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Abstract: Generalizations of Lévy's conformal invariance of Brownian motion
are used to extend some results about BMO functions in the unit disc to harmonic
morphisms in RM, holomorphic functions in €M, and analytic functions on Riemann
surfaces. An appropriate generalization of the Hayman-Pommerenke-Stegenga
characterization of BMO domains in the complex plane is proved for domains

in RN,
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In 1948 P. Levy formulated the fo]]owiﬁg theorem: If U is an open subset
of the complex plane and f : U+~ € 1is a nonconstant analytic function, then
f maps a 2-dimensional Brownian motion Bt (up to the exit time from U) into
a time changed 2-dimensional Brownian motion. A rigorous proof of this result
first appeared in McKean [22]. This theorem has been used by many authors
to solve problems about analytic functions by reducing them to problems about
Brownian motion where the arguments are often more transparent. The survey
paper [8] is a good reference for §ome of these app]icapions. Levy's theorem
has been generalized, first by Bernard, Campbell, éhd Davie [5], and
subsequently by Csink and @ksendal [7]7 In 81 of this note we use these
generalizations of Lévy's theofém to éxtend‘some results about BMO functions
in the unit disc to harmonic morphisms in RM, to holomorphic functions in
€", and to analytic function on Riemann surfaces. In §2,1 we characterize
the domains in RN which have fhe property that the expected exit time of
elliptic diffusions is uniformly bounded as a function of the starting point.
This extends a result of Hayman and Pommerenke [15], and.Sfegenga [24] about

BMO domains in the complex plane.

1. Exit Times, Area, and BMO.

First we recall the generalizations of Lévy's theorem that we will need.

(1.1) (Bernard-Campbe11-Qavie [56]): Let U < RM be an open’ set and
¢ = (61, ...,p): U~ R be a 2 function. Let (B, 0, Pyx) and (Bt, §,~Px)
be Brownian motions in RM and R™ respectively. Then (i) and (ii) below are

equivalent:

(i) ¢(Bt) is, up to the exit time T = Ty from U, again Brownian motion in

RM, except for a change in time scale. More precisely, if we define

_ .t
oy~ IO |V1]2ds, t <,



then ot is strictly increasing for a.a. w, ¢*(w) = lim ¢(Bt) exists a.e.
t>1

on {g < =}, and the process Mt(w,a), (w,a) e QX ﬁ defined by
T

¢(BO-1) 3 t< g
Mt(w,ff)) = t R
0*(w) + Bty 3 t> O
T

T
T

with probability law Py xP0 coincides in law with Brownian motion in RM

starting at ¢(x).

(ii) The coordinate functions ¢; are all harmonic and their gradiants

Véj are orthogonal to each other and have the same length.

It is not hard to show that the class of function satisfying (ii)

agrees with the class of functions satisfying:
(iii) h harmonic on W(open) ¢ RM = h o ¢ harmonic on ¢~ 1(W).

The functions satisfying (ii1) are called harmonic morphisms and they
have been studied by many authors in more general settings. See [11] and
references there.

Now suppose f : U cC" -~ € is a holomorphic function. Then the Cauchy-
Riemann equations show that f satisfies (ii) and therefore f maps Brownian
motion in €N to Brownian motion in €. When n = 1, (ii) characterizes the
analytic and conjugate anajytic functions.

A further generalization of Lévy's theorem was given in [7] by Csink
and Pksendal. We will briefly recall a special case of this result and
refer the reader to their paper for details and generalizations. Let A

be a second order partial differential operator in RM of the form



2 N
= L. 9% X 3,
(1.2) A g% 5 Txr; %_b1(x) T
where we assume 1) ajj, bj €C®, 2) ajj = ajj, and 3) for all nonzero
vectors y ¢ RM, Y y,-a,-j(x)_yj > 0. By an Ito diffusion Xt starting at
ij
X with generator A we shall mean a solution of the stochastic differential

equation
(1.3) dXt = o(X¢)dBt + b(Xt)dt, Xg = x.

