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Notation

k any field
A a monoid (the unit is denoted by 1)

A = k[A] the monoid k-algebra

m the maximal ideal of A generated by A = A

- +

Z+ the non-negative integers






otionduct ton

The starting point of this paper is the rather elementary
observation (1.2), which leads to a formula {(1.3) for the Betti
numbers of a wonoid algebra in terms of the combinatorial proper-

i

ties of the monoid, see |[La 2]. The rest of the paper is concerned

with the application of this formula to the case of 2-dimensional
torus embeddings, see [0d|. More specifically: In §1 we give a

- N . N N . Y - 3 Y o A
method for computing the Betti numbers By = dlmkiori(k,k) when A
is the monoid algebra over k of a commutative monoid A with

cancellation law, and no non-trivial inverses. Proposition 1.3

relates the Bettl numbers to the local homology of the simplicial

set associated to A = A- {1} ordered such that A < Aep, when

A, o€ Ao In §2 this is used to compute the Betti numbers of 2-
dimensional torus embeddings A. In particular we prove that the

Betti series

B(t) = ) gt

L
120

: - N - =S - I)(t) lasl oy . N > oo . 3
of A is a rational function 5TET 'he main result of this paper

is, in fact, the explicite computation of the denominator Q(t),
see Corollary 2.20.

e () e

§1 Betti numbers of monoid algebras

Fix a field x and let A be a commutative monoid with
cancellation law, i.e. such that ey = XAep' implies p = p'. Let

A = k{A] and put m = Ay oh where Ay = A-{1}. Assume A/m = Kk,

i.e. assume A has no non-trivial subgroups. Put Bi =

L. A ) . ) ) )
dlkaori(k,k), the i-th Betti number of k|A]. Then the power

, 0o . _ ) . :
series B(t) = Yasofnt 18 called the Rettl series of A. The



purpose of this first paragraph

the Betti series of A uasing only

i be ordered as follows:

Let .

exists a p € A such that je) Ay -

1

(projective system)

combinatorial properties of

to give a amethod for cowmputing

Ay

*

Ay <X

2

¥

if and only if there

There is a natural presheaf

defined by: FLAY = A
where ?{ﬁ§<kz}: O Féki) is multiplication by
oo -
Lemma 1.1
= (A }eA = m.
4 o
Proof
For every L Y consider the morphism “x: F(rn) » A, the
multiplication by A, This defines a morphism  n: lim F + m.
S
Given an element x € m, there is-a unigque representation
o = L. oA, oo, £k, A, & A . Cons «. as an element of
i=n i i 1 L + i
F(Ai) and let «, be the image of «, in lim ¥. Define
. 2, i L‘,\ l
T
. ; \ N - N . .
pamo o> lim by oplwe) = %0 0 a . Then p ds an inverse of n.
o A £k .
+ -
Q.ED.
Lemma 1.2
Lim F o= 0 for no» 1.
{n)
L .?«
Proof
By [La 1,(1,1.4) ]| it is enough to show that F is coflabby
(coflasque). Let x € A, and suppose A, ¢ {%’6A+{k<x‘} is such
N - '
that it A" ¢ & and AT o< n" e A

]



F is coflabby if in this situation

lim FF ~—> lim F = F(A) = A
: fAte n [rent}

is an injection.

However, the proof of Lemma 1.1 applies to show that 1lim F =
. :

}*A and that the morphism 1lim F —» lim F = A is the

x!
{&==|r"en
}\ ) L}

: (A€ A, |acnt}

1

obvious inclusion. Therefore we are done.
Q.E.D

Consider the resolving complex C.(A+;—) for 1lim, see [Lal,
+

(1.2)]. By Lemma 1.2, C _(A_:;F) is an A-free resolution of the

maximal ideal m of A. Therefore

k i=0

Tor?(k,k) «
. H. . (C (A, ;F) ® k) i >
i-1 LI
A
Now C (A,;F) @ k = C (A,:;Fek), therefore
® + ® -+
A A
Hi_](c.(A+;F):k) = llm(i_])(FeAk).

