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1. lntrodJiction 

Consi<ler a smooth, complex projective surface X C pN, N ~ 5, and assume X is not contained in a 
hyperplane. Recall ([2], [4]) that the m-th order osculating space to X at a point z is the linear subspace 
Osc~(z) of pN determined by the partial derivatives of order$ m of the coordinate functions, with respect 
to a system of local parameters for X at z, and evaluated at z. At a general point z E X, one expects 
the m-th order osculating space to X to have dimension (mi2) - 1, if m is such that this number is not 
greater than N. Points where the dimension of the osculating space is smaller than expected, are called 
points of hyperosculation - these are "flat" points of X. Certain surfaces are such that all points are points 
of hyperosculation, in this sense. For example, if X is a ruled surface, then 

(L) dimOsci(z) $ 4 for all points z EX 

and hence dim Osc~(z) $2m, for allm. Not all surfaces satisfying the condition (L) are ruled: Togliatti 
([10]) gives as an example a special projection to P 5 of the Del Pezzo surface of degree 6 in P 6 • {This seems 
to be the only known example of a non-ruled smooth surface satisfying (L).) 

If a surface satisfies ( L ), one can show that, locally around a point, the coordinate functions of the stttfAe~ 
sa.tisfy a linear partial differential equation of order 2, or a Laplace equation - a term used classically by 
projective differential geometers (see [6], [10], [3], [7]). 

Here we study those surfaces that satisfy condition (L) and do not exhibit further hyperosculating 
behavior. Our aim is to give a characterization of rational normal scrolls (of dimension 2) similar to the one 
given for the Veronese embeddings of projective space given in [2]. 

Definition. A surface X C pN, N ~ 5, satisfies condition ( Ll) if X is smooth, X is not contained in a 
hyperplane, X satisfies condition (L), and in addition dim Osc~(z) = 2n, for all z EX, where n = [ N;t]. 

Then we have the following conjecture. 

Conjecture. Let XC pN be a smooth, projective surface that satisfies (LI). 

(i) H N = 2n+l is odd, then X is a balanced rational normal scroll, of degree 2n (i.e., of type (n,n)). 

(i) H N = 2n+2 is even, then X is a semi-balanced rational normal scroll, of degree 2n+l (i.e., of type 
(n,n+l)). 

Recall ([5]) that a rational normal scroll X of type (dt, d2) is defined as the image of a P 1-bundle: 

We call X balanced if d1 = d2 , and semi-balanced if ld1 -d2 1 = 1. A balanced scroll is isomorphic to P 1 x P 1, 

and a semi-balanced scroll is isomorphic to the surface F 1 obtained from P 2 by blowing up a point. Note 
that both P 1 x P 1 and F 1 have Chern numbers c2 = 4 and c~ = 8. 

The only rational normal scrolls satisfying (LI) are the balanced and semi-balanced ones; moreover, 
these are the only ones with the property that the strict dual vari~ty (X*t of the strict dual variety X* of 
X is equal to X; the balanced ones are the only ones such that X and X* are isomorphic {[5]). 
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Case (i) of the above Conjecture was formulated by the second named author and proved by him in the 
case n = 2, under some additional assumptions ((9]). The purpose of the present paper is to give a proof in 
case (i) that works for n ~ 4. In particular, by taking n = 2, this proves the conjecture in ([7]). 

We begin the next section by recalling the definition of osculating spaces and strict dual variety. Then 
we prove several lemmas and a proposition, that are valid for any surface X C P 2"+1 satisfying (LI), We 
then prove our main result by showing how to deduce case (i) of the Conjecture from the Proposition, under 
the additional assumption n ~ 4. 

In the last section we discuss briefly how one could approach case (ii) of the Conjecture. We also 
speculate on the possibillity of proving directly that a surface in pN, satisfying (L) and with N ~ 6, must 
be linearly normal and ruled. Needless to say, we hope to return to a complete proof of the Conjecture in a 
future work. 

2. Surfaces in P 2"+1 

Let V be a complex vector space of dimension 2n + 2, n ~ 2, and X C P(V) ~ P 2"+1 a smooth surface. Let 
P~(1) denote the sheaf of principal parts of order m of the line bundle Ox(1) ~ OP(V)(1)Ix, form~ 0. 
Recall ([4]) that there are homomorphisms 

am : Vx --+- P,X(1), 

such that Im(am(z)) defines the m-th order osculating space to X at z, i.e., 

Oscx(z) = P(Im(am(z))) c P(V). 

