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Abstract 

We show that regular ex!ensions of von Neumann algebras by 

groups may be de~omposed via normal subgroups and quotient groups. 

An application within the theory of II1-factors is also given. 

1 Introduction 

Ever since the pioneering work of Murray and von Neumann, crossed 

products have been a central theme in the theory of operator algebras. 

The concept of a regular extension of a von Neumann algebra NI by 

a locally compact (separable) group G was introduced by Sutherland 

in [13] as a generalization of the twisted crossed product construction 

considered in [14] (for discrete groups) and in [12]. For a finite factor 

Manda discrete group G, it had first been studied by Nakamura and 

Takeda in [7]. In an ordinary twisted crossed product, the twist is 

produced by a two-cocycle of the group taking values in the unitaries 
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of the center of the algebra. In a regular extension, the two cocycle 

is now allowed to take unitary values in the whole algebra. When 

lrf = C, both constructions coincide and reduce to the von Neumann 

algebra generated by a projective left regular representation of the 

group. At last, in an ordinary crossed product, the two-cocycle is just 

the trivial one. 

In (1; proposition 3], we proved that an ordinary crossed product 

may be decomposed as the iteration of the induced crossed product 

from a normal (closed) subgroup followed by a regular extension of 

the quotient group. On the other hand~ Packer and Raeburn defined 

in (9] the twisted crossed product of a twisted C':.. dynamical system 

and proved a general decomposition theorem ((9; theorem 4.1]). Tllis 

suggests that the same decomposition result should hold for regular 

extensions of von Neumann algebras and, in fact, it does. However, 

it is not quite obvious how our proof of (1; proposition 3] should be 

altered to handle the more general situation. As thls result is of some 

importance from a structural point of view, we present a proof in tllis 

paper. For the sake of clarity, we restrict ourselves to discrete groups, 

the proof for locally compact (separable) groups being then essentially 

a routine matter. 

As an illustration of how thls decomposition theorem may be used, 

we shall prove the following result: Suppose that N is a separable 

II1-factor which contains a regular subfactor M with trivial relative 

commutant. Suppose further that M has property r and the inclusion 
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M C N is amenable in the sence of Popa (10; 3.2.1]. Then N has also 

property r. 

This answers partially of question of Popa [10; 3.3.2], where neither 

regularity of the subfactor nor triviality of its relative commutant is 

assumed. It also generalizes [1; theorem A], where we showed that 

the crossed product of a separable II1 -factor with property r by a 

free action of a countable amenable group has property r. Another 

proof of this last theorem was recently given by Bisch ([2; theorem 

2.1]) and one should note that our extended result may alternatively 

be derived from his work. 

Our notation w.ill be as in [1]. 

2 Decomposition of regular extensions 

Let M denote a von Neumann algebra acting on a Hilbert space H. 

A cocycle crossed action of a (discrete) group G on lYI is a pair (a, u ), 

where a: G -+Aut(M) and u: Gx G -+U(M) satisfy for g, h, kEG: 

a9 ah = ad(u(g,h))a9h, 

u(g,h)u(gh,k) = a9 (u(h,k))u(g,hk), 

u(g,1) = u(1,h) = 1. 

The regular extension of lYI by G, M X(a,u) G, is then defined as 

the von Neumann algebra acting on l2 (G, H) generated by rro:(M) 

and Au( G), where 7ra is the faithful normal representation of l'II on 

l2 (G; H) defined by 
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while, for each hE G, Au (h) is the unitary operator on 12 ( G, 1t) defined 

by 

(>.u(h)~)(g) = u(g-I, h)~(h- 1g) 

( x E M, ~ E l2 ( G, 7t), g E G) . 

It is well-known that the algebraic structure of M X(a,u) G is indepen­

dent of the Hilbert space 1t and that the following formulas hold for 

all g,hEG, xEM: 

1ra(a9 (x)) = ad(>.u(g))(7ra(x)) 

Au(g )Au(h) = 1ra( u(g, h ))>.u(gh) 

Our aim is to establish the following W*-algebraic version of [9; the­

orem 4.1]: 

Theorem 1: Let 1--+ H--+ G ~ J(--+ 1 denote an exact sequence 

of (discrete) groups and (a, u) a cocycle crossed action of G on a von 

Neumann algebra M acting on 7t. Identify H with its copyinG and 

denote by (a', u') the restriction of (a, u) to H. 

Then there exists a co cycle crossed action ({3, v) of J( on 

Nf X(a',u') H such that 

M X(a,u) G is *-isomorphic to (M X(a',u') H) X(f3,v) J(. 

Proof: We divide the proof into three lemmas. 
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Lemma 1: For each g E G, there exists /g EAut(M X(a.',u') H) such 

that 

Proof: Without loss of generality, we may assume that each a9 is 

implemented by a unitary operator a(g) on H. (Otherwise, proceed 

as in the proof of [1; proposition 3, claim 1].) Then define, for each 

g E G, the operator b(g) EB(l2 (H, H)) by 

Then one checks easily that b(g) is a unitary operator on l2 (H, Jt). 