Here b = (bj) and o is the matrix satisfying % ool = a = (aij), where o
is the transpose of o. For the construction of the process see [16]. We

have

(1.4) (Csink-Pksendal [7]): Let Xt and it be two Ito diffusions on open
subsets U c R", Vc RM respectively. Let A and A be the corresponding
generators. Suppose ¢ : U ~» V js €2 and not Xt-finely locally constant.

Then the following are equivalent:
(i) ¢ maps Xt into a time change of %t .

(i) ~There exists a continuous function A(x) > 0 on U, with ) (x) > 0 except
possibly on an Xt-finely nowhere dense set, such that for all x ¢ U

and f ¢ C2(V)

(1.5) ALf o ¢1(x) = A(x)A[F1(5(x)).

The function ) gives the rate of time change to be used. In other words,

if

t
oy = j; X(Xs)qs, for t <=1y

then the process defined by



¢(x0£1) 5 t<o

Mt(w w) = .
Xt - o 3y t>o

— T
L

with a natural probability law agrees in law with Xt . In—fact, in this setting
(ii) « (i) without the condition that X > 0 except possibly on an Xt - finely

nowhere dense set. See Theorem 3 in [23].

Next recall that a function f : T={z : |z| =1} > € is in  BMO

(bounded mean oscillation) if there is a constant c¢ such that T%—I— flf(e)-fllzde
' I

< c2 where f1 = ﬁ -rI f(p)de. The BMO norm of f; | f !BMO’ is the

smallest constant c for which tr_n's holds. By BMOA we shall mean the analytic
functions in the unit disc D with boundary values. in BMO. Using basic
properties about the poisson kernel it can be shown that that f ¢ BMOA

if and only if

zeD'T .

where u, is the harmonic measure at z. (For the proof of (1.6) see [13]).
If we translate (1.6) to.probability language we see that f ¢ BMOA if and

only if

(1.7) ;gB E, |f(BT) - f(z)|2 < .

This probabilistic characterization of BMOA can be" extended to define
more generally a BMO norm on harmonic morphisms ¢: U+ RM, for an arbitrary

open set U c RN:

Definition 1.1. Let ¢ : Uc R"»> R™ be a C2 harmonic morphism. Then

T
we say that ¢ ¢ BMO(U) if o= _B !v¢>1|2 ds < » a.e. Py for all x ¢ U and

1.8 2 =sup Ex | ¢ () - 6(x)|2 <.
( ). "qb“BMO(U) xeb X ¢ ul = olx
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Here ¢*(w) = %hn¢(Bt) js the stochastic boundary function of ¢ whose

o
existence is given by the Bernard, Campbell, and Davie extension of Lévy's
theorem. Note that (1.8) agrees with (1.7) in the case of analytic functions

in the unit disc.

Theorem 1.2. Let ¢ : U cR"> RM be a harmonic morphism. Then

2
lolamoq) <™ y Sify Ev(To(u)

where T (V) is the first exit time ffom ¢(U).

Proof: Using the Ito formula we have

o1 gy~ 28 Bl 67 - 900 12D
o T .
" 2 (up Exll fj voi(Bs) - dBg|2) -

m T _
L. (svp E, ([ |701(Bs)|%s)

, T
m sup Ex([ [71(Bs)|%ds)

" Bl <m 3 B

since 01‘5 Tw(u\ by the Bernard-Campbell-Davie theorem.

If f 1is a; analytic function in the unit disc D such that the area
of f(D) (counting multiplicities) is finite, then it is easy to show that
f « BMOA. If one ignores multiplicities the situation is more difficult.
It was proved by Alexander, Taylor, and Ullman [2] that if area (f(D)) < ,

then f ¢ H2. This was improved by Hansen [14] who showed that area(f(D)) <




impTie§ f ¢ WP for all p < =. " Finally, Stegenga [24] showed that if area
(F(D)) < o, then f ¢ BMOA. In [4] Axler and Shapiro gave a new proof of

Stegenga's result using Alexander's spectral area estimates and extended

their result to the ball in €. Our stochastic approach gives the following

generalization of these results:

Theorem 1.3. Let U = RN be open and let ¢: U > RM be a harmonic morphism.