-+

‘Observe that the projective system F @, k 1is isomorphic to

ll_k(x), where k(A) 1is the projective system defined by:
NEA .
+
0O 1if A" #+ A
k(M) (A") =
k 1if A" = A

Put for any \ € A,
)

L(\)

{rren [nt<n}

=)

{rren, [atan, At ar}
It is easy to see that there are isomorphisms:

l%m(n) k(A) = l%m(n) k() for n » 0

R g

In fact this follows from the existence of a |]|-projective

resolution of k(A), trivial outside of ﬁ, see [La 1, (].2)].
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Let Ex be the constant projective system on % defined by
EK(A') = k, and let Ei be the subprojective system of Ex
defined by Ei(x') =0 if A' = A and Ei(k') =k 1if A" ¥ A

Then there is an exact sequence of projective systems on )

0 > .}f.;\ >k > k() + 0

A
As
k for n =0
lim k., =
A (n)=x 0 for n » 1
A
and since
lﬁm(n) EX = }}g (n) kK = Hn(E(x);k) n» 0
A p\A) :

where k 1is the constant projective system k on L(A), and where

we denote by E(\A) the simplicial set defined by the ordered set

L(A), see [La 1, (1.1)], we obtain an exact sequence

0 » l%m(]) kK(r) =+ l%m Ei > k » l%m k(A) » O
) ) A

and isomorphisms:

It

l%m(n) k() Hn_](E(X);k) n > 2

Notice that l%m k(A) = 0 unless A 1is minimal in Ay in which

case lim k(Ar) = k, and l%m(]) k(A) = 0.

R R

If A 1is not minimal, then

Lim ) k(A) = HO(E(M):k)

A

where ﬁ. is the augmented homology.

Summing up we have proved the following

Proposition 1.3

k n =20

Torﬁ(k,k) « { kP * n =1
1 H S (E(A):k)  n o> 2
NEA, \

where p 1is the number of minimal elements of A



§2 Application to 2-dimensional Torus embeddings

Let A' gf be the saturated rational monoid generated by

(m],n]) and (m?,m ) satisfying the two conditions

2

i) (mi,ni) = ] i=1,2

ii) The system {(m ,n]),(m ,n2)} is right-oriented

1 2

i.e. satisfies

My T Mty TR 0

}~]
N

Whenever needed we shall consider gf as embedded in 22 or
by the obvious inclusions. .
Consider the linear transformation

T: QxQ > 9xQ

given by
T(m],n]) = (p,0)

I

T(mzlnz) (O:P)

We may represent T Dby the 2x2 matrix

We are interested in the image of A' under the transformation
denoted by A = T(A'). In particular we are interested in the
subset A n [0,p]?. If p =1, then A = 22,6 and therefore A =
k[a] = k[x],xz]. This case presents no problem, so we

assume p > 1. Consider the intersection Ay = An{(],n)ééf}. The

following lemma holds:

Lemma 2.1

There exists § ¢ Ef with 0 < £ < p such that

Ay = {(1,e+nep)nez }.

Moreover, for this § we have

A
n

An( {n}x2)

{(n,neg+nep) | n€z and neg+ne-p>0 b

T,



Since (mo,n2) = 1, there exists an integer pa1ir (xo,yo) € 22

such that

T(xo,yo) = (nzxo—mzyo,—n]xo+m]yo) € ({1}x2).

The set {(m ,n]),(m ,n2)} forms a basis for Q?, and there exist

1
a,BO € Q such that

2

(xo,yo) = a(m .n])+BO(m M, ) : (%)

1 272
But T 1is a linear map so we have

T(xo,yo) = a-T(ml.n])+Bo-T(m2.n2)

= a<(p,0)+p_+(0,p) € ({1}xz).

This implies o = and from equation (*) and the fact (m],n]) = 1]

1
p
we deduce that Bo f Z. So there exists an integer g € 2 such

that 0 < Both < 1 and
T((x_,y )+u(m,,n,)) = a<(p,0)+(p_+r)(0,p) € ({1}x[0,p]).

