ISBN 82-553-0511-4

Mathematics March 7 No 2 1983

BETTINUMBERS OF MONOID ALGEBRAS.

APPLICATIONS TO 2-DIMENSIONAL

TORUS IMBEDDINGS

ру

O.A. Laudal and A. Sletsjøe University of Oslo Norway (2) The second of the secon

.

in the second of the second of

Contents

Introduction

- § 1 Bettinumbers for monoid algebras
- § 2 Application to 2-dimensional torusembeddings

Notation

- k any field
- Λ a monoid (the unit is denoted by 1)
- $A = k[\Lambda]$ the monoid k-algebra
- $\underline{\underline{m}}$ the maximal ideal of A generated by $\Lambda_{+} = \Lambda \{1\}$
- $\underline{\underline{z}}_{+}$ the non-negative integers

introduction

The starting point of this paper is the rather elementary observation (1.2), which leads to a formula (1.3) for the Betti numbers of a monoid algebra in terms of the gombinatorial properties of the monoid, see [La 2]. The rest of the paper is concerned with the application of this formula to the case of 2-dimensional torus embeddings, see [Od]. More specifically: In §1 we give a method for computing the Betti numbers $\beta_i = \dim_k \operatorname{Tor}_i^A(k,k)$ when A is the monoid algebra over k of a commutative monoid A with cancellation law, and no non-trivial inverses. Proposition 1.3 relates the Betti numbers to the local homology of the simplicial set associated to $A_+ = A - \{1\}$ ordered such that $\lambda < \lambda \cdot \mu$, when $\lambda, \mu \in A$. In §2 this is used to compute the Betti numbers of 2-dimensional torus embeddings A. In particular we prove that the Betti series

$$B(t) = \sum_{n \ge 0} \beta_n t^n$$

of A is a rational function $\frac{P(t)}{Q(t)}$. The main result of this paper is, in fact, the explicite computation of the denominator Q(t), see Corollary 2.20.

§1 Betti numbers of monoid algebras

Fix a field k and let Λ be a commutative monoid with cancellation law, i.e. such that $\lambda \circ \mu = \lambda \circ \mu'$ implies $\mu = \mu'$. Let $A = k[\Lambda]$ and put $\underline{m} = \Lambda_+ \circ \Lambda$ where $\Lambda_+ = \Lambda - \{1\}$. Assume $A/\underline{m} = k$, i.e. assume Λ has no non-trivial subgroups. Put $\beta_1 = \dim_k Tor_1^A(k,k)$, the i-th Betti number of $k[\Lambda]$. Then the power series $B(t) = \Sigma_{n \geq 0} \beta_n t^n$ is called the Betti series of A. The

purpose of this first paragraph is to give a method for computing the Betti series of A using only combinatorial properties of Λ_+ .

Let Λ_+ be ordered as follows: $\lambda_1 \leq \lambda_2$ if and only if there exists a $\mu \in \Lambda$ such that $\mu \cdot \lambda_1 = \lambda_2$. There is a natural presheaf (projective system)

$$F: \Lambda_+ \to Ab$$

defined by: $F(\lambda) = A$

where $F(\lambda_1 \le \lambda_2): F(\lambda_2) \to F(\lambda_1)$ is multiplication by

$$\mu = \frac{\lambda_2}{\lambda_1}.$$

Lemma 1.1

$$\lim_{\Lambda_{+}} F = (\Lambda_{+}) \cdot A = \underline{m}.$$

Proof

For every $\lambda \in \Lambda_+$, consider the morphism $\eta_\lambda \colon F(\lambda) \to A$, the multiplication by λ . This defines a morphism $\eta \colon \lim_{\Lambda \to \infty} F \to \underline{m}$.

Given an element $\alpha \in \underline{m}$, there is a unique representation $\alpha = \Sigma_{i=n} \ \alpha_i \cdot \lambda_i \ ; \ \alpha_i \in k, \ \lambda_i \in \Lambda_+. \text{ Consider } \alpha_i \text{ as an element of } F(\lambda_i) \text{ and let } \overline{\alpha}_i \text{ be the image of } \alpha_i \text{ in } \lim_{\substack{i \in K \\ \Lambda_+}} F. \text{ Define } \overline{\Lambda}_+$ $\mu:\underline{m} \to \lim_{\substack{i \in K \\ \Lambda_+}} F \text{ by } \mu(\alpha) = \Sigma_{i=1}^N \ \overline{\alpha}_i. \text{ Then } \mu \text{ is an inverse of } \eta.$ Q.E.D.

Lemma 1.2

$$\lim_{\stackrel{\longrightarrow}{\Lambda_+}(n)} F = 0 \quad \text{for } n > 1.$$

Proof

By [La 1,(1,1.4)] it is enough to show that F is coflabby (coflasque). Let $\lambda \in \Lambda_+$ and suppose $\Lambda_1 \subseteq \{\lambda' \in \Lambda_+ | \lambda \leq \lambda' \}$ is such that if $\lambda' \in \Lambda_1$ and $\lambda' \leq \lambda''$ then $\lambda'' \in \Lambda_1$.

F is coflabby if in this situation

$$\lim_{\Lambda_1} F \longrightarrow \lim_{\{\lambda' \in \Lambda_+ \mid \lambda \leq \lambda'\}} = F(\lambda) = A$$

is an injection.

However, the proof of Lemma 1.1 applies to show that $\lim_{\stackrel{}{\Lambda_1}} F = \frac{1}{\Lambda_1} \left\{ \frac{\lambda'}{\lambda} \middle| \lambda' \in \Lambda_1 \right\}$ and that the morphism $\lim_{\stackrel{}{\Lambda_1}} F \longrightarrow \lim_{\stackrel{}{\Lambda_1}} F = A$ is the following specific to show that $\lim_{\stackrel{}{\Lambda_1}} F = \frac{1}{\Lambda_1} \left\{ \frac{\lambda'}{\lambda} \middle| \lambda < \lambda' \right\}$

obvious inclusion. Therefore we are done.

