1. Introduction. There are three problems which have been studied concerning antiautomorphisms of von Neumann algebras; the existence problem, the conjugacy problem, and their description. The latter problem includes whether they are spatial of a particular form, i.e. of the form $x + w^*xw$ with w a conjugate linear isometry of a prescribed type. In the present paper we shall study the spatial problem, with main emphasis on antiautomorphisms α leaving the center elementwise on fixed, called central in the sequel, and with α an involution, i.e. $\alpha^2 = 1$. This problem with variations has previously been studied in [2,6]. E.g. it was shown in [6] that a central involution α is automatically spatial with w^2 a selfadjoint unitary operator in the center of the von Neumann algebra.

It turns out that the general problem of whether a central antiautomorphism is spatial has a solution similar to that of automorphisms, with proof also quite similar. We include these results for the sake of completeness. The main new ingredient in the paper is that if α is a central involution of the von Neumann algebra M then α is necessarily on the form $\alpha(x) = Jx^*J$ with J a conjugation, unless the commutant M' of M has a direct summand of type I_n with n odd. In the latter case it may happen that α can only be written in the form $\alpha(x) = -jx^*j$ with $j^2 = -1$.
2. The results. Recall that two projections e and f in a von Neumann algebra M acting on a Hilbert space H are said to be equivalent, written $e \sim f \pmod M$, or just $e \sim f$, if there is a partial isometry $v \in M$ such that $v^*v = e$, $vv^* = f$. e is said to be cyclic, written $e = [M' \xi]$ if there is a vector $\xi \in H$ such that e is the projection onto the subspace spanned by vectors of the form $x' \xi$, $x' \in M'$. If w is a conjugate linear operator we denote by w^* its adjoint, viz, $(w^* \xi, \eta) = (w \eta, \xi)$. We denote by ω_ξ the positive functional $\omega_\xi(x) = (x \xi, \xi)$ on M.

Lemma. Let M be a von Neumann algebra acting on a Hilbert space H. Suppose α is a central antiautomorphism of M. Let ξ be a unit vector in H, and suppose $[M' \xi] \sim \alpha([M' \xi]) \pmod M$. Then we have:

(i) There exists a unit vector $\eta \in H$ such that $\omega = \omega_\eta \circ \alpha$ on M.

(ii) $[M \xi] \sim [M \eta] \pmod {M'}$.

(iii) There exists a conjugate linear partial isometry w on H such that $w^*w = [M \xi]$, $ww^* = [M \eta]$, and $w^*xw[M \xi] = \alpha(x)[M \xi]$, $x \in M$.

(iv) If $\eta = \xi$ is cyclic and $\alpha^{2n} = 1$, the identity map, then w can be chosen so that $w^{2n} = 1$.

Proof. Let $e = [M' \xi]$ be the support of the vector state ω_ξ. Let $f = \alpha^{-1}(e)$. By assumption $e \sim f$, so there exists a partial isometry $v \in M$ such that $v^*v = e$, $vv^* = f$. Then $v \xi$ is a unit vector such that $\omega_{v \xi}(f) = (vv^* v \xi, v \xi) = (e \xi, \xi) = 1$, whence $v \xi \in f(H)$. Since
\[w(x) = \omega(v^*xv), \] the support of \[\omega \] is \(f = vev^* \), hence \(\omega \) is separating for \(f \). Since \(\omega \alpha \) is a normal state with support \(f \) there exists by [1, Ch. III, §1, Thm. 4] a unit vector \(\eta \in f(H) \) such that \(\omega \alpha = \omega \eta \). This proves (i).

Note that \(f = vev^* = v[M'\xi]v^* = [M'\xi] \). Suppose \(0 + x \in f \) is positive. Then \(x = a^{-1}(y) \) with \(y \in M \) positive, so that \(\omega(y) = \omega(x) \neq 0 \). In particular, \(\omega \) is faithful on \(f \), so that its support is \([M'\eta] = [fM'\eta] = f \). Thus \([M'\eta] = [M'\xi] \), and (ii) follows from [1, Ch. III, §3 Cor.]

With \(\eta \) as above define a conjugate linear operator \(w: M\xi + M\eta \) by

\[w(x) = \alpha^{-1}(x^*) \eta. \]

Then

\[\|w(x)\|^2 = \|\alpha^{-1}(x^*)\eta\|^2 = (\alpha^{-1}(x^*)\eta, \eta) = (x^*x, \xi) = \|x\|^2, \]

so that \(w \) extends to a conjugate linear isometry of \([M\xi](H) \) onto \([M\eta](H). \) Extend \(w \) to all of \(H \) by

\[w = [M]\eta \]

defining it to be 0 on \([M\xi](H) \). Since \(w^*w = [M\xi] \) we have for \(x, y \in M, \)

\[w^*wy = w^*\alpha^{-1}(y^*)\eta = w^*\alpha^{-1}(y^*\alpha(x^*))\eta = w^*(y^*\alpha(x^*))\eta = \alpha(y)x^*\eta. \]

Thus (iii) follows.