= = 2
Put B Bt h and (x,y) (xQ,yO)+u(m2,n2) € z7.
a, € Q are rational numbers, and y the product of their

denominators. The numbers yea, yef are integers, and

ye(x,y) € A'.

Since the monoid A' 1is saturated, it follows that (x,y) € A'.

Let § = Bep. Then T(ne(x,y)) = (n,nef). Now consider the

equivalence
neg + nep = nefep + nep
= (nep+n)ep > O
<=> nepg+n > 0

If ne<f + nep > 0 then we have
(n,neg+nep) = T(n(x,y)+n(m2.n2))

= T(n-a(m],n])+(n-B+n)(m2,n2))

and (n,nef+nep) € A. This follows from the fact that an integer

pair, positively generated by (m],n]) and (m2,n2) is element of A'.



Suppose (x,y),{(x',y') € A" satisfy T(x,y) € Aa , T(x',y")

€ Aa for some a ¢ §+. Then we have
112-}{ - mg~y = nzwx - m2~y
or equivalently
nz(xwx ) = m2(y~y )
Since (md,nz) = ] this is equivalent to
X=-x' = cem, y=y' = cen,
for some ¢ ¢ Z. But then we have
-n_°*x + m_ ¢y = -n_{(cem_+x'}) + m ‘+cen
1 Y  (eomy+xt) y (Y 2)
= =n_e¢x' + m_esy' ~ c{n_em_-m_en
1 pY' o elnpmyomy en,)
= —nlax' + m]ay‘ + cep
It is easy to see that this proves the lemma.
Q.E.D.
Thus we have a complete description of A given by
A = {(a,b)é@i[a-izb(mod p)}.
If we interchange {mlim}) and (ma,n2} and apply the proof of
Lemma 2.1 we get a number n € Z satisfying
g .
J_) 0 < n < p
ii) ne& = 1(mod p)

The use of this will appear later.

Remark 2.2

One of the advantages with this description of A is the
following property of A: If A = (a,b), A = (a',b') € A and if
A'-r = (a'-a,b'-b) € 2%, then A'-A € A.

In fact since for (a,b),{(a’',b') € A; b = acg(mod p), b'= a'+¥(modp)
and a'-a » 0, b'-b » 0 we find b'-b = (a‘'~a)-f£(mod p) therefore

(a'-a,b'-b) € A. Notice that this implies that the order relation on
A (see §1) induced by the order relation on A' is the restriction

of the ordinary order relation on 2

©

2
+



Definition 2.3

Let P e gf. befine the ordered set P assochated with P Dby

/\ B
P = {heA|r<p} < A. The associated simplicial set will also be

denoted by b

Correspondiﬁqu we shall let L(pP) = {REAIiP} also denote the
associated simplicial set. (When P € A, this is preciely the set

E(P) of paragrapn 1.)

Remark 2.4

i
>

Notice that for P ¢ gf«A we have L(P) =

Lemma 2.5

Let & and 1n be defined as above. Let U g_gf be the set
defined by

|b>p+a<f or a>pt+ben}

Then for any P ¢ U

Proof

¥
It is obviocusly sufficient to prove the lemma in the case

where P = (a,b) satisfies the condition b > p+a+f. Given
P = (a,b)eéﬁ, and suppose b » ptas<f. Then there exist integers

a, 3 € such that

e

b - a<f = qgep + f
with 0 < g8 <p and a » 1. We shall prove the lemma by induction
on the integer a.
Suppose a = 0. Then L(P) has a final object and the homo-
logy wvanishes.
Suppose a > 0. Let P = (a,b) € U, and suppose the formula is

valid for all {(m,c) ¢ U with m < a. Notice that Lemma 2.1



implies (a,b-8) = (a,af+a+p) ¢ A.
Now 1t easy to see that
i) L(p) = (a-1,b)" U (a,b-p)"
A A
ii) (a-1,b-8)" = (a=1,b)" N (a,b-p)
Apply the Mayer-Vietoris sequence and obtain the long exact
sequence
ces 3 ﬁn(a--],b—ﬁ) > ﬁn(a,b-s) ® ﬁn(a—l,b)
> H (L(P)) » H _j(a=1,b=p) » eoces

where ﬁ.(P) is the homology of the ordered set associated with P.
But now we have b > pta+f > p+(a-1)+f and b-p = aqep+asf » p+asf