Q.E.D

Consider the resolving complex $C_{\bullet}(\Lambda_{+};-)$ for $\lim_{\Lambda_{+}}$ see [Lal, Λ_{+}]. By Lemma 1.2, $C_{\bullet}(\Lambda_{+};F)$ is an A-free resolution of the maximal ideal m of A. Therefore

$$\operatorname{Tor}_{i}^{A}(k,k) \simeq \begin{cases} k & i = 0 \\ H_{i-1}(C_{\bullet}(\Lambda_{+};F) \otimes k) & i > 1 \end{cases}$$

Now $C_{\bullet}(\Lambda_{+};F) \underset{A}{\otimes} k = C_{\bullet}(\Lambda_{+};F\otimes k)$, therefore $H_{i-1}(C_{\bullet}(\Lambda_{+};F)\otimes k) = \lim_{\stackrel{\longleftarrow}{\Lambda_{+}}(i-1)}(F\otimes_{A}k).$

Observe that the projective system F \otimes_A k is isomorphic to $\coprod_{\lambda \in \Lambda_+} k(\lambda)$, where $k(\lambda)$ is the projective system defined by:

$$k(\lambda)(\lambda') = \begin{cases} 0 & \text{if } \lambda' \neq \lambda \\ k & \text{if } \lambda' = \lambda \end{cases}$$

Put for any $\lambda \in \Lambda_{+}$,

$$\hat{\lambda} = \{\lambda' \in \Lambda_{+} \mid \lambda' \leq \lambda\}$$

$$L(\lambda) = \{\lambda' \in \Lambda_{+} \mid \lambda' \leq \lambda, \lambda' \neq \lambda\} = \hat{\lambda} - \{\lambda\}$$

It is easy to see that there are isomorphisms:

$$\lim_{\stackrel{\longleftarrow}{\Lambda_{+}}} (n)^{k(\lambda)} \stackrel{\simeq}{\longrightarrow} \lim_{\stackrel{\longleftarrow}{\Lambda}} (n)^{k(\lambda)} \quad \text{for} \quad n > 0$$

In fact this follows from the existence of a \coprod -projective resolution of $k(\lambda)$, trivial outside of $\hat{\lambda}$, see [La 1, (1.2)].

Let \underline{k}_{λ} be the constant projective system on $\hat{\lambda}$ defined by $\underline{k}_{\lambda}(\lambda') = k$, and let \underline{k}_{λ}' be the subprojective system of \underline{k}_{λ} defined by $\underline{k}_{\lambda}'(\lambda') = 0$ if $\lambda' = \lambda$ and $\underline{k}_{\lambda}'(\lambda') = k$ if $\lambda' \neq \lambda$. Then there is an exact sequence of projective systems on $\hat{\lambda}$

$$0 \rightarrow \underline{k}_{\lambda}^{\prime} \rightarrow \underline{k}_{\lambda} \rightarrow k(\lambda) \rightarrow 0$$

As

$$\lim_{\substack{k \to 0 \\ \lambda}} (n)^{\underline{k}} \lambda = \begin{cases} k & \text{for } n = 0 \\ 0 & \text{for } n > 1 \end{cases}$$

and since

$$\lim_{\stackrel{\longleftarrow}{\wedge}} (n) \stackrel{\underline{k}'}{\wedge} \cong \lim_{\underline{L}(\stackrel{\longleftarrow}{\lambda})} (n) \stackrel{\underline{k}}{=} \cong H_n(\underline{E}(\lambda); k) \qquad n > 0$$

where \underline{k} is the constant projective system k on $L(\lambda)$, and where we denote by $E(\lambda)$ the simplicial set defined by the ordered set $L(\lambda)$, see [La 1, (1.1)], we obtain an exact sequence

$$0 \rightarrow \lim_{\stackrel{\leftarrow}{\lambda}} (1) k(\lambda) \rightarrow \lim_{\stackrel{\leftarrow}{\lambda}} \frac{k'}{\lambda} \rightarrow k \rightarrow \lim_{\stackrel{\leftarrow}{\lambda}} k(\lambda) \rightarrow 0$$

and isomorphisms:

$$\lim_{\substack{\lambda \\ \uparrow \\ \uparrow}} (n)^{k(\lambda)} \simeq H_{n-1}(E(\lambda);k) \qquad n > 2$$

Notice that $\lim_{\lambda \to \infty} k(\lambda) = 0$ unless λ is minimal in Λ_+ , in which case $\lim_{\lambda \to \infty} k(\lambda) \simeq k$, and $\lim_{\lambda \to \infty} (1)$ $k(\lambda) = 0$.

If λ is not minimal, then

$$\lim_{\substack{\lambda \\ \lambda}} (1)^{k(\lambda)} \simeq \widetilde{H}_{O}(E(\lambda);k)$$

where \widetilde{H}_{\bullet} is the augmented homology. Summing up we have proved the following

Proposition 1.3

$$\operatorname{Tor}_{n}^{A}(k,k) \simeq \begin{cases} k & n = 0 \\ k^{\rho} & n = 1 \end{cases}$$

$$\underset{\lambda \in \Lambda_{+}}{\coprod_{\lambda \in \Lambda_{+}}} \widetilde{H}_{n-2}(E(\lambda);k) \quad n > 2$$

where ρ is the number of minimal elements of Λ_{\perp} .

§2 Application to 2-dimensional Torus embeddings

Let $\Lambda'\subseteq \underline{\mathbb{Z}}_+^2$ be the saturated rational monoid generated by (m_1,n_1) and (m_2,m_2) satisfying the two conditions

i)
$$(m_i, n_i) = 1$$
 $i = 1, 2$

ii) The system $\{(m_1,n_1),(m_2,n_2)\}$ is right-oriented i.e. satisfies

$$m_1 \cdot n_2 - m_2 \cdot n_1 = p > 0$$

Whenever needed we shall consider \mathbb{Z}^2_+ as embedded in \mathbb{Q}^2 or \mathbb{R}^2 by the obvious inclusions.

Consider the linear transformation

$$T: \ \underline{Q} \times \underline{Q} \to \underline{Q} \times \underline{Q}$$

given by

$$T(m_1, n_1) = (p, 0)$$

$$T(m_2, n_2) = (0, p)$$

We may represent T by the 2×2 matrix

$$T = \begin{pmatrix} n_2 & -m_2 \\ -n_1 & m_1 \end{pmatrix}$$

We are interested in the image of Λ' under the transformation T, denoted by $\Lambda = T(\Lambda')$. In particular we are interested in the subset $\Lambda \cap [0,p]^2$. If p=1, then $\Lambda = \underline{\mathbb{Z}}_+^2$, and therefore $\Lambda = k[\Lambda] = k[x_1,x_2]$. This case presents no problem, so we assume p > 1. Consider the intersection $\Lambda_1 = \Lambda \cap \{(1,n) \in \underline{\mathbb{Z}}_+^2\}$. The following lemma holds:

Lemma 2.1

There exists $\xi \in \underline{\mathbb{Z}}_+^2$ with $0 < \xi < p$ such that $\Lambda_1 = \{(1, \xi + \eta \cdot p) \mid \eta \in \underline{\mathbb{Z}}_+ \}.$

