$
P_{j}\left(P_{I}(\lambda)\right)=\lambda-\sum_{i \in I} r_{i}-r_{n+1}-\sum_{h_{h} \nmid j} e_{h}+\left(X\left(e_{j}\right), 0\right)
$$

which is the claimed equation for $P_{j j}\left(P_{I}(\lambda)\right), \# I=k$.
Q.E.D.

Corollary 2.13

$$
P_{I}(\lambda) \in \Lambda \text { if and only if } I=\{1,2, \ldots, n\} \text { or } I=\varnothing .
$$

Proof

$0 \leqslant \sum_{i \in I} \alpha_{i+1}-\alpha_{i} \leqslant p$ with equality on the left or right if and only if $I=\varnothing$ respectively $I=\{1,2 \ldots n\}$.
Q.E.D.

In the next few lemmas we shall relate the homology of $L(P)$ to the homology of ordered sets connected with $M(P)$. Let $P \in \underline{Z}_{+}^{2}$ and assume $P \gg 0$. Put $M=M(P), V_{i}=V_{i}(P)$ etc.

Lemma 2.14
In the situation above we have an isomorphism for every $r \geqslant 0$

$$
\bigoplus_{j=1}^{m_{i}^{-1}} \tilde{H}_{r}\left(P_{i, j}\right) \simeq \bigoplus_{j=2}^{m_{i}^{-1}} \tilde{H}_{r}\left(L\left(V_{i}, j\right)\right) \oplus \tilde{H}_{r}\left(P_{i}\right)
$$

Proof

$$
\begin{aligned}
\text { Define } V & =V_{i}-r_{i+1} \in \Lambda \text {. Then for } j=1,2, \ldots, m_{i} \\
P_{i, j}^{\wedge} & =\left(X\left(P_{i, j}\right), Y(V)\right)^{\wedge} U\left(X(V), Y\left(P_{i, j}\right)\right)^{\wedge} \\
V^{\wedge} & =\left(X\left(P_{i, j}\right), Y(V)\right)^{\wedge} \cap\left(X(V), Y\left(P_{i, j}\right)\right)^{\wedge}
\end{aligned}
$$

The proof of this is left to the reader; an argument analogue to the proof of Lemma 2.7 will give the result.

Applying the reduced Mayer-Vietoris sequence, and using the fact that V^{\wedge} has a final object; we get an isomorphism for $j=1,2 \ldots m_{i}^{-1}$ and $r \geqslant 0$

$$
\begin{equation*}
H_{r}^{\sim}\left(P_{i, j}\right) \simeq \tilde{H}_{r}\left(X\left(P_{i, j}\right), Y(V)\right) \oplus \tilde{H}_{r}\left(X(V), Y\left(P_{i, j}\right)\right) \tag{***}
\end{equation*}
$$

But we also have for $j=2,3, \ldots \mathrm{~m}_{i^{-1}}$

$$
\begin{aligned}
L\left(V_{i, j}\right) & =\left(X\left(P_{i, j-1}\right), Y(V)\right)^{\wedge} U\left(X(V), Y\left(P_{i, j}\right)\right)^{\wedge} \\
V^{\wedge} & =\left(X\left(P_{i, j-1}\right), Y(V)\right)^{\wedge} \cap\left(X(V), Y\left(P_{i, j}\right)\right)^{\wedge}
\end{aligned}
$$

So for every $r \geqslant 0$

$$
\left.\tilde{H}_{r}\left(L\left(V_{i}, j\right)\right) \simeq \tilde{H}_{r}\left(X\left(P_{i, j-1}\right), Y(V)\right)\right) \oplus \tilde{H}_{r}\left(X(V), Y\left(P_{i}, j\right)\right)
$$

($* * * *$)

