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FUNCTIONS WITH BOUNDED DIRICHLET INTEGRAL

BERNT OKSENDAL

ABSTRACT .

Stochastic calculus, estimates for harmonic measure and the theory of Diri-
chlet forms are used to give sufficient conditions that a set is a removable singu-
larity set for some HP space and for the space D, of analytic functions with
bounded Dirichlet integral. For example, a set K situated on the boundary

dQ ofa BMO; domain Q in C”is a removable singularity for H” for some
p <o if K has 2n — 1 dimensional Hausdorff measure 0 and it is a remov-
able singularity for D, if C(6Q) = C(6Q—K), where C denotes the Green

capacity.
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§1. Introduction.

Let U be a bounded opensetin C”. If ¢ : U~ C is an analytic function,
0<p <o, wesaythat _¢ € H?(U) if |$f has a harmonic majorant in U.
If a € U is fixed we define

1.1 l|bl|Zewy = inf {g(a) ; ¢ harmonic majorant of &P} .

We say that ¢ € D,(U), or that ¢ has a bounded Dirichlet integral, if

(1.2) [z

v =1

i‘ﬁrm dm(y) < o

aZj

where dm denotes Lebesgue measure. Since condition (1.2) implies that ¢(U)
has finite area, all functions in D,(U) can be seen to belong to HP(U) for all
p < ». (See the remark following Theorem 2.2.)

Hence
(1.3) D,(U) C H’*(U) CHPY(U) for all 0<p;<p, <.

If K C U is relatively closed we say that K is a removable singularity for
HP(U\K) (resp. D,(U\K)) if every function ¢ € H?(U \ K) (resp.
D,(U \ K)) extends to an analytic function, denoted by ¢, on the whole of U.



In this paper we use stochastic calculus, estimates for harmonic measure and
Dirichlet forms to study removable singularities for H” and D,. It was proved
by Parreau [26] that if U C C and K is a compact subset of U with
~ cap(K) = 0 (where cap denotes logarithmic capacity), then K is removable for
HP for all p. In fact, in this case |

(1.4) I®llp @) = 19l

(see Yamashita [31]). Jarvi extended this result to bounded domains in C” v
[22]. See also Fuglede [15]. Conway and Dudziak [8] proved that the only com-
pacts K C U C C with the property that K is a removable singularity for H?
and (1.4) holds are the sets K with cap(K) = 0. In §3 we give a general esti-
mate of the ratio of the H” norm of an analytic function on U and the HP
norm of its restriction to U\ K , where KCU is compact (Theorem 3.2). In
Theorem 3.1 we prove that if Aj,—;1(K) = 0 (where A; denotes k-dimensional
Hausdorff measure) and K is situated on the boundafy 0@ of a BMO,
domain QCC" then K is a removable singularity for H?, for some p < oo.-
(Q isa BMO; domainif dQ is locally described as the graph of a function
¥ with ¢ € BMO. Thus BMO; domains are more general than Lipschitz
_domains. See Jerison and Kenig [23]). If Q is required to be C! then K is
removable for HP forall p>1 andif Q is Cl*¢ then K is removable for
H'. These results extend a result of Heins [19]/Hejhal [26] which states that if
K C C is a subset of an analytic arc and K has zero length, then K is remov-
able for H'. In view of an example due to Hejhal [20] of a set K C C with

A1(K) = 0 situated on the union of the coordinate axes such that KX is not




removable for H ', it is clear that not just the metric size of K but also the
geometry of K is important. Therefore it is natural to ask to what extent the
conditions on Q. in Theorem 3.1 can be relaxed. It is known that H? and H4Y

have different removable singularities if p # g (See Heins [19], Hasumi [17].)
The following result about removable singularities for D, is due to Carleson
([6], Th. VI 3): |
Suppose K C C is situated on a simple, closed curve I' with continuously

varying curvature. Then K is removable for D, if and only if

(1.5) cap(I' \ K) = cap(I') .

In §5 we extend the if part of this result to C” and to subsets K of the -
boundary of BMO; domains (Theorem 5.2). The condition (1.5) is replaced by
a similar condition involving capacitiés w.r.t. the Green kernel. The main
ingredients in the proof of Theorem 5.2 is a stochastic interpretation of the condi-
tion analogue to (1.5) (Theorem 4.1) and the use of general theory of Dirichlet
forms. We also use the general stochastic boundary value result for HP func-
tions established in §2. (Theorem 2.2 and Corollary 2.3.)