Moreover, for this ξ we have

$$\Lambda_{n} = \Lambda \cap (\{n\} \times \underline{\underline{\mathbb{Z}}})$$

$$= \{(n, n \cdot \xi + \eta \cdot p) \mid \eta \in \underline{\underline{\mathbb{Z}}} \text{ and } n \cdot \xi + \eta \cdot p > 0\}.$$

Proof

Since $(m_2, n_2) = 1$, there exists an integer pair $(x_0, y_0) \in \mathbb{Z}^2$ such that

$$T(x_{O}, y_{O}) = (n_{2}x_{O} - m_{2}y_{O}, -n_{1}x_{O} + m_{1}y_{O}) \in (\{1\} \times \mathbb{Z}).$$

The set $\{(m_1,n_1),(m_2,n_2)\}$ forms a basis for \underline{Q}^2 , and there exist $\alpha,\beta_0\in\underline{Q}$ such that

$$(x_0, y_0) = \alpha(m_1, n_1) + \beta_0(m_2, n_2)$$
 (*)

But T is a linear map so we have

$$T(x_{O}, y_{O}) = \alpha \cdot T(m_{1}, n_{1}) + \beta_{O} \cdot T(m_{2}, n_{2})$$
$$= \alpha \cdot (p, 0) + \beta_{O} \cdot (0, p) \in (\{1\} \times \underline{\underline{z}}).$$

This implies $\alpha=\frac{1}{p}$ and from equation (*) and the fact $(m_1,n_1)=1$ we deduce that $\beta_O \notin \underline{Z}$. So there exists an integer $\mu \in \underline{Z}$ such that $0 < \beta_O + \mu < 1$ and

$$T((x_0, y_0) + \mu(m_2, n_2)) = \alpha \cdot (p, 0) + (\beta_0 + \mu)(0, p) \in (\{1\} \times [0, p]).$$

Put
$$\beta = \beta_0 + \mu$$
 and $(x,y) = (x_0,y_0) + \mu(m_2,n_2) \in \mathbb{Z}_+^2$.

 $\alpha,\beta\in\underline{Q}$ are rational numbers, and γ the product of their denominators. The numbers $\gamma \cdot \alpha$, $\gamma \cdot \beta$ are integers, and

$$\gamma \cdot (x, y) \in \Lambda'$$
.

Since the monoid Λ' is saturated, it follows that $(x,y) \in \Lambda'$. Let $\xi = \beta \cdot p$. Then $T(n \cdot (x,y)) = (n,n \cdot \xi)$. Now consider the equivalence

$$n \cdot \xi + \eta \cdot p = n \cdot \beta \cdot p + \eta \cdot p$$

$$= (n \cdot \beta + \eta) \cdot p > 0$$

$$<=> n \cdot \beta + \eta > 0.$$

If $n \cdot \xi + \eta \cdot p > 0$ then we have

$$(n, n \cdot \xi + \eta \cdot p) = T(n(x,y) + \eta(m_2, n_2))$$

= $T(n \cdot \alpha(m_1, n_1) + (n \cdot \beta + \eta)(m_2, n_2))$

and $(n,n \cdot \xi + \eta \cdot p) \in \Lambda$. This follows from the fact that an integer pair, positively generated by (m_1,n_1) and (m_2,n_2) is element of Λ' .

Suppose $(x,y),(x',y')\in \Lambda'$ satisfy $T(x,y)\in \Lambda_a$, $T(x',y')\in \Lambda_a$ for some $a\in \underline{\mathbb{Z}}$. Then we have

$$n_2 \cdot x - m_2 \cdot y = n_2 \cdot x' - m_2 \cdot y'$$

or equivalently

$$n_2(x-x') = m_2(y-y')$$

Since $(m_2, n_2) = 1$ this is equivalent to $x-x' = c \cdot m_2$ $y-y' = c \cdot n_2$

for some $c \in \underline{Z}$. But then we have

$$-n_{1} \cdot x + m_{1} \cdot y = -n_{1} (c \cdot m_{2} + x') + m_{1} (y' + c \cdot n_{2})$$

$$= -n_{1} \cdot x' + m_{1} \cdot y' - c(n_{1} \cdot m_{2} - m_{1} \cdot n_{2})$$

$$= -n_{1} \cdot x' + m_{1} \cdot y' + c \cdot p$$

It is easy to see that this proves the lemma.

Q.E.D.

Thus we have a complete description of A given by

$$\Lambda = \left\{ (a,b) \in \mathbb{Z}_+^2 \middle| a \cdot \xi \equiv b \pmod{p} \right\}.$$

If we interchange (m_1,n_1) and (m_2,n_2) and apply the proof of Lemma 2.1 we get a number $\eta \in \underline{Z}_+$ satisfying

- i) 0 < η < p
- ii) $\eta \circ \xi \equiv 1 \pmod{p}$

The use of this will appear later.

Remark 2.2

One of the advantages with this description of Λ is the following property of Λ : If $\lambda=(a,b)$, $\lambda'=(a',b')\in \Lambda$ and if $\lambda'-\lambda=(a'-a,b'-b)\in \underline{\mathbb{Z}}^2_+$, then $\lambda'-\lambda\in \Lambda$.

In fact since for $(a,b),(a',b') \in \Lambda$; $b \equiv a \cdot \xi \pmod{p}$, $b' \equiv a' \cdot \xi \pmod{p}$ and a'-a > 0, b'-b > 0 we find $b'-b = (a'-a) \cdot \xi \pmod{p}$ therefore $(a'-a,b'-b) \in \Lambda$. Notice that this implies that the order relation on Λ (see §1) induced by the order relation on Λ' is the restriction of the ordinary order relation on $\frac{\mathbb{Z}^2}{\mathbb{Z}^2}$.

Definition 2.3

Let $P \in \mathbb{Z}_+^2$. Define the ordered set \hat{P} associated with P by $\hat{P} = \{\lambda \in \Lambda \mid \lambda \leqslant P\} \subseteq \Lambda$. The associated simplicial set will also be denoted by \hat{P} .

Correspondingly we shall let $L(P) = \{\lambda \in \Lambda | \{P\}\}$ also denote the associated simplicial set. (When $P \in \Lambda$, this is preciely the set E(P) of paragraph 1.)

Remark 2.4

Notice that for $P \in \mathbb{Z}_+^2 - \Lambda$ we have $L(P) = \stackrel{\wedge}{P}$.