Summing over $j=1,2 \ldots m_{i}^{-1}$ the isomorphisms ($* * *$), changing paranthesises, and using $(\star * * *)$ we get

$$
\begin{aligned}
\oplus_{j=1}^{m_{i}^{-1}} \tilde{H}_{r}\left(P_{i, j}\right) & \simeq \oplus_{j=2}^{m_{i}^{-1}} \tilde{H}_{r}\left(L\left(V_{i, j}\right) \oplus \tilde{H}_{r}\left(X(V), Y\left(P_{j, 1}\right)\right) \oplus \tilde{H}_{r}\left(X\left(P_{i, m_{i}-1}\right), Y(V)\right)\right. \\
& \simeq \oplus_{j=2}^{m_{i}^{-1}} \tilde{H}_{r}\left(L\left(V_{i, j}\right)\right) \oplus \tilde{H}_{r}\left(P_{i}\right) \quad \forall r \geqslant 0
\end{aligned}
$$

The next lemma gives the relation between the homology of $L(P)$ and the homology of the intersesction points P_{i}.

Lemma 2.15

Let the symbols $P, M, V_{i, j}$ be as above; n is the number of edges of M. There is an isomorphism for every $r>0$

Proof

As a consequence of Lemma 2.7 we have

$$
L(P)=\bigcup_{\substack{i=1, \ldots n^{n} \\ j=1, \sum_{i}, m_{i}^{-1}}}^{Q_{i}}
$$

where $Q_{i, j}=Q_{i, j}(P)$ and the intersections $Q_{i, j}{ }^{\wedge} \cap Q_{i, j+1} \wedge$ and $Q_{i, m_{i}-1} \wedge \cap \Omega_{i+1,1} \wedge$ always are ordered sets with $V_{i, j+1}$, respectively $V_{i+1,1}$, as final elements. Using the Mayer-Vietoris sequence repeatedly we find

$$
\begin{aligned}
& \tilde{H}_{r}(L(P)) \simeq \Theta_{i=1, \ldots n^{\prime}}\left(Q_{i ; j}\right) \\
& j=1, \ldots m_{i}^{-1}
\end{aligned}
$$

Apply the Mayer-Vietoris sequence once more to the system $\left(Q_{i, j}^{\wedge}, V_{i, j}^{\wedge}, V_{i, j+1}^{\wedge}, P_{i, j}^{\wedge}\right)$. Since $V_{i, j}^{\wedge}$ has a final element we obtain an isomorphism for every $x>0$

$$
\tilde{H}_{r}\left(Q_{i, j}\right) \simeq \tilde{H}_{r-1}\left(P_{i, j}\right)
$$

where $i=1 \ldots n_{i} j=1 \ldots{ }_{i}-1$. Using Lemma 2.14 the lemma follows immediately.

Lemma 2.16
Let $\lambda \in \Lambda$ and let $I \subseteq\{1,2 \ldots \ldots n\}$. Suppose $2 \leqslant \# I=k \leqslant n$. Let $P_{I}=P_{I}(\lambda)$ and $P_{I_{, i}}=P_{i}\left(P_{I-\{i\}}(\lambda)\right)$. Then for every $r \geqslant 0$ we have an isomorphism

$$
\underset{i \in I}{\oplus} \tilde{H}_{r}\left(P_{I, i}\right) \simeq \bigoplus_{\substack{i \in I \\ i \neq i_{k}}} \tilde{H}_{r}\left(L\left(V_{i}\left(P_{I-\{i\}}\right)\right)\right) \oplus \tilde{H}_{r}\left(P_{I}\right)
$$

where $I=\left\{i_{1}<\cdots<i_{k}\right\}$.

Proof

Define $P_{I_{s}} i_{0} j$ via the intersection property

$$
P_{I_{, i, j}}^{\wedge}=\mathbb{P}_{I_{, i}}^{\wedge} \cap \mathbb{P}_{I_{, j}}^{\wedge}
$$

for every pair $i, j \in I$. Erom the proof of Lemma 2.12 we deduce
$P_{I, i_{1}, i}^{\wedge}=P_{I_{j}, i_{1}}^{\wedge}, i_{j-1} \cap P_{I_{,}} i_{j}$ for every $j=2, \ldots, k$.
For $j=1, \ldots, k-1$ we have the inequalities

$$
\left.P_{I_{, i}, i_{j}}^{\wedge}<P_{I_{, i}}<V_{i}\left(P_{I-\left\{i_{j}\right.}\right\}\right)
$$

and from Lemma $2: 12$ the equality

$$
P_{I, i_{j+1}}=V_{i j}\left(P_{I-\left\{i_{j}\right\}}\right)-\left(0, \beta_{i}{ }_{j+1}-\beta_{i_{j+1}+1}\right)
$$

