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A study of the inclusive charged hadron production in two-photon collisions is described. The data were
collected with the DELPHI detector at LEP II. Results on the inclusive single-particle pT distribution and
the differential charged hadrons dσ/dpT cross-section are presented and compared to the predictions of
perturbative NLO QCD calculations and to published results.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The inclusive production of hadrons in γ ∗γ ∗ interactions can
be used to study the structure of two-photon collisions [1]. These
photons are radiated by beam electrons which scatter at very small
angles and most of them are not detected. The untagged photons
are quasi-real with a mass Q 2 ∼ 0. At LEP II these collisions are
the main source of hadron production, providing a good opportu-
nity for such an investigation and thus to check the predictions of
leading and next-to-leading order (NLO) perturbative QCD compu-
tations.

The L3 and OPAL Collaborations have published results of their
analyses of the inclusive production of charged hadrons in two-
photon collisions [2,3]. While L3 observes a pion production cross-
section largely exceeding the NLO QCD predictions at high trans-
verse momenta (5 GeV/c < pT < 17 GeV/c), OPAL finds a good
agreement with them, in the pT < 10 GeV/c range of its analy-
sis.

In this Letter we present the DELPHI study of the inclusive
production of charged hadrons in collisions of quasi-real photons.
Section 2 describes the selection criteria for the event sample
collected for this study. The inclusive single-particle transverse
momentum spectrum and the measurement of the differential
charged hadrons cross-section are presented in Section 3. They are
compared to theoretical QCD predictions and published results in
Section 4.

2. Experimental procedure

The analysis presented here is based on the data taken with the
DELPHI detector [4,5] in 1996–2000, covering a range of centre-
of-mass energies from 161 GeV to 209 GeV, with a luminosity-
weighted average centre-of-mass energy: 195.5 GeV. The selected
data set corresponds to the period when the Time Projection
Chamber (TPC), the main tracking device of DELPHI, was fully oper-
ational thus ensuring good particle reconstruction. The correspond-
ing integrated luminosity used in this analysis is 617 pb−1.

The charged particles were measured in the tracking system of
DELPHI, which consists of the microVertex Detector (VD), the Inner
Detector (ID), the TPC, the Outer Detector (OD) in the barrel, and
the Forward Chambers FCA and FCB in the endcaps of DELPHI, all
embedded in a homogeneous 1.2 T magnetic field. The following
selection criteria are applied to charged particles:

• transverse momentum pT > 150 MeV/c;
• impact parameter of a trajectory transverse to the beam axis

�xy < 0.4 cm;
• impact parameter of a trajectory along the beam axis �z <

2 cm;

* Corresponding author.
E-mail address: Jan.Timmermans@cern.ch (J. Timmermans).

1 Deceased.
• polar angle of a track with respect to the e− beam 10◦ < θ <

170◦;
• track length l > 30 cm;
• relative error of its momentum �p/p < 100%.

The measurement of neutral particles is made using the
calorimeter information provided by the electromagnetic calorime-
ters, the High Density Projection Chamber (HPC) in the barrel and
Forward Electromagnetic Calorimeter (FEMC) in the forward (back-
ward) regions and by the hadronic calorimeter (HAC). Events with
photons tagged by the DELPHI luminometer (STIC), i.e. with high
Q 2 values, have been rejected. The calorimeter clusters, which are
not associated to charged particle tracks, are combined to form
the signals from the neutral particles (γ , π0, K0

L , n). The following
thresholds are set on the measured energy: 0.5 GeV for showers
in the electromagnetic calorimeters and 2 GeV for showers in the
hadronic calorimeter. Furthermore the polar angle of neutral tracks
was required to be in the range 10◦ < θ < 170◦ .

To extract the hadronic events from the collisions of quasi-real
photons the following cuts are applied:

• energy deposited in the DELPHI luminometer (STIC: 2.5◦ <

θSTIC < 9◦) ESTIC < 30 GeV;
• number of charged-particle tracks Nch > 4;
• visible invariant mass, calculated from the four-momentum

vectors of the measured charged and neutral particles, assum-
ing the pion mass for charged particles, 5 GeV/c2 < Wvis <

35 GeV/c2.

The first condition eliminates the so-called single and double-
tagged γ ∗γ ∗ events. The condition on the charged track mul-
tiplicity as well as the lower limit on Wvis reduce the back-
ground from γ ∗γ ∗ → τ+τ− events. The upper limit on Wvis cuts
down the background from the e+e− → qq̄(γ ), e+e− → τ+τ− and
four-fermion processes. The comparison of the Wvis distributions
(Fig. 1) for the data and the Monte Carlo (MC) generated samples
of events, described below, illustrates the effects of the Wvis cuts.