Then :
vol(s(u)) \'/™
(1.9) “f'r‘nglwo(u)i ( m >
m .
where ¢y = —2r— 1S the volume of the unit ball in RM.
ml“(§)

Proof: Let D(r) = {x + RM : |x| < r} be the ball in RM such that vol(D(r))
= vol(¢(U)). Let Bt be a Brownian motion in RM starting at 0 and Tet Tp(y)
= inf{t > 0: Bt ¢ D(r)}. It follows from Aizenman and Simon [1] that

for any y « ¢(U),
Ey(o () < EpltD(r))-
Thus “¢!§MO(U)-5 m Ey(tg(r)). Using the Ito formula on the function f(y)

= |y|2, y < RM,  we can show that

2
Eo(™n(r)) = &

so

2 o _ {_vol(¢(U)p/m
u¢uBMO(U) < ( Cm )-

and we have the theorem..
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Remark 1.4. Note that the inequality (1.9) 1is sharp. This can be seen
by choosing U to be the cylinder U =D(0,1) x R"M, where D(0,1) is the

unit ball in RM, and ¢(x1, ...» Xp) = (X1, -..5 Xp).

Let U be an open set in R™ which has a Green function g;(xsy). As

is well known (see [10] or [16])
(1.10) Ex(Ty) = {gu(x,y)dy,  Vx e U.

If we assume U has finite volume then the estimates above'show that

2/m
1 1 (vol(U
e <3 (212
and we have

Corollary 1.5. Suppose U is an open set in R™ with finite volume and with

Green function gU(x,y). Then

e :2/m .

. 1 fvol(U)\~"".
(1.12)_ jIJ gy(x,¥)dy <'m (—7%-)) s ¥x el
Note: By the Green function gU(x,y) we mean the fundamental solution of
LA with zero boundary conditions.

With Tittle effort we can extend corollary 1.5 to Green functions
for uniformly e]]ipfic operators in divergence form. More precisely, suppose
our operator A in (1.2) has the form
| | 4 ) )
(1.13) A= 2 <% @iy 3x3)
ij=1

with the coefficients satisfying 1) and 2) of (1.2) and in addition, there

exists a constant A> 1 such that for all (x,y) ¢« RMm x RM
1 m

(1.38) 1y |2 < Zl aij(x) yi y; <alyl2.
ij=

e

e v s s e s



Theorem 1.6. Suppose U is an opeﬁ set in RM with finite volume. Let

gﬁ(x,Y) be the Green function for A in U. Then there exists a constant

K)\m depending only on the ellipticity constant X and the dimension m such
that

A 2/
(1.15) 6 gu(x,y)dy < Ky, (vol(u))¥/m

for all x ¢ U.

Proof: Let Xt be the Ito diffusion corresponding to A. Let 1 =
inf{t >0 : Xt £ U} Then

(1.16) Ex(t) = l{gﬁ (x,y)dy.

Let P¢(x,y) be the transition probabﬂities for Xt. As is.well known([16]),
Pt(x,y) is the fundamental solution of the heat equation 'dg'f - A. By Aronson

[3]): there exist constants K and R such that
AsM A,>m :

1 'Rx,m_l’(_',le
Pt(x,y) < Ky,m /2 e t

for all (t, x, y) e (0,») x Rm x RM. So

Py(T>t) < Py(Xt € U) = 6 Pt(x,y)dy

1 Rum Iy l?

1
(1.17) < K)‘,m '—t-’-ﬁﬁ U e t dyi K)\,m m vol(U).

Therefore, if m> 2 ,

_"‘/2} ‘

E.(1) ='€ P (T > t)dt 5_{;’ min {l’Kx,m' vol(U) - t dt
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2
= [Ky o Vol(U)]/m+ f Kxm vol(U) t° "2 gt - me(VOHU))/m .

(K A,m Vu](U))Z m

If m=2 we refine the estimate (1.17) as follows (put Ky, ; =
| 2
-R :x_E_yI R |x;tx|
] :

) -R-—
= gﬂ&. ;/~ e t r dr
T )
0
_ _R-vol(y)
=IT-F?K-'[1_e 1Tt ]

Then by the strong Markov property we have

K‘, R)\.,Z = R ).'