> pt(a-1)e+&, so (a-1,b) € U and Qa#],b-ﬁ) € U. The induction
hypothesis implies
fi_(a-1,b-p) = H (a-1,b) = 0 v on > 0.

(a,b-B) € A and (a,b~B)A has a final object; therefore

ﬁn(a,b~5) =0 vn >0
Thus, using the exactness of the above sequence, we get
L
Hn(P) = 0 v n > 0

which proves the lemma.
Q.E.D.

Definition 2.6

Let P ¢ éf. The maximal polygon associated with P, M(P) is
the set of maximal elements of the convex hull C(L(P)) = 53 of
L(P). gf is regarded as an ordered set with the obvious ordering
relation.

Put MO(P) = L(P)n M(P). Then the following lemma holds.

Lemma 2.7

MO(P) is the set of maximal elements of TL(P).



- 10 =

Proof

Let max L(P) be the set of maximal elements of L(P).

Obviously MO(P) c max L(P). Assume A € max L(P) and ¢ MO(P).

M(P) 1is a convex polygon and A has to sit strictly below some
edge e. Pick vertices of e; p,p' € MO(P), L ¥ p', and consider
the element v = p+p'=A. Since 1n € gf we have seen (Remark 2.2)

that n € A. An easy argument then shows that =n € L(P) and that

n 1is above the edge e, a contradiction.
Q.E.D.

It is easily seen that M(P) must lie inside a square, pxp, with

P as the maximal point.

Lemma 2.8

For every P € 1 with P > (p,p), and every A € A:

M(P+A) = M(P)+A

Proof

It is enough to show the equality MO(P+k) = MO(P)+X. So let
po€ MO(P). Then A < p+A < P+A. Now choose 1 € MO(P+k) such that
A € ptA € f < P+A. Then we have p < n—=A < P. Since pu,n,N € A, the
remark (2.2) implies n-\A € A, thus we get p = n-A Or n = p+A.
Consequently p+\ € MO(P+A) and Mé(P)+x c MO(P+A). To prove the
inverse inclusion, we first notice that if p € MO(P+x) then
p > A. This follows from the fact that P > (p,p) and that

M _(P+A) sits inside a square pxp with P+\A as the maximal

of
point.

So let p ¢ MO(P+A). Then p < P+A or p—-\A < P. Choose
n € MO(P) such that p-A < 1 < P. This implies p < n+A < P+A. But

uo€ MO(P+A) so the last equation implies p = n+\A which proves

the lemma.
Q.E.D.



Definition 2.9

Let P ¢ zf and denote by:

i=1,2,...,n0 :
v, .(p)} the lattice point on M(P) where
1] i=1,2,...,m,
i

i is the number of the edge counted from right} and

j 1is the number of the lattice point on the edge, also

counted from right.

Put V., = V, for i =1,2,...,n and V = V . Notice that
1 1,1 n+1 n,mn
for 1= 1,2, ,n we have m, » 2 and V., = V, .
1,mi i+1
Denote by
i=1,...,n
e, .(p the edges between V., ,(P) and V., . P
1,5 )}j = 1,...,m, ? SHE i34 %)
i

m,~1
i
For i = 1,...,n ei(P) = L,J ei,j(P) are then the edges of M(P).
J=1

Let
{Si(P)}i=] 0 be the absolute values of the slopes of the
e, (P)'s
1
and let finally
XY h g, L, o Xy = XV )XV, )
and {y.(p)}. , Y. = Y(V, _)-Y(V, _) be the differences
1 1i=1,...,n 1 i, 2 1,1

in the wvalues of the coordinates of

Vi,](P) and Vi,Z(P)'

It is clear that M(P) is determined by these families of numbers .

