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ABSTRACT. We present a numerical method for the n-dimensional initial value problem 
for the scalar conservation law u(xt, ... ,xn,t)t + L:i=1 /;(u)x; = 0, u(xl, ... ,xn,O) = 
ua(xt, ... ,xn)· Our method is based on the use of dimensional splitting and Dafermos' 
method to solve the one dimensional equations. This method is unconditionally stable in the 
sense that the time-step is not limited by the space discretization. Furthermore we show that 
this method produces a sub-sequence which converges to the weak entropy solution as both 
the time and space discretization go to zero. 

0. Introduction. Scalar conservation laws have, due to their wide range of applications, 
been studied extensively over the years, both from a mathematical, physical and numerical 
point of view. 

Fundamental problems are the emergence of discontinuous solutions of the partial dif­
ferential equation with the subsequent call for weak solutions, which again results in subtle 
uniqueness questions. 

Existence and uniqueness was first proved for the general Cauchy problem by Conway 
and Smoller [1], and later on by Kuznetsov [8], Volpert [9], Kruzkov [7] who used a viscocity 

1980 Mathematics Subject Classification {1985 Revision). 35165, 65M12, 65M99. 
Key words and phrases. Dimensional splitting, scalar conservation law, fractional steps, numerical 

methods. 

Typeset by AMS-'lEX 



2 HOLDEN, RISEBRO 

method. We will here use Kruzkov's formulation of the entropy condition, which is a 
mechanism to identify the unique physical solution. 

We here study the Cauchy problem 

n 

(0.1) 
Ut + Lfi(u)x; = 0 

i=l 

u(xJ, ... ,Xn,O) = uo(XJ, ... ,xn)· 

Kruzkov's definition of the entropy weak solution reads as follows: u is the entropy weak 
solution if for all constants k, all </> E CJ, </> ~ 0, the inequality 

(0.2) L. L, [ .p,ju- ki +sign( u - k) t.(f;( u)- f;( k ))¢,;] d"xdt 

holds. 

+ f iuo-ki<f>(xl,···,xn,O)dnx~O Jmn 

The method of fractional steps, or dimensional splitting, was introduced by Godunov 
[4] in connection with gas dynamics, and later modified and extended by various authors. 

Let us briefly describe the method of fractional steps due to Godunov for the case n = 2. 
Let u(x, y, t) = S(t)uo(x, y) denote the entropy solution of 

(0.3) 
Ut + f(u)x + g(u)y = 0 

u(x,y,O) = uo(x,y) 

at timet. Similarly let v(x,y,t) = Sf,x(t)v0 (x,y) denote the entropy solution of 

(0.4) 
Vt + f(u)x = 0 

V (X, y, 0) = Vo (X, y) 

at time t, when y is considered a parameter. The idea is then alternatively to apply the 
operators sJ,x and sg,y (defined as sJ,x' but with y as a parameter) for small timesteps 
llt to approximate u(x, y, t), viz. 

(0.5) u(x, y, t) = (S(t)uo)(x, y) ~ [Sf,x(llt)S9·Y(flt)tuo(x, y) 

with nllt = t. 
When solving the one-dimensional problem (0.5), one may choose from the diversity of 

methods available. Crandall and Majda [2] analyze rigorously the fractional steps method 
for monotone schemes, the Glimm method, and the Lax-Wendroff scheme. 

We here propose another scheme which has the advantage of yielding an unconditionally 
stable approximation in the sense that the time-step is not limited by the space-step used 
in the discretization, i.e. one does not need the Courant-Friedrichs-Lewy (CFL) condition. 
Our method is based on an idea by Dafermos [3] of approximating the flux function by 
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a polygon, i.e. a continuous, piecewise linear function. FUrthermore the initial data are 
approximated by step functions, thereby yielding (multiple) Riemann problems. This has 
the advantage of replacing rarefaction waves by shocks in the solution and thus the solution 
will be a step function in x for each t. Holden, Holden, and H!1legh-Krohn [5], [6] extended 
this method into a numerical method for n = 1. 