2 2 _R'VO”U) 2
A 2 , 1K mt
PL(T> 2t) < (sup Py(T> t)) <—2-(1-e t )
XeU
so that
_ 2R 2
Px(t> s -vol(U))< ﬂ'K (1 e ™ )
R2 :

Hence

e



f Po(T> t)dt =f Py(t > s - vol(U))vol(¥) - ds

0 | 0
| 2,2 . ® - R 2 ZHKZL 1 ® 2 -2
¢ Tk _vel(y) R2V°‘ f (oo ™)%as- 21K ol (V) f(l - ey udu
0 0

= Ky,2 -vol(u) ,

which completes the proof.

Next, we consider the standard complex n-dimensional Euclidean space

C" and operators of the form

. 2
- .. 3
(1.18) A=aX aii(z) g
ij 13
where the coefficients ajj satisfy 1), 2), and 3) of (1.2). The diffusion

associated to A will be denoted by BQ

In the case when ajj = 6jj>(81j
=1 4if i = j and 0 otherwise), we get the ordinary Euclidean Brownian motion

in R2N which we simply denote by Bi.

Lemma 1.7. Let U be an open set in €N and let ¢ : U> € be a holomorphic
function. Then for all f ¢ C2(¢) we have

(1.19) A[fo¢]=(Za-- 2 30 \oyacr o b,
ij 1 BZ.i sz) ( ) :

2

where A = 4 3%55 is the usual Euclidean laplacian in €. Therefore ¢ maps

A i
Bt into a time change of Brownian motion Bt In €, with time change rate
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(1.20) Az) = 2: aijlz) 2

Z5 BZJ

Proof: The formula (1.19) can be easily verified by using the chain-rule.
The conclusion of the lemma then follows from the Csink-@ksendal extension

((1.4) above) of Lévy's theorem.

Assume U is open in C" and let TG be the first exit time of Bﬁ from
U. If ¢ :U~>C is holomorphic we will say that ¢ ¢ BMO(U,BR) if
<A .
grﬁ = é UXBg)ds <= a.s. P, for all z ¢ U and
= * 2
(1.21) o] 2 = sup Bz [¢7(w) - o(z)]
BMO(U,BA)  Z¢ -

where ¢*(w) = 1u$ ¢(B ), which exists on {op < =}, by Temma (1.7). With
t>1 u
1] =

these BMO-norms and the same argument used to prove Theorem 1.3 we have

Theorem 1.8. Let ¢ : U > € be a holomorphic function and assume Area (¢(U))

is finite. Then ¢ ¢ BMO(U,BA) for any A and

Area($(U)) \ %
(1.22) lolmo(u, 8h) < <____%ri_ll)
If U is a bounded strictly pseudoconvex domain in N with smooth

boundary (see [25] for definitions) and we take as our operator A the
Euclidean Tlaplacian, then the BMO-space we obtain from (1 21) 1is the usual
BMO-space associated with Euclidean balls. If we take the 1laplacian of
the Bergman metric as our operator A, we obtain the nonisotropic BMO-spaces
associated with the skewed balls (see [18]). Thus Theorem 1.8 includes
the extensions of Stegenga's result given by Axler and Shapiro [4] to the

unit ball in €N,
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Next we mention a result for Riemann surfaces which also follows from
these methods. Let R be a. Riemann surface which posseses a Green function

g(x,a). Define by BMOA(R) the space of analytic functions on R for which
2 = ' 2 3
(1.23) !fHBMOA(R) ggR J;|f (z)]% g(a,z)dz < =.

Since Lévy's‘theorem is also true for. Riemann surfaces (see [17] and [22])

we have by the same arguments above

1
Area f(R)\?

Note: This Theorem is the main result in [19].