The sheaf P~ ( 1) is locally free, with rank (m~2), and there are natural exact sequences (compatible with 
the maps am) 

o ...... smn_k ® Ox(1) ...... PX'(1) ...... p_x- 1(1) ...... o. 
Set Km = Ker(am), Pm = Im(am), and Qm = Coker(am). Then Qm is .locally free at z if and only if 

Im(am(z)) = Pm(z). If Pm is locally free, we call Pm the m-th order osculating bundle of X (note that Pm 
may be locally free even if Qm is not). Since X is a smooth surface, Km is always locally free. 

Denote by s(m) the integer such that am has generic rank s(m) + 1. Then Oscx(z) has dimension 
s(m) for almost all points z E X. If z E X is such that dim Oscx(z) ~ s(m)-1, we call z a point of 
hyperosculation (of order ~ m). 

Let m denote the largest integer such that s(m) < 2n + 1, s(m) < s(m) for all m < m, and such that 
P;n is not the trivial bundle. Define the strict dual variety of X, as i~ ((5]), x• C P(Vv), to be the closure 
of the set {H C P(V); H hyperplane, H 2 Osc~(z), for some z s.t. dim Osc';(z) = s(m)}. 

Assume now that the surface X satisfies condition (L). The maps am are, locally at each point z, Taylor 
series expansions of the coordinate functions of X, of order ~ m. The relation that makes a 2 drop rank can 
be interpreted, around each point of X, as a second order linear partial differential equation of the coordinate· 
functions of X (in terms of local parameters of X at the point). This is the Laplace equation referred to in 
the introduction. When we differentiate further, this relation gives more relations -so the generic rank of 
am is~ 2m+ 1, for all m. Moreover, ifrank(am(z)) <2m+ 1 for some z, then rank(am'(z)) <2m'+ 1 for 
all m' ~ m. Hence, if X satisfies (£1), then rank(am(z)) = 2m+ 1 for all z EX and all m, 0 ~ m ~ n. In 
particular, the sheaves Qm are locally free, with rank(';), and the osculating bundles Pm, with rank 2m+ 1, 
represent the osculating spaces at all points of X, for m ~ n. 

Suppose X satisfies (£1). Then we have m = n, Kn = Ker(a") is locally free with rank 1, and the dual 
homomorphism v_: ...... K~ is surjective. Denote by 

the morphism defined by this 1-quotient. Then we have 1r(X) = x•, and we call 'II' the strict dual morphism. 
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Lemma 1. Assume X satisfies (£1). Then the strict dual morphism 1r: X- x• is finite; in particular, the 
strict dual variety x· is a surface. 

Proof: Since X ¢.. hyperplane, x• cannot be a point. Assume C C X is an integr~l curve such that 
1r(C) = y is a point. If H11 denotes the hyperplane correspondirig toy, then H11 nX contains·(n+ 1)C. Since 
X has no points of hyperosculation, no points of the curve H11 n X can have multiplicity greater than n + 1, 
hence C must be smooth, and H 11 n X can have no other components (since it is connected). But this gives 
a contradiction: the curve C has self-intersection ~ 0 since it is contracted, whereas H: n X has positive 
degree (the degree of X). D 

Lemma 2. Assume X satisfies (LI).Then, form~ 2, there exist exact sequences 

Proof: The surjection {J is induced by the natural surjection 1'x(1) -P.X-1(1), becau~ of the commutative 
diagram 

Vx --+ Qm --+ 0 

II /3! 

Vx --+ 0 

Now set Am= Ker(Pm- Pm-d and Bm = Ker(/3)- then Am is locally free with rank 2, and Bm is locally 
free with rank m - 1 - and consider the diagrams of locally fr~ sheaves ' 

0 0 0 
! ! ! 

0 --+ Am ---+ Pm --+ Pm-1 --+ 0 
! ! ! 

0 --+ smok ® Ox(1) ---+ 1'_KJ(1) --+ p.x-1<1> ---+ 0 
! ! ! 