Finally, if \(\eta = \xi \) is cyclic then \(w \) is a conjugate linear isometry such that \(w^*w = \alpha(x), x \in M. \) By definition of \(w, w^{2k}x^* = \alpha^{-2k}(x^*)x, \)

\(k \in \mathbb{N}; \) hence in particular, \(w^{2n}x^* = x^* \) for all \(x, \) so that \(w^{2n} = 1. \)

QED.

Theorem 1. Let \(M \) be a von Neumann algebra and \(\alpha \) an antiautomorphism such that \(\alpha(e) = e \) for all projections \(e \in M. \) Then \(\alpha \) is spatial.
Proof. We first note that if \(e' \) is a projection in \(M' \) then the map \(\alpha_{e'}: Me' \to Me' e' \) defined by

\[
\alpha_{e'}(xe') = \alpha(x)e'
\]

is an antiautomorphism. Indeed, if \(x \in M \) let \(c_x \) denote the central projection which is the intersection of all central projections \(q \) in \(M \) with \(qx = x \). Since the assumption on \(\alpha \) implies \(\alpha \) is central, \(c_x = c(\alpha(x)) \). By [5, Lem. 3.1.1] \(xe' = 0 \) if and only if \(0 = c_x e' = c(\alpha(x)) e' \). Thus \(\alpha_{e'} \) is well defined and injective. Since it is clearly surjective, the assertion follows.

To prove the theorem let by Zorn's lemma \(p' \) be a projection in \(M' \) maximal with respect to the property that \(\alpha_p' \) is spatial on \(Mp' \). Suppose \(p' \neq 1 \) and let \(q' = 1 - p' \). Let \(\xi \) be a unit vector in \(q'(H) \) and let by Lemma (i) \(\eta \) be a unit vector in \(q'(H) \) such that \(\omega_\eta = \omega_\xi \alpha \) on \(Mq' \). Let \(w: [M\xi](H) \to [M\eta](H) \) be as in Lemma (iii). By Lemma (ii) \([M\xi] \sim [M\eta] (\mod M') \) so there is \(u \in M' \) such that \(u^* u = [M\eta] \), \(uu^* = [M\xi] \). Then \(uw \) is a conjugate linear partial isometry which is 0 on \([M\xi](H) \perp \) and isometric on \([M\xi](H) \) onto itself, such that if \(x \in M[M\xi] \) then

\[
(uw)^* x^*(uw) = w^* u^* xu w = w^* x w = \alpha[M\xi](x),
\]

using that \(u \in M' \) and \([M\xi] u = u \). Thus \(\alpha_{p'} + [M\xi] = \alpha_{p'} + [M\xi] \) is spatial, contradicting the maximality of \(p' \). Thus \(p' = 1 \), completing the proof.

Theorem 2. Let \(M \) be a von Neumann algebra with no direct summand of type II\(_\infty\) with finite commutant. Then each central antiautomorphism of \(M \) is spatial.
Proof. Let \(\alpha \) be a central antiautomorphism of \(M \). We may consider the different types separately. The type I portion is taken care of by [6, Lem. 4.3]. Suppose \(M \) is finite. Let \(\Phi \) be the centervalued trace on \(M \) which is the identity on the center. By uniqueness of \(\Phi \), \(\Phi \circ \alpha = \Phi \), hence \(\Phi(\alpha(e)) = \Phi(e) \) for all projections \(e \). It follows that \(e \sim \alpha(e) \) for all projections, hence \(\alpha \) is spatial by Theorem 1.

Assume \(M \) is of type II\(_\infty\) with \(II_\infty \) commutant. Since the identity is the sum of central projections which are countably decomposable with respect to the center, we may assume the center is countably decomposable. By [5, Lem. 3.3.6] there is a cyclic projection \(e = [M'\xi], \xi \) a unit vector, in \(M \) with central support 1 such that \(eq \) is infinite for all central projections \(q \neq 0 \) in \(M \). Since \(\alpha \) maps infinite projections onto infinite projections, \(f = \alpha^{-1}(e) \) is infinite and is the support of \(\omega_\xi \alpha \). Since \(M' \) is infinite there is a unit vector \(\eta \) such that \(\omega_\xi \alpha = \omega_\eta \) [1, Ch. III, §8, Cor. 10]. Thus \(f = [M'\eta] \) is countably decomposable, and \(fq \) is infinite for all central projections \(q \neq 0 \), and the central support of \(f \) equals that of \(e \) since \(\alpha \) is central. By [1, Ch. III, §8, Cor. 5] \(f \sim e \). By Lemma (iii) and the maximality argument employed in the proof of Theorem 1, \(\alpha \) is spatial.