About 910k events are selected after application of the above
selection criteria.

3. Data analysis and results

Monte Carlo samples of the various final states present in the
data were generated for comparison with these data. The simula-
tion of the process γ ∗γ ∗ → hadrons was based on PYTHIA 6.143
[6] in which the description of the hadron production encompasses
the processes described by the Quark Parton Model (QPM) (di-
rect process), the Vector Dominance Model (VDM) and the hard
scattering of the hadronic constituents of quasi-real photons (re-
solved photon process). The MC sample of events used is 2.7 times
larger than the data. The main background coming from the in-
clusive e+e− → qq̄(γ ) channel has been estimated from a PYTHIA
6.125 sample. The simulations of the e+e− → four-fermion, the
γ ∗γ ∗ → τ+τ− and of the e+e− → τ+τ− backgrounds were based
on the EXCALIBUR [7], BDKRC [8] and KORALZ 4.2 [9] genera-
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Fig. 1. Wvis distributions for the data and for the simulated γ ∗γ ∗ → hadrons
(medium cross-hatching), γ ∗γ ∗ → τ+τ− (second largest cross-hatching), e+e− →
qq̄(γ ), τ+τ− (small cross-hatching) and e+e− → W+W− (largest cross-hatching)
events at

√
see = 200 GeV.

tors, respectively. The Monte Carlo generated events were then
passed through the standard DELPHI detector simulation and re-
construction programs [5]. The same cuts were applied on the
reconstructed MC events as on the data.

The dN/dpT distribution of the charged particles of the se-
lected events is presented in Fig. 2, for tracks with pseudo-rapidity
|η| < 1 (η = − ln tan(θ/2)),2 i.e. well measured tracks including
TPC information. The expected Monte Carlo generated contribu-
tions, normalized to the data integrated luminosity are also shown.
The data are well reproduced by the sum of the simulated sam-
ples of events for pT > 1.6 GeV/c and the e+e− → qq̄(γ ) channel
is the main contributor for pT > 12 GeV/c. There is a lack of data
at pT < 1.6 GeV/c, becoming substantial at pT < 1 GeV/c. This is
caused by the trigger efficiency which was not accounted for in
the Monte Carlo simulation and which is low for low pT tracks
and low multiplicities [10]. For this reason, the following compar-
ison with theoretical predictions is presented for pT > 1.6 GeV/c
only.

The differential dσ/dpT cross-section distribution of the inclu-
sive production of charged hadrons in the process γ ∗γ ∗ → hadrons
has been obtained by subtracting the background contributions
from the experimental dN/dpT data. The resulting distribution has
been corrected, bin-by-bin, by a factor which is the inverse of
the ratio of the numbers of reconstructed to generated tracks of
γ ∗γ ∗ → hadrons in Monte Carlo events. This ratio is of the or-
der of 50–60% for 1.6 GeV/c < pT < 4 GeV/c and drops to about
20% for pT > 10 GeV/c, the upper bound on Wvis being mainly re-
sponsible for the drop in efficiency on large pT tracks. The dσ/dpT

distribution is shown in Fig. 3 for different sets of selection criteria
as described below. The PYTHIA prediction is also shown. It agrees
very well with the data for pT > 1.6 GeV/c up to large pT values.

2 The angular selection of tracks (Table 1 and Figs. 2–5) is expressed in terms of
|η| cuts for comparison with published results [2,3].
Fig. 2. pT distribution of charged particles of the selected sample of events, for
|η| < 1 together with the Monte Carlo generated contributing processes: γ ∗γ ∗ →
hadrons (largest cross-hatching), e+e− → qq̄(γ ) (medium cross-hatching), e+e− →
W+W− , τ+τ− , γ ∗γ ∗ → τ+τ− (small cross-hatching).

Table 1
Differential inclusive dσ/dpT of charged particles produced in γ ∗γ ∗ → hadrons col-
lisions, for |η| < 1, |η| < 1.5 and pT > 1.6 GeV/c. The first error is statistical, the
second is the systematic uncertainty. The data are background subtracted and cor-
rected for detector inefficiency and selection cuts.

pT , GeV/c 〈pT 〉, GeV/c dσ/dpT , pb/GeV/c

|η| < 1 |η| < 1.5

1.6–2.0 1.76 (2.36 ± 0.02+0.88
−0.41) × 102 (3.00 ± 0.02+0.42

−0.60) × 102

2.0–2.4 2.17 (8.98 ± 0.11+3.24
−1.18) × 101 (1.15 ± 0.01+0.09

−0.17) × 102

2.4–2.8 2.58 (4.05 ± 0.07+1.30
−0.58) × 101 (5.23 ± 0.08+0.27

−0.82) × 101

2.8–3.2 2.98 (2.10 ± 0.05+0.82
−0.27) × 101 (2.66 ± 0.06+0.30

−0.38) × 101

3.2–3.6 3.38 (1.24 ± 0.04+0.44
−0.17) × 101 (1.61 ± 0.05+0.05

−0.25) × 101

3.6–4.0 3.78 (7.31 ± 0.34+2.92
−1.06) (9.41 ± 0.35+1.03

−1.69)