Lemma 2.5

Let ξ and η be defined as above. Let $U \subseteq \underline{\mathbb{Z}}_+^2$ be the set defined by

$$U = \{(a,b) \in \mathbb{Z}^2 \mid b > p + a \cdot \xi \text{ or } a > p + b \cdot \eta\}$$

Then for any $P \in U$

$$\widetilde{H}_{n}(L(P)) = 0 \qquad n > 0.$$

Proof

It is obviously sufficient to prove the lemma in the case where P = (a,b) satisfies the condition $b > p+a \cdot \xi$. Given $P = (a,b) \in \mathbb{Z}_+^2$, and suppose $b > p+a \cdot \xi$. Then there exist integers $\alpha, \beta \in \mathbb{Z}$ such that

$$b - a \cdot \xi = \alpha \cdot p + \beta$$

with 0 < β \alpha > 1. We shall prove the lemma by induction on the integer a.

Suppose a = 0. Then L(P) has a final object and the homology vanishes.

Suppose a > 0. Let $P = (a,b) \in U$, and suppose the formula is valid for all $(m,c) \in U$ with m < a. Notice that Lemma 2.1

implies $(a,b-\beta) = (a,a \cdot \xi + \alpha \cdot p) \in \Lambda$. Now it easy to see that

i)
$$L(P) = (a-1,b)^{\wedge} \cup (a,b-\beta)^{\wedge}$$

ii)
$$(a-1,b-\beta)^{\wedge} = (a-1,b)^{\wedge} \cap (a,b-\beta)^{\wedge}$$

Apply the Mayer-Vietoris sequence and obtain the long exact sequence

where $\widetilde{H}_{\bullet}(P)$ is the homology of the ordered set associated with P. But now we have $b > p+a \cdot \xi > p+(a-1) \cdot \xi$ and $b-\beta = \alpha \cdot p+a \cdot \xi > p+a \cdot \xi$ $> p+(a-1) \cdot \xi$, so $(a-1,b) \in U$ and $(a+1,b-\beta) \in U$. The induction hypothesis implies

$$\widetilde{H}_{n}(a-1,b-\beta) = \widetilde{H}_{n}(a-1,b) = 0 \quad \forall n > 0.$$

 $(a,b-\beta) \in \Lambda$ and $(a,b-\beta)^{\wedge}$ has a final object; therefore

$$\widetilde{H}_{n}(a,b-\beta) = 0 \quad \forall n > 0$$

Thus, using the exactness of the above sequence, we get

$$\widetilde{H}_{n}(P) = 0 \qquad \forall n > 0$$

which proves the lemma.

Q.E.D.

Definition 2.6

Let $P \in \mathbb{Z}_+^2$. The maximal polygon associated with P, M(P) is the set of maximal elements of the convex hull $C(L(P)) \subseteq \mathbb{R}_+^2$ of L(P). \mathbb{R}_+^2 is regarded as an ordered set with the obvious ordering relation.

Put $M_{\Omega}(P) = L(P) \cap M(P)$. Then the following lemma holds.

Lemma 2.7

 $M_{O}(P)$ is the set of maximal elements of L(P).

Proof

Let $\max L(P)$ be the set of maximal elements of L(P). Obviously $M_O(P) \subseteq \max L(P)$. Assume $\lambda \in \max L(P)$ and $\lambda \notin M_O(P)$. M(P) is a convex polygon and λ has to sit strictly below some edge e. Pick vertices of e; $\mu, \mu' \in M_O(P)$, $\mu \neq \mu'$, and consider the element $\eta = \mu + \mu' - \lambda$. Since $\eta \in \mathbb{Z}_+^2$ we have seen (Remark 2.2) that $\eta \in \Lambda$. An easy argument then shows that $\eta \in L(P)$ and that η is above the edge e, a contradiction.

Q.E.D.

It is easily seen that M(P) must lie inside a square, $p \times p$, with P as the maximal point.

Lemma 2.8

For every $P \in \mathbb{Z}_+^2$ with P > (p,p), and every $\lambda \in \Lambda$: $M(P+\lambda) = M(P)+\lambda$

Proof

It is enough to show the equality $M_O(P+\lambda) = M_O(P)+\lambda$. So let $\mu \in M_O(P)$. Then $\lambda \leq \mu+\lambda \leq P+\lambda$. Now choose $\eta \in M_O(P+\lambda)$ such that $\lambda \leq \mu+\lambda \leq \eta \leq P+\lambda$. Then we have $\mu \leq \eta-\lambda \leq P$. Since $\mu,\eta,\lambda \in \Lambda$, the remark (2.2) implies $\eta-\lambda \in \Lambda$, thus we get $\mu = \eta-\lambda$ or $\eta = \mu+\lambda$. Consequently $\mu+\lambda \in M_O(P+\lambda)$ and $M_O(P)+\lambda \subseteq M_O(P+\lambda)$. To prove the inverse inclusion, we first notice that if $\mu \in M_O(P+\lambda)$ then $\mu > \lambda$. This follows from the fact that P > (p,p) and that $M_O(P+\lambda)$ sits inside a square $p \times p$ with $P+\lambda$ as the maximal point.

So let $\mu \in M_O(P+\lambda)$. Then $\mu < P+\lambda$ or $\mu-\lambda < P$. Choose $\eta \in M_O(P) \text{ such that } \mu-\lambda < \eta < P. \text{ This implies } \mu < \eta+\lambda < P+\lambda. \text{ But } \mu \in M_O(P+\lambda) \text{ so the last equation implies } \mu = \eta+\lambda \text{ which proves the lemma.}$

Definition 2.9

Let $P \in \mathbb{Z}_+^2$ and denote by:

$$\{V_{i,j}(P)\} \begin{tabular}{ll} $i=1,2,\ldots,n$\\ the lattice point on M(P) where\\ $j=1,2,\ldots,m_i$ \end{tabular}$$

i is the number of the edge counted from right, and

j is the number of the lattice point on the edge, also counted from right.

Put $V_i = V_{i,1}$ for i = 1,2,...,n and $V_{n+1} = V_{n,m_n}$. Notice that for i = 1,2,...,n we have $m_i > 2$ and $V_{i,m_i} = V_{i+1}$.

Denote by

$$\{e_{i,j}^{(P)}\}$$
 the edges between $V_{i,j}^{(P)}$ and $V_{i,j+1}^{(P)}$

For i = 1, ..., n $e_i(P) = \bigcup_{j=1}^{m_i-1} e_{i,j}(P)$ are then the edges of M(P).

Let

 $\left\{S_{\underline{i}}\left(P\right)\right\}_{\underline{i}=1,\ldots,n}$ be the absolute values of the slopes of the $e_{\underline{i}}\left(P\right)$'s

and let finally

$$\{x_{i}(p)\}_{i=1,...,n}, x_{i} = x(v_{i,2})-x(v_{i,1})$$

and $\{Y_i(P)\}_{i=1,...,n}$, $Y_i = Y(V_{i,2}) - Y(V_{i,1})$ be the differences in the values of the coordinates of $V_{i,1}(P)$ and $V_{i,2}(P)$.