Moreover, we deduce the following
Yi(P) = Si(P)-Xi(P) i = ]""in

Put, as a shorthand, ai(P) = X(P)—X(Vj(P)) and Bi(P) = Y(P)~-

Y(Vi(P)), and notice that ai+](P) > ai(P), B (r) < Bi(P).

i+1

For every pair (i,j), i =1,...,n, J = 1,...,m, the proof of
T,emma 2.7 gives the existence of unique points Qi j(P) e

'"‘71,@(p))' Y(Virj+](v))) and pi’j(p) = (xX(v, j+](P)), Y(Vi,j(p)))

14



with the properties

, _ A A
L(Qi’j(P)) = Vilj(P) u Vilj+](P)
A Sy A A
Definition 2.10
m,
A i
Denote by P, the unique element of 22 such that P, = n P,

i =4 i 3=1 i, ]

Let XN € A and let n be the number of edges of M(\A). The
next lemma will show that M(Pi(x)) - is congruent to the polygon
M(A) with the i-th edge removed. We. shall therefore index the
vertices and the edges etc. of M(Pi(X)) by restricting the
corresponding indexing of M(\). Thus ei(Pi(k)) does not exist
and, modulo translation, ej(Pi(x)) is congruent to ej(x) when-

ever 1 ¥ j. Likewise Vi(Pi(x)) does not exist and

ic1om (P.(N)) =V (Pi(k)). Notice that the intersection points
RS

Pj(Pi(x)) and Pi(Pj(x)) are, 1in general, different when 1 # j.

Let P{i E}(x) denote their intersection, i.e. the unique element
of gf such that
A A A
Pr. 10X = P.(P.(A ne.(P.(n .
(1,31 (P50 0Py (R (M)

In general we make the following definition, (A >> O means

X(AN),Y(A) >> 0).

Definition 2.11

Let A € A and M(\A) as above, A >> 0. Let Ic< {1,2,...,n}
be a set of integers different from the empty set. Define PI(K)

recursively via the intersection property

P_(rn) = ﬂPi(P

TSI R
ieT -1}

I

where P¢(K) = \.



Lemma 2.12 will show that M(P{i :
7

with the i-th and the Jj-th edge removed, and that in general

}(k)) is congruent to M(\)

>M(PI(X)) is congruent to M(\A) with the i-th edge removed for

every 1 € I < {1,2,...,n}.

Lemma 2.12

Let A,M(A) Dbe as above and let I,Eb{l,Z,...,n} be a set of
integers, the empty set included.
i) The maximal polygoh M(PI(X)) of the set PI(A)A is congru-
ent to the maximal polygon M(A) of A" with the i-th edge

removed for every i € I.

ii) Let for i =1,2,...,n r, = (ai,Bi). Then for every j § I

P.(P(N) = Jr.-r_ .- Ve -(a. .-a.,0)
J I . i " n+l h{l h j+1 j
h>j
. —_— . .
where e, 1is the vector thh+] associated to the edge

(n), and o, = ai(x), Bi = Bi(x).

“n
Proof

We shall prove the lemma by induction on the number of

elements of I, I = k.

The case k = 0 1is vacous; 7Jjust notice that &, = rh—rh+] sO
A-T - L e = A-I.

n+1 th h J

h>j
Suppose the lemma holds for #1 = k-1, 0 < k < n, and let
I<c {1,.,...,n} with I = k. To simplify notation, write for
evgry i€ 1; PI'i(K) = Pi(PI_{i}(x)). Obviously
A A . . A
PI(K) = NP; ;0 = (min x(PI ;1 (2)), min Y(PI 1)
ier ©F i€1 ! ier !

so we have to study the relation between the intersection points

PI i(x). The induction hypothesis gives
§



ict

A- Y r.+ )
T nher

14

h

eh“(“j+1

h»>j

Consider the last part of the above sum,

fact that « o

L. AL
J+1 ]

this vector increases and the

j € I.