4.0–4.4 4.18 (4.29 ± 0.26+2.07
−0.47) (5.54 ± 0.27+0.85

−0.54)

4.4–4.8 4.59 (2.95 ± 0.22+1.36
−0.46) (3.89 ± 0.24+0.42

−0.47)

4.8–5.2 4.99 (2.22 ± 0.19+1.05
−0.12) (2.78 ± 0.20+0.29

−0.10)

5.2–5.6 5.39 (1.33 ± 0.16+0.62
−0.05) (1.65 ± 0.16+0.19

−0.06)

5.6–6.0 5.79 (1.36 ± 0.17+0.41
−0.25) (1.70 ± 0.19+0.12

−0.24)

6.0–6.4 6.19 (9.70 ± 1.42+4.04
−1.20) × 10−1 (1.16 ± 0.15+0.15

−0.14)

6.4–6.8 6.59 (4.57 ± 1.01+3.26
−0.88) × 10−1 (8.34 ± 1.36+0.47

−2.66) × 10−1

6.8–7.2 6.98 (5.44 ± 1.11+5.96
−3.03) × 10−1 (6.65 ± 1.12+2.52

−2.90) × 10−1

7.2–7.6 7.38 (5.13 ± 1.04+1.18
−0.92) × 10−1 (5.43 ± 1.09+0.28

−0.23) × 10−1

7.6–8.0 7.78 (2.93 ± 0.91+1.70
−1.57) × 10−1 (3.67 ± 0.92+0.38

−1.42) × 10−1

8.0–9.0 8.44 (1.56 ± 0.68+3.48
−1.33) × 10−1 (2.65 ± 1.23+1.94

−2.30) × 10−1

9.0–10.0 9.47 (1.08 ± 0.59+1.76
−0.89) × 10−1 (1.71 ± 0.86+1.41

−1.30) × 10−1

10.0–12.0 10.87 (0.53 ± 0.22+1.68
−0.44) × 10−1 (0.68 ± 0.28+1.37

−0.49) × 10−1

12.0–16.0 13.53 (0.16 ± 0.05+0.26
−0.02) × 10−1 (0.23 ± 0.07+0.43

−0.14) × 10−1

To study the systematic uncertainty coming from the selec-
tion criteria, we have varied them, in particular the Wvis upper
limit and the track polar angle (θ) cuts. A smaller upper bound
of Wvis has the advantage of minimizing the background contribu-
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Fig. 3. Differential inclusive dσ/dpT distributions of charged particles with |η| <

1.5, produced in γ ∗γ ∗ collisions, for different sets of initial selection criteria. (The
lower limit of Wvis was Wvis > 5 GeV/c2.) The data are background subtracted and
corrected for detector inefficiency and selection cuts. The line is the corresponding
PYTHIA prediction for γ ∗γ ∗ → hadrons.

tions especially the e+e− → qq̄(γ ) one. Tracks at low polar angle
are missing TPC measurements and are thus less well measured.
On the other hand most contributing processes correspond to the
emission of tracks peaked in the forward (backward) regions, in
particular the e+e− → qq̄(γ ) and even more the γ ∗γ ∗ → hadrons
channels. Hence a tight (θ) cut can reduce significantly the num-
ber of selected charged-particle tracks (Nch) of a given event and
consequently its computed visible energy Wvis. Fig. 3 shows the
dσ/dpT distributions, calculated using tracks with |η| < 1.5, for
four sets of selection criteria varying the polar angle selection im-
posed on charged tracks and the cut on the visible invariant mass
Wvis:

1. 10◦ < θ < 170◦ (|η| < 2.4), 5 GeV/c2 < Wvis < 20 GeV/c2;
2. 25◦ < θ < 155◦ (|η| < 1.5), 5 GeV/c2 < Wvis < 20 GeV/c2;
3. 10◦ < θ < 170◦ (|η| < 2.4), 5 GeV/c2 < Wvis < 35 GeV/c2;
4. 25◦ < θ < 155◦ (|η| < 1.5), 5 GeV/c2 < Wvis < 35 GeV/c2.