It is clear that M(P) is determined by these families of numbers. Moreover, we deduce the following

$$Y_{i}(P) = S_{i}(P) \cdot X_{i}(P)$$
 $i = 1, ..., n$

Put, as a shorthand, $\alpha_{i}(P) = X(P) - X(V_{i}(P))$ and $\beta_{i}(P) = Y(P) - Y(V_{i}(P))$, and notice that $\alpha_{i+1}(P) > \alpha_{i}(P)$, $\beta_{i+1}(P) < \beta_{i}(P)$.

For every pair (i,j), i = 1,...,n, j = 1,...,m the proof of Lemma 2.7 gives the existence of unique points $Q_{i,j}(P) = \frac{1}{1} \frac{1}{1$

with the properties

$$L(Q_{i,j}(P)) = V_{i,j}(P)^{\circ} \cup V_{i,j+1}(P)^{\circ}$$

$$P_{i,j}(P)^{\circ} = V_{i,j}(P)^{\circ} \cap V_{i,j+1}(P)^{\circ}$$

Definition 2.10

Denote by P_i the unique element of \underline{Z}_{+}^2 such that $P_i^{\hat{i}} = \bigcap_{j=1}^{m} P_{i,j}^{\hat{i}}$.

Let $\lambda \in \Lambda$ and let n be the number of edges of $M(\lambda)$. The next lemma will show that $M(P_i(\lambda))$ is congruent to the polygon $M(\lambda)$ with the i-th edge removed. We shall therefore index the vertices and the edges etc. of $M(P_i(\lambda))$ by restricting the corresponding indexing of $M(\lambda)$. Thus $e_i(P_i(\lambda))$ does not exist and, modulo translation, $e_j(P_i(\lambda))$ is congruent to $e_j(\lambda)$ whenever $i \neq j$. Likewise $V_i(P_i(\lambda))$ does not exist and $V_{i-1,m_{i-1}}(P_i(\lambda)) = V_{i+1}(P_i(\lambda)).$ Notice that the intersection points $P_j(P_i(\lambda))$ and $P_i(P_j(\lambda))$ are, in general, different when $i \neq j$. Let $P_{\{i,j\}}(\lambda)$ denote their intersection, i.e. the unique element of \underline{Z}_i^2 such that

$$P_{\{i,j\}}(\lambda)^{\wedge} = P_{i}(P_{j}(\lambda))^{\wedge} \cap P_{j}(P_{i}(\lambda))^{\wedge}.$$

In general we make the following definition, ($\lambda >> 0$ means $X(\lambda),Y(\lambda) >> 0$).

Definition 2.11

Let $\lambda \in \Lambda$ and $M(\lambda)$ as above, $\lambda >> 0$. Let $I \subseteq \{1,2,\ldots,n\}$ be a set of integers different from the empty set. Define $P_I(\lambda)$ recursively via the intersection property

$$P_{\mathbf{I}}(\lambda)^{\wedge} = \bigcap_{\mathbf{i} \in \mathbf{I}} P_{\mathbf{i}}(P_{\mathbf{I} - \{\mathbf{i}\}}(\lambda))^{\wedge}$$

where $P_{\emptyset}(\lambda) = \lambda$.

--- 1--

Lemma 2.12 will show that $M(P_{\{i,j\}}(\lambda))$ is congruent to $M(\lambda)$ with the i-th and the j-th edge removed, and that in general $M(P_{I}(\lambda))$ is congruent to $M(\lambda)$ with the i-th edge removed for every $i \in I \subseteq \{1,2,\ldots,n\}$.

Lemma 2.12

Let $\lambda, M(\lambda)$ be as above and let $I \subseteq \{1, 2, ..., n\}$ be a set of integers, the empty set included.

- i) The maximal polygon $M(P_{\rm I}(\lambda))$ of the set $P_{\rm I}(\lambda)^{\wedge}$ is congruent to the maximal polygon $M(\lambda)$ of λ^{\wedge} with the i-th edge removed for every i \in I.
- ii) Let for i = 1, 2, ..., n $r_i = (\alpha_i, \beta_i)$. Then for every $j \notin I$ $P_j(P_I(\lambda)) = \lambda \sum_{i \in I} r_i r_{n+1} \sum_{h \notin I} e_h (\alpha_{j+1} \alpha_j, 0)$ $i \in I$ $h \neq j$

where e_h is the vector $\overrightarrow{V_h}\overrightarrow{V}_{h+1}$ associated to the edge $e_h(\lambda)$, and $\alpha_i = \alpha_i(\lambda)$, $\beta_i = \beta_i(\lambda)$.

Proof

We shall prove the lemma by induction on the number of elements of I, #I = k.

The case k=0 is vacous; just notice that $e_h = r_h - r_{h+1}$ so $\lambda - r_{h+1} - \sum_{h \in I} e_h = \lambda - r_j$.

Suppose the lemma holds for #I = k-1, 0 < k < n, and let $I \subseteq \{1, \ldots, n\} \text{ with } I = k. \text{ To simplify notation, write for every } i \in I; P_{I,i}(\lambda) = P_i(P_{I-\{i\}}(\lambda)). \text{ Obviously}$

$$P_{I}(\lambda)^{\wedge} = \bigcap_{i \in I} P_{I,i}(\lambda)^{\wedge} = (\min_{i \in I} X(P_{I,i}(\lambda)), \min_{i \in I} Y(P_{I,i}(\lambda)))^{\wedge}$$

so we have to study the relation between the intersection points $P_{\text{I,i}}(\lambda). \quad \text{The induction hypothesis gives}$

$$P_{I,j}(\lambda) = \lambda - \sum_{i \in I - \{j\}} r_i - r_{n+1} - \sum_{\substack{h \notin I - \{j\} \\ h > j}} e_h - (\alpha_{j+1} - \alpha_{j}, 0)$$

$$= \lambda - \sum_{i \in I} r_i + \sum_{\substack{h \in I \\ h > j}} e_h - (\alpha_{j+1} - \alpha_{j}, 0)$$

$$(**)$$

Consider the last part of the above sum, $\Sigma_{h\in I,h>j}e_{h}+(X(e_{j}),0)$. The fact that $\alpha_{j+1}>\alpha_{j}$ and $\beta_{j+1}<\beta_{j}$ shows that the X-value of this vector increases and the Y-value decreases with increasing $j\in I$. So it follows that

$$P_{I}(\lambda)^{\wedge} = P_{I,i_{1}}(\lambda)^{\wedge} \cap P_{I,i_{k}}(\lambda)^{\wedge}$$

$$= (X(P_{I,i_{1}}(\lambda)), Y(P_{I,i_{k}}(\lambda)))^{\wedge}$$

where $I = \{i_1 < i_2 < \cdots < i_k\}$. From (**) we deduce that $X(P_I(\lambda)) = X(P_I, i_1(\lambda)) = X(\lambda - \sum_{i \in I} r_{i+1})$ and $Y(P_I(\lambda)) = Y(P_I, i_k(\lambda)) = X(\lambda - \sum_{i \in I} r_{i+1})$