Finally we will give a brief resyme of the paper. Let 8 > 0 denote the parameter 
measuring the polygonal approximation of the flux function in the sense of (1.4), and fix 
a grid in the x, y-plane. We then use the Dafermos scheme in the x-direction for a small 
timestep tlt. The solution is then projected back onto the original grid before we apply 
the Dafermos scheme in they-direction for a timestep tlt, using the solution computed in 
the x-direction as initial data. After each time we apply the Dafermos scheme we project 
the function onto the original grid, thereby obtaining a sequence of functions indexed by 
the number of interations and the mesh size. 

In a series of lemmas we then prove that this sequence is uniformly bounded by the initial 
data in the L 00-norm, the T.V.-norm, and has L1 norm which is Lipschitz continuous in 
the time variable. Helly's theorem then gives a convergent sub-sequence which is finally 
proved to satify the Kruzkov entropy condition (0.3). 

1. Construction of approximate solutions. For simplicity of notation we will consider 
(0.1) in two dimensions, since generalization to more than two dimensions is straightfor­
ward. In two dimensions ( 0.1) reads 

(1.1) 
Ut + f(u)x + g(u)y = 0 

u(x,y,O) = uo(x,y) 

where f and g are continuous functions R-+ R that are also in BVioc(R) n LlocCIR.). 
We wish to construct a numerical approximation of the solution u based on dimensional 

splitting, and where the one-dimensional solution operators are constructed by Dafermos' 
[3] method. Now we will give a brief description of Dafermos' method as used in [6] and 
as we will use it here. 

Let uo be some given real number and let Ui = uo + i8 for i = 1 ... , N, let fi = J( ui)· 
We then define jt;( u) by 

(1.2) f+I-f" uE[ui,ui+I]:::::}jt;(u)=' '(u-ui)+fi, i=O, ... ,N-1 
Ui+l- Ui 

and 

(1.3) U:::; Uo:::::} jt;(u) = Uo, U 2: UN:::::} jt;(u) =UN. 

Consider the Riemann problem with u1 = uo and Ur = UN. Let fc denote the lower 
convex envelope of jt; on [u1, ur]. Then also fc is piecewise linear and continuous. Let 
ii0 < ii1 < · · · < UM be such that 

(1.4) uo=uo, UM=UN, {iio, ... ,iiM}~{uo, ... ,uN}, 
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and such that fc is linear on each interval [ui, Ui+I]· The solution of the one dimensional 
Riemann problem with left state u0 and right state UN is now given by: 

(1.5) 

where 

(1.6) 

{ 

U[, 

u(x, t) = Ui, 

Ur, 

for X ~Sot 

for Si-lt < x ~Sit, 

for x > SM-lt 

- -

i = 1, ... ,M -1 

li+l- fi si = _ _ , i = 0, ... , M - 1. 
Ui+l- Ui 

There is a similar formula involving the upper convex envelope for the solution of the 
Riemann problem in the case where the left initial value is larger than the right. In 
particular, we see that the solution in each case is a step function in xjt. Dafermos' 
method as used in [6] and others involves approximating the initial function by a step 
function and thereby defining a series of Riemann problems. The solutions of these will 
define a function which can be defined for t > 0 until two discontinuities interact. The 
interacting discontinuities will then define a Riemann problem. This Riemann problem is 
solved and the solution can be continued in this fashion up to any positive time. For a 
complete description of this procedure we refer the reader to [5], [6]. 