For a characfcriiétion of the removable singularities for D, and ofhér |
related spaces in terms of condenser capacities see Hedberg [18]. |

From now on U will denote a bounded domain in C”". Brownian motion in :

C" will be denoted by ({B,},zo, Q, 7, PY). £ HCC" welet

(1.6) 7, = inf{t > 0; B, ¢ H}

be the (first) exit time from H of B,. The Green function of a bounded domain



\
D C C, Gp(x,y), can be defined using Brownian motion by

‘ T
(1.7) J Gp(x.y)dm(yyE* l.[] * xr(8,) ds], FCD,
F
where E* denotes expectation w.r.t. the probability law P* of Brownian motion

starting at x.

We also recall the following version of the Lévy theorem, due to Bernard, |
Campbell and Davie [3]. See also [9].

Let ¢ : U - C be analytic, non-constant and let (B, ,P*) denote
Brownian motion in C. Put
(1.8) A= 2|i;;i|2 and o,(w) = [ M(B,(w)) ds; w€Q, 1 =< 1y .
J

Then

(1.9) ¢ (w) = HTH:, (B, exists a.s. on {0 ;0, <o}

and the process

¢(BG‘_1) . ; t < 0"l'u

10 B+ B i 1=

0

with a probability law P?2xB" coincides with Brownian motion in C starting at

$(2) .
The closure of a set W is denoted by W, CC means "compactly contained

in" and C3 denotes the C? functions with compact support. We put

Di(a, R) = {x € R¥; k—a| <R}.

-5.-



§2. Boundary values of H” functions.

(Theporem 2.2)
We first establish a result¥about the existence of "Brownian boundary values

for functions in H”(U), for any p > 0. The case when p > 1 isa direct
consequence of Doob’s martingale convergence theorem (see e.g. Williams [30],
p- 60). The general case follows from Burkholder-Gundy’s estimates [5] for exit

times of Brownian motions. With the possiblée exception of statement
(iii) Theorem 2.2 is well known. For completeness we give the details.

LEMMA 2.1. Let ¢ : U - C be analytic. Then for all stopping times
T<1y andall p > 0 we have

2
@1 Ee@DF] = P + £- E*

I e@op2 3 |2

3¢ (B.)[2 drl

PROOF. Let Z, = Z,(") = Bf%~1) 4+ iB(®) ; 1<k =n, denote complex
Brownian motion, Z, = (Zi,...,Z,). Put Y, = &(Z).
Then by the complex version of the Ito formula

ay, z—id +>:idz 15 B 4y

J 2 J.k aZJaZk

y1ls 3% ziz o+ 3 20 4747,

2 jk az,azk jk 9zj0z;

=3 2% 4z, since ¢ is analytic and dZ;dz, = 0.
i 9z

Hence



2.2) 6(Z) = b(Zg) + j0‘§ %i (2) dZ; for 1 < 1.
2

So if we put f(z) = |z’ and W, = f(¥,) then

- 2 -
aw, = 3L gy, + 8L a7, + 2L gy av,
0z 0z 020z

- - 2 —
= % ¥, P27, dY, + % [¥.P-2v,dy, + %— |¥,Pp=2 av, ay, .

Since

dY,dY, =23
J

ﬂ’zdt,

Zj

we get
E*[|o(Z)P] = EX[Wr]

2
=W0+1;—E*

J(',T lb(Z)P '2‘12? % (B,)[2 dt] ,

as claimed.

THEOREM 2.2. Let 0 < p < «. The following are equivalent:

(@) ¢ € H?(U)
(ii) For all x € U there exists M < © such that E*[|b(B7)P] =M for all
stopping times T < 71y.

(ii) E*[02?] < forall x € U.