PI(x) hoe

I = {l (i {oou(i

()

where

= X(A-13.

X(P i

1,1]

Y( A= ).

ierti
]
o (n)
T
A-T

Obviously A=

. -, 2
16111

A=L .
1

and therefore

Thus A-2. and

1

e1¥iv1 75

maximal polygon of

Using the fact that

Il

A= X r.,, . .-r
i€1 i+l 1

Il

This proves part i)

and

So it follows that

(X(PLi

1 72 k}'

EIri+]

P_ . (A) < A= ) r,

erfiv1 75

P31

(N)),
1

) and

ier

< A= )Ty

Per
Yiettiv

<
r PI(

AEy ety

PI(x).

r +1° !
n hfl—{j}

) h
>]

-a.,0
aj )

)

shows

B3

(\)
k

Y(Py

From (**) we deduce that X(PI(A))

Y(PI(x))

In addition we get the two inequalities

1

r] and A-%

A) and A-

r are

n+1

e —(a.

+
heI,h>3h

J+17“j‘q)

(%%)

(X(ej),O). The

that the X-value of

Y-value decreases with increasing

)"

()
k

Y(P .
( I,1

A=12

iert i+
5.
1

the

ierti " n+

€11 Tty ¢ Pr(M)e

"endpoints" of the

we have the equalities



To prove‘ii) observe that i) implies

X(P.(P_(N))) = X(A= Y r, -r + ) e )
J I i€T 14 1 hFI h
h<j
= X(A= J r.-r .- ) e +e.)
ier + 0t th h3
- hzj
We already know
Y(P (P (A))) = Y(r= ) r,~r - ) e )
L i€T ntlopEr b
h>

and therefore

pj(PI(x)) = A ) r,-r

- Z = +(X(e)10)
ier b0t oy J
3

h

which is the claimed equation for RjiPI(x)), 4T = k.

Corcllary 2.13

pI(x) € A if and only if I = {1,2,...,n} or I = @.

Proof

0 < ) a, —x, < p with equality on the left or right if and

only if I =@ respectively I = {1,2,...,n}.
' Q.E.D.

In the next few lemmas we shall relate the homology of L(P)
to the homology of ordered sets connected with M(P). Let P ¢ gf

and assume P »> 0. Put M = M(P}, Vi = Vi(P) etc.

Lemma 2.14

In the situation above we have an isomorphism for every r 3> 0O

mi-] | m, -1
.@ Hr(Pi,j) = ' Hr(L(Vi,j)) @ Hr(Pi)
Proof
Define V = Vi-—riH € A. Then for J = ]'2'f"’mi
A A r .
Pi, g = (X(Pi,j).Y(V)) U (k(V),Y(pi,j))
A _ A ) .
v o= (X(Pi;j),Y(V)) n (k(V),Y(pi’j))



The proof of this is left to the reader; @q argument analogue to
the propf of Lemma 2.7 will give the result,
Applying the reduced Mayer-Vietoris sequence, and using the

fact that V" has a final obiject, we get an isomorphism for o

i =1,2,...,m.-1 and r > 0 .
i . \
Hr(Pi,j) = Hr(X(Pi,j)'Y(V)) @ Hr(X(V)'Y(Pi,j)) (**x)
But we also have for j = 2,3,...,mi—]
LV, .) = (X(P, . ), Y(v)™u (x(v),v(p, .N"
—ij =y J 1 11]
A AN A
v o= (X(Pi,j—])’Y.(v)) n (x(v).Y(Pi,j))

So for every 1 > 0

ﬁr(L(Vi,')) = H_(x(p

5 ). Y(V))) @ H_(X(V),Y(P; .)) (Hxkx)

i, j-1 0]
Summing over j = ],2,...,mi—1 the isomorphisms (%%*x), changing

paranthesises, and using (*x%xx) we get

m, -1 m, -1

1 i
jc-zl ﬁr(Pi,j) ~ jG=B9 fir(L(vi’j))@ﬁr(x(v),Y(Pj’]))@ﬁr(x(pi'mi_]),Y(v))
m.l-]
! = jG=B2 ﬁr(L(Vi,j))@ﬁr(pi) vor s o0