0 Bm Qm 
{J 

Qm-1 0. ---+ ---+ --+ --+ 

! ! ! 
0 0 0 

Note that Q 1 = 0, so B2 ~ Q2. Set Q = Q2, and observe that Q is invertible. Then we may consider 
Qv- S 2Tx ®Ox( -1) as a sub-bundle, where Tx = (Ok )v denotes the tangent bundle of X. Consider the 
map Q~- smTx ® Ox(-1), whose image is B~, and the composed map 

It is enough to show -y(sm- 2Tx ® Qv) = B~, since this gives a surjection sm-2Tx ® Qv - B~, which 
must be an isomorphism, since the bundles have the same rank. This verification can now be done locally: 
Suppose (u, v) are local parameters of X at z. Then, around z, Qv - S2Tx ®Ox( -1) is determined by an 
element 

{]2 a2 a2 
q = a au2 + b auav + c av2 • 

Then B~ C smTx ® Ox(-1) is spanned, loca]ly around z, by the elements 

am am am 
qi =a a "+1a . 1 + b a ·a . + c . 1a . 1, u' vm-•- u' vm-• ou•- vm-•+ 

for i = 1, ... ,m- 1. But the image of -y is spanned by 

am-2 
'Y(aui-1avm-i-1 ® q) = qi · 0 
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This lemma implies that Qm resembles 'P';-2(Q)- in particular, the Chern classes ofthese two bundles 
are equal. 

Lemma 3. Assume X satisfies (£1). Then the strict dual surface x• is smooth, and there exists an exact 
sequence 

Proof: Let 'P_K.(1) denote the sheaf of principal parts of order m of Ox·(1) = Op(vv)(1)lx•, and let 

a:n: v.;.--+ 'PX'.(1) 

denote the natural homomorphisms. As in ([4]) one observes that the composed map 

is 0. Hence there is an induced surjection 

Since 1'}.(1) has generic rank 3, and Kn-1 is locally free with rank 3, this surjection must be an isomorphism. 
Therefore 1r*('P}.(1)) is locally free with rank 3, hence 1r*O~. is locally free with rank 2. Since the strict 
dual map 1r is a surjective morphism between integral schemes, and 0~. has generic rank 2, it follows -
from the functoriality of Fitting ideals - that 0~. is locally free, with rank 2. Hence X* is smooth, and 
K::_ 1 ~ 1r*('P}.(1)). 

In order too establish the exact sequence, it suffices to observe that An is isomorphic to Coker(K~ --+ 
K::_t), which again is isomorphic to Ker(1r•('P}.(l))--+ 11"•0x·(1)) = 1r•o~. ® Ox(l), and then apply the 
diagram of Lemma 2 with m = n. D 

Lemma 4. Assume X satisfies (£1 ). Then the strict dual morphism 1r :X --+ x• is finite and etale, and 
the first Chern classes of the line bundles Ox(1) and 1r•(Ox·(l)) are equal in A 1X ® Q. 

Proof: Since we know already that X and x• are smooth and 1r is finite, 1r is flat. In order to prove 
the first part, it therefore suffices to prove that 1r is unramified. 

Let y E x•, let H11 denote the corresponding hyperplane, and consider the flat family of curves on X 
(over x•) 

1t = {H11 n Xly EX*}. 

Since X satisfies (£1), each point z E 1r-1(y) is a point of multiplicity exactly n + 1 on the curve H 11 n X­
and all other points on this curve have multiplicity$ n. Set e = deg(1r). For most y, 1r-1(y) consists of e 
distinct points- since no member of1t has points of multiplicity> n + 1, no member can have fewer than 
e points of multiplicity n + 1. Hence # 1r-1(y) = e for all y E x•, and so 1r has no points of ramification. 

From this it follows that 11"·o~. ~ 0~. Set K = Ct(O~), H = Ct(Ox(1)), and n• = Ct(11"*0x·(1)). 
To prove the second part, we shall compute two expressions for c1(Q) in A1 X. First we note that 

hence 
H* = -ct(Kn) = Ct(Pn)· 

From the various exact sequences established earlier, we obtain the following equalities in A 1 X: 

From Lemma 2 we obtain 
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This gives 

The sequence of Lemma 3 yields 

(n -1)c1(Q) = c1(snn_k ®0x(1))- c1(sn-2o_k) + K + 2H*. 