(iv) E* l j;;” lb(B)P 2= —gi (B_,)rds] <o forall x €U
J |9%;

©) 60722
U J

%9— (y)’2 G(x,y) dm(y) < = for all x€U.
zj

PROOF. (iv) and (v) are equivalent by the stochastic interpretation of the

Green function:

5 ) G(x,y)dm(y)E* [ J;T.” f(B) dt] :

The equivalence of (ii) and (iv) follows by Lemma 2.1. By Lévy’s theorem we
get

(2.3) EX[l6(Br)P] = E*@|B, ] .

As noted by B. Davis ([11], p. 924) the Burkholder-Gundy estimate for stopping

times for Brownian motion ([5]) applies to o7 as well, so that

(2.4) E*O[B,,P] ~ E¥[(|6P + 20 07)2] = E[(1$()P + 2nor)”]

where a ~ b means % a < b < ca for some constant c. Combining (2.3)
and (2.4) we get (ii) < (iii).

(i) = (ii): I ¢ € HP(U), let h(x) denote a harmonic majorant of |p[°.

Then for all stopping times T < 7y we have

2-5) E*[|¢(Br)P] = E*[h(B1)] = h(x) .



(i) = (i): Suppose (ii) holds. Let {U;};~; be an increasing sequence of

open sets such that l_jk CU and U = ULy Up. Put 7 = 7y, and define

(2.6) b(©) = &(B (@), k=12,...

Then by the strong Markov property we have

Ex[ld’m - ¢k|p] = EI[Id’(B'r,‘) - ¢(B-r,‘) |17]

= E[E[|6(B,) — 6B, )F | #,]]

£ (148, - $BoP]

T ri2
Pmuﬂmﬂ|4]

E o1 = £
- . p/2 . p2
E"[[j;: A(B,) ds] | 7. || = EF [ﬁk"‘ A(B,) ds] ] -0.

as k,m - . Therefore {¢;} is a Cauchy sequence in L?(Q),P*). (If

0 < p < 1, the metric is given by the distance

dp(fsg) = Ex[lf_glp]_)

By completeness of LP(),P*) there exists ¢~ € L(€,P*) such that

E*[|é;—oP1-0.

By Harnack’s inequalities ¢~ € LP(Q,P*) for all x € U. Put

g(x) = EXlo"P] -

- 9.



Then if V is open, V CC U we have vc U, for k large enough, andso if
denotes the shift operator et(g(Bs)) = g(B ),

0., (16°F) = lim 6., (6:F) = lim ., (4(8.)P)

s+t

~ m [6(8,)P = [6°F.

Therefore, by the strong Markov property

Extg(BTv)] = EX[EBTV[H)* IP]] = EX[EX[GTV(M*IP)'I”V]]

= EX[EXloFI7, 0] = EX[l67F] = g(x)

and hence g is harmonic. Moreover, by Lemma 2.1 we have

8G) = B0 F) = lim BT (B, )] = [P

and we conclude that g is a harmonic majorant of |[°. Moreover, g is the
least harmonic majorant of |¢}?, because if h is any harmonic majorant of |o[’

we have

g(x) = EX[lo"F] = lim E*[|¢(B.)F] = lim E*[h(B.,)] = h(x) -

That completes the proof of Theorem 2.2.

REMARK. It is a consequence of (iii), Theorem 2.2 that if ¢(U) has finite
area, then' ¢ € HP(U) for all p < . This is seen as follows: Since
0., = To) (by the Lévy theorem) it is enough to prove that E¥[t§{)] < » for

all p < . For this it suffices to prove that E[tf?] < « where D = D,(0,R)

- ‘IO-



with wR2 = Area(¢(U)), by a result due to Aizenman and Simon [2]. And this

last inequality can be verified directly using the law of Brownian motion.

The last part-of the proof of Theorem 2.2 also proves the following:

COROLLARY 2.3. Let & € HP(U), 0 <p <. Let & be as defined in
(2.6) above. Then there exists a "stochastic boundary value function" ¢*(m) given
by

2.7) ¢ (0) = }53,1, $(B)) .
We have ¢" € LP(Q,P*) and

(2.8) E(léx—¢"P1+0 as ko

for all x € U. The function

(2.9) g(x) = E*[lo"F]

is the least harmonic majorant of |b|° and
(2.10) ||$|Ig = E°[l6"P] = sup{E[|6BL)F); T stopping time < 7y}

- p@Pp + - E° [f"’ 6@)P2 3 |22 (B‘)H
o j=110z;j

or 0<p <o,

REMARK. The existence of the limit in (2.7) follows from the Lévy theorem
and from the fact that o,, < ® a.s. when ¢ € HP(U) (Theorem 2.2 (iii)).