Q.E.D.
The next lemma gives the relation between the homology of  L{(P)

and the homology of the intersesction points Pi'

Lemma 2.15

Let the symbols P,M,V be as above; n 1is the number of

i, ]

edges of M. There is an isomorphism for every r > O

H (L(P)) = ® A (Lv, .| @ | @H
i=1,2,...,n «J i=1

&
¢3,60.,m, =1
i

]




Proof

As a consequence of Lemma 2.7 we have

A
L{P) = .
(P) LJ Q5
i=l,...,n
i=1,...,m, -1
here 0. . = 0. (p) d the int ti ~ " ana
where 0,5 = Qi,j an e 1ntersections Qi,j n Qi,j+] an
A
Ql,m.-] n Qi+],] always are ordered sets with Vl 341 respec-
tively Vi+] , ¢+ @s final elements. Using the Mayer-Vietoris
sequence repeatedly we find
Ho(L(P) = @&  H.(0; J)
i=1,...,n _
]=],...,mi—]
Apply the Mayer-Vietoris sequence once more to the system
A A A . A .
(Qi’j,v 3'f1 1%,Eg,]?jwj), Since Vi,j has a final element we
obtain an isomorphism for every r > O
5/ Hrwl(Pi,j)
where i = 1,...,n, J = ],...,mi—]. Using Lemma 2.14 the lemma
follows immediately.
Q.E.D.

7
Lemma 2.16

Let A € A and let I c {],2,...,n}. Suppose 2 < #I=k < n.

Let P_ = PI(k) and PI,i = Pi(PI_{i}(k)). Then for every r > O

we have an isomorphism

I%H (Pp ) = iégl ﬁr(L(vi(PI_{i}))) ® H_(p)
i:i:ik
where I = {i]<e@@<ik}w
PrQof
Define P1§iﬂ4 via the intersection property

for every pair 1i,j € 1. From the proof of Lemma 2.12 we deduce



A A .
PI,i i, = PI,i i n PI,i. for every J = 2,f,.,k.
1 1 -1 Jj
For j =1,...,k-1 we have the inequalities ‘
Pl < < ( )
T,i i, ¢ Pr,i, Vi Pro(i,})
1777 J J J

and from Lemma 2.12 the equality

P_ . = V,.(p . )-(0,B. -B. ) (Rxkkx)
’ N - " . o +
Liig ijtr {13} Lo 5 1
Thus PI,i. | < Vi.(PI—{i.})' In addition we have the inequality
J+1 J J
Vi.(PI—{i.})_ri}+] < PI,i i The last statement is an
J J J 177 3+1]

immediate consequence of the two relations

The first follows from equation (**x%*x), the other is easily

deduced from Lermma 2.12 using the analytic formula for PI e
M

Thus we have

Dovy P P e P, Vi, CProqay)
y I j 1 j j
1) vij(PI—-{ij})_rl + € PI,ij_H ¢ VlJ(PI—{ij})
iii) x(p j+]) = X(Vij(PI {ij}))
iv) Y(PI,i],ij) = Y(Vij(PI_{ij}))

Applying the Mayer-Vietoris sequence three times we obtain for

every r » 0 an isomorphism

Hr(PI,i

D@ H Py ;) = HA(L(Vy (Pr_yy 1)) @H (P 5 5 )

1 j+1 3 3 177341

]I

But P_ . . =P so an iterated use of the described process
I,1],1k I
will give the lemma.

Q.E.D.