Further we have that 

b(g )1r a.' (X) = 1!" a.' ( O:g (X) )b(g) 

(gEG, xEM, hEH). 

Indeed, for~ E z2(H, H), p E H, we compute (using the cocycle equa-

tions for (a, u )): 
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while 

= u(p-1, g )a(g-1 )* a 9 -1 ( ap-19 ( x) )u(g-I,p-1 g )~(g-1pg) 

= u(p-1 ,g )ap-1 9 ( x )a(g-1 )*u(g-1 ,p-1 g )~(g- 1pg) 

= ap-1 ( a 9 ( x ))u(p-l,g )a(g-1 )*u(g-1 ,p-1 g )~(g-1pg) 

= [ 7r a' ( a9 (X) )b(g )~] (p) , 

(b(g )Au'(h )~)(p) 

= u(p-1 'g )a(g-1 )*u(g-1 ,p-1 g)[( Au'( h )~)(g-1pg )] 

= u(p-1 ,g)a(g-1 )*u(g-1 ,p-1g)u(g-1p-1g, h)~( h-1g-1pg) 

= u(p-1 ,g )a(g-1 )* a9 -1 ( u(p-1g, h ))u(g-1 ,p-1 gh )~( h-1g-1pg) 

= u(p-1 ,g)u(p-1g, h )a(g-1 )*u(g-1 ,p-1gh )~(h-1g-1pg) 

= ap-1 ( u(g, h) )u(p-1, gh )a(g-1 )*u(g-1 ,p-1 gh )~( h-1 g-1pg) 

= ap-1 ( u(g, h))u(p-1 ,gh )u(p-1ghg-1 ,g)*b(g)~(gh-1g-1p) 

= ap-1 ( u(g, h) )u(p-1, gh )u(p-1ghg-1, g )*u(p-1, ghg-1 )* [(Au' (ghg-1 )b(g )0(P )] 

= ap-1 ( u(g, h) )u(p-1, gh )( ap-1 ( u(ghg-1 ,g) )u(p-1, gh ))*[(/\u'(ghg-1 )b(g )~)(p )] 

= ap-1 ( u(g, h )u(ghg-1 ,g)*)[ Au'(ghg-1 )b(g )~(p )) 

= (7ra'(u(g,h)u(ghg- 1 ,g)*)Au'(ghg-1 )b(g)0(P). 

Thus ad(b(g )) restricted to M X (a',u') H has the required properties 

of /g, which ends the proof of lemma 1. 

Lemma 2: Let n : J(-+ G be a section for 1r with n(l) = 1, and 

define 

f3: K-+ Aut(M X(a',u') H) by f3 =1on. 

Further, define m: KxK -rH by m(k,l)===n(k)n(l)n(kl)-1 
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and v: KxK -+U(M X(a',u') H) by 

v(k, l) = 7r0 t(u(n(k), n(l))u(m(k, l), n(kl))*)).u,(m(k, l)). 

Then (/3, v) is a cocycle crossed action of K on M X (a' ,u') H. 

Proof: Apart from some notational changes, the computations re­

quired are precisely those effectued in [9; p. 306-307]. 

Le1nma 3: Define A: Z2 (K; l2 (H, 1i))-+l2 (G, 'H) by 

(At)(g) = u(g-1n(7r(g-1))-1, n(7r(g- 1 )))*[(~(7r(g)))(n(7r(g- 1 ))g)] 

(~ E l2 (K, l2 (H, 'H), g E G). 

Then A is a unitary operator such that 

i) A7rf3(7rat(x))A* = 7r0 (x), xEM 

ii) A1r13(>.u'(h))A* = Au(h), hEH 

iii) A>.v(k)A* = >-u(n(k)), kEK 

Proof: It is easy to check that A is unitary. 

Now, let ~ E l2 (KY(H, 'H)), g E G and set l = 1r(g) E K, so that 

z-1 = 1r(g-1 ), 

and w=u(g- 1n(l-1 )-1 , n(l-1 ))* EU(M). 

As a sample, we prove iii) and leave the proof of i) and ii) as an 

exercise for masochistic readers. 

For k E K, we have that 

(A>.v(k)~)(g) 

= w[((>.v(k)~)(l))(n(l- 1 )g)] 

= w[( v(l- 1 , k)~(k- 1 l))(n(z- 1 )g)] 
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= w[( 7l"a'( u( n( z-1 ), n( k) )u( m(l-1 , k ), n( z-1 k) )*P·u'( m(l-1 , k ))~( k- 11)) 

(n(Z-1 )g)] 

= wa9 -1n(t-1 )-1 ( u( n(Z-1 ), n( k) )u( m(l-1 , k ), n(Z-1 k) )*) 

[Au'( m(Z-1 , k )~(k- 1 1)]( n(l-1 )g) 