 $Y(\lambda-\Sigma_{i\in I}r_i)$. In addition we get the two inequalities

$$P_{I,i_{1}}(\lambda) < \lambda - \sum_{i \in I} r_{i+1}$$

$$P_{I,i_{k}}(\lambda) < \lambda - \sum_{i \in I} r_{i}$$

Obviously $\lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}} \ge \lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}+1} - \mathbf{r}_{\mathbf{l}}$ and $\lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}+1} \ge \lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}-1} - \mathbf{r}_{\mathbf{n}+1}$ and therefore $\lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}+1} - \mathbf{r}_{\mathbf{l}} < \mathbf{P}_{\mathbf{I}}(\lambda)$ and $\lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{n}+1} < \mathbf{P}_{\mathbf{I}}(\lambda)$. Thus $\lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}+1} - \mathbf{r}_{\mathbf{l}}$ and $\lambda - \Sigma_{\mathbf{i} \in \mathbf{I}} \mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{n}+1}$ are the "endpoints" of the maximal polygon of $\mathbf{P}_{\mathbf{I}}(\lambda)$.

Using the fact that $\Sigma_{h=1}^{n} e_{h} = r_{1} - r_{n+1}$ we have the equalities

$$\lambda - \sum_{i \in I} r_{i+1} - r_1 = \lambda - \sum_{i \in I} r_{i+1} - r_{n+1} - \sum_{h=1}^{n} e_h$$

$$= \lambda - \sum_{i \in I} (r_{i+1} - r_i) - \sum_{i \in I} r_i - r_{n+1} - \sum_{h=1}^{n} e_h$$

$$= \lambda - \sum_{i \in I} r_i - r_{n+1} - \sum_{h \in I} e_h$$

This proves part i)

To prove ii) observe that i) implies

$$X(P_{j}(P_{I}(\lambda))) = X(\lambda - \sum_{i \in I} r_{i+1} - r_{i} + \sum_{h \notin I} e_{h})$$

$$= X(\lambda - \sum_{i \in I} r_{i} - r_{n+1} - \sum_{h \notin I} e_{h} + e_{j})$$

$$= \lambda (\lambda - \sum_{i \in I} r_{i} - r_{n+1} - \sum_{h \notin I} e_{h} + e_{j})$$

We already know

$$Y(P_{j}(P_{I}(\lambda))) = Y(\lambda - \sum_{i \in I} r_{i} - r_{n+1} - \sum_{h \notin I} e_{h})$$

$$h > j$$

and therefore

$$P_{j}(P_{I}(\lambda)) = \lambda - \sum_{i \in I} r_{i} - r_{n+1} - \sum_{\substack{h \notin I \\ h \geqslant j}} e_{h} + (X(e_{j}), 0)$$

which is the claimed equation for $P_{j}(P_{I}(\lambda))$, #I = k.

Q.E.D.

Corollary 2.13

$$P_{T}(\lambda) \in \Lambda$$
 if and only if $I = \{1, 2, ..., n\}$ or $I = \emptyset$.

Proof

 $0 \leqslant \sum_{i \in I} \alpha_{i+1} - \alpha_i \leqslant p \quad \text{with equality on the left or right if and}$ only if $I = \emptyset$ respectively $I = \{1, 2, \ldots, n\}$.

In the next few lemmas we shall relate the homology of L(P) to the homology of ordered sets connected with M(P). Let $P \in \mathbb{Z}^2_+$ and assume P >> 0. Put M = M(P), $V_i = V_i(P)$ etc.

Lemma 2.14

In the situation above we have an isomorphism for every r > 0

$$\begin{array}{ccc}
 & \underset{i=1}{\overset{m_{i}-1}{\bigoplus}} & \underset{r}{\overset{m_{i}-1}{\bigoplus}} & \underset{j=2}{\overset{m_{i}-1}{\bigoplus}} & \underset{r}{\overset{m_{i}-1}{\bigoplus}} & \underset{r}{\overset{m_{i}-1}{\coprod}} & \underset{r}{\overset{m_{i}-1}{\coprod}} & \underset{r}{\overset{m_{i}-1}{\coprod}} & \underset{r}{\overset{m_{i}-1}{\coprod}} & \underset{r}{\overset{m_{i}-1}{\overset{m_{i}-1}{\coprod}} & \underset{r}{\overset{m_{i}-1}{\coprod}} & \underset{r}{\overset{m_{i}-1}{$$

Proof

Define
$$V = V_i - r_{i+1} \in \Lambda$$
. Then for $j = 1, 2, ..., m_i$

$$P_{i,j}^{\wedge} = (X(P_{i,j}), Y(V))^{\wedge} \cup (X(V), Y(P_{i,j}))^{\wedge}$$

$$V^{\wedge} = (X(P_{i,j}), Y(V))^{\wedge} \cap (X(V), Y(P_{i,j}))^{\wedge}$$

The proof of this is left to the reader; an argument analogue to the proof of Lemma 2.7 will give the result.

Applying the reduced Mayer-Vietoris sequence, and using the fact that V^{\wedge} has a final object, we get an isomorphism for $j=1,2,\ldots,m$, and r>0

$$H_{\mathbf{r}}^{\sim}(P_{\mathbf{i},\mathbf{j}}) \simeq \widetilde{H}_{\mathbf{r}}(X(P_{\mathbf{i},\mathbf{j}}),Y(V)) \oplus \widetilde{H}_{\mathbf{r}}(X(V),Y(P_{\mathbf{i},\mathbf{j}}))$$
 (***)

But we also have for $j = 2, 3, ..., m_i - 1$

$$L(V_{i,j}) = (X(P_{i,j-1}),Y(V))^{\wedge} \cup (X(V),Y(P_{i,j}))^{\wedge}$$
$$V^{\wedge} = (X(P_{i,j-1}),Y(V))^{\wedge} \cap (X(V),Y(P_{i,j}))^{\wedge}$$

So for every r > 0

$$\widetilde{H}_{r}(L(V_{i,j})) \simeq \widetilde{H}_{r}(X(P_{i,j-1}),Y(V))) \oplus \widetilde{H}_{r}(X(V),Y(P_{i,j}))$$
 (****)

Summing over $j = 1, 2, ..., m_i-1$ the isomorphisms (***), changing paranthesises, and using (****) we get

The next lemma gives the relation between the homology of L(P) and the homology of the intersesction points P_i .