Finally, assume \(M \) is of type III. Then each normal state is a vector state [1, Ch. III, §8, Cor. 10] so the conclusion of Lemma (i) holds. Since any two countably decomposable projections with the same central supports are equivalent in \(M \), the argument from the II\(_\infty\) case applies to conclude that \(\alpha \) is spatial. Q.E.D.
Remark 1. The above theorem reflects the situation for automorphisms of von Neumann algebras. For a factor M of type II_1 with finite commutant it was shown by Kadison [4] that an automorphism is spatial if and only if it preserves the trace, or equivalently the dimension of projections. By Theorem 1 the latter condition is sufficient for an antiautomorphism α to be spatial. Conversely, if α is spatial the argument of Kadison on [4, p.324] can be repeated word by word to conclude that α preserves the dimension of projections.

The difficulty in the above situation can be avoided if α is periodic.

Theorem 3. Let M be a von Neumann algebra and α a periodic central antiautomorphism. Then α is spatial. Furthermore, if each normal state on M is a vector state (e.g. if M has a separating vector, or M' is properly infinite) then there exists a conjugate linear isometry w that $\alpha(x) = w^* x w$ with $w^{2n} = 1$, where $2n$ is the period of α.

Proof. Let e be a projection in M. In order to show $\alpha(e) - e$ we may, since α is central, assume by the Comparison Theorem that $\alpha(e) \leq e$. Iterating we have $e = \alpha^{2n}(e) \langle \alpha^{2n-1}(e) \langle \cdots \langle \alpha(e) \langle e$. Thus $\alpha(e) - e$, and α is spatial by Theorem 1.

Now assume each normal state is a vector state. Let ψ be a unit vector. Then the state

$$
\omega = \frac{1}{2n} \sum_{k=1}^{2n} \omega_{\alpha^k} \psi
$$

is a normal state.
is a normal \(\alpha \)-invariant state. Thus \(\omega = \omega_\zeta \) for a unit vector \(\zeta \), and \(\omega_\zeta \circ \alpha = \omega_\zeta \). By the proof of Lemma (iv) there exists a conjugate linear partial isometry \(w \) with support and range \([M\zeta] \) such that \(w^{2n} = [M\zeta] \), and \(w^* x w [M\zeta] = \alpha(x)[M\zeta] \). A maximality argument now completes the proof.

The above theorem states that for a periodic \(\alpha \) with \(M' \) large then \(w \) can be chosen with \(w^{2n} = 1 \). Our last result gives a sharper statement if \(\alpha \) an involution, Special cases of this result appeared in [6]. Recall that a conjugation is a conjugate linear isometry \(J \) such that \(J^2 = 1 \).

Theorem 4. Let \(M \) be a von Neumann algebra whose commutant has no direct summand of type \(I_n \) with \(n \) an odd integer. If \(\alpha \) is a central involution on \(M \) then there exists a conjugation \(J \) such that \(\alpha(x) = Jx^* J \), \(x \in M \).