Carrying out the computations and eliminating c1(Q), we obtain the equality in A1 X, 

2(n + 1)H = 2(n + 1)H*. 0 

Now let c2 denote the degree of the second Chern class c2 (Tx) of X. For A, BE A1 X, we let A· BE Z 
denote the intersection number. Note that H 2 = H · H is the degree of X. 

Proposition. Assume the surface X satisfies condition (£1). Then the following formulas hold: 

(1) (n- 1)2c2 + (nK + 2H) · (K + 2H) = 0 

(2) (n2 + 2n + 3)c2 + nK2 + 2(n + 3)K · H = 0. 

Or, equivalently, 

(1') (2n + 1)c2 + 2K · H- 2H2 = 0 

(2') n(2n + 1)K2 + 2n(n + 5)K · H + 2(n2 + 2n + 3)H2 = 0. 

Proof: Since H* and H are numerically equivalent, we may identify them in the computations. By 
Lemma 4, we may replace .,..•n_k. by O_k in the exact sequence of Lemma 3. This sequence gives the equality 
in A 1X®Q, 

(n- 1)c1(Q) = 2nK + (n + 3)H. 

Taking this equality into account, we then obtain (1) by computing c2(0i-) from the same exact sequence. 
The formula (2) is obtained by setting equal the two expressions for c2(Pn) obtained from the two exact 

sequences 
0--+ .,..•ox·(~1)--+ Vx--+ Pn.--+ 0 

and 
0--+ Pn --+ 'Px(1) --+ Qn ----+ 0, 

using the fact 

proved in Lemma 2. 0 

Corollary. If the surface X satisfies (£1), then X is birationally equivalent to a ruled surface, and X '1 P 2. 

Proof: We use only formula (1). Suppose X is not birationally ruled, and let X -+ S be a minimal 
model of X. Then c2 = c2(S) + b and K 2 = c1 (S)2 - b, for some integer b ~ 0. Since S is minimal and not 
ruled, we have c2(S), c1(S)2 ~ 0. Since X is not birationally ruled and H is ample, we have K · H ~ 0. 
From (1) we obtain 

For n ~ 3 this gives a contradiction, since n2 - 3n + 1 > 0 in that case. 
For. n = 2, (1) becomes 

C2 + 2(K + H)2 + H 2 = 0. 

Hence we must have (K + H)2 < 0, since c2 ~ 0 and H 2 > 0. Now we apply a theorem of Sommese and Van 
de Ven ([8], [11]), which says that K + H is generated by global sections (and hence that (K + H)l ~ 0) 
unless X is a plane, the Veronese surface, or is ruled (by lines). This gives the desired contradiction. 
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The last assertion holds because (1) implies that c2 and K 2 cannot both be odd. D 

We now state our main result and show how to deduce it from the formulas of the Proposition. 

Theorem. Assume the surface XC P 2"+1 satisfies condition (£1). Ifn ~ 4, then X is a balanced rational 
normal scroll, of degree 2n and type (n, n). 

Proof: Let 
1 2 

T = 3(K - 2c2 ) 

denote the Hirzebruch index of X. Since X is birationally ruled artd X 1- P 2 , we have T ~ 0, and T = 0 
holds if and only if X is ruled (not necessarily by lines in P 2"+1 ). 

We claim that in order to prove the Theorem for any n (and hence case (i) of the Conjecture), it suffices 
to prove T = 0. For suppose this holds. Then (1') and (2') imply 

nK·H+(n+1)H2 =0. 

Hence 
n(2g - 2) + H 2 = 0, 

where g denotes the sectional genus of X, i.e., 2g- 2 = K · H + H 2 • Since X is not contained in a hyperplane, 
H 2 ~ 2n holds; hence we get g = 0 and H 2 = 2n. But then it is well known (see e.g.[1]) that X is a rational 
normal scroll (since X ~ P 2, the exceptional case of the Veronese surface is excluded). It follows from ([5]) 
that the only such scrolls that satisfy condition (£1), are the balanced ones. 

To finish the proof of the Theorem, it remains to show that if n ~ 4, then T = 0 holds. 
From the formulas (1') and (2') we obtain the following expression for the index T: 

3n(2n + 1)T = -2(n + 3)(nK · H + (n + 1)H2). 