Lemma 2.15

Let the symbols $P,M,V_{i,j}$ be as above; n is the number of edges of M. There is an isomorphism for every r>0

$$\widetilde{H}_{r}(L(P)) \approx \begin{bmatrix} \bigoplus_{\substack{i=1,2,\ldots,n\\j=2,3,\ldots,m}} \widetilde{H}_{r-1}(L(V_{i,j})) \end{bmatrix} \oplus \begin{bmatrix} n \\ \bigoplus_{i=1}^{n} \widetilde{H}_{r-1}(P_{i}) \end{bmatrix}$$

Proof

As a consequence of Lemma 2.7 we have

$$L(P) = \bigcup_{\substack{i=1,\ldots,n\\j=1,\ldots,m_i-1}} Q_{i,j}^{\wedge}$$

where $Q_{i,j} = Q_{i,j}(P)$ and the intersections $Q_{i,j} \cap Q_{i,j+1}$ and $Q_{i,m_i-1} \cap Q_{i+1,1}$ always are ordered sets with $V_{i,j+1}$, respectively $V_{i+1,1}$, as final elements. Using the Mayer-Vietoris sequence repeatedly we find

$$\widetilde{H}_{r}(L(P)) \simeq \bigoplus_{\substack{i=1,\ldots,n\\j=1,\ldots,m}} \widetilde{H}_{r}(Q_{i,j})$$

Apply the Mayer-Vietoris sequence once more to the system $(Q_{i,j}^{\wedge}, V_{i,j}^{\wedge}, V_{i,j+1}^{\wedge}, P_{i,j}^{\wedge}) \cdot \text{Since } V_{i,j}^{\wedge} \text{ has a final element we obtain an isomorphism for every } r > 0$

$$\widetilde{H}_{r}(Q_{i,j}) \simeq \widetilde{H}_{r-1}(P_{i,j})$$

where i = 1, ..., n, j = 1, ..., m -1. Using Lemma 2.14 the lemma follows immediately.

Q.E.D.

Lemma 2.16

Let $\lambda \in \Lambda$ and let $I \subseteq \{1,2,\ldots,n\}$. Suppose $2 \le \#I=k \le n$. Let $P_I = P_I(\lambda)$ and $P_{I,i} = P_i(P_{I-\{i\}}(\lambda))$. Then for every r > 0 we have an isomorphism

$$\bigoplus_{\mathbf{i} \in \mathbf{I}} \widetilde{H}_{\mathbf{r}}(P_{\mathbf{I},\mathbf{i}}) \simeq \bigoplus_{\substack{\mathbf{i} \in \mathbf{I} \\ \mathbf{i} \neq \mathbf{i}_{k}}} \widetilde{H}_{\mathbf{r}}(L(V_{\mathbf{i}}(P_{\mathbf{I} - \{\mathbf{i}\}}))) \oplus \widetilde{H}_{\mathbf{r}}(P_{\mathbf{I}})$$

where $I = \{i_1 < \cdots < i_k\}.$

Proof

Define P_{I,i,j} via the intersection property

$$P_{I,i,j}^{\wedge} = P_{I,i}^{\wedge} \cap P_{I,j}^{\wedge}$$

for every pair i,j \in I. From the proof of Lemma 2.12 we deduce

$$P_{I,i_{1},i_{j}}^{\wedge} = P_{I,i_{1},i_{j-1}}^{\wedge} \cap P_{I,i_{j}}$$
 for every $j = 2,...,k$.

For j = 1, ..., k-1 we have the inequalities

and from Lemma 2.12 the equality

$$P_{I,i_{j+1}} = V_{ij}(P_{I-\{i_j\}}) - (0,\beta_{i_{j+1}} - \beta_{i_{j+1}} + 1)$$
 (****)

Thus $P_{I,i_{j+1}} < V_{i_{j}}(P_{I-\{i_{j}\}})$. In addition we have the inequality $V_{i_{j}}(P_{I-\{i_{j}\}})-r_{i_{j}+1} < P_{I,i_{1},i_{j+1}}$. The last statement is an immediate consequence of the two relations

The first follows from equation (*****), the other is easily deduced from Lemma 2.12 using the analytic formula for P_{I,i_1} .

Thus we have

ii)
$$V_{i_j}^{(P_{I-\{i_j\}})-r_{i_j+1}} < P_{I,i_{j+1}} < V_{i_j}^{(P_{I-\{i_j\}})}$$

iii)
$$X(P_{I,i_{j+1}}) = X(V_{i_{j}}(P_{I-\{i_{j}\}}))$$

iv)
$$Y(P_{I,i_1,i_1}) = Y(V_{i_1}(P_{I-\{i_1\}}))$$

Applying the Mayer-Vietoris sequence three times we obtain for every r > 0 an isomorphism

$$\widetilde{H}_{r}(P_{I,i_{1},i_{j}}) \oplus \widetilde{H}_{r}(P_{I,i_{j+1}}) \simeq \widetilde{H}_{r}(L(V_{i_{j}}(P_{I-\{i_{j}\}}))) \oplus \widetilde{H}_{r}(P_{I,i_{1},i_{j+1}})$$

But $P_{I,i_1,i_k} = P_{I}$ so an iterated use of the described process will give the lemma.

We are now in position to state and prove the main result of this paragraph.

Theorem 2.17

Let $\lambda \in \Lambda$, $\lambda >> 0$ and $P_I = P_I(\lambda)$, as above. Let n be the number of edges of $M(\lambda)$. Then for every integer r > n there is an isomorphism

$$\widetilde{H}_{r}(L(\lambda)) = \begin{bmatrix} n & m_{i}^{-1} \\ \oplus & \oplus & \oplus & \bigoplus \\ k=1 & \#I=k-1 & i \notin I \end{bmatrix} \xrightarrow{m_{i}^{-1}} F_{r-k}(V_{i,j}(P_{I})))$$

$$\bigoplus \begin{bmatrix} n & \bigoplus & \bigoplus & \widetilde{H}_{r-k}(L(V_{i}(P_{I-\{i\}}))) \\ \vdots & \vdots & \vdots & \vdots \\ k=2 & \#I=k & i \notin I \\ i \neq i_{k} \end{bmatrix}$$

where $P_{\emptyset} = \lambda$ and $I = \{i_1 < \cdots < i_k\}.$

Proof This is just an iterated use of Lemma 2.15 and Lemma 2.16, where we for each step increase the order of I. Remember that if I $\neq \emptyset$, P_I $\in \Lambda$ if and only if I = $\{1, \ldots, n\}$. Therefore the process stops when #I = n. Moreover, for #I < n we have $L(P_I) = P_I^{\wedge}$.