Qur final application of the above generalizations of Lévy's theorem
is to asymptotic values of holomorphic function in wéék1y pseudoconvex
domains. Lef U bé'a:weakly psed&oconvex domain in €N defined by
W={zen : q(z) < 0} where q « C3(U) is plurisubharmonic in U and W

n
# 0 on 3U. Define p(z) = 2: |21|2 - r2 where r 1is chosen so large that

i=1
D(0,r) = U. Debiard and Gaveau [9] then considers the diffusion Bﬁ where

the coefficients of A are given by

_ | . 2
(1.24) ajj = - a7?§j(109 (pq)).

A

They show that Bﬁ has an infinite lifetime and that B_ A

= %12 By € ou

exists a.s. Moreover, the harmonic measure Hzq with respect to the process
Bﬁ defined by uzO(F) = on(Bi e F), F a Borel set in 3U, has no mass on
the set W of weakly pseudoconvex boundary points of U. (see [9], Théoréme

~1). With these definitions we have

Theroem 1.10. Let ¢ : U > € be a holomorphic function. Supposé

Cap(€\4(U)) > 0 and that ¢ is proper, i.e. K compact in ¢(U)»=>¢'1(K)
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compact in U. Then almost all boundary points of ¢(U) with respect to
Euclidean harmonic measure for ¢(U) are asymptotic values of ¢ at points

in U\ W.

Note: We say that y is an asymptotic value of ¢ at x ¢ 39U if there exists
a curvey: [0,1) » U terminating at x such that y = %iml ¢(‘Yt). By Cap(F)
->

we mean the logarithmic capacity of the set F.

Proof: Let (B¢, Q, 5&)'be a Brownian mbtion in €. The Euclidean harmonic

measure vy for ¢(U) at y is supported by any set H such that

(y) e H] = 1.

(1.25) 5y[§
P VA oy A »
LetQ,. ={w : B(w) = 1im B, (w) ¢d\W & ¢ (w) = 1im ¢(B, ) exists} . By
(2] co t-)oot . tc t
the Debiard-Gaveau result and (1.4) we know that Py(Qo) = 1 and that the

process defined by

A
n ¢(Bot-l) 5 t <o
Mt((.l)s(z)) = * ~ ’
¢ +By t>o0

with probability law 'Pxxﬁo coincides with Brownian motion starting from

y = ¢(x). Since ¢(Bi) e ¢(U) for all t < « and ¢* e 3(9(U)) (since ¢ is

proper) we conclude that MI¢(U) = ¢* a.s. and therefore, if we put
H= {6"(w) : we Qo)

we have Py x Po {MTi(U) ¢ H} = 1. Since all points of H are of the form

A

t < dU\W, the theorem is proved.

$*() = 1im ¢(B}) where 8" = 1im B
t 50 had

too

We end this section with some remarks. Let us assume that U is a
bounded strictly pseudoconvex domain in €N with smooth boundary and let

¢.: U~>C be a holomorphic function. Let usvwriteH¢HBMo for the BMO-norm
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in (1.21) with respect to either the Euclidean laplacian or the laplacian
of the Bergman metric in U. It would be interesting to find necessary
and sufficient conditions on ¢ in order to have equality in (1.22), i.e.

so that

X _ (Area ¢(U) \ 2
(1.26) lolgmo = ( ) -

™

Clearly if U is the wunit disc D in the plane and ¢ is a mobius
transformation, we have equality. But we can have (1.26) with more
complicated ¢'s. Letdé:U > C be an inner function. " (The existence of
inner functions in smoothly bounded pseudoconvex &omains is shown in [21]).
Since ¢ maps into the unit disc we have Area ¢(U) < m. It is also clear
that “¢ﬁMO\= su% (1-|¢(z)|2). Thus to prer equalfty for inner functions
we need to shoaegg% (1-|¢(z)!2) = 1. This follows from the following lemma
which in the case of the unit disc in the complex p]ane>fS‘a special case

of a theorem of Frostman, (see [13], p. 79).

Lemma 1.11. Let U be a bounded strictly pseudoconvex domain in C" with
smooth boundary and let ¢: U- € be an inner function. Then ¢ assumes

every point in the unit disc except at most a set of capacity zero.