This gives 

H n = 3 or n = 4, then this implies, since T ~ 0, 

and we conclude by the theorem of Sommese-Van de Ven [loc.cit.) that X is ruled (even by lines), hence 
that T = 0, and we are done. 

If n = 2, we obtain 

(K + H)2 = ~T. 
5 

Now if T < 0, then X is not ruled, so it cannot be a scroll- this gives a contradiction, again by the theorem 
of Sommese-Van de Ven. Hence we must have T = 0 also in this case. D 

Clearly, one would like to prove directly that T = 0 holds (for all n), i.e., that X is ruled. Geometrically, 
it seems likely that the presence of reducible rulings would give points of hyperosculation on X, namely the 
points of intersection of the irreducible components of these rulings, and thus contradict the fact that X 
satisfies (£1). Unfortunately, we have not been able to make this id~a work. 

Remark. Instead of using the numerical invariants c2, K 2, and K ·H, one could use T, g, and q, where 
Tis the Hirzebruch index of X, g is the sectional genus, and q = h1 (X,Ox(1)) is the irregularity. Since X 
is birationally ruled, we have K 2 = 8(1- q) + T and c2 = 4(1- q)- T. One has g ~ q ~ 0, and one easily 

6 



sees that the formulas (1) and (2) imply that c2 and [(2 , hence also r, are divisible by 4, and that H 2 is 
divisible by 2n. Set e = !{;. We get 

(1") 
n+6 

e-1+q=- T 
4(n+3) 

and 

(2") 5n- 3 
g - q = - 4( n + 3) T. 

This shows (again) 
T = 0 <==:} e = 1 and g = q = 0. 

In fact, any one of the conditions e = 1, g = q, or g = 0 implies T = 0. We have already observed this for 
e = 1. If g = q, then T = 0. If g = 0, then q = 0, and hence T = 0. Moreover, it is also true that in order 
to prove the Theorem for n ~ 3, it suffices to show that q = 0 holds, i.e., that X is a rational surface. For 
suppose q = 0 holds. Compute (K + H)2 using this and (1") to get 

(K + H)2 = -~6 ((n2 - 2n + 12)e + 6(n- 4)). 
n+ 

This shows that (K + H)2 < 0 if n ~ 3. Hence K + H cannot be generated by its global sections, and we 
conclude once again by the theorem of Sommese - Van de Ven. 

3. Some remarks 

Suppose the surface X C P(V) ~ P 2n+2 satisfies the condition (LI). Then the strict dual variety X" C 
P(Vv) is of dimension ~ 3, since it is the image of a P 1-bundle on X; the strict dual morphism is in this 
case 

1r : P(K~) --+ P(Vv), 

defined by the 2-quotient V1-> K;:, where Kn = Ker(an), and X"= 1r(P(K;:)). 

If X is a semi-balanced rational normal scroll, then dimX" = 3 holds ([5]), so one wants to show this 
holds whenever X satisfies (LI). Granted this, one should proceed by trying to obtain formulas similar to 
those of the Proposition, hoping that the fact that 1r is no longer defined on X, but on P(K;:), does not 
complicate matters too much. 

One could also ask whether there are any surfaces XC P 2n+2 satisfying (LI) and such that Osc~+l(x) = 
P 2n+2 for all points x E X. But if the Conjecture is true, no such surface exist, since the only possibility 
-a semi-balanced scroll- satisfies dim Osc~+ 1 (x) = 2n + 1 for all points x on a rational normal curve of 
degree n on X ([5]). 

Another approach to the Conjecture (in both cases) would be to establish more directly that a surface 
satisfying (L') must be linearly normal and ruled. Togliatti ([10]) gives an example of a surface in XC P 5 

satisfying (L) and such that the Laplace equation satisfied by X, at a general point, is of hyperbolic type, 
hence X is not ruled. This surface is obtained by projecting the Del Pezzo surface of degree 6 in P 6 from a 
point common to all the 2nd order osculating spaces to X (such a point exists!), so it is not linearly normal. 
It would be interesting to know whether this is in fact the only example of a smooth surface satisfying ( L) 
which is neither ruled nor linearly normal - this would give a proof of our Conjecture. 
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