We are now in position to state and prove the main result of this

paragraph;

Theorem 2.17

Let A € A, A >> 0 and P, = PI(X), as above. Let n Dbe the

number of edges of M(\A). Then for every integer r > n there is
an isomorphism

H(L(A) = | & @ @ ® f__ (v, .(P)))
r k=1 #I=k-1 ifr j=2 =K 131 }

['n
@ | ® @ @® A (L(v,(P._.1)))
k=2 #1=x ier Tx i I-{i}
l*lk
where P = A and T = [i <ese<i }.
Proof This is just an iterated use of Lemma 2.15 and Lemma

2.16, where we for each step increase the order of I. Remember

that if I * ¢, L if and only if I = {1,...,n}. Therefore
the process stops when #I = n. Moreover, for #I < n we have

A
L(P ) = P;.

Q.E.D.
L) .

Now go back to the calculation of the right-hand side of the

equation in Proposition 1.3. In Theorem 2.17 we made the

assumption A »> 0. In fact it suffices to know that A > Egt:ri.

This is to ensure that all the points needed in Lemma 2.16 really

are elements of A.

Put

n+1

z = {rea|r> ) .}
. 1
i=1

and recall the definition of
U = {(a,b)nglb>p+aog or a>p+bet}

see(2.5).



Put

W= (A-2) n (A-U)

W 1is a finite set containing all A € A-Z with the property

ﬁ.(x) # 0. Since for each A € A, L(A) is a finite ordered set,
there exist N Msuch that ﬁﬁ(L(x)) = 0 for all m » N'. Since W
is finite we may choose N' such that ﬁm(L(x)) = 0 for all

m > N' and all X € W. Putting hm(L(x)) = dimk H(L(A)) we have
thus proved

Y h (L(A)) = ¥ h (L(r))
rez ™ rep ™

for every m > N'. Going back to Theorem 2.17 we see that the

problem is to calculate the number (L(Vi j(PI(}\)))). So we

Zhez"m-x

need a lemma.

Lemma 2.18

Let Zc A and N' ©be defined as above. Let N = N'+n. Pick
m >N and let (k,I,i,j) Dbe a quadruple which occurs in Theorem

2.17. Then we have the equality

' xgzhm“k(L(vi,j(PI(K)))) ) xgzhm—k(L(*))

Proof
The map A -+ Vi j(Pl_()\)) from Z into A, is obviously a
’

rigid translation. Of course we have \ > Vi j(PI()\)) S50
Z < {ner|3IN'€Z with x=vi'j(PI(x M.

Let A' €2 with V. j(PI(k')) £ Z. We have m-k > N-k > N' and

by definition of N ;‘hm_k(L(Vi’j(PI(k Y))) = 0o. Since

Agzhm_k(L(vi,j(PI(x)))) = nghm_k(ux)ﬂwzzym_k(L(vi'j(PI(x'))))
where 7' = [A'e€z|v, j(PI(x'))fz} we have proved the lemma.

Q.E.D.



e

Theorem 2.19

Let the number N be as above. Let for evaryj m > N

Yo = ZkéAth(h)' Then there exists a recursion in the
' h .
Y's = Y, T Zk:]Rk-ym_k given by
ﬁ—] n
Ry = (_q)=s+()(k-1) k=1,2,...,n

where n 1is the number of edges of the maximal polygon M(A) of

A, A > 0, and S = s (m

i=1 -1), where m, is the number of

i

lattice points on the i-th edge of M(\).

Proof
Due to Lemma 2.18 and Theorem 2.17 the only problem is to

calculate the sums (I={i]<---<ik})

SRR A

I=k-1 i¢I j=1
S, = Y
) ) -
- I=k ier ™K
l#lk

This is a purely combinatorial problem and it is easy to show that

! s = (0]
T tk-1

1 ).S.

Ym-k

S

n
2 = ) Ol ey

which proves the theorem.

Q.E.D.

Corollary 2.20

Let A' < gf be a saturated rational monoid, and let k[A']
be the associated monoid algebra. Consider the corresponding
isolated singularity of the affine scheme X = Spec k[A']. The

Betti serie B(t) = zn}oﬁmtm of the local ring of this singularity

is rational with denomiator




Proof

Proposition 1.3 implying B = Yo

[La 1] LAUDAL, O.A.,

Follows immediately from Theorem 2.17 and the formula of

for m >> 0.
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