Thus $P_{I, i}{ }_{j+1}<V_{i_{j}}\left(P_{I-\left\{i_{j}\right\}}\right)$. In addition we have the inequality $V_{i}\left(P_{I-\left\{i_{j}\right.}\right\}^{-r_{i}+1}<P_{I_{,} i_{1}}, i_{j+1}$. The last statement is an immediate consequence of the two relations

$$
\begin{aligned}
& V_{i_{j}}\left(P_{I-\left\{i_{j}\right\}}\right)-r_{i_{j}+1}<P_{I_{, ~}}{ }_{j+1} \\
& V_{i_{j}}\left(P_{I-\left\{i_{j}\right\}}\right)-r_{i_{j}+1}<P_{I_{,} i_{1}}
\end{aligned}
$$

The first follows from equation ($\star \star \star \star *$), the other is easily deduced from Lerma 2.12 using the analytic formula for ${ }^{P_{I}} i_{1}$. Thus we have

$$
\begin{aligned}
& \text { i) } V_{i}\left(P_{I-\left\{i_{j}\right\}}\right)-r_{i_{j}+1} \leqslant P_{I_{,} i_{1}, i_{j}}<V_{i_{j}}\left(P_{I-\left\{i_{j}\right\}}\right) \\
& \text { ii) } V_{i}\left(P_{I-\left\{i_{j}\right\}}\right)-r_{i_{j}+1} \leqslant P_{I_{,} i_{j+1}}<V_{i_{j}}\left(P_{I-\left\{i_{j}\right\}}\right) \\
& \text { iii) } X\left(P_{I, i_{j+1}}\right)=X\left(V_{i_{j}}\left(P_{I-\left\{i_{j}\right\}}\right)\right) \\
& \text { iv) } Y\left(P_{I, i_{1}, i_{j}}\right)=Y\left(V_{i}\left(P_{I-\left\{i_{j}\right\}}\right)\right)
\end{aligned}
$$

Applying the Mayer-Vietoris sequence three times we obtain for every $r \geqslant 0$ an isomorphism

$$
\tilde{H}_{r}\left(P_{I_{, 1}, i_{j}}\right) \oplus \tilde{H}_{r}\left(P_{I_{, i}}\right) \simeq \tilde{H}_{r}\left(L\left(V_{i+1}\left(P_{I-\left\{i_{j}\right\}}\right)\right)\right) \oplus \tilde{H}_{r}\left(P_{I, i}, i, j+1\right)
$$

But $P_{I, i_{1}, i_{k}}=P_{I}$ so an iterated use of the described process will give the lemma.
Q.E.D.

We are now in position to state and prove the main result of this paragraph.

Theorem 2.17
Let $\lambda \in \Lambda, \lambda \gg 0$ and $P_{I}=P_{I}(\lambda)$, as above. Let n be the number of edges of $M(\lambda)$. Then for every integer $r \geqslant n$ there is an isomorphism

$$
\begin{aligned}
& \tilde{H}_{r}(L(\lambda))=\left[\begin{array}{cccc}
\oplus_{k=1}^{n} & \oplus & \oplus_{\#=k-1} & { }_{i k I} \\
\dagger_{j=2}^{-1} \\
\tilde{H}_{r-k} & \left.\left.\left(V_{i, j}\left(P_{I}\right)\right)\right)\right]
\end{array}\right. \\
& \oplus\left[\begin{array}{c}
\oplus \\
\oplus_{k=2}^{n}
\end{array}{\underset{\# I=k}{\oplus}}_{\substack{i \in I \\
i \neq i}} \tilde{H}_{r-k}\left(L_{k}\left(V_{i}\left(P_{I-\{i\}}\right)\right)\right)\right]
\end{aligned}
$$

where $P_{\varnothing}=\lambda$ and $I=\left\{i_{1}<\cdots<i_{k}\right\}$.