-11 -



Now assume that U is a BMO; domain. Then the Martin boundary of
U coincides with the topological boundary of U (Jerison and Kenig [23], Th.
5.9). For 1 =p < o it follows from Corollary 2.3 that the family {¢;} is uni-
formly integrable w.r.t. P*, for each x € U, so by a result due to Doob [12]

we get that there exists a fine boundary value function — also denoted by ¢ —

such that

(2.11) ¢(x) = E*[d(B,,)] forall x € U .
Moreover,

(2.12) Jim $(B(0)) = (B, (w)) as. P~

Thus we have

(2.13) ¢ (0) = $(B(w))

if l=p<ow and U isa BMO; domain.



§3. Removable singularities for H” functions.

We are now ready to prove the main result about removable singularities for

HP:

THEOREM 3.1. Let K be a relatively closed subset of U C C". Suppose
K s situated on the boundary 8Q of a domain Q and that A,,_1(K) =0

() If Q isa C*¢ domain for some € > 0, then K is a removable singu-
larity for I:Vl(U \ K)

(i) If Q isa C! domain, then K is a removable singularity for HP(U \ K)
forall p> 1.

(i) If Q@ isa BMO; domain, then there exists p < © such that K isa
removable singularity for HP(U \ K).

PROOF. First assume that n =1. (iii): Assume that Q is a BMO;
- domain and let ¢ be analyticon U\ K. We may assume that U is an open
.rectangle, sosmall thatboth V=UNQ and W = U\é are BMO;,

domains and ¢

is analytic on U\K.

Fix z € 90 N U\K.
Choose an open disc D C U
centered at z such that
"DNK=0 and put
V=VUD, W=WUD.

By modifying Q0 near oD

-13 -



if necessary we may assume that V and
W are BMO; domains.
Let V; be the domain
obtained by shifting

the domain V by the
distance 1/k in the
direction of the side

of U which meets oQ

and let z; denote the

corresponding translate of z.
If ds;, d\; and ds, d\ denotes arc length, harmonic measure w.r.t. z; on

aV, and arc length, harmonic measure w.r.t. z on a8V, we put

ds

= Bk o _ ds = =
(3.1) fk dkk’ f d\ ’ dgk gkdslu dC - gds

(where di{;,d{ is dx + idy on 9V, av, respectively),Note that |gk| <|. We claim that

(3.2) gk(B-rk) - g(B'r) and

fi(B;) - f(B,) for a.a. © w.r.t. P* for each x € U,

(3-3) where 7, =Ty, and T =Ty .

To prove (3.3) we argue as follows:

-14.



Foreach j> 0
there exists a relatively open

H; C oV such

that f is continuous

outside H; and s(H;) < 1/jj.
Let H{X) be the set H;
shifted to 8V;. Then

P*[B,, € HJ(") for infinitely many k] < e(j) -0 as j - .

P*[B,, € H}") for infinitely many j and k] = 0.

3 aj(u)
Hence for a.a. o there exist j(w) and k(w) such that for all k = kM

have

B Tk E HJ(&)’) :

For such ® we have that

fk(B'rk) - f(BT) ’

since f is continuous outside H; and f; is obtained by shifting f to aVj .
Similarly one obtains (3.2).

Since V isa BMO; domain we know that N € A.(s) (Jerison and Kenig
[23], Th. 10.1). So there exists 8 > 0 and C; < = such that

-15-



E*[|fi(B.)|'*®] = C; for all k.

(See Coifman and Fefferman [7], p. 248.) Put

h(w) = &(B,,)g(B,) fu(B-,) -

Then for B > 0 we have

E*[|h['*®] = EX[|d(B,) |9 )]V E¥[|g, (B, )fi(B,,) |7 1BV’

1+ 82

where 1/q + 1/q' = 1. So if we choose B = 8/4, q' = 154

and

g = 2 + 4/5 we see that

E*[|m|'*¥4] = C, (independent of k)

if & € HP(U\K) for p = (2 + 4/8)(1 + 8/4) = 3 + 4/8 + 8/4. Therefore the
sequence {h;}; is uniformly integrable w.r.t. P* (see e.g. [30]) and we conclude
that h, converges in L1(P*). This gives that, with

Wi = by ~(2mi(Br, — )7,

@) = 7 fy, SEL = By) = B[l - B0 + Bl

_,_1_.'; M as k - o .