Proof. Let \(M \) act on a Hilbert space \(H \) and assume first \(M \) has no direct summand of type \(I \). By [6, Thm. 3.7] there exist central projections \(p \) and \(q \) in \(M \) such that \(\alpha|pM \) is implemented by a conjugation on \(p(H) \) and \(\alpha|qM \) by a conjugate isometry \(j \) with \(j^2 = -q \). To prove the theorem it suffices to modify \(j \) so that \(\alpha|qM \) is implemented by a conjugation. We therefore assume \(\alpha(x) = -jx^* j \) for \(x \in M \), where \(j^2 = -1 \). In particular \(\alpha \) extends to an involution \(\alpha \) of \(B(H) \) implemented by \(j \), which leaves \(M' \) globally invariant. Since \(M' \) has no direct summand of type \(I \), neither does the fixed point algebra \(A \) of \(\alpha \) in \(M' \) [3, 7.4.3], hence the Halving Lemma for Jordan algebras [3, 5.2.14] yields the existence of projections \(e, f \in A \) with sum 1 and a symmetry \(s \in A \).
such that \(ses = f \). Let \(e_{11} = e, e_{12} = es, e_{21} = se = fs, e_{22} = f \). Then
\[\{e_{ij} : i, j = 1, 2\} \]
is a set of matrix units which generates a \(I_2 \)-factor \(M_2 \). Since \(\alpha(e_{12}) = e_{21} \), \(\alpha(e_{ii}) = e_{ii}' \), \(\alpha \) leaves \(M_2 \) globally invariant. Thus \(B(H) = B(H_0) \otimes M_2 \), and \(\alpha = \alpha_1 \otimes \alpha_2 \) with \(\alpha_1 \) an involution of \(B(H_0) \), and \(\alpha_2 = \alpha|M_2 \) an involution of \(M_2 \). For simplicity of notation we identify \(M \) with \(M \otimes 1 \), and consider \(M \) as a subalgebra of \(B(H_0) \). Since an involution of a factor is implemented by a conjugate linear isometry \(v \) with \(v^2 = 1 \) or \(-1\), \([6, \text{Thm. 3.7}]\), it follows that \(j = j_1 \otimes j_2 \) with \(j_1^2 = 1 \), and \(\alpha|M = \alpha_1|M \) is implemented by \(j_1 \). If \(j_1^2 = -1 \) replace \(j_2 \) by a conjugate linear isometry \(v \) with square \(-1\), and if \(j_1^2 = +1 \) by \(v \) with square \(+1\). In either case \(J = j_1 \otimes v \) is a conjugation implementing \(\alpha_1 \), and hence \(\alpha \) on \(M \).

It remains to consider the case when \(M \) is of type I. Since \(\alpha \) is central we may consider the different direct summands separately, hence we may assume \(M \) is homogeneous of type \(I_n' \), \(n \in \mathbb{N} \cup \{\infty\} \), with \(M' \) homogeneous of type \(I_r' \), \(r \in \mathbb{N} \cup \{\infty\} \), see e.g. \([1, \text{Ch. III, \S 3, Prop. 2}]\) applied to \(M \) and \(M' \). For a Hilbert space \(K \) let \(t \) denote the transpose on \(B(K) \) with respect to some orthonormal basis, and let \(q \) be the involution

\[
q(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
\]
on the complex \(2 \times 2 \) matrices. By \([7, \text{Thm. 2.6}]\) \(M \) is a direct sum \(M = M_1 \oplus M_2 \) such that \(\alpha \) leaves each \(M_i \) invariant; \(M_1 = B(H_1) \otimes Z_1 \), \(M_2 = B(H_2) \otimes B(\mathbb{C}^2) \otimes Z_2 \), where in both cases \(Z_i \) is an abelian von Neumann algebra with \(Z_i' \) of type \(I_r \). In the first case \(\alpha|M_1 = t \otimes 1 \), hence \(\alpha|M_1 \) is implemented by a conjugation, see e.g. \([3, \text{Section}\]
In the second case \(a|_{M^2} = t \otimes q \otimes i \). Now \(q \) is implemented by a conjugate linear isometry \(j \) such that \(j^2 = -1 \), while \(t \) is implemented by a conjugation \(J \). Since by assumption \(M' \) is of type \(I_r \) with \(r \) even or \(r = \infty \) there exists a conjugate linear isometry \(j \) with \(j^2 = -1 \), which implements a central involution on \(\mathbb{Z}_2^2 \), see [3, Section 7.5]. Thus \(J \otimes j \otimes j \) is a conjugation which implements \(a \) on \(M_2 \). This completes the proof of the theorem.

Remark 2. The conclusion of Theorem 4 is false if \(M' \) is of type \(I_{2n} \) with \(n \in \mathbb{N} \) odd. Let for example \(M = M \otimes \mathbb{C} \otimes \mathbb{C}^1 \), so that \(M' = \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \) with \(m \) even and \(n \) odd. Then there exists \(j \) on \(\mathbb{C}^m \) such that \(j^2 = -1 \), while each involution on \(M' \) is conjugate to the transpose map. Let \(a(x \otimes 1) = (-j^* x) \otimes 1 \) on \(M \). Then \(a \) is not implemented by a conjugation. Indeed, if \(J \) is a conjugation on \(\mathbb{C}^m \otimes \mathbb{C}^n \) implementing \(a \), then \(J \) also implements an involution on \(M' = \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \), hence there would exist a conjugation \(J' \) on \(\mathbb{C}^n \) such that \(J x J' = (j \otimes j') x (j \otimes j') \) for all \(x \in \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C} \). Since \(J^2 = 1 \) and \((j \otimes j')^2 = -1 \), this is impossible by [7, Lem. 3.9], hence \(a \) is not implemented by a conjugation. This example also shows that the assumption on the normal states being vector states is necessary in Theorem 3.
References