Proof This is just an iterated use of Lemma 2.15 and Lemma 2.16, where we for each step increase the order of I. Remember that if $I \neq \varnothing, P_{I} \in \Lambda$ if and only if $I=\{1, \ldots, n\}$. Therefore the process stops when \#I = n. Moreover, for \#I \& n we have $L\left(P_{I}\right)=P_{I}^{\hat{}}$.
Q.E.D.

Now go back to the calculation of the right-hand side of the equation in Proposition 1.3. In Theorem 2.17 we made the assumption $\lambda \gg 0$. In fact it suffices to know that $\lambda>\sum_{i=1}^{n+1} r_{i}$. This is to ensure that all the points needed in Lemma 2.16 really are elements of Λ.

Put

$$
z=\left\{\lambda \in \Lambda|\lambda\rangle \sum_{i=1}^{n+1} r_{i}\right\}
$$

and recall the definition of

$$
U=\left\{(a, b) \in \underset{=}{Z_{+}^{2}} \mid b>p+a \cdot \xi \text { or } a>p+b \cdot \xi\right\}
$$

see(2.5).

Put

$$
W=(\Lambda-Z) \quad \cap(\Lambda-U)
$$

W is a finite set containing all $\lambda \in \Lambda-Z$ with the property $\tilde{H} .(\lambda) \neq 0$. Since for each $\lambda \in \Lambda_{0} L(\lambda)$ is a finite ordered set, there exist N^{\prime} such that $\tilde{H}_{m}(L(\lambda))=0$ for all $m \geqslant N^{\prime}$. Since W is finite we may choose N^{\prime} such that $\tilde{H}_{m}(L(\lambda))=0$ for all $m \geqslant N^{\prime}$ and all $\lambda \in W$. Putting $h_{m}\left(I_{\mu}(\lambda)\right)=\operatorname{dim}_{k} \tilde{H}(L(\lambda))$ we have thus proved

$$
\sum_{\lambda \in Z} h_{m}(L(\lambda))=\sum_{\lambda \in \Lambda} h_{m}(L(\lambda))
$$

for every $m \geqslant N^{\prime}$. Going back to Theorem 2.17 we see that the problem is to calculate the number $\sum_{\lambda \in Z} h_{m-k}\left(L\left(V_{i, j}\left(P_{I}(\lambda)\right)\right)\right.$). So we need a lemma.

Lemma 2.18

Let $Z \subseteq \Lambda$ and N^{\prime} be defined as above. Let $N=N^{\prime}+n$. Pick $m \geqslant N$ and let (k, I, i, j) be a quadruple which occurs in Theorem 2.17. Then we have the equality

$$
\text { - } \sum_{\lambda \in Z} h_{m-k}\left(L\left(V_{i, j}\left(P_{I}(\lambda)\right)\right)\right)=\sum_{\lambda \in Z} h_{m-k}(L(\lambda))
$$

Proof

The map $\lambda \rightarrow V_{i, j}\left(P_{I}(\lambda)\right)$ from Z into $\Lambda_{\text {, }}$ is obviously a rigid translation. Of course we have $\lambda \geqslant V_{i, j}\left(P_{I}(\lambda)\right)$ so

$$
Z \subseteq\left\{\lambda \in \Lambda \mid \exists \lambda^{\prime} \in Z \text { with } \lambda=V_{i, j}\left(P_{I}\left(\lambda^{\prime}\right)\right)\right\} .
$$