2mwi YV [ — z
Hence
= (L) dt
(3.4) () = 2'm J:W -z °
Similarly we obtain

-16 -



1' I o(f)dt

wi oW [ — z

3.5) ¢(2) = 5

By adding (3.4) and (3.5) and noting that

(3.6) &(z) = 21 J; (L) d¢

wi oD [ — z

we obtain

3.7) @) = 5 [ LA

2mwi YU L — z

Thus we define

J,(w)z__l_f MVW&U

2wi YU [ —w '’
and we have obtained the desired analytic extension of ¢. This proves part (iii).

The proofs of parts (i) and (ii) are similar. Afx essential

ingredient in the proof of (iii) was that % € L1+6()\) for

C1+E domain arc length

some & > 0. In (i) we use that for
is boundedly absolutely continuous with respect to harmonic
measure (see e.g. Stein [29]) and in (ii) we use that for C1

domain we have g% € L2()) for all g < =. (See Dahlberg [10],

p.21.) As before we can then conclude that
[SQd [ oA oy
Ve [ —z oV [ —z

and we continue as in case (iii). That completes the proof when n = 1.

The proof for the case when n > 1 is similar, except that here we use the

Bochner-Martinelli integral formula

=17 -



1

6@ = —— [, Q) Kz ,

’wn
where
no o_
Ky(z,0) = |t — 2| j§1 & — zwi(D) A w(D) ,
w(z) = dzy A - A dz,
wi(z) = (=1Y "1 dzy A 0 Adzjoy Adzjpq A A dz,
and

. = (_1)n(n—1)/2 (211’1')" .

" n!

(See e.g. Rudin [28], p. 347 or Krantz [25], p. 15.) Taking limits as k - © we

obtain as for n = 1

1

$@) = 5 f; SOKs(eD)
and similarly
6@) = 7= f; SOKED)

By adding these formulas the integrals over aV N 8W cancel and we are left

with

2() = —— [ $OK(a0) + —
nc, “oU b nc

n n

[, $OKsz0) -

-18 -



Since

@) = = [ $OK D) ,
we conclude that
@) = —— [ $OK (D) -
Now define
$w) = —= [, $OK(w,) for weU.

Then ¢ coincides with ¢ in U\K and ¢ is smoothin U. This implies that
¢ is in fact analyticin U, since U\K is densein U .
This completes the proof of Theorem 3.1.

Theorem 3.1 gives no information about the H?(U) norm of the extension
¢ of ¢ € HP(U\K). In the case when K is a compact subset of U C C we
can estimate the norm of a function € HP(U) by its H?(U \ K) norm as fol-

lows:

THEOREM 3.2. Suppose U C C and that K is a compact subset of U .
Then for all p > 0 there exists a constant A = A(K) such that

Wl = AlVllpey  for all ¥ € HP(U) .

-19-



PROOF. We may assume that K is not
Choose open sets W, {Uihi=1

such that a € aW,

KCWCCU, CU,C -

and U = U U;.

It suffices to prove that

there exists a constant A independent

of k and ¢ such that

(3.8) E“[b(B,)P] = AE*[[W(B,, )]

for all ¢ analyticin U and all k = 1,2,..., where 7, = Ty, and T = Tyak.

By the strong Markov property we have for all x € oW

(.9) EN(,)P] = EETHE,)P | 7,01 = E1E W@, )P
B ' , '
= EE B )PIXirg] + EIE (B, IPIXprpmny)

= :1612 E’[[w(B.)I] - PX[T'k <] + EX[lu(B,,)P] .

So if we put
Ay = sup EX[[b(B-)F] ,

A= sup E[(Br,)P]

-20 -



and

= sup P¥[v, < < sup P* < =p<1.
Py = sup [Tk < Tl sup. [fre<tyl=p<1,

then by the maximum principle

BE'[[W(B,)P] = A for all y €K

and we have by (3.9)

Ap = ppAp + Ay =pA + Ay .