Proof: First we recall that from probabilistic potential theory (see [12]),

if K is a set of positive capacity in the unit disc D, tﬁén Brownian motion
sfaftea at any point in D will hit K with positive probability before it

exits D. If Bt is a Brownian motion in U run until it exits U, then we

know that ¢ (Bt) is a time change of Brownian motion in the unit disc D.

Since ¢ is an inner function, fhis Brownian motion is run for the same

amount of time as the killed Brownian "motion in .D . So (U) cannot omit a set

of positive capacity and the lemma is proved.
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By carefully examining the proof of Theorem 1.3, Lemma 1.11, and the
conditions for equality in the Aizenman-Simon result we used to prove Theorem
1.3, the interested reader can verify that if U is an open set in RN, D(1)
ijs the unit ball in RM, and ¢ : U - B(1) is a harmonic morphism, then
equality holds in (1.9) if and only if ¢ is a stochastic inner function
in the sense of Bernard-Campbell-Davie [5]. Anexample in [5] of a stochastic
inner function which 1is not an inner function in fhe sense of complex

analysis is the function ¢ mapping the unit ball in R4 to the unit ball in R3

given by ¢(x1, x2, X3, Xg4) = ((xi + xg - xg - xi),‘Z(x1X3 - x2Xxg), 2(x1xq + x2x3)).

The reader can easily verify that ¢ is a harmonic morphism and b(x)| = |x]|2.

2. Exit Times, Capacity, and BMO.

Hayman and Pommerenke [15] and independently Stegenga [24] discovered
a capacity criterion for the domain V < € with the property that an analytic

function ¢ defined on the unit disc D with values in V will belong to BMOA.

More precisely, they showed that every such ¢ is in BMOA if and only if there

exist constants R and & > 0 such that Cap {D(xO,R) \V} > & for all Xy € v

where D(xb,R) ={x ¢€ : |x - Xpg] < R} and Cap denotes the Tlogarithmic
capacity. In this section we show that this capacity condition can be
used to characterize the .domains in RN with the propertymfhat the expected
exit time of uniformly elliptic diffusions is uniformly bounded as a function
of the starting point. This, combined with Theorem 1.2 of section 1, gives
an extension of (one part of) the Hayman-Pommerenke-Stegenga result to

harmonic morphisms in RN.
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For the rest of the paper A will be an operator satisfying the
conditions in (1.13) and (1.14) and with associated diffusion BQ. If Vis

an open set in RN we denote by gV(X,Y) the Green function of the operator

A for the set V. If F is a subset of y we define

Capy(F) = sup{u(F) : u is a Borel measure supported in F and

Foy(oylduly) <1 vx3.
The equilibrium measure of F is denoted by WF,V

Theorem 2.1. Let V be an open set in R" and let t be the first exit time
of Bﬁ from v. Then supv Ex(t) <o if and only if there exists an R and
Xe - '

ad> 0 such that CapD(x;zR)(D(x,R)\\V)_f s for all x ¢ y.

Proof: Put D = D(xq,2R) and F = D(xgsR) \V. Define the stopping times

(2.1) T) = inf{t > 0: B} ¢DMB A2R) N V)
(2.2) oy = infl{t > 0 : By ¢ D@5.2R)).

From probabilistic potential theory (see [6], chapter 6, section 4, or

[12])

(2.3) Pxg (11 <07) = L gp(x0.y)dug ply)

Next, let us denote by gD(x,y) the Green funct1on of D with respect

to the laplacian %A, By [20] there exist constants Ky, and K, depending on
the ellipticity constant A such that

(2.4) Ky 9p(x:¥) < gp(x,y) <K, gp(xsy) on F.

Thus Py (11 < 01) >K, /g (xo,y)du (y) 2K LR e (F),
0 F =D
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since ED(xo, y) > constant depending on R for all y ¢ F. Thus we conclude

that if the capacity condition holds then

(2.5) PxolT1 < 01) > Ky pg> ©

where ky R,s 1is a constant depending on the parameter indicated.

We now define by induction the stopping times

(2.6) T = Ainflt > Tyop Bﬁ ¢ D(BQk L 2R V)
and

. oA . nyRA o
(2.7) Oy = inf{t > o1 : Bt £ D(Bok-l’ 2R)}.