The spread of the measurements is relatively small for pT <

7–8 GeV/c but increases for high pT values where the e+e− →
qq̄(γ ) background dominates. The corresponding systematic uncer-
tainty has been estimated as half of the spread of the four sets of
measurements.

The other source of uncertainty comes from the Monte Carlo
modeling. It has been estimated by comparing the PYTHIA and
TWOGAM [11] predictions for the γ ∗γ ∗ → hadrons processes and
PYTHIA and HERWIG [12] predictions for the e+e− → qq̄(γ ) pro-
cess. It was found that the relative difference on the efficiencies
calculated from the various generators depends on pT but never
exceeds 10%. The corresponding uncertainty has been defined as
half of the difference between two generator contributions. All sys-
tematic uncertainties have been added quadratically in Table 1.

Table 1 gives the values of dσ/dpT as a function of pT , for the
selection criteria described in Section 2, the pseudo-rapidity ranges
Fig. 4. Differential inclusive dσ/dpT distribution of charged particles produced in
γ ∗γ ∗ collisions for |η| < 1.5 and 5 GeV/c2 < Wvis < 35 GeV/c2. The original data
sample used to extract this cross-section included tracks with 10◦ < θ < 170◦ (|η| <
2.4). The data are shown as points with statistical + systematical error bars. They
are background subtracted and corrected for detector inefficiency and selection cuts.
The line is the NLO QCD prediction of [13] for γ ∗γ ∗ → hadrons.

Fig. 5. pT distribution of charged particles of the event sample after application
of the “L3-like” selection criteria, for |η| < 1 and 5 GeV/c2 < Wvis < 78 GeV/c2,
together with the Monte Carlo generated contributing processes: γ ∗γ ∗ → hadrons
(largest cross-hatching), e+e− → qq̄(γ ) (medium cross-hatching), e+e− → W+W− ,
τ+τ− , γ ∗γ ∗ → τ+τ− (small cross-hatching).
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|η| < 1 and |η| < 1.5 and for pT > 1.6 GeV/c where the event trig-
ger efficiency is close to 100%. The first error is statistical and the
second one is the overall systematic uncertainty. Fig. 4 shows the
comparison of the dσ/dpT distribution for |η| < 1.5 with the NLO
QCD prediction of [13]. The theoretical computation tends to be
slightly lower than the measurements at high pT values although
staying compatible with them within errors.

4. Discussion of results

Our measurement of the dσ/dpT cross-section of the inclusive
production of hadrons in γ ∗γ ∗ interactions appears to agree well
with both PYTHIA and NLO QCD predictions.

The L3 experiment has performed a similar analysis [2] and
has observed that the pT spectrum of charged hadrons is slightly
below the PYTHIA MC prediction while the derived dσ/dpT cross-
section considerably exceeds the NLO QCD prediction at high pT

values. We have repeated our analysis, adopting a “L3-like” set of
selection criteria which, compared to ours, corresponds to a less
tight Wvis cut (Wvis < 78 GeV/c2 instead of 35 GeV/c2) and a
higher threshold of the total number of particles including neutrals
(5 instead of 4). The looser Wvis cut has the effect of increasing
significantly the e+e− → qq̄(γ ) background (see Fig. 1) which now
dominates at large pT values. The resulting dN/dpT spectrum of
charged particles for the “L3-like” events is presented in Fig. 5 to-
gether with the contributing channels. One observes an excess of
data over the PYTHIA MC prediction. This disagreement between
MC and data is likely to come from charged particles of back-
ground channels as these are introduced in much larger quantities
than charged particles from γ ∗γ ∗ → hadrons, when the Wvis cut
is relaxed up to 78 GeV/c2, as can be checked by comparing Fig. 5
with Fig. 2. It legitimates, a posteriori, our Wvis < 35 GeV/c2 cut to
minimize the contamination of charged particles from background
channels.

The OPAL experiment has measured the differential dσ/dpT

cross-section of the inclusive production of charged hadrons [3]
for different intervals of W , the hadronic invariant mass corrected
for detector effects. In the (10 GeV/c2 < W < 30 GeV/c2) interval,
the cross-section is compatible with the NLO prediction.

5. Conclusions

The study of the inclusive charged hadron production in two-
photon collisions has been carried out at the DELPHI detector at
LEP II. Measurements of the inclusive single-particle pT distribu-
tion and of the differential inclusive dσ/dpT cross-section have
been extracted. The differential inclusive dσ/dpT cross-section is
found to be compatible, within errors, with the PYTHIA and NLO
QCD predictions up to high pT , although systematic uncertainties
limit the accuracy of the comparison in this region. It is shown
that if cuts such as those used in [2] are applied, qq̄ background
dominates at large pT , making it difficult to draw conclusions on
two-photon processes.
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