Hence

1
Aks l—pA‘k for all k.

By the Harnack inequalities (3.8) follows.

-21 -




§4. A thin set that catches a.a. Brownian paths.

We now give a result which describes when a measurable subset of the boun-
dary of a bounded domain in C” catches almost all Brownian paths starting
from an interior point of the domain. Various versions of this result seem to be
known. See Hedberg [18] and Hruscev [21]. Since it is so crucial for the next
paragraph we give a proof. '

Recall that the fine topology on R* may be described by Brownian motion as
follows:

A set H C R¥ is finely open if and only if 7y > 0 a.s. P* forall x € H.

If V is a domainin R¥ with a Green function G = Gy(x,y), the Green

capacity Cy of asubset F of V is defined as follows:

Cy(F) = sup{u(¥)},

the sup being taken over all positive measures p on F such that

J Gy(x,y) dp(y) =1 for all x € R*.

For information about probabilistic potential theory we refer to [4], [13] and
[27].

THEOREM 4.1. Let D = Di(0,R) = {x € R*; |x| < R} where
0 <R < =, let H be a relatively closed subset of D and let Hy be a (Borel)

measureable subset of H. Put
H ={x€H; ipg=0 as P} = {x€H; B, hits H immediately a.s.}

Assume the following holds:.

immediately a.s. pr (i.e. if T

(4.1) If B, does not hit H D

X
+ 0 \H >0 a.s. P)

0
then Bt ‘hits 3D before H, with positive PX-probability.

- 2% -



Then the following are equivalent:
(i) Cp(Hg) = Cp(H)
(ii) B, hits Hy immediately, a.s. P* forall x € H'.
(iii) Tpw, = Tpw a.s. P* forall x € D.
(iv) H is finely dense in H'.

(v) For all x¢H'

S m-Cp(H, N Ap(x)=© if k=2
m=1

i 2m(k=2) Co(H, N Ap(x)) =  if k> 2

m=1
where A,,(x) ={y €R¥; 27" 1< —x|=2""}, m=1,2,..
PROOQOF. By considering H N D(0,r) and Hy N Di(0, r) for r <R we
see that we may assume that H is compact. The equivalence of (ii), (iii) and (iv)
follows directly from the stochastic interpretation of the fine topology. The

equivalence of (ii) and (v) follows from the Wiener criterion for hitting a set

immediately (see for example Theorem 7.35 in [27])

(i) « (ii): the probability of hitting H before oD, hy, may be expressed

4.2) h (x) = kg = [ Gp(x,y) dpg(y) ,
H H

where pp is the equilibrium measure on H, i.e.

-23-




rp(H) = Cp(H) ,
and similarly for H,. (See [4], p- 285.)

If Cp(Ho) = Cp(H) we conclude that py = gy, by uniqueness of the

equilibrium measure and therefore by (4.2)

(43) » hH = hHo

X .
So if B, does not hit H, immediately a.s. P, then by (4.1) we have

hH (x) < 1, hence by (4.3) h.H(x) < 1 and therefore Bt does not hit H
0

immediately a.s. PY. Thus (ii) holds.

Conversely, if (ii) holds then (4.3) holds.

Now if f € C¥(D) with compact support in D then by Green’s formula

-5 J Af()Go,2) dm(z) = f0); x€D.

So by the Fubini theorem, (4.1) and (4.3) we get

il

J 16 dus0) = =5 § 8@ (f Gp0-2) dn()) dm(z)

= =1 [ A& (J 6p0.2) dn ) dm(2)

[ f») dpg(y), for all such f.

It follows that py = py, and therefore (ii) holds. That completes the proof.

A somewhat surprising consequence of this result is that one can find rela-
tively thin subsets of the boundary of a domain in C” such that the subset
catches almost all Brownian paths starting from an interior point of the domain

before the paths exit from a ball contéining the domain:

- 24 -



COROLLARY 4.2. Let Q be a bounded domain in R* and choose R such
that D = Dy(O,R) D U. Let K bea compact subset of 0Q. Then the following

are equivalent.
(i) Cp(3Q\K) = Cp(3Q)
(i) B, hits 8Q \ K immediately a.s. P*, for all x € dQ
(i) 7Tpwowk) = Tpwg a.s. P forall x €D |
(iv) 8Q\ K is finely dense in 3Q.