If o¢ dentoes the shifting operator, then

A

. , A
T _1 * Orq 5 Tk-1 + inf{r > 0: Br‘+1k_1 € D(BTk_lsZR) nvi}
= infir+v, .3 r>0: B cpBh LRy Ny
k-1° " et PP v
- i . ' . A A
=nf{t >0 3 t>Tey: By ¢D(BT_L2R) NV )
so that
(2.8) Tk = Tk-1 * g1 Tqe
Similarly
(2.9) Ok =0k-1 * 8 _1].

Thus the strong Markov property gives
E = E -1) + Ex [E 0 P
xo(Tk) xo(Tk 1) xo[ X, K‘Tk_lTl‘gng-l)]
(2.10) | = Ex,(tk-1) + EXO(EBQk 1(Tl))

<E -1) + sup E =
CEy (k1) sup Ey(Ty) Pxo(Tk-1 = k-1)-
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~ 2
It follows from (2.4) and the Ito formula that Ex(0j) < K&-%r = K%,R,n-

Therefore we have

(2.11) Exo(Tk) £ Exy (Tk-1) *+ Ky R,nPx, (1k-1 = 0k-1)-

Once again, the strong Markov property gives

(2.12) Px (g = 03) = E,[x ff,-..",-.)EBg..,[X P
S

(1 - Ky ,R,8) Py (T3-1 = 05-1)

c LRy % (T3-1 = 04-1)

with ¢, r,s < 1, by (2.5). Combining (2.10)and (2.11) we get

Exo("k) S.Exo(Tk-l) *+ K3\,R,n [Cx,R,g]k

or
k -
(2.13) EXO (Tk i z.: )\!R’(SJJ'

Since T tTas k ~=a.s. we conclude that

o]

EX (1) A K) ,R,n 5— [CX,R,CS]j

j=1
and the sum converges because ¢, R,s < 1. This proves half of the theorem

since x4 ¢ V is arbitrary.

Now suppose there exists a K< «=such that Ex( 1) < K for all x € V.
Fix x; ¢ V. We claim there exist constant %) and € 0 depending on K ,
2> and n such that
R Ro

. A o]
(2.14) PX{BQ exits V before ‘Bt"xJ > 7;} >gy Yx ¢ D(Xo’j;)'
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To show (2.14) put D = D(xo,R) and as before g and ED are the Green
functions for D with respect to A and %A, respectively. Then if Tp is

R
the exit time of BQ from D, and if x ¢ D(xg, =)

(2.15) Ex(tp) = I gp(x,y)dy > Ky é gp(xsy)dy
2 2 2 1.2
ck Rom xRk - K R
Y m = " T m \ 20

So if we choose Ro = RO(K) large enough,

RO
(2.16) o Ex(ry) 2 2K for all x € D(xgs ) -

Now Consider 7 = Tynp, the exit timeof V N D. We have

2k S Ez(TD) = Ez(T + ofTD)

= E,(7) + E,[E,{6,7p| 7,)]

= E,(7) + E;[Eps(p)]

< k+ cV«ERE-IBf-%P}

:l n

so that
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Hence
R§ - | B2 - z|? } .
Pj o S vael > kn_
| n ] T 2¢R;
or
kn

vy P

P,[|BA - z|®> < R}
l ' " 2cR?'T 2cR?

from which it follows that
(2.17) P,[|Bf -2o| <Ry-c|2¢ if |z-2| < Ry

where ¢ <1 and ¢ > 0 are depending only on k, the ellipticity constant, and
the dimension. (2.14) now follows from (2.17) and if we set F' = D(zy,R¢/5)\V we
find that

¢ < P{Bfexits V before |Bf - X,| > Ry/s}

= .{_ gp(z,y)dpr p(y) .

Integrating both sides of the previous inequality over D(zg,Ry/s) with respect to z
and using Fubini’s theorem we find that Brp(F) > € or

Cap p(zo R){D(2, Roy,)\ V} 2 & for all 2,

where R, depends on k, the ellipticity constant X\, and the dimension n. This
completes the proof of the Theorem.
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