Let ~x and ~y be given (small) numbers and let 1r be a projection from BV(R2 ) to 
functions that are constant on each square 

(1.7) Zij = {(x,y); i~x < x < (i + 1)~x, j~y < y < (j + 1)~y} 
for i, j E Z. The projection 1r should satisfy 

lim 1ru(x, y) = u(x, y) 
6.x-+06.y-+O 

(1.8) j j l1ru- ul dxdy = O(max(~x, ~y)) 

1(i+1)6.x 
1

(j+1)6.y 1(i+1)6.x 1(j+1)6.y 
( 7rU )ij~X~Y = 7rU dxdy = U dxdy, 

a6.x j6.y i6.x j6.y 

where we write ( 1ru )ij for 1rulz;i. Furthermore the value of 1ru in Zij should only depend 
on u in Zij. In addition the projection is required to satisfy min(x,y)Ez;i u ~ ( 1ru )ij ~ 

max(x,y)Ez;i u. 
The canonical choice would be to let 1r denote the grid average, i.e., 

(1.9) 1ru(x,y) = J.L(zi;)-1 jz·· dJ.L(x,y)u(x,fj), 
'J 

(x,y) E Zij· 

for some measure J.l· Since we will use Dafermos' method in each direction, we define /6 
and 96 to be piecewise linear continuous approximations to f and g respectively. The 
approximations should be good both in the T.V. norm and in L1 , i.e., 

!im lf(u)- /6(u)lr.v. = 0 
v-+0 

lim lf(u)- /6(u)IL1 = 0, 
6-+0 

(1.10) 
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similarly for g. H vo(x) is a piecewise constant function taking a finite number of values, 
we can use Dafermos' method to calculate the solution to the initial value problem: 

(1.11) Vt + fo(v)x = 0, v(x, 0) = vo(x ). 

We will write v(x, t) = sf•x(t)v0 (x) to indicate that v(x, t) is the weak entropy solution of 
(1.11). 

H, for each fixed x, u( x, y) is a piecewise constant function in y on the intervals (j D.y, (j + 
1)D.y), j E Z we write 

(1.12) 

Similarly, 

(1.13) Ui(Y) = uli~x<x<(i+l)~x(x, Y) 

for functions that are constant in x for each y. Furthermore 

(1.14) 

Dimensional splitting consists in first applying the solution operator sf•x to u i for each 
j, then projecting the solution back onto the grid, and subsequently applying the solution 
operator sg·Y to Ui for each i. Finally the result of this is projected onto the grid, and the 
process repeated. In "computer code" this looks like 

t := 0 
n :=0 
u0(x,y) := 1rouo(x,y) 
do while t < T 

do j := -N step 1 toN 

uj+l/\x) := s['x(D.t)un(x, (j + 1/2)D.y) 
end do 
un+lf2(x, y) := 7r 0 un+lf2(x, y) 
do i := -N step 1 to N 

u?+\y) := sg•Y(f1t)un+lf2((i + 1j2)f1x, y) 
end do 
un+1(x,y) := 7r o un+1(x,y) 
t := t + D.t 
n := n+ 1 

end do 
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Here N is a constant that is chosen so large that u n is constant outside the square bounded 
by ±N .6.x and ±N .6.y in the time interval [0, T]. 

2. Convergence. For convenience we will from now on assume that .6.x = .6.y = c.6.t for 
some c =f. 0. Then we have three main lemmas which ensure the existence of a convergent 
sub-sequence. 

Lemma 1. 

(2.1) 

Proof. This is true since S{'x and Sl'y do not introduce new maxima or minima, and 
neither does the projection 1r. D 

Lemma 2. 

(2.2) 

Proof. Recall that for a function h(x,y), T.V.(x,y)h(x,y) is defined as 

(2.3) T.V.(x,y)h(x, y) = j T.V.x(h(x,y))dy + j T.V.y(h(x,y))dx. 

The lemma will hold inductively if we show that T.V. ( un+1(x, y)) ~T.V. ( un(x, y)). 
l,From [6] we know that if u and v are two weak solutions of 

(2.4) Ut+f(u)x=O 

with initial values uo and vo respectively, then 

(2.5) j lu- vldx ~ j luo- voldx. 