(v) For all x€0Q

mCp@Q\K)N A,(x)) == ifk =2
1

sul}ds

2nE=C GO\ K)N Ay(x)) = ifk > 2,
1

5ﬁ[\ds

where A, (x) is as in Theorem 4.1.

Thus, if (i) holds then a.e. Brownian path starting from x € Q0 must hit
d0\K either before it hits X or immediately after. There are sets K of posi-
tive surface area satisfying (i), and thus sets dQ\K of surface areiless than the
area of dQ catching a.a. Brownian paths starting from Q. (For an example in
the unit circle see Ahlfors and Beurling [1].)




'§5. Removable singularities for analytic functions with bounded

Dirichlet integral

We now apply the previous results to prove the partial exten-

sion of Carleson's result mentioned in the introduction.

THEOREM 5.1. Let U C C" be open and K a relatively closed subset of
U. Let D = D,,(0,R) D U. Suppose K is situated on the boundary of a BMO,
domain Q such that

(5.1) Cp(3Q NU\K) = Cp(3Q N V) .

Then any ¢ € D,(U\K) extends analytically to U.

PROOF. Let ¢ € D,(U\K). Then as noted in the introduction
| ¢ € HP(U\K) for all p < . So we proceed as in the proof of Theorem 3.1

(iii) and in the case n = 1 we obtain, using the same notation as there,

¢(z)=_1_-,;VtﬂQ_d€__,_1_J;_ M as k - o

2wi {—z 2wi YoV [ —z

where ¢y is the boundai'y function of ¢|V. Similarly

d
() = 21171- L ¢ng(f)z :,
where ¢y is the boundary function of ¢|W. Of course ¢y = by on
0 N U\ K. The problemr here that we did not encounter in Theorem 3.1 is that
K may have positive length, so we cannot (yet) conclude that ¢y = by a.e. on

d0 N U\ K. To obtain such a conclusion we proceed as follows:
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~

Since V 1is a BMO, domain it follows by a result of P. Jones
([241, Theorem 1) that V is an extension domain for the Sobolev
spaces LE(V). In particular, since ¢|G has a finite Dirichlet
integral it follows from a variant of the Poincaré inequality (see
e.g. the proof of Lemma 1.4 in [(14]) that ¢|G € L2(V) and hence

-~

N ~ . . o
¢[V € L%(V), and therefore there exists an extension ¢ of ¢]V
to R™ such that

Ty

2n < .

a
D" o1 2
L2 (R“") Ia%ﬂ L2(R°")

By Theorem 3.1.3 in [16] there exists a Cp~quasicontinuous modifi-

. v ~ 1B . . .
cation ¢ of ¢|0. Then ¢V is finely continuous CD—quasievery—

where (g.e.) ([16 ], Theorem 4.3.2), so ¢’ = ¢ g.e. on ¥ and

(since oy is a fine boundary function of ¢|V) ¢V = ¢y a.e. on
av.

L . . A '
Similarly, if we consider ¢|W_ we get a g.e. finely continuous

. W V
function ¢ such that ¢] = ¢w a.e. on OW. Since ¢V = ¢” on
00K and dQNK is finely dense in 2Q (Corollary 4.2) we conclude
\Y W ’
that ¢ = ¢ g.-e. on 93Q N U and hence ¢V = ¢W a.e. on 0Q N U.

Now the proof of Theorem 3.1 applies to

give the conclusion of the theorem when n = 1.

The argument for n > 1 is similar. As in the proof of Theorem 3.1 we
now use the Bochner-Martinelli kernel instead of the Cauchy kernel. That com-

pletes the proof.

REMARK. Using Corollary 4.2 we see that the condition (5.1) in Theorem

5.1 can be replaced by the following (apparently) much weaker condition:

=27



(5-2) For all x€dQ we have

i m-Cp@Q \ K)N A,(x)) = o if n=1

m=1

S e GO \KIN Ay (x) = ©  if n> 1.

m=1

This generalizes one part of Theorem 13 in [18].
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