= u(g- 1 , n( k ))u(g-1n(l-1 )-1 , n(l- 1 )n(k ))*a9 -1n(t-1 )-1 ( u( m(l-1 , K), 

(*) n(Z-1k)))*u(g- 1 n(Z-1 )-1 , m(t-1 , k))[(~(k- 1 l))(m(Z- 1 , k)- 1 n(Z- 1 )g)] 

= u(g- 1 , n( k ))u(g-1n( k )n(l-1 k )-1 , n(l- 1 k ))* [( ~( k- 1 1) )( n(l- 1 k )n( k )- 1 g)] 

(**) 

= u(g-I,n(k))A~(n(k)-1g) 

= (Au(n(k))A~)(g), 

where we have used that u(a,b)*aa(u(b,c)) = u(ab,c)u(a,bc)* 

with a"== g- 1 n(Z-1 )-I, b = n(l-1 ), c = n(k), to obtain equality at(*), 

and that aa(u(b,c))*u(a,b) = u(a,bc)u(ab,c)* with a= g-1n(l- 1)-I, 

b = m(l-1 , k), c = n(l- 1k) at(**). Thus, lemma 3 is proved. 

Now, since (M X(a',u') H) X(!J,v) ](is generated by 

while M X (a,u) G is generated by 

{ 1l"a'(x )), Au(h )), Au( n(k)); x EM, hE H, k E K}, 

it is clear that A implements the desired *-isomorphism between these 

two algebras, and this ends the proof of the theorem. 
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Corollary 2: Let 1---* H- G---* J(---* 1 denote an exact sequence of 

(discrete) groups and u : G X G---* T (the circle group) a two-cocycle 

of G. Denote by u' the restriction of u to H, and by Lu (G) ( resp. 

Lu'(H)) the von Neumann algebra generated by the projective left 

u-regular (resp. u'-regular) representation of G (resp. H) on 12(G) 

(resp. l2 (H)). Then Lu(G) may be written as a regular extension of 

Lu'(H) by K. 

Proof: Set M = C in the theorem. 

Corollary 2 generalizes [13; proposition 3.1.7], where left regular 

representations are considered. 

3 II1-factors and Property r 

In [1; theorem A], we proved that the crossed product of a separable 

II1-factor with property r by a free action of a countable amenable 

group has property f. ·with theorem 1 at hand, this result extends to 

regular extensions. As the proof is in the same vein as the one used 

to prove [1; theorem B], we sketch it briefly. 

Theorem 3: Let M denote a separable II1 -factor and (a, u) a 

free cocycle crossed action of a countable amenable group G. Then 

N X(a,u) G is a II1-factor, which has property r whenever M has 

property r. 
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Proof: It is well-known that M X(a,u)G is a lit-factor ([7; theorem 

1]). Suppose that M has property r. Let H = {hE Glah is centrally trivial on M}. 

Then M is a normal subgroup of G and J( = G / H is amenable. Let 

(j3, v) denote the cocycle crossed action of J( on M X(a',u') H ob-

tained from the theorem, which by construction is centrally free. By 

Otneanus 2-cohomology vanishing result ([8; theorem 1.1]), we may 

perturb (/3, v) to an action /3 of J( on N. Now, it follows easily from 

the ,covariance formula that N has property r when M has. Thus 

we have that M X(a,u) G-::::!. N X(f3,v) J(-::::!. N x13 J( has property f by 

invoking theorem 1 and [1; theorem A]. 

We note that theorem 3 may also be derived from Bisch's [2; theo­

rem 1.1]. Further, the McDuff-version of theorem 3 follows by the 

same pattern of proof, or from the slightly more general result of 

Matsumoto ([6; theorem 3.1]). At last, Papa has recently shown that 

the 2-cohomology vanishes for all cocycle crossed actions of discrete 

groups with subsexponential growth on II1-factors ([11; theorem 2.1]), 

while Cannes and Jones have proved that groups such as SL(3, Z) may 

have non vanishing 2-cohomology on lit-factors ([4; theorem 5]). 

From theorem 3, we will now deduce the result announced in the 

introduction: 

Theorem 4: Let N be a separable lit-factor and M a regular 

subfactor of N with M'nN =C. If M has property rand the inclusion 

M C N is amenable (in the sense of Papa ([10; 3.2.1])), then N has 

property r. 
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Proof: By Choda's characterization ([3; theorem 4], see also [5]), 

there exist a countable discrete group G on M such that 

N ~ M X(a,u) G. Furthermore, the isomorphism sends M C N onto 

7ra(M) C M X(a,u) G. Now, by [10; 3.2.4], this last inclusion is 

amenable if and only if G is amenable. Hence, theorem 3 gives the 

result. 

The basic definition of the amenability of the inclusion M C N in 

theorem 4 requires some knowledge of the notion of correspondences 

between von Neumann algebras. One equivalent formulation in our 

setting is the following: There exists a state on the (Jones) extension 

of N by M which contains N in its centralizer ([10; 3.2.3]). 
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