We now have that uj(x, .6.t) and uj+1 (x, .6.t) are step functions that are constant on 
some intervals {[xk, Xk+l)}. Thus if Xk E [xk, Xk+I) 

(2.6) J luj+ 1(x,.6.t)- uj(x,.6.t)ldx = 

L lu'J+I (xk, .6.t) ~ uj(xk, .6.t)l(xk+I - xk) ~ L lui,i+1 - ui,il.6.x, 
k i 

using (2.5). But by the construction of the projection 1r, 

(2.7) L luj+1 (xk, .6.t)- uj(xk, .6.t)l(xk+I - xk) = L lu~j~{2 - u~j112 1.6.x. 
k 
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Therefore 

(2.8) L I n+l/2 n+l/21 A L I n n 1 A U· "+l - U· · u.X < U· ·+1- U· · u.X. 1,] 1,) - 1,) 1,) 

If again u is a weak solution of (2.4) then from [5] we have 

(2.9) 

By this it follows that 

(2.10) L luj(xk+I,b.t)- uj(xk,b.t)l ~ L lui+I,i- ui,il· 
k 

Now let h = h(x) E BV be any piecewise constant function, and let he be a continuous 
approximation to h defined as follows. In a small neighborhood of each jump we let he be a 
linear interpolation between the two constant values. Then T.V.( h)= T.V.( he)~ T.V.('rrh) 
since 1rh is a particular partition of he. 

This implies 

(2.11) L I n+l/2 n+l/21 L I n n I 
U "+I · - U · · < U ·+1 · - U · · . I ,) t,) - I ,) I,J 

Multiplying (2.11) by b.y and summing over j, and summing (2.8) over j, and then adding 
the results, we obtain 

(2.12) 

The desired result then follows by applying sg,y. D 

Lemma 3. 

(2.13) L lu~j- ui,jlb.xb.y = (Cb.t + h(b.x, b.y, u)) (m- n), 
i,j 

where his such that lim.t..x--+O,.t..y--+0 h(b.x,b.y,u) = 0. 

Proof. If we again turn to the one-dimensional equation and let u be the solution of (2.4) 
then 

(2.14) 

for some constant C. In our notation this reads 

(2.15) L luj+1/ 2 (xk+I,b.t)- uj(xk)l(xk+I- Xk) ~ Cb.t, 
k 
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where the intervals {[xk, Xk+1)} are chosen such that both uj(x, ~t) and uj(x) are constant 
on [xk, Xk+1) and Xk E [xk, Xk+1)· Now 

(2.16) lu~t1 - u~ ·I< lu~t1 - u'!-(x ~t)l+ t,J t,J - t,J J ' 

I 7!-( At)- ~~1/21 +I ~~1/2- n:+1/2( ~t)l +I n:+1/2( ~t)- ~·I u3 x, L..J. u,,3 u,,3 u3 x, u3 . x, u,,3 , 

for i~x ~ x < (i + 1)~x. Integrating (2.16) in both the x andy direction and using (2.15) 
gives 

(2.17) 

where 

(2.18) 

~ luf,j1 - ui,jl~x~y::; 4NC~t + J J l1rv- vldxdy + J J l1rw- wldxdy 
z,J 

w(x, y) = uj(x, ~t) 

v(x,y) = uj+ 1 /\x,~t), 

and N is such that ui,j is constant outside the square bounded by ±N ~x and ±N ~y. Due 
to (1.8) the last two terms on the righthand side of (2.17) will be of order O(~x) = O(~t) 
as ~x and ~y tend to zero. The lemma now follows by induction. D 

Denote un(x,y) by u~(x,y) where 'fJ = (b,~x). Now by using lemmas 1-3 and Helly's 
theorem as in e.g. [1], one shows the existence of a convergent sub-sequence of u~ (which 
we for simplicity also will call u~(x, y, t)). Furthermore this sequence converges uniformly 
in L1 (R.2 x [0, T]) for any T > 0, and the limit takes the correct initial value. We will 
denote this limit by u(x, y, t). 