Let $\lambda^{\prime} \in Z$ with $V_{i, j}\left(P_{I}\left(\lambda^{\prime}\right)\right) \notin Z$. We have $m-k \geqslant N-k \geqslant N^{\prime}$ and by definition of $N^{\prime}: h_{m-k}\left(L\left(V_{i, j}\left(P_{I}\left(\lambda^{\prime}\right)\right)\right)\right)=0$. Since

$$
\left.\sum_{\lambda \in Z} h_{m-k}\left(L\left(V_{i, j}\left(P_{I}(\lambda)\right)\right)\right)=\sum_{\lambda \in Z} h_{m-k}(L(\lambda))+\sum_{\lambda^{\prime} \in Z^{\prime} m-k} h_{m}\left(L_{i, j}\left(P_{I}\left(\lambda^{\prime}\right)\right)\right)\right)
$$

where $Z^{\prime} \equiv\left\{\lambda^{\prime} \in Z \mid V_{i, j}\left(P_{I}\left(\lambda^{\prime}\right)\right) \notin Z\right\}$ we have proved the lemma.

Theorem 2.19

Leet the number N be as above. Let for every:m $\geqslant N$ $\gamma_{m}=\Sigma_{\lambda \in \Lambda^{h}} L(\lambda)$. Then there exists a recursion in the $\gamma^{\prime} s: \gamma_{m}=\sum_{k=1}^{h} R_{k} \cdot \gamma_{m-k}$ given by

$$
R_{k}=\binom{n-1}{k-1} \cdot s+\binom{n}{k}(k-1) \quad k=1,2, \ldots, n
$$

where n is the number of edges of the maximal polygon $M(\lambda)$ of λ, $\lambda \gg 0$, and $S=\sum_{i=1}^{n}\left(m_{i}^{-1}\right)$, where m_{i} is the number of lattice points on the i-th edge of $M(\lambda)$.

Proof

Due to Lemma 2.18 and Theorem 2.17 the only problem is to calculate the sums $\left(I=\left\{i_{1}<\cdots<i_{k}\right\}\right)$

$$
\begin{aligned}
& S_{1}=\sum_{I=k-1} \sum_{i \neq I} \sum_{j=1}^{m_{j}^{-1}} \gamma_{m-k} \\
& S_{2}=\sum_{I=k}^{\substack{i \in I \\
i \neq i_{k}}} \gamma_{m-k}
\end{aligned}
$$

This is a purely combinatorial problem and it is easy to show that

$$
\begin{aligned}
& s_{1}=\binom{n-1}{k-1} \cdot s \cdot \gamma_{m-k} \\
& s_{2}=\binom{n}{k} \cdot(k-1) \cdot \gamma_{m-k}
\end{aligned}
$$

which proves the theorem.
Q.E.D.

Corollary 2.20
Let $\Lambda^{\prime} \subseteq \underline{Z}_{+}^{2}$ be a saturated rational monoid, and let $k\left[\Lambda^{\prime}\right]$ be the associated monoid algebra. Consider the corresponding isolated singularity of the affine scheme $X=$ spec $k\left[\Lambda^{\prime}\right]$. The Betti serie $B(t)=\Sigma_{n \geqslant 0} \beta_{m} t^{m}$ of the local ring of this singularity is rational with denomiator

$$
-1+\sum_{k=1}^{n}\left[\binom{n-1}{k-1} \cdot S+\binom{n}{k}(k-1)\right] t^{k}
$$

Proof

Follows immediately from Theorem 2.17 and the formula of Proposition 1.3 implying $\quad \beta_{m}=\gamma_{m-2}$ for $m \gg 0$.
Q.E.D.

BIBLIOGRAPHY

[La] LAUDAL, O.A., Sur la théorie des limites projectives et inductives. Théorie homologique des ensembles ordonnés.
Annals Sci. de l'Ecole Normale Supérreure. 3^{e} série t. 82 (1965). pp. 241-296.
[La 2] LAUDAL, O.A., Groups and monoids and their algebras. A cohomological study I.
Preprint Series, Institute of Mathematics, University of Oslo. No 12, (1982).
[od] ODA, T., Torus Embeddings and Application, Tata Institute of Fundamental Research. Bombay (1978).