Now go back to the calculation of the right-hand side of the equation in Proposition 1.3. In Theorem 2.17 we made the assumption $\lambda >> 0$. In fact it suffices to know that $\lambda > \sum_{i=1}^{n+1} r_i$. This is to ensure that all the points needed in Lemma 2.16 really are elements of Λ .

Put

$$Z = \left\{ \lambda \in \Lambda \mid \lambda > \sum_{i=1}^{n+1} r_{i} \right\}$$

and recall the definition of

$$U = \{(a,b) \in \mathbb{Z}^2 | b > p + a \cdot \xi \text{ or } a > p + b \cdot \xi \}$$

see(2.5).

Put

$$W = (\Lambda - Z) \cap (\Lambda - U)$$

W is a finite set containing all $\lambda \in \Lambda - Z$ with the property $\widetilde{H}_{\bullet}(\lambda) \neq 0$. Since for each $\lambda \in \Lambda$, $L(\lambda)$ is a finite ordered set, there exist N' such that $\widetilde{H}_{m}(L(\lambda)) = 0$ for all m > N'. Since W is finite we may choose N' such that $\widetilde{H}_{m}(L(\lambda)) = 0$ for all m > N' and all $\lambda \in W$. Putting $h_{m}(L(\lambda)) = \dim_{k} \widetilde{H}(L(\lambda))$ we have thus proved

$$\sum_{\lambda \in \mathbb{Z}} h_{m}(L(\lambda)) = \sum_{\lambda \in \Lambda} h_{m}(L(\lambda))$$

for every m > N'. Going back to Theorem 2.17 we see that the problem is to calculate the number $\sum_{\lambda \in Z} h_{m-k}(L(V_{i,j}(P_I(\lambda))))$. So we need a lemma.

Lemma 2.18

Let $Z \subseteq \Lambda$ and N' be defined as above. Let N = N'+n. Pick m > N and let (k,I,i,j) be a quadruple which occurs in Theorem 2.17. Then we have the equality

$$* \sum_{\lambda \in \mathbb{Z}} h_{m-k} (L(V_{i,j}(P_{I}(\lambda)))) = \sum_{\lambda \in \mathbb{Z}} h_{m-k} (L(\lambda))$$

Proof

The map $\lambda \to V_{i,j}(P_I(\lambda))$ from Z into Λ , is obviously a rigid translation. Of course we have $\lambda > V_{i,j}(P_I(\lambda))$ so

$$Z \subseteq \{\lambda \in \Lambda \mid \exists \lambda' \in Z \text{ with } \lambda = V_{i,j}(P_I(\lambda'))\}.$$

Let $\lambda' \in Z$ with $V_{i,j}(P_I(\lambda')) \notin Z$. We have m-k > N-k > N' and by definition of N'; $h_{m-k}(L(V_{i,j}(P_I(\lambda')))) = 0$. Since

$$\sum_{\lambda \in \mathbb{Z}} h_{m-k}(L(V_{\mathtt{i},\mathtt{j}}(P_{\mathtt{I}}(\lambda)))) = \sum_{\lambda \in \mathbb{Z}} h_{m-k}(L(\lambda)) + \sum_{\lambda' \in \mathbb{Z}'} h_{m-k}(L(V_{\mathtt{i},\mathtt{j}}(P_{\mathtt{I}}(\lambda'))))$$

where $Z' \equiv \{\lambda' \in Z \mid V_{i,j}(P_I(\lambda')) \notin Z\}$ we have proved the lemma.

Theorem 2.19

Let the number N be as above. Let for every m > N $\gamma_m = \Sigma_{\lambda \in \Lambda} h_m L(\lambda). \text{ Then there exists a recursion in the}$ $\gamma \text{'s} : \gamma_m = \Sigma_{k=1}^h R_k \cdot \gamma_{m-k} \quad \text{given by}$

$$R_k = {n-1 \choose k-1} \cdot S + {n \choose k} (k-1)$$
 $k = 1, 2, ..., n$

where n is the number of edges of the maximal polygon $M(\lambda)$ of λ , $\lambda >> 0$, and $S = \sum_{i=1}^{n} (m_i - 1)$, where m_i is the number of lattice points on the i-th edge of $M(\lambda)$.

Proof

Due to Lemma 2.18 and Theorem 2.17 the only problem is to calculate the sums (I={i_1 < • • • < i_k})

$$S_{1} = \sum_{\substack{i=k-1 \ i \notin I}} \sum_{\substack{j=1 \ i \notin I}} \gamma_{m-k}$$

$$S_{2} = \sum_{\substack{i=k \ i \notin I \ i \neq i}} \gamma_{m-k}$$

This is a purely combinatorial problem and it is easy to show that

$$S_{1} = {\binom{n-1}{k-1}} \cdot S \cdot \gamma_{m-k}$$

$$S_{2} = {\binom{n}{k}} \cdot (k-1) \cdot \gamma_{m-k}$$

which proves the theorem.

Q.E.D.

Corollary 2.20

Let $\Lambda'\subseteq \underline{\mathbb{Z}}_+^2$ be a saturated rational monoid, and let $k[\Lambda']$ be the associated monoid algebra. Consider the corresponding isolated singularity of the affine scheme $X=\operatorname{Spec} k[\Lambda']$. The Betti serie $B(t)=\Sigma_{n\geqslant 0}\beta_m t^m$ of the local ring of this singularity is rational with denomiator

$$-1 + \sum_{k=1}^{n} \left[{n-1 \choose k-1} \cdot s + {n \choose k} (k-1) \right] t^{k}$$

Proof

Follows immediately from Theorem 2.17 and the formula of Proposition 1.3 implying $\beta_m=\gamma_{m-2}$ for m >> 0.

Q.E.D.

BIBLIOGRAPHY

- [La 1] LAUDAL, O.A., Sur la théorie des limites projectives et inductives. Théorie homologique des ensembles ordonnés.

 Annals Sci. de l'Ecole Normale Supérreure. 3^e série t.82 (1965), pp. 241-296.
- [La 2] LAUDAL, O.A., Groups and monoids and their algebras. A cohomological study I.

 Preprint Series, Institute of Mathematics,
 University of Oslo. No 12, (1982).
- [Od] ODA, T., Torus Embeddings and Application, Tata Institute of Fundamental Research. Bombay (1978).