Lemma 4. The limit u(x, y, t) is a weak entropy solution of (2.1). 

Proof. We always have that u ']( x, ~t) is a weak entropy solution of the problem 

(2.19) Ut + f(u)x = 0 u(x,n~t) = uj(x). 

Therefore 

i 1(n+1)~t 

(2.20) <Pt lu'J( x, t) - kl + <flxsign( uj(x, t)- k) (!o ( uj(x, t)) - fo( k)) dtdx 
JRl. nLH 

-l ¢>(x, (n + 1)~t)luj(x, ~t)- kldx +1m <jl(x, n~t)luj(x)- kldx?: 0 

for any constant k. Since uj(x, t) is a step function in x the integration with respect to x 

can be approximated by a Riemann sum of u~'t/2 . Therefore for any small € > 0 we may 
find a corresponding 'rJ such that 

1
(n+1)~t 

(2.21) L <jl(i~x,j~y, t)tlu~'t 12 - kl+ 
n~t i 

</Ji,j(t)xsign( u~j112 - k) (1i:j 112 - f(k ))~xdt 

- "'"'A.~t 1 lu~~1 /2 - kl~x +"'"'A.~ ·lu~ ·- kl~x > -€ L..J '+'t,J •,J L..J '+'t,J t,J ' . . 
I I 
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where fi~j = f(ui,i) and </>i,i = </>(iD.x,jD.y,nD.t). Here we have used (1.8) when replacing 

uj(x, D.t) by uj+1/2 and ft; ( uj(x, D.t)) by f( uj+112 ). Furthermore we can approximate 
the differentiation with respect to t by a difference, and the integration with respect to t 
by a multiplication with D.t. Thus for any E1 > 0 we can find 7J such that 

(2.22) 

~ { </>?,)1 - </>i,i lu~~ 1 /2 - kl + (¢>"!t1) sign(u~~112 - k) (f'!-!"112 - f(k))} D.xD.t L...J D.t z,J z,J x z,J z,J 
i 

Similarly we get 

(2.23) 

- ~ "-"!t 1 1u~-+: 1 /2 - kiD.x + ~ ¢>'! ·lu'! ·- kiD.x > -E1. L...J 'f'z,J z,J L...J z,J z,J 
i i 

~ { <P?,j1 - </>i,i lu~~1/2 - kl + (¢>"!t1) sign(u~~1/2 - k) (g'!-f:1/2- g(k))} D.yD.t L...J D.t z,J z,J y z,J z,J 
j 

- ~ A-"!t11u"!t1 - kiD.y +~A-'! ·lu~-f:1/2- kiD.y > -E2 L...J 'f'z,J z,J L...J 'f'z,J z,J 
j i 

for any E2 > 0 and for some sufficiently small "7· Multiplying (2.22) by D.y and adding for 
all j, and multiplying (2.23) by D.x and adding for all i, and finally adding the results we 
get 

i,j i,j 

where L = ND.x = ND.y, and N is such that supp(¢>) C {lxl < N/2,IYI < N/2} X [O,T]. 
Summing (2.24) over n and letting "7 -+ 0 we get that u is an entropy weak solution of 
(2.1). 0 

The generalization of this to higher dimensions is straightforward. We define 

(2.25) G6(t) = 1rS[n,Xn • • • 7rS[t,Xl 

and let 7J denote the 'grid spacing', i.e., "7 = (b,Ax!, ... ,D.xn,D.t). The approximate 
solution is denoted 

(2.26) 

Theorem. Let JI, ... , fn be continuous functions that are in Bvtoc(lR) n Lfoc(lR). Define 
by (2.26) a sequence of approximate solutions of (0.1) indexed by 7J· As "7 -+ 0, a sub­
sequence of u,., converges to the unique entropy weak solution (0.2) of (0.1). 

I 

